ffmpeg / libavcodec / ra144enc.c @ 5d6e4c16
History  View  Annotate  Download (17.2 KB)
1 
/*


2 
* Real Audio 1.0 (14.4K) encoder

3 
* Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>

4 
*

5 
* This file is part of FFmpeg.

6 
*

7 
* FFmpeg is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2.1 of the License, or (at your option) any later version.

11 
*

12 
* FFmpeg is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with FFmpeg; if not, write to the Free Software

19 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

20 
*/

21  
22 
/**

23 
* @file

24 
* Real Audio 1.0 (14.4K) encoder

25 
* @author Francesco Lavra <francescolavra@interfree.it>

26 
*/

27  
28 
#include <float.h> 
29  
30 
#include "avcodec.h" 
31 
#include "put_bits.h" 
32 
#include "lpc.h" 
33 
#include "celp_filters.h" 
34 
#include "ra144.h" 
35  
36  
37 
static av_cold int ra144_encode_init(AVCodecContext * avctx) 
38 
{ 
39 
RA144Context *ractx; 
40  
41 
if (avctx>sample_fmt != AV_SAMPLE_FMT_S16) {

42 
av_log(avctx, AV_LOG_ERROR, "invalid sample format\n");

43 
return 1; 
44 
} 
45 
if (avctx>channels != 1) { 
46 
av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",

47 
avctx>channels); 
48 
return 1; 
49 
} 
50 
avctx>frame_size = NBLOCKS * BLOCKSIZE; 
51 
avctx>bit_rate = 8000;

52 
ractx = avctx>priv_data; 
53 
ractx>lpc_coef[0] = ractx>lpc_tables[0]; 
54 
ractx>lpc_coef[1] = ractx>lpc_tables[1]; 
55 
ractx>avctx = avctx; 
56 
dsputil_init(&ractx>dsp, avctx); 
57 
return 0; 
58 
} 
59  
60  
61 
/**

62 
* Quantize a value by searching a sorted table for the element with the

63 
* nearest value

64 
*

65 
* @param value value to quantize

66 
* @param table array containing the quantization table

67 
* @param size size of the quantization table

68 
* @return index of the quantization table corresponding to the element with the

69 
* nearest value

70 
*/

71 
static int quantize(int value, const int16_t *table, unsigned int size) 
72 
{ 
73 
unsigned int low = 0, high = size  1; 
74  
75 
while (1) { 
76 
int index = (low + high) >> 1; 
77 
int error = table[index]  value;

78  
79 
if (index == low)

80 
return table[high] + error > value ? low : high;

81 
if (error > 0) { 
82 
high = index; 
83 
} else {

84 
low = index; 
85 
} 
86 
} 
87 
} 
88  
89  
90 
/**

91 
* Orthogonalize a vector to another vector

92 
*

93 
* @param v vector to orthogonalize

94 
* @param u vector against which orthogonalization is performed

95 
*/

96 
static void orthogonalize(float *v, const float *u) 
97 
{ 
98 
int i;

99 
float num = 0, den = 0; 
100  
101 
for (i = 0; i < BLOCKSIZE; i++) { 
102 
num += v[i] * u[i]; 
103 
den += u[i] * u[i]; 
104 
} 
105 
num /= den; 
106 
for (i = 0; i < BLOCKSIZE; i++) 
107 
v[i] = num * u[i]; 
108 
} 
109  
110  
111 
/**

112 
* Calculate match score and gain of an LPCfiltered vector with respect to

113 
* input data, possibly othogonalizing it to up to 2 other vectors

114 
*

115 
* @param work array used to calculate the filtered vector

116 
* @param coefs coefficients of the LPC filter

117 
* @param vect original vector

118 
* @param ortho1 first vector against which orthogonalization is performed

119 
* @param ortho2 second vector against which orthogonalization is performed

120 
* @param data input data

121 
* @param score pointer to variable where match score is returned

122 
* @param gain pointer to variable where gain is returned

123 
*/

124 
static void get_match_score(float *work, const float *coefs, float *vect, 
125 
const float *ortho1, const float *ortho2, 
126 
const float *data, float *score, float *gain) 
127 
{ 
128 
float c, g;

