ffmpeg / libavcodec / ac3enc.c @ 67d979fe
History | View | Annotate | Download (51.3 KB)
1 |
/*
|
---|---|
2 |
* The simplest AC-3 encoder
|
3 |
* Copyright (c) 2000 Fabrice Bellard
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file
|
24 |
* The simplest AC-3 encoder.
|
25 |
*/
|
26 |
|
27 |
//#define DEBUG
|
28 |
|
29 |
#include "libavcore/audioconvert.h" |
30 |
#include "libavutil/crc.h" |
31 |
#include "avcodec.h" |
32 |
#include "put_bits.h" |
33 |
#include "ac3.h" |
34 |
#include "audioconvert.h" |
35 |
|
36 |
|
37 |
#define MDCT_NBITS 9 |
38 |
#define MDCT_SAMPLES (1 << MDCT_NBITS) |
39 |
|
40 |
/** Scale a float value by 2^bits and convert to an integer. */
|
41 |
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) |
42 |
|
43 |
/** Scale a float value by 2^15, convert to an integer, and clip to int16_t range. */
|
44 |
#define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15)) |
45 |
|
46 |
|
47 |
/**
|
48 |
* Compex number.
|
49 |
* Used in fixed-point MDCT calculation.
|
50 |
*/
|
51 |
typedef struct IComplex { |
52 |
int16_t re,im; |
53 |
} IComplex; |
54 |
|
55 |
/**
|
56 |
* AC-3 encoder private context.
|
57 |
*/
|
58 |
typedef struct AC3EncodeContext { |
59 |
PutBitContext pb; ///< bitstream writer context
|
60 |
|
61 |
int bitstream_id; ///< bitstream id (bsid) |
62 |
int bitstream_mode; ///< bitstream mode (bsmod) |
63 |
|
64 |
int bit_rate; ///< target bit rate, in bits-per-second |
65 |
int sample_rate; ///< sampling frequency, in Hz |
66 |
|
67 |
int frame_size_min; ///< minimum frame size in case rounding is necessary |
68 |
int frame_size; ///< current frame size in bytes |
69 |
int frame_size_code; ///< frame size code (frmsizecod) |
70 |
int bits_written; ///< bit count (used to avg. bitrate) |
71 |
int samples_written; ///< sample count (used to avg. bitrate) |
72 |
|
73 |
int fbw_channels; ///< number of full-bandwidth channels (nfchans) |
74 |
int channels; ///< total number of channels (nchans) |
75 |
int lfe_on; ///< indicates if there is an LFE channel (lfeon) |
76 |
int lfe_channel; ///< channel index of the LFE channel |
77 |
int channel_mode; ///< channel mode (acmod) |
78 |
const uint8_t *channel_map; ///< channel map used to reorder channels |
79 |
|
80 |
int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod) |
81 |
int nb_coefs[AC3_MAX_CHANNELS];
|
82 |
|
83 |
/* bitrate allocation control */
|
84 |
int slow_gain_code; ///< slow gain code (sgaincod) |
85 |
int slow_decay_code; ///< slow decay code (sdcycod) |
86 |
int fast_decay_code; ///< fast decay code (fdcycod) |
87 |
int db_per_bit_code; ///< dB/bit code (dbpbcod) |
88 |
int floor_code; ///< floor code (floorcod) |
89 |
AC3BitAllocParameters bit_alloc; ///< bit allocation parameters
|
90 |
int coarse_snr_offset; ///< coarse SNR offsets (csnroffst) |
91 |
int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod) |
92 |
int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst) |
93 |
|
94 |
/* mantissa encoding */
|
95 |
int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4 |
96 |
|
97 |
int16_t last_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE]; ///< last 256 samples from previous frame
|
98 |
} AC3EncodeContext; |
99 |
|
100 |
|
101 |
/** MDCT and FFT tables */
|
102 |
static int16_t costab[64]; |
103 |
static int16_t sintab[64]; |
104 |
static int16_t xcos1[128]; |
105 |
static int16_t xsin1[128]; |
106 |
|
107 |
|
108 |
/**
|
109 |
* Adjust the frame size to make the average bit rate match the target bit rate.
|
110 |
* This is only needed for 11025, 22050, and 44100 sample rates.
|
111 |
*/
|
112 |
static void adjust_frame_size(AC3EncodeContext *s) |
113 |
{ |
114 |
while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
|
115 |
s->bits_written -= s->bit_rate; |
116 |
s->samples_written -= s->sample_rate; |
117 |
} |
118 |
s->frame_size = s->frame_size_min + 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
|
119 |
s->bits_written += s->frame_size * 8;
|
120 |
s->samples_written += AC3_FRAME_SIZE; |
121 |
} |
122 |
|
123 |
|
124 |
/**
|
125 |
* Deinterleave input samples.
|
126 |
* Channels are reordered from FFmpeg's default order to AC-3 order.
|
127 |
*/
|
128 |
static void deinterleave_input_samples(AC3EncodeContext *s, |
129 |
const int16_t *samples,
|
130 |
int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE]) |
131 |
{ |
132 |
int ch, i;
|
133 |
|
134 |
/* deinterleave and remap input samples */
|
135 |
for (ch = 0; ch < s->channels; ch++) { |
136 |
const int16_t *sptr;
|
137 |
int sinc;
|
138 |
|
139 |
/* copy last 256 samples of previous frame to the start of the current frame */
|
140 |
memcpy(&planar_samples[ch][0], s->last_samples[ch],
|
141 |
AC3_BLOCK_SIZE * sizeof(planar_samples[0][0])); |
142 |
|
143 |
/* deinterleave */
|
144 |
sinc = s->channels; |
145 |
sptr = samples + s->channel_map[ch]; |
146 |
for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
|
147 |
planar_samples[ch][i] = *sptr; |
148 |
sptr += sinc; |
149 |
} |
150 |
|
151 |
/* save last 256 samples for next frame */
|
152 |
memcpy(s->last_samples[ch], &planar_samples[ch][6* AC3_BLOCK_SIZE],
|
153 |
AC3_BLOCK_SIZE * sizeof(planar_samples[0][0])); |
154 |
} |
155 |
} |
156 |
|
157 |
|
158 |
/**
|
159 |
* Initialize FFT tables.
|
160 |
* @param ln log2(FFT size)
|
161 |
*/
|
162 |
static av_cold void fft_init(int ln) |
163 |
{ |
164 |
int i, n, n2;
|
165 |
float alpha;
|
166 |
|
167 |
n = 1 << ln;
|
168 |
n2 = n >> 1;
|
169 |
|
170 |
for (i = 0; i < n2; i++) { |
171 |
alpha = 2.0 * M_PI * i / n; |
172 |
costab[i] = FIX15(cos(alpha)); |
173 |
sintab[i] = FIX15(sin(alpha)); |
174 |
} |
175 |
} |
176 |
|
177 |
|
178 |
/**
|
179 |
* Initialize MDCT tables.
|
180 |
* @param nbits log2(MDCT size)
|
181 |
*/
|
182 |
static av_cold void mdct_init(int nbits) |
183 |
{ |
184 |
int i, n, n4;
|
185 |
|
186 |
n = 1 << nbits;
|
187 |
n4 = n >> 2;
|
188 |
|
189 |
fft_init(nbits - 2);
|
190 |
|
191 |
for (i = 0; i < n4; i++) { |
192 |
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; |
193 |
xcos1[i] = FIX15(-cos(alpha)); |
194 |
xsin1[i] = FIX15(-sin(alpha)); |
195 |
} |
196 |
} |
197 |
|
198 |
|
199 |
/** Butterfly op */
|
200 |
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
201 |
{ \ |
202 |
int ax, ay, bx, by; \
|
203 |
bx = pre1; \ |
204 |
by = pim1; \ |
205 |
ax = qre1; \ |
206 |
ay = qim1; \ |
207 |
pre = (bx + ax) >> 1; \
|
208 |
pim = (by + ay) >> 1; \
|
209 |
qre = (bx - ax) >> 1; \
|
210 |
qim = (by - ay) >> 1; \
|
211 |
} |
212 |
|
213 |
|
214 |
/** Complex multiply */
|
215 |
#define CMUL(pre, pim, are, aim, bre, bim) \
|
216 |
{ \ |
217 |
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
|
218 |
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
|
219 |
} |
220 |
|
221 |
|
222 |
/**
|
223 |
* Calculate a 2^n point complex FFT on 2^ln points.
|
224 |
* @param z complex input/output samples
|
225 |
* @param ln log2(FFT size)
|
226 |
*/
|
227 |
static void fft(IComplex *z, int ln) |
228 |
{ |
229 |
int j, l, np, np2;
|
230 |
int nblocks, nloops;
|
231 |
register IComplex *p,*q;
|
232 |
int tmp_re, tmp_im;
|
233 |
|
234 |
np = 1 << ln;
|
235 |
|
236 |
/* reverse */
|
237 |
for (j = 0; j < np; j++) { |
238 |
int k = av_reverse[j] >> (8 - ln); |
239 |
if (k < j)
|
240 |
FFSWAP(IComplex, z[k], z[j]); |
241 |
} |
242 |
|
243 |
/* pass 0 */
|
244 |
|
245 |
p = &z[0];
|
246 |
j = np >> 1;
|
247 |
do {
|
248 |
BF(p[0].re, p[0].im, p[1].re, p[1].im, |
249 |
p[0].re, p[0].im, p[1].re, p[1].im); |
250 |
p += 2;
|
251 |
} while (--j);
|
252 |
|
253 |
/* pass 1 */
|
254 |
|
255 |
p = &z[0];
|
256 |
j = np >> 2;
|
257 |
do {
|
258 |
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
259 |
p[0].re, p[0].im, p[2].re, p[2].im); |
260 |
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
261 |
p[1].re, p[1].im, p[3].im, -p[3].re); |
262 |
p+=4;
|
263 |
} while (--j);
|
264 |
|
265 |
/* pass 2 .. ln-1 */
|
266 |
|
267 |
nblocks = np >> 3;
|
268 |
nloops = 1 << 2; |
269 |
np2 = np >> 1;
|
270 |
do {
|
271 |
p = z; |
272 |
q = z + nloops; |
273 |
for (j = 0; j < nblocks; j++) { |
274 |
BF(p->re, p->im, q->re, q->im, |
275 |
p->re, p->im, q->re, q->im); |
276 |
p++; |
277 |
q++; |
278 |
for(l = nblocks; l < np2; l += nblocks) {
|
279 |
CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im); |
280 |
BF(p->re, p->im, q->re, q->im, |
281 |
p->re, p->im, tmp_re, tmp_im); |
282 |
p++; |
283 |
q++; |
284 |
} |
285 |
p += nloops; |
286 |
q += nloops; |
287 |
} |
288 |
nblocks = nblocks >> 1;
|
289 |
nloops = nloops << 1;
|
290 |
} while (nblocks);
|
291 |
} |
292 |
|
293 |
|
294 |
/**
|
295 |
* Calculate a 512-point MDCT
|
296 |
* @param out 256 output frequency coefficients
|
297 |
* @param in 512 windowed input audio samples
|
298 |
*/
|
299 |
static void mdct512(int32_t *out, int16_t *in) |
300 |
{ |
301 |
int i, re, im, re1, im1;
|
302 |
int16_t rot[MDCT_SAMPLES]; |
303 |
IComplex x[MDCT_SAMPLES/4];
|
304 |
|
305 |
/* shift to simplify computations */
|
306 |
for (i = 0; i < MDCT_SAMPLES/4; i++) |
307 |
rot[i] = -in[i + 3*MDCT_SAMPLES/4]; |
308 |
for (;i < MDCT_SAMPLES; i++)
|
309 |
rot[i] = in[i - MDCT_SAMPLES/4];
|
310 |
|
311 |
/* pre rotation */
|
312 |
for (i = 0; i < MDCT_SAMPLES/4; i++) { |
313 |
re = ((int)rot[ 2*i] - (int)rot[MDCT_SAMPLES -1-2*i]) >> 1; |
314 |
im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1; |
315 |
CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]); |
316 |
} |
317 |
|
318 |
fft(x, MDCT_NBITS - 2);
|
319 |
|
320 |
/* post rotation */
|
321 |
for (i = 0; i < MDCT_SAMPLES/4; i++) { |
322 |
re = x[i].re; |
323 |
im = x[i].im; |
324 |
CMUL(re1, im1, re, im, xsin1[i], xcos1[i]); |
325 |
out[ 2*i] = im1;
|
326 |
out[MDCT_SAMPLES/2-1-2*i] = re1; |
327 |
} |
328 |
} |
329 |
|
330 |
|
331 |
/**
|
332 |
* Apply KBD window to input samples prior to MDCT.
|
333 |
*/
|
334 |
static void apply_window(int16_t *output, const int16_t *input, |
335 |
const int16_t *window, int n) |
336 |
{ |
337 |
int i;
|
338 |
int n2 = n >> 1; |
339 |
|
340 |
for (i = 0; i < n2; i++) { |
341 |
output[i] = MUL16(input[i], window[i]) >> 15;
|
342 |
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; |
343 |
} |
344 |
} |
345 |
|
346 |
|
347 |
/**
|
348 |
* Calculate the log2() of the maximum absolute value in an array.