129 
int i;

130  
131 
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); 
132 
if (ortho1)

133 
orthogonalize(work, ortho1); 
134 
if (ortho2)

135 
orthogonalize(work, ortho2); 
136 
c = g = 0;

137 
for (i = 0; i < BLOCKSIZE; i++) { 
138 
g += work[i] * work[i]; 
139 
c += data[i] * work[i]; 
140 
} 
141 
if (c <= 0) { 
142 
*score = 0;

143 
return;

144 
} 
145 
*gain = c / g; 
146 
*score = *gain * c; 
147 
} 
148  
149  
150 
/**

151 
* Create a vector from the adaptive codebook at a given lag value

152 
*

153 
* @param vect array where vector is stored

154 
* @param cb adaptive codebook

155 
* @param lag lag value

156 
*/

157 
static void create_adapt_vect(float *vect, const int16_t *cb, int lag) 
158 
{ 
159 
int i;

160  
161 
cb += BUFFERSIZE  lag; 
162 
for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++) 
163 
vect[i] = cb[i]; 
164 
if (lag < BLOCKSIZE)

165 
for (i = 0; i < BLOCKSIZE  lag; i++) 
166 
vect[lag + i] = cb[i]; 
167 
} 
168  
169  
170 
/**

171 
* Search the adaptive codebook for the best entry and gain and remove its

172 
* contribution from input data

173 
*

174 
* @param adapt_cb array from which the adaptive codebook is extracted

175 
* @param work array used to calculate LPCfiltered vectors

176 
* @param coefs coefficients of the LPC filter

177 
* @param data input data

178 
* @return index of the best entry of the adaptive codebook

179 
*/

180 
static int adaptive_cb_search(const int16_t *adapt_cb, float *work, 
181 
const float *coefs, float *data) 
182 
{ 
183 
int i, best_vect;

184 
float score, gain, best_score, best_gain;

185 
float exc[BLOCKSIZE];

186  
187 
gain = best_score = 0;

188 
for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) { 
189 
create_adapt_vect(exc, adapt_cb, i); 
190 
get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain); 
191 
if (score > best_score) {

192 
best_score = score; 
193 
best_vect = i; 
194 
best_gain = gain; 
195 
} 
196 
} 
197 
if (!best_score)

198 
return 0; 
199  
200 
/**

201 
* Recalculate the filtered vector from the vector with maximum match score

202 
* and remove its contribution from input data.

203 
*/

204 
create_adapt_vect(exc, adapt_cb, best_vect); 
205 
ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER); 
206 
for (i = 0; i < BLOCKSIZE; i++) 
207 
data[i] = best_gain * work[i]; 
208 
return (best_vect  BLOCKSIZE / 2 + 1); 
209 
} 
210  
211  
212 
/**

213 
* Find the best vector of a fixed codebook by applying an LPC filter to

214 
* codebook entries, possibly othogonalizing them to up to 2 other vectors and

215 
* matching the results with input data

216 
*

217 
* @param work array used to calculate the filtered vectors

218 
* @param coefs coefficients of the LPC filter

219 
* @param cb fixed codebook

220 
* @param ortho1 first vector against which orthogonalization is performed

221 
* @param ortho2 second vector against which orthogonalization is performed

222 
* @param data input data

223 
* @param idx pointer to variable where the index of the best codebook entry is

224 
* returned

225 
* @param gain pointer to variable where the gain of the best codebook entry is

226 
* returned

227 
*/

228 
static void find_best_vect(float *work, const float *coefs, 
229 
const int8_t cb[][BLOCKSIZE], const float *ortho1, 
230 
const float *ortho2, float *data, int *idx, 
231 
float *gain)

232 
{ 
233 
int i, j;