|
349 |
* @param tab input array
|
350 |
* @param n number of values in the array
|
351 |
* @return log2(max(abs(tab[])))
|
352 |
*/
|
353 |
static int log2_tab(int16_t *tab, int n) |
354 |
{ |
355 |
int i, v;
|
356 |
|
357 |
v = 0;
|
358 |
for (i = 0; i < n; i++) |
359 |
v |= abs(tab[i]); |
360 |
|
361 |
return av_log2(v);
|
362 |
} |
363 |
|
364 |
|
365 |
/**
|
366 |
* Left-shift each value in an array by a specified amount.
|
367 |
* @param tab input array
|
368 |
* @param n number of values in the array
|
369 |
* @param lshift left shift amount. a negative value means right shift.
|
370 |
*/
|
371 |
static void lshift_tab(int16_t *tab, int n, int lshift) |
372 |
{ |
373 |
int i;
|
374 |
|
375 |
if (lshift > 0) { |
376 |
for(i = 0; i < n; i++) |
377 |
tab[i] <<= lshift; |
378 |
} else if (lshift < 0) { |
379 |
lshift = -lshift; |
380 |
for (i = 0; i < n; i++) |
381 |
tab[i] >>= lshift; |
382 |
} |
383 |
} |
384 |
|
385 |
|
386 |
/**
|
387 |
* Normalize the input samples to use the maximum available precision.
|
388 |
* This assumes signed 16-bit input samples. Exponents are reduced by 9 to
|
389 |
* match the 24-bit internal precision for MDCT coefficients.
|
390 |
*
|
391 |
* @return exponent shift
|
392 |
*/
|
393 |
static int normalize_samples(AC3EncodeContext *s, |
394 |
int16_t windowed_samples[AC3_WINDOW_SIZE]) |
395 |
{ |
396 |
int v = 14 - log2_tab(windowed_samples, AC3_WINDOW_SIZE); |
397 |
v = FFMAX(0, v);
|
398 |
lshift_tab(windowed_samples, AC3_WINDOW_SIZE, v); |
399 |
return v - 9; |
400 |
} |
401 |
|
402 |
|
403 |
/**
|
404 |
* Apply the MDCT to input samples to generate frequency coefficients.
|
405 |
* This applies the KBD window and normalizes the input to reduce precision
|
406 |
* loss due to fixed-point calculations.
|
407 |
*/
|
408 |
static void apply_mdct(AC3EncodeContext *s, |
409 |
int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE], |
410 |
int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
411 |
int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]) |
412 |
{ |
413 |
int blk, ch;
|
414 |
int16_t windowed_samples[AC3_WINDOW_SIZE]; |
415 |
|
416 |
for (ch = 0; ch < s->channels; ch++) { |
417 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
418 |
const int16_t *input_samples = &planar_samples[ch][blk * AC3_BLOCK_SIZE];
|
419 |
|
420 |
apply_window(windowed_samples, input_samples, ff_ac3_window, AC3_WINDOW_SIZE); |
421 |
|
422 |
exp_shift[blk][ch] = normalize_samples(s, windowed_samples); |
423 |
|
424 |
mdct512(mdct_coef[blk][ch], windowed_samples); |
425 |
} |
426 |
} |
427 |
} |
428 |
|
429 |
|
430 |
/**
|
431 |
* Extract exponents from the MDCT coefficients.
|
432 |
* This takes into account the normalization that was done to the input samples
|
433 |
* by adjusting the exponents by the exponent shift values.
|
434 |
*/
|
435 |
static void extract_exponents(AC3EncodeContext *s, |
436 |
int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
437 |
int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
438 |
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]) |
439 |
{ |
440 |
int blk, ch, i;
|
441 |
|
442 |
/* extract exponents */
|
443 |
for (ch = 0; ch < s->channels; ch++) { |
444 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
445 |
/* compute "exponents". We take into account the normalization there */
|
446 |
for (i = 0; i < AC3_MAX_COEFS; i++) { |
447 |
int e;
|
448 |
int v = abs(mdct_coef[blk][ch][i]);
|
449 |
if (v == 0) |
450 |
e = 24;
|
451 |
else {
|
452 |
e = 23 - av_log2(v) + exp_shift[blk][ch];
|
453 |
if (e >= 24) { |
454 |
e = 24;
|
455 |
mdct_coef[blk][ch][i] = 0;
|
456 |
} |
457 |
} |
458 |
exp[blk][ch][i] = e; |
459 |
} |
460 |
} |
461 |
} |
462 |
} |
463 |
|
464 |
|
465 |
/**
|
466 |
* Calculate the sum of absolute differences (SAD) between 2 sets of exponents.
|
467 |
*/
|
468 |
static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n) |
469 |
{ |
470 |
int sum, i;
|
471 |
sum = 0;
|
472 |
for (i = 0; i < n; i++) |
473 |
sum += abs(exp1[i] - exp2[i]); |
474 |
return sum;
|
475 |
} |
476 |
|
477 |
|
478 |
/**
|
479 |
* Exponent Difference Threshold.
|
480 |
* New exponents are sent if their SAD exceed this number.
|
481 |
*/
|
482 |
#define EXP_DIFF_THRESHOLD 1000 |
483 |
|
484 |
|
485 |
/**
|
486 |
* Calculate exponent strategies for all blocks in a single channel.
|
487 |
*/
|
488 |
static void compute_exp_strategy_ch(uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
489 |
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
490 |
int ch, int is_lfe) |
491 |
{ |
492 |
int blk, blk1;
|
493 |
int exp_diff;
|
494 |
|
495 |
/* estimate if the exponent variation & decide if they should be
|
496 |
reused in the next frame */
|
497 |
exp_strategy[0][ch] = EXP_NEW;
|
498 |
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) { |
499 |
exp_diff = calc_exp_diff(exp[blk][ch], exp[blk-1][ch], AC3_MAX_COEFS);
|
500 |
if (exp_diff > EXP_DIFF_THRESHOLD)
|
501 |
exp_strategy[blk][ch] = EXP_NEW; |
502 |
else
|
503 |
exp_strategy[blk][ch] = EXP_REUSE; |
504 |
} |
505 |
if (is_lfe)
|
506 |
return;
|
507 |
|
508 |
/* now select the encoding strategy type : if exponents are often
|
509 |
recoded, we use a coarse encoding */
|
510 |
blk = 0;
|
511 |
while (blk < AC3_MAX_BLOCKS) {
|
512 |
blk1 = blk + 1;
|
513 |
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1][ch] == EXP_REUSE)
|
514 |
blk1++; |
515 |
switch (blk1 - blk) {
|
516 |
case 1: exp_strategy[blk][ch] = EXP_D45; break; |
517 |
case 2: |
518 |
case 3: exp_strategy[blk][ch] = EXP_D25; break; |
519 |
default: exp_strategy[blk][ch] = EXP_D15; break; |
520 |
} |
521 |
blk = blk1; |
522 |
} |
523 |
} |
524 |
|
525 |
|
526 |
/**
|
527 |
* Calculate exponent strategies for all channels.
|
528 |
*/
|
529 |
static void compute_exp_strategy(AC3EncodeContext *s, |
530 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
531 |
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]) |
532 |
{ |
533 |
int ch;
|
534 |
|
535 |
for (ch = 0; ch < s->channels; ch++) { |
536 |
compute_exp_strategy_ch(exp_strategy, exp, ch, ch == s->lfe_channel); |
537 |
} |
538 |
} |
539 |
|
540 |
|
541 |
/**
|
542 |
* Set each encoded exponent in a block to the minimum of itself and the
|
543 |
* exponent in the same frequency bin of a following block.
|
544 |
* exp[i] = min(exp[i], exp1[i]
|
545 |
*/
|
546 |
static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n) |
547 |
{ |
548 |
int i;
|
549 |
for (i = 0; i < n; i++) { |
550 |
if (exp1[i] < exp[i])
|
551 |
exp[i] = exp1[i]; |
552 |
} |
553 |
} |
554 |
|
555 |
|
556 |
/**
|
557 |
* Update the exponents so that they are the ones the decoder will decode.
|
558 |
* @return the number of bits used to encode the exponents.
|
559 |
*/
|
560 |
static int encode_exponents_blk_ch(uint8_t encoded_exp[AC3_MAX_COEFS], |
561 |
uint8_t exp[AC3_MAX_COEFS], |
562 |
int nb_exps, int exp_strategy) |
563 |
{ |
564 |
int group_size, nb_groups, i, j, k, exp_min;
|
565 |
uint8_t exp1[AC3_MAX_COEFS]; |
566 |
|
567 |
group_size = exp_strategy + (exp_strategy == EXP_D45); |
568 |
nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3; |
569 |
|
570 |
/* for each group, compute the minimum exponent */
|
571 |
exp1[0] = exp[0]; /* DC exponent is handled separately */ |
572 |
k = 1;
|
573 |
for (i = 1; i <= nb_groups; i++) { |
574 |
exp_min = exp[k]; |
575 |
assert(exp_min >= 0 && exp_min <= 24); |
576 |
for (j = 1; j < group_size; j++) { |
577 |
if (exp[k+j] < exp_min)
|
578 |
exp_min = exp[k+j]; |
579 |
} |
580 |
exp1[i] = exp_min; |
581 |
k += group_size; |
582 |
} |
583 |
|
584 |
/* constraint for DC exponent */
|
585 |
if (exp1[0] > 15) |
586 |
exp1[0] = 15; |
587 |
|
588 |
/* decrease the delta between each groups to within 2 so that they can be
|
589 |
differentially encoded */
|
590 |
for (i = 1; i <= nb_groups; i++) |
591 |
exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2); |
592 |
for (i = nb_groups-1; i >= 0; i--) |
593 |
exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2); |
594 |
|
595 |
/* now we have the exponent values the decoder will see */
|
596 |
encoded_exp[0] = exp1[0]; |
597 |
k = 1;
|
598 |
for (i = 1; i <= nb_groups; i++) { |
599 |
for (j = 0; j < group_size; j++) |
600 |
encoded_exp[k+j] = exp1[i]; |
601 |
k += group_size; |
602 |
} |
603 |
|
604 |
return 4 + (nb_groups / 3) * 7; |
605 |
} |
606 |
|
607 |
|
608 |
/**
|
609 |
* Encode exponents from original extracted form to what the decoder will see.
|
610 |
* This copies and groups exponents based on exponent strategy and reduces
|
611 |
* deltas between adjacent exponent groups so that they can be differentially
|
612 |
* encoded.
|
613 |
* @return bits needed to encode the exponents
|
614 |
*/
|
615 |
static int encode_exponents(AC3EncodeContext *s, |
616 |
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
617 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
618 |
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]) |
619 |
{ |
620 |
int blk, blk1, blk2, ch;
|
621 |
int frame_bits;
|
622 |
|
623 |
frame_bits = 0;
|
624 |
for (ch = 0; ch < s->channels; ch++) { |
625 |
/* for the EXP_REUSE case we select the min of the exponents */
|
626 |
blk = 0;
|
627 |
while (blk < AC3_MAX_BLOCKS) {
|
628 |
blk1 = blk + 1;
|
629 |
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1][ch] == EXP_REUSE) {
|
630 |
exponent_min(exp[blk][ch], exp[blk1][ch], s->nb_coefs[ch]); |
631 |
blk1++; |
632 |
} |
633 |
frame_bits += encode_exponents_blk_ch(encoded_exp[blk][ch], |
634 |
exp[blk][ch], s->nb_coefs[ch], |
635 |
exp_strategy[blk][ch]); |
636 |
/* copy encoded exponents for reuse case */
|
637 |
for (blk2 = blk+1; blk2 < blk1; blk2++) { |
638 |
memcpy(encoded_exp[blk2][ch], encoded_exp[blk][ch], |
639 |
s->nb_coefs[ch] * sizeof(uint8_t));
|
640 |
} |
641 |
blk = blk1; |
642 |
} |
643 |
} |
644 |
|
645 |
return frame_bits;
|
646 |
} |
647 |
|
648 |
|
649 |
/**
|
650 |
* Calculate final exponents from the supplied MDCT coefficients and exponent shift.
|
651 |
* Extract exponents from MDCT coefficients, calculate exponent strategies,
|
652 |
* and encode final exponents.
|
653 |
* @return bits needed to encode the exponents
|
654 |
*/
|
655 |
static int process_exponents(AC3EncodeContext *s, |
656 |
int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
657 |
int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
658 |
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
659 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
660 |
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]) |
661 |
{ |
662 |
extract_exponents(s, mdct_coef, exp_shift, exp); |
663 |
|
664 |
compute_exp_strategy(s, exp_strategy, exp); |
665 |
|
666 |
return encode_exponents(s, exp, exp_strategy, encoded_exp);
|
667 |
} |
668 |
|
669 |
|
670 |
/**
|
671 |
* Calculate the number of bits needed to encode a set of mantissas.