234 
float g, score, best_score;

235 
float vect[BLOCKSIZE];

236  
237 
*idx = *gain = best_score = 0;

238 
for (i = 0; i < FIXED_CB_SIZE; i++) { 
239 
for (j = 0; j < BLOCKSIZE; j++) 
240 
vect[j] = cb[i][j]; 
241 
get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g); 
242 
if (score > best_score) {

243 
best_score = score; 
244 
*idx = i; 
245 
*gain = g; 
246 
} 
247 
} 
248 
} 
249  
250  
251 
/**

252 
* Search the two fixed codebooks for the best entry and gain

253 
*

254 
* @param work array used to calculate LPCfiltered vectors

255 
* @param coefs coefficients of the LPC filter

256 
* @param data input data

257 
* @param cba_idx index of the best entry of the adaptive codebook

258 
* @param cb1_idx pointer to variable where the index of the best entry of the

259 
* first fixed codebook is returned

260 
* @param cb2_idx pointer to variable where the index of the best entry of the

261 
* second fixed codebook is returned

262 
*/

263 
static void fixed_cb_search(float *work, const float *coefs, float *data, 
264 
int cba_idx, int *cb1_idx, int *cb2_idx) 
265 
{ 
266 
int i, ortho_cb1;

267 
float gain;

268 
float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];

269 
float vect[BLOCKSIZE];

270  
271 
/**

272 
* The filtered vector from the adaptive codebook can be retrieved from

273 
* work, because this function is called just after adaptive_cb_search().

274 
*/

275 
if (cba_idx)

276 
memcpy(cba_vect, work, sizeof(cba_vect));

277  
278 
find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL, 
279 
data, cb1_idx, &gain); 
280  
281 
/**

282 
* Recalculate the filtered vector from the vector with maximum match score

283 
* and remove its contribution from input data.

284 
*/

285 
if (gain) {

286 
for (i = 0; i < BLOCKSIZE; i++) 
287 
vect[i] = ff_cb1_vects[*cb1_idx][i]; 
288 
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); 
289 
if (cba_idx)

290 
orthogonalize(work, cba_vect); 
291 
for (i = 0; i < BLOCKSIZE; i++) 
292 
data[i] = gain * work[i]; 
293 
memcpy(cb1_vect, work, sizeof(cb1_vect));

294 
ortho_cb1 = 1;

295 
} else

296 
ortho_cb1 = 0;

297  
298 
find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,

299 
ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);

300 
} 
301  
302  
303 
/**

304 
* Encode a subblock of the current frame

305 
*

306 
* @param ractx encoder context

307 
* @param sblock_data input data of the subblock

308 
* @param lpc_coefs coefficients of the LPC filter

309 
* @param rms RMS of the reflection coefficients

310 
* @param pb pointer to PutBitContext of the current frame

311 
*/

312 
static void ra144_encode_subblock(RA144Context *ractx, 
313 
const int16_t *sblock_data,

314 
const int16_t *lpc_coefs, unsigned int rms, 
315 
PutBitContext *pb) 
316 
{ 
317 
float data[BLOCKSIZE], work[LPC_ORDER + BLOCKSIZE];

318 
float coefs[LPC_ORDER];

319 
float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];

320 
int16_t cba_vect[BLOCKSIZE]; 
321 
int cba_idx, cb1_idx, cb2_idx, gain;

322 
int i, n, m[3]; 
323 
float g[3]; 
324 
float error, best_error;

325  
326 
for (i = 0; i < LPC_ORDER; i++) { 
327 
work[i] = ractx>curr_sblock[BLOCKSIZE + i]; 
328 
coefs[i] = lpc_coefs[i] * (1/4096.0); 
329 
} 
330  
331 
/**

332 
* Calculate the zeroinput response of the LPC filter and subtract it from

333 
* input data.