|
672 |
*/
|
673 |
static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs) |
674 |
{ |
675 |
int bits, mant, i;
|
676 |
|
677 |
bits = 0;
|
678 |
for (i = 0; i < nb_coefs; i++) { |
679 |
mant = m[i]; |
680 |
switch (mant) {
|
681 |
case 0: |
682 |
/* nothing */
|
683 |
break;
|
684 |
case 1: |
685 |
/* 3 mantissa in 5 bits */
|
686 |
if (s->mant1_cnt == 0) |
687 |
bits += 5;
|
688 |
if (++s->mant1_cnt == 3) |
689 |
s->mant1_cnt = 0;
|
690 |
break;
|
691 |
case 2: |
692 |
/* 3 mantissa in 7 bits */
|
693 |
if (s->mant2_cnt == 0) |
694 |
bits += 7;
|
695 |
if (++s->mant2_cnt == 3) |
696 |
s->mant2_cnt = 0;
|
697 |
break;
|
698 |
case 3: |
699 |
bits += 3;
|
700 |
break;
|
701 |
case 4: |
702 |
/* 2 mantissa in 7 bits */
|
703 |
if (s->mant4_cnt == 0) |
704 |
bits += 7;
|
705 |
if (++s->mant4_cnt == 2) |
706 |
s->mant4_cnt = 0;
|
707 |
break;
|
708 |
case 14: |
709 |
bits += 14;
|
710 |
break;
|
711 |
case 15: |
712 |
bits += 16;
|
713 |
break;
|
714 |
default:
|
715 |
bits += mant - 1;
|
716 |
break;
|
717 |
} |
718 |
} |
719 |
return bits;
|
720 |
} |
721 |
|
722 |
|
723 |
/**
|
724 |
* Calculate masking curve based on the final exponents.
|
725 |
* Also calculate the power spectral densities to use in future calculations.
|
726 |
*/
|
727 |
static void bit_alloc_masking(AC3EncodeContext *s, |
728 |
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
729 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
730 |
int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
731 |
int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS]) |
732 |
{ |
733 |
int blk, ch;
|
734 |
int16_t band_psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS]; |
735 |
|
736 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
737 |
for (ch = 0; ch < s->channels; ch++) { |
738 |
if(exp_strategy[blk][ch] == EXP_REUSE) {
|
739 |
memcpy(psd[blk][ch], psd[blk-1][ch], AC3_MAX_COEFS*sizeof(psd[0][0][0])); |
740 |
memcpy(mask[blk][ch], mask[blk-1][ch], AC3_CRITICAL_BANDS*sizeof(mask[0][0][0])); |
741 |
} else {
|
742 |
ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
|
743 |
s->nb_coefs[ch], |
744 |
psd[blk][ch], band_psd[blk][ch]); |
745 |
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch], |
746 |
0, s->nb_coefs[ch],
|
747 |
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
748 |
ch == s->lfe_channel, |
749 |
DBA_NONE, 0, NULL, NULL, NULL, |
750 |
mask[blk][ch]); |
751 |
} |
752 |
} |
753 |
} |
754 |
} |
755 |
|
756 |
|
757 |
/**
|
758 |
* Run the bit allocation with a given SNR offset.
|
759 |
* This calculates the bit allocation pointers that will be used to determine
|
760 |
* the quantization of each mantissa.
|
761 |
* @return the number of remaining bits (positive or negative) if the given
|
762 |
* SNR offset is used to quantize the mantissas.
|
763 |
*/
|
764 |
static int bit_alloc(AC3EncodeContext *s, |
765 |
int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS], |
766 |
int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
767 |
uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
768 |
int frame_bits, int coarse_snr_offset, int fine_snr_offset) |
769 |
{ |
770 |
int blk, ch;
|
771 |
int snr_offset;
|
772 |
|
773 |
snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2; |
774 |
|
775 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
776 |
s->mant1_cnt = 0;
|
777 |
s->mant2_cnt = 0;
|
778 |
s->mant4_cnt = 0;
|
779 |
for (ch = 0; ch < s->channels; ch++) { |
780 |
ff_ac3_bit_alloc_calc_bap(mask[blk][ch], psd[blk][ch], 0,
|
781 |
s->nb_coefs[ch], snr_offset, |
782 |
s->bit_alloc.floor, ff_ac3_bap_tab, |
783 |
bap[blk][ch]); |
784 |
frame_bits += compute_mantissa_size(s, bap[blk][ch], s->nb_coefs[ch]); |
785 |
} |
786 |
} |
787 |
return 8 * s->frame_size - frame_bits; |
788 |
} |
789 |
|
790 |
|
791 |
#define SNR_INC1 4 |
792 |
|
793 |
/**
|
794 |
* Perform bit allocation search.
|
795 |
* Finds the SNR offset value that maximizes quality and fits in the specified
|
796 |
* frame size. Output is the SNR offset and a set of bit allocation pointers
|
797 |
* used to quantize the mantissas.
|
798 |
*/
|
799 |
static int compute_bit_allocation(AC3EncodeContext *s, |
800 |
uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
801 |
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
802 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
803 |
int frame_bits)
|
804 |
{ |
805 |
int blk, ch;
|
806 |
int coarse_snr_offset, fine_snr_offset;
|
807 |
uint8_t bap1[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
808 |
int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
809 |
int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS]; |
810 |
static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
811 |
|
812 |
/* init default parameters */
|
813 |
s->slow_decay_code = 2;
|
814 |
s->fast_decay_code = 1;
|
815 |
s->slow_gain_code = 1;
|
816 |
s->db_per_bit_code = 2;
|
817 |
s->floor_code = 4;
|
818 |
for (ch = 0; ch < s->channels; ch++) |
819 |
s->fast_gain_code[ch] = 4;
|
820 |
|
821 |
/* compute real values */
|
822 |
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift; |
823 |
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift; |
824 |
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
825 |
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
826 |
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
827 |
|
828 |
/* header size */
|
829 |
frame_bits += 65;
|
830 |
// if (s->channel_mode == 2)
|
831 |
// frame_bits += 2;
|
832 |
frame_bits += frame_bits_inc[s->channel_mode]; |
833 |
|
834 |
/* audio blocks */
|
835 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
836 |
frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ |
837 |
if (s->channel_mode == AC3_CHMODE_STEREO) {
|
838 |
frame_bits++; /* rematstr */
|
839 |
if (!blk)
|
840 |
frame_bits += 4;
|
841 |
} |
842 |
frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */ |
843 |
if (s->lfe_on)
|
844 |
frame_bits++; /* lfeexpstr */
|
845 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
846 |
if (exp_strategy[blk][ch] != EXP_REUSE)
|
847 |
frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ |
848 |
} |
849 |
frame_bits++; /* baie */
|
850 |
frame_bits++; /* snr */
|
851 |
frame_bits += 2; /* delta / skip */ |
852 |
} |
853 |
frame_bits++; /* cplinu for block 0 */
|
854 |
/* bit alloc info */
|
855 |
/* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
|
856 |
/* csnroffset[6] */
|
857 |
/* (fsnoffset[4] + fgaincod[4]) * c */
|
858 |
frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3); |
859 |
|
860 |
/* auxdatae, crcrsv */
|
861 |
frame_bits += 2;
|
862 |
|
863 |
/* CRC */
|
864 |
frame_bits += 16;
|
865 |
|
866 |
/* calculate psd and masking curve before doing bit allocation */
|
867 |
bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask); |
868 |
|
869 |
/* now the big work begins : do the bit allocation. Modify the snr
|
870 |
offset until we can pack everything in the requested frame size */
|
871 |
|
872 |
coarse_snr_offset = s->coarse_snr_offset; |
873 |
while (coarse_snr_offset >= 0 && |
874 |
bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0) |
875 |
coarse_snr_offset -= SNR_INC1; |
876 |
if (coarse_snr_offset < 0) { |
877 |
av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n"); |
878 |
return -1; |
879 |
} |
880 |
while (coarse_snr_offset + SNR_INC1 <= 63 && |
881 |
bit_alloc(s, mask, psd, bap1, frame_bits, |
882 |
coarse_snr_offset + SNR_INC1, 0) >= 0) { |
883 |
coarse_snr_offset += SNR_INC1; |
884 |
memcpy(bap, bap1, sizeof(bap1));
|
885 |
} |
886 |
while (coarse_snr_offset + 1 <= 63 && |
887 |
bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) { |
888 |
coarse_snr_offset++; |
889 |
memcpy(bap, bap1, sizeof(bap1));
|
890 |
} |
891 |
|
892 |
fine_snr_offset = 0;
|
893 |
while (fine_snr_offset + SNR_INC1 <= 15 && |
894 |
bit_alloc(s, mask, psd, bap1, frame_bits, |
895 |
coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
|
896 |
fine_snr_offset += SNR_INC1; |
897 |
memcpy(bap, bap1, sizeof(bap1));
|
898 |
} |
899 |
while (fine_snr_offset + 1 <= 15 && |
900 |
bit_alloc(s, mask, psd, bap1, frame_bits, |
901 |
coarse_snr_offset, fine_snr_offset + 1) >= 0) { |
902 |
fine_snr_offset++; |
903 |
memcpy(bap, bap1, sizeof(bap1));
|
904 |
} |
905 |
|
906 |
s->coarse_snr_offset = coarse_snr_offset; |
907 |
for (ch = 0; ch < s->channels; ch++) |
908 |
s->fine_snr_offset[ch] = fine_snr_offset; |
909 |
|
910 |
return 0; |
911 |
} |
912 |
|
913 |
|
914 |
/**
|
915 |
* Write the AC-3 frame header to the output bitstream.
|
916 |
*/
|
917 |
static void output_frame_header(AC3EncodeContext *s) |
918 |
{ |
919 |
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
920 |
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
921 |
put_bits(&s->pb, 2, s->bit_alloc.sr_code);
|
922 |
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2); |
923 |
put_bits(&s->pb, 5, s->bitstream_id);
|
924 |
put_bits(&s->pb, 3, s->bitstream_mode);
|
925 |
put_bits(&s->pb, 3, s->channel_mode);
|
926 |
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
927 |
put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ |
928 |
if (s->channel_mode & 0x04) |
929 |
put_bits(&s->pb, 2, 1); /* XXX -6 dB */ |
930 |
if (s->channel_mode == AC3_CHMODE_STEREO)
|
931 |
put_bits(&s->pb, 2, 0); /* surround not indicated */ |
932 |
put_bits(&s->pb, 1, s->lfe_on); /* LFE */ |
933 |
put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ |
934 |
put_bits(&s->pb, 1, 0); /* no compression control word */ |
935 |
put_bits(&s->pb, 1, 0); /* no lang code */ |
936 |
put_bits(&s->pb, 1, 0); /* no audio production info */ |
937 |
put_bits(&s->pb, 1, 0); /* no copyright */ |
938 |
put_bits(&s->pb, 1, 1); /* original bitstream */ |
939 |
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
940 |
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
941 |
put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
942 |
} |
943 |
|
944 |
|
945 |
/**
|
946 |
* Symmetric quantization on 'levels' levels.
|
947 |
*/
|
948 |
static inline int sym_quant(int c, int e, int levels) |
949 |
{ |
950 |
int v;
|
951 |
|
952 |
if (c >= 0) { |
953 |
v = (levels * (c << e)) >> 24;
|
954 |
v = (v + 1) >> 1; |
955 |
v = (levels >> 1) + v;
|
956 |
} else {
|
957 |
v = (levels * ((-c) << e)) >> 24;
|
958 |
v = (v + 1) >> 1; |
959 |
v = (levels >> 1) - v;
|
960 |
} |
961 |
assert (v >= 0 && v < levels);
|
962 |
return v;
|
963 |
} |
964 |
|
965 |
|
966 |
/**
|
967 |
* Asymmetric quantization on 2^qbits levels.
|
968 |
*/
|
969 |
static inline int asym_quant(int c, int e, int qbits) |
970 |
{ |
971 |
int lshift, m, v;
|
972 |
|
973 |
lshift = e + qbits - 24;
|
974 |
if (lshift >= 0) |
975 |
v = c << lshift; |
976 |
else
|
977 |
v = c >> (-lshift); |
978 |
/* rounding */
|
979 |
v = (v + 1) >> 1; |
980 |
m = (1 << (qbits-1)); |
981 |
if (v >= m)
|
982 |
v = m - 1;
|
983 |
assert(v >= -m); |
984 |
return v & ((1 << qbits)-1); |
985 |
} |
986 |
|
987 |
|
988 |
/**
|
989 |
* Write one audio block to the output bitstream.