334 
*/

335 
memset(data, 0, sizeof(data)); 
336 
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE, 
337 
LPC_ORDER); 
338 
for (i = 0; i < BLOCKSIZE; i++) { 
339 
zero[i] = work[LPC_ORDER + i]; 
340 
data[i] = sblock_data[i]  zero[i]; 
341 
} 
342  
343 
/**

344 
* Codebook search is performed without taking into account the contribution

345 
* of the previous subblock, since it has been just subtracted from input

346 
* data.

347 
*/

348 
memset(work, 0, LPC_ORDER * sizeof(*work)); 
349  
350 
cba_idx = adaptive_cb_search(ractx>adapt_cb, work + LPC_ORDER, coefs, 
351 
data); 
352 
if (cba_idx) {

353 
/**

354 
* The filtered vector from the adaptive codebook can be retrieved from

355 
* work, see implementation of adaptive_cb_search().

356 
*/

357 
memcpy(cba, work + LPC_ORDER, sizeof(cba));

358  
359 
ff_copy_and_dup(cba_vect, ractx>adapt_cb, cba_idx + BLOCKSIZE / 2  1); 
360 
m[0] = (ff_irms(cba_vect) * rms) >> 12; 
361 
} 
362 
fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx); 
363 
for (i = 0; i < BLOCKSIZE; i++) { 
364 
cb1[i] = ff_cb1_vects[cb1_idx][i]; 
365 
cb2[i] = ff_cb2_vects[cb2_idx][i]; 
366 
} 
367 
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE, 
368 
LPC_ORDER); 
369 
memcpy(cb1, work + LPC_ORDER, sizeof(cb1));

370 
m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8; 
371 
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE, 
372 
LPC_ORDER); 
373 
memcpy(cb2, work + LPC_ORDER, sizeof(cb2));

374 
m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8; 
375 
best_error = FLT_MAX; 
376 
gain = 0;

377 
for (n = 0; n < 256; n++) { 
378 
g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) * 
379 
(1/4096.0); 
380 
g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) * 
381 
(1/4096.0); 
382 
error = 0;

383 
if (cba_idx) {

384 
g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) * 
385 
(1/4096.0); 
386 
for (i = 0; i < BLOCKSIZE; i++) { 
387 
data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] + 
388 
g[2] * cb2[i];

389 
error += (data[i]  sblock_data[i]) * 
390 
(data[i]  sblock_data[i]); 
391 
} 
392 
} else {

393 
for (i = 0; i < BLOCKSIZE; i++) { 
394 
data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i]; 
395 
error += (data[i]  sblock_data[i]) * 
396 
(data[i]  sblock_data[i]); 
397 
} 
398 
} 
399 
if (error < best_error) {

400 
best_error = error; 
401 
gain = n; 
402 
} 
403 
} 
404 
put_bits(pb, 7, cba_idx);

405 
put_bits(pb, 8, gain);

406 
put_bits(pb, 7, cb1_idx);

407 
put_bits(pb, 7, cb2_idx);

408 
ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms, 
409 
gain); 
410 
} 
411  
412  
413 
static int ra144_encode_frame(AVCodecContext *avctx, uint8_t *frame, 
414 
int buf_size, void *data) 
415 
{ 
416 
static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4}; 
417 
static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; 
418 
RA144Context *ractx; 
419 
PutBitContext pb; 
420 
int32_t lpc_data[NBLOCKS * BLOCKSIZE]; 
421 
int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER]; 
422 
int shift[LPC_ORDER];

423 
int16_t block_coefs[NBLOCKS][LPC_ORDER]; 
424 
int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */ 
425 
unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */ 
426 
int energy = 0; 
427 
int i, idx;

428  
429 
if (buf_size < FRAMESIZE) {

430 
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");

431 
return 0; 
432 
} 
433 
ractx = avctx>priv_data; 
434  
435 
/**

436 
* Since the LPC coefficients are calculated on a frame centered over the

437 
* fourth subframe, to encode a given frame, data from the next frame is

438 
* needed. In each call to this function, the previous frame (whose data are

439 
* saved in the encoder context) is encoded, and data from the current frame

440 
* are saved in the encoder context to be used in the next function call.