|
990 |
*/
|
991 |
static void output_audio_block(AC3EncodeContext *s, |
992 |
uint8_t exp_strategy[AC3_MAX_CHANNELS], |
993 |
uint8_t encoded_exp[AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
994 |
uint8_t bap[AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
995 |
int32_t mdct_coef[AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
996 |
int8_t exp_shift[AC3_MAX_CHANNELS], |
997 |
int block_num)
|
998 |
{ |
999 |
int ch, nb_groups, group_size, i, baie, rbnd;
|
1000 |
uint8_t *p; |
1001 |
uint16_t qmant[AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
1002 |
int exp0, exp1;
|
1003 |
int mant1_cnt, mant2_cnt, mant4_cnt;
|
1004 |
uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; |
1005 |
int delta0, delta1, delta2;
|
1006 |
|
1007 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1008 |
put_bits(&s->pb, 1, 0); /* no block switching */ |
1009 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1010 |
put_bits(&s->pb, 1, 1); /* no dither */ |
1011 |
put_bits(&s->pb, 1, 0); /* no dynamic range */ |
1012 |
if (!block_num) {
|
1013 |
put_bits(&s->pb, 1, 1); /* coupling strategy present */ |
1014 |
put_bits(&s->pb, 1, 0); /* no coupling strategy */ |
1015 |
} else {
|
1016 |
put_bits(&s->pb, 1, 0); /* no new coupling strategy */ |
1017 |
} |
1018 |
|
1019 |
if (s->channel_mode == AC3_CHMODE_STEREO) {
|
1020 |
if (!block_num) {
|
1021 |
/* first block must define rematrixing (rematstr) */
|
1022 |
put_bits(&s->pb, 1, 1); |
1023 |
|
1024 |
/* dummy rematrixing rematflg(1:4)=0 */
|
1025 |
for (rbnd = 0; rbnd < 4; rbnd++) |
1026 |
put_bits(&s->pb, 1, 0); |
1027 |
} else {
|
1028 |
/* no matrixing (but should be used in the future) */
|
1029 |
put_bits(&s->pb, 1, 0); |
1030 |
} |
1031 |
} |
1032 |
|
1033 |
/* exponent strategy */
|
1034 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1035 |
put_bits(&s->pb, 2, exp_strategy[ch]);
|
1036 |
|
1037 |
if (s->lfe_on)
|
1038 |
put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
|
1039 |
|
1040 |
/* bandwidth */
|
1041 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
1042 |
if (exp_strategy[ch] != EXP_REUSE)
|
1043 |
put_bits(&s->pb, 6, s->bandwidth_code[ch]);
|
1044 |
} |
1045 |
|
1046 |
/* exponents */
|
1047 |
for (ch = 0; ch < s->channels; ch++) { |
1048 |
if (exp_strategy[ch] == EXP_REUSE)
|
1049 |
continue;
|
1050 |
group_size = exp_strategy[ch] + (exp_strategy[ch] == EXP_D45); |
1051 |
nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size); |
1052 |
p = encoded_exp[ch]; |
1053 |
|
1054 |
/* first exponent */
|
1055 |
exp1 = *p++; |
1056 |
put_bits(&s->pb, 4, exp1);
|
1057 |
|
1058 |
/* next ones are delta encoded */
|
1059 |
for (i = 0; i < nb_groups; i++) { |
1060 |
/* merge three delta in one code */
|
1061 |
exp0 = exp1; |
1062 |
exp1 = p[0];
|
1063 |
p += group_size; |
1064 |
delta0 = exp1 - exp0 + 2;
|
1065 |
|
1066 |
exp0 = exp1; |
1067 |
exp1 = p[0];
|
1068 |
p += group_size; |
1069 |
delta1 = exp1 - exp0 + 2;
|
1070 |
|
1071 |
exp0 = exp1; |
1072 |
exp1 = p[0];
|
1073 |
p += group_size; |
1074 |
delta2 = exp1 - exp0 + 2;
|
1075 |
|
1076 |
put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2); |
1077 |
} |
1078 |
|
1079 |
if (ch != s->lfe_channel)
|
1080 |
put_bits(&s->pb, 2, 0); /* no gain range info */ |
1081 |
} |
1082 |
|
1083 |
/* bit allocation info */
|
1084 |
baie = (block_num == 0);
|
1085 |
put_bits(&s->pb, 1, baie);
|
1086 |
if (baie) {
|
1087 |
put_bits(&s->pb, 2, s->slow_decay_code);
|
1088 |
put_bits(&s->pb, 2, s->fast_decay_code);
|
1089 |
put_bits(&s->pb, 2, s->slow_gain_code);
|
1090 |
put_bits(&s->pb, 2, s->db_per_bit_code);
|
1091 |
put_bits(&s->pb, 3, s->floor_code);
|
1092 |
} |
1093 |
|
1094 |
/* snr offset */
|
1095 |
put_bits(&s->pb, 1, baie);
|
1096 |
if (baie) {
|
1097 |
put_bits(&s->pb, 6, s->coarse_snr_offset);
|
1098 |
for (ch = 0; ch < s->channels; ch++) { |
1099 |
put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
|
1100 |
put_bits(&s->pb, 3, s->fast_gain_code[ch]);
|
1101 |
} |
1102 |
} |
1103 |
|
1104 |
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
1105 |
put_bits(&s->pb, 1, 0); /* no data to skip */ |
1106 |
|
1107 |
/* mantissa encoding : we use two passes to handle the grouping. A
|
1108 |
one pass method may be faster, but it would necessitate to
|
1109 |
modify the output stream. */
|
1110 |
|
1111 |
/* first pass: quantize */
|
1112 |
mant1_cnt = mant2_cnt = mant4_cnt = 0;
|
1113 |
qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
|
1114 |
|
1115 |
for (ch = 0; ch < s->channels; ch++) { |
1116 |
int b, c, e, v;
|
1117 |
|
1118 |
for (i = 0; i < s->nb_coefs[ch]; i++) { |
1119 |
c = mdct_coef[ch][i]; |
1120 |
e = encoded_exp[ch][i] - exp_shift[ch]; |
1121 |
b = bap[ch][i]; |
1122 |
switch (b) {
|
1123 |
case 0: |
1124 |
v = 0;
|
1125 |
break;
|
1126 |
case 1: |
1127 |
v = sym_quant(c, e, 3);
|
1128 |
switch (mant1_cnt) {
|
1129 |
case 0: |
1130 |
qmant1_ptr = &qmant[ch][i]; |
1131 |
v = 9 * v;
|
1132 |
mant1_cnt = 1;
|
1133 |
break;
|
1134 |
case 1: |
1135 |
*qmant1_ptr += 3 * v;
|
1136 |
mant1_cnt = 2;
|
1137 |
v = 128;
|
1138 |
break;
|
1139 |
default:
|
1140 |
*qmant1_ptr += v; |
1141 |
mant1_cnt = 0;
|
1142 |
v = 128;
|
1143 |
break;
|
1144 |
} |
1145 |
break;
|
1146 |
case 2: |
1147 |
v = sym_quant(c, e, 5);
|
1148 |
switch (mant2_cnt) {
|
1149 |
case 0: |
1150 |
qmant2_ptr = &qmant[ch][i]; |
1151 |
v = 25 * v;
|
1152 |
mant2_cnt = 1;
|
1153 |
break;
|
1154 |
case 1: |
1155 |
*qmant2_ptr += 5 * v;
|
1156 |
mant2_cnt = 2;
|