441 
*/

442 
for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) { 
443 
lpc_data[i] = ractx>curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];

444 
energy += (lpc_data[i] * lpc_data[i]) >> 4;

445 
} 
446 
for (i = 2 * BLOCKSIZE + BLOCKSIZE / 2; i < NBLOCKS * BLOCKSIZE; i++) { 
447 
lpc_data[i] = *((int16_t *)data + i  2 * BLOCKSIZE  BLOCKSIZE / 2) >> 
448 
2;

449 
energy += (lpc_data[i] * lpc_data[i]) >> 4;

450 
} 
451 
energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab, 
452 
32)];

453  
454 
ff_lpc_calc_coefs(&ractx>dsp, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER, 
455 
LPC_ORDER, 16, lpc_coefs, shift, AV_LPC_TYPE_LEVINSON,

456 
0, ORDER_METHOD_EST, 12, 0); 
457 
for (i = 0; i < LPC_ORDER; i++) 
458 
block_coefs[NBLOCKS  1][i] = (lpc_coefs[LPC_ORDER  1][i] << 
459 
(12  shift[LPC_ORDER  1])); 
460  
461 
/**

462 
* TODO: apply perceptual weighting of the input speech through bandwidth

463 
* expansion of the LPC filter.

464 
*/

465  
466 
if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS  1], avctx)) { 
467 
/**

468 
* The filter is unstable: use the coefficients of the previous frame.

469 
*/

470 
ff_int_to_int16(block_coefs[NBLOCKS  1], ractx>lpc_coef[1]); 
471 
ff_eval_refl(lpc_refl, block_coefs[NBLOCKS  1], avctx);

472 
} 
473 
init_put_bits(&pb, frame, buf_size); 
474 
for (i = 0; i < LPC_ORDER; i++) { 
475 
idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]); 
476 
put_bits(&pb, bit_sizes[i], idx); 
477 
lpc_refl[i] = ff_lpc_refl_cb[i][idx]; 
478 
} 
479 
ractx>lpc_refl_rms[0] = ff_rms(lpc_refl);

480 
ff_eval_coefs(ractx>lpc_coef[0], lpc_refl);

481 
refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx>old_energy); 
482 
refl_rms[1] = ff_interp(ractx, block_coefs[1], 2, 
483 
energy <= ractx>old_energy, 
484 
ff_t_sqrt(energy * ractx>old_energy) >> 12);

485 
refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy); 
486 
refl_rms[3] = ff_rescale_rms(ractx>lpc_refl_rms[0], energy); 
487 
ff_int_to_int16(block_coefs[NBLOCKS  1], ractx>lpc_coef[0]); 
488 
put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32)); 
489 
for (i = 0; i < NBLOCKS; i++) 
490 
ra144_encode_subblock(ractx, ractx>curr_block + i * BLOCKSIZE, 
491 
block_coefs[i], refl_rms[i], &pb); 
492 
flush_put_bits(&pb); 
493 
ractx>old_energy = energy; 
494 
ractx>lpc_refl_rms[1] = ractx>lpc_refl_rms[0]; 
495 
FFSWAP(unsigned int *, ractx>lpc_coef[0], ractx>lpc_coef[1]); 
496 
for (i = 0; i < NBLOCKS * BLOCKSIZE; i++) 
497 
ractx>curr_block[i] = *((int16_t *)data + i) >> 2;

498 
return FRAMESIZE;

499 
} 
500  
501  
502 
AVCodec ra_144_encoder = 
503 
{ 
504 
"real_144",

505 
AVMEDIA_TYPE_AUDIO, 
506 
CODEC_ID_RA_144, 
507 
sizeof(RA144Context),

508 
ra144_encode_init, 
509 
ra144_encode_frame, 
510 
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K) encoder"),

511 
}; 