1157 |
v = 128;
|
1158 |
break;
|
1159 |
default:
|
1160 |
*qmant2_ptr += v; |
1161 |
mant2_cnt = 0;
|
1162 |
v = 128;
|
1163 |
break;
|
1164 |
} |
1165 |
break;
|
1166 |
case 3: |
1167 |
v = sym_quant(c, e, 7);
|
1168 |
break;
|
1169 |
case 4: |
1170 |
v = sym_quant(c, e, 11);
|
1171 |
switch (mant4_cnt) {
|
1172 |
case 0: |
1173 |
qmant4_ptr = &qmant[ch][i]; |
1174 |
v = 11 * v;
|
1175 |
mant4_cnt = 1;
|
1176 |
break;
|
1177 |
default:
|
1178 |
*qmant4_ptr += v; |
1179 |
mant4_cnt = 0;
|
1180 |
v = 128;
|
1181 |
break;
|
1182 |
} |
1183 |
break;
|
1184 |
case 5: |
1185 |
v = sym_quant(c, e, 15);
|
1186 |
break;
|
1187 |
case 14: |
1188 |
v = asym_quant(c, e, 14);
|
1189 |
break;
|
1190 |
case 15: |
1191 |
v = asym_quant(c, e, 16);
|
1192 |
break;
|
1193 |
default:
|
1194 |
v = asym_quant(c, e, b - 1);
|
1195 |
break;
|
1196 |
} |
1197 |
qmant[ch][i] = v; |
1198 |
} |
1199 |
} |
1200 |
|
1201 |
/* second pass : output the values */
|
1202 |
for (ch = 0; ch < s->channels; ch++) { |
1203 |
int b, q;
|
1204 |
|
1205 |
for (i = 0; i < s->nb_coefs[ch]; i++) { |
1206 |
q = qmant[ch][i]; |
1207 |
b = bap[ch][i]; |
1208 |
switch (b) {
|
1209 |
case 0: break; |
1210 |
case 1: if (q != 128) put_bits(&s->pb, 5, q); break; |
1211 |
case 2: if (q != 128) put_bits(&s->pb, 7, q); break; |
1212 |
case 3: put_bits(&s->pb, 3, q); break; |
1213 |
case 4: if (q != 128) put_bits(&s->pb, 7, q); break; |
1214 |
case 14: put_bits(&s->pb, 14, q); break; |
1215 |
case 15: put_bits(&s->pb, 16, q); break; |
1216 |
default: put_bits(&s->pb, b-1, q); break; |
1217 |
} |
1218 |
} |
1219 |
} |
1220 |
} |
1221 |
|
1222 |
|
1223 |
/** CRC-16 Polynomial */
|
1224 |
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
1225 |
|
1226 |
|
1227 |
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
1228 |
{ |
1229 |
unsigned int c; |
1230 |
|
1231 |
c = 0;
|
1232 |
while (a) {
|
1233 |
if (a & 1) |
1234 |
c ^= b; |
1235 |
a = a >> 1;
|
1236 |
b = b << 1;
|
1237 |
if (b & (1 << 16)) |
1238 |
b ^= poly; |
1239 |
} |
1240 |
return c;
|
1241 |
} |
1242 |
|
1243 |
|
1244 |
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
1245 |
{ |
1246 |
unsigned int r; |
1247 |
r = 1;
|
1248 |
while (n) {
|
1249 |
if (n & 1) |
1250 |
r = mul_poly(r, a, poly); |
1251 |
a = mul_poly(a, a, poly); |
1252 |
n >>= 1;
|
1253 |
} |
1254 |
return r;
|
1255 |
} |
1256 |
|
1257 |
|
1258 |
/**
|
1259 |
* Fill the end of the frame with 0's and compute the two CRCs.
|
1260 |
*/
|
1261 |
static void output_frame_end(AC3EncodeContext *s) |
1262 |
{ |
1263 |
int frame_size, frame_size_58, pad_bytes, crc1, crc2, crc_inv;
|
1264 |
uint8_t *frame; |
1265 |
|
1266 |
frame_size = s->frame_size; /* frame size in words */
|
1267 |
/* align to 8 bits */
|
1268 |
flush_put_bits(&s->pb); |
1269 |
/* add zero bytes to reach the frame size */
|
1270 |
frame = s->pb.buf; |
1271 |
pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
|
1272 |
assert(pad_bytes >= 0);
|
1273 |
if (pad_bytes > 0) |
1274 |
memset(put_bits_ptr(&s->pb), 0, pad_bytes);
|
1275 |
|
1276 |
/* Now we must compute both crcs : this is not so easy for crc1
|
1277 |
because it is at the beginning of the data... */
|
1278 |
frame_size_58 = ((frame_size >> 2) + (frame_size >> 4)) << 1; |
1279 |
|
1280 |
crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1281 |
frame + 4, frame_size_58 - 4)); |
1282 |
|
1283 |
/* XXX: could precompute crc_inv */
|
1284 |
crc_inv = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
1285 |
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
1286 |
AV_WB16(frame + 2, crc1);
|
1287 |
|
1288 |
crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1289 |
frame + frame_size_58, |
1290 |
frame_size - frame_size_58 - 2));
|
1291 |
AV_WB16(frame + frame_size - 2, crc2);
|
1292 |
} |
1293 |
|
1294 |
|
1295 |
/**
|
1296 |
* Write the frame to the output bitstream.
|
1297 |
*/
|
1298 |
static void output_frame(AC3EncodeContext *s, |
1299 |
unsigned char *frame, |
1300 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], |
1301 |
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
1302 |
uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
1303 |
int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
1304 |
int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS]) |
1305 |
{ |
1306 |
int blk;
|
1307 |
|
1308 |
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
1309 |
|
1310 |
output_frame_header(s); |
1311 |
|
1312 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
1313 |
output_audio_block(s, exp_strategy[blk], encoded_exp[blk], |
1314 |
bap[blk], mdct_coef[blk], exp_shift[blk], blk); |
1315 |
} |
1316 |
|
1317 |
output_frame_end(s); |
1318 |
} |
1319 |
|
1320 |
|
1321 |
/**
|
1322 |
* Encode a single AC-3 frame.
|
1323 |
*/
|
1324 |
static int ac3_encode_frame(AVCodecContext *avctx, |
1325 |
unsigned char *frame, int buf_size, void *data) |
1326 |
{ |
1327 |
AC3EncodeContext *s = avctx->priv_data; |
1328 |
const int16_t *samples = data;
|
1329 |
int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE]; |
1330 |
int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
1331 |
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
1332 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS]; |
1333 |
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
1334 |
uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
1335 |
int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS]; |
1336 |
int frame_bits;
|
1337 |
|
1338 |
if (s->bit_alloc.sr_code == 1) |
1339 |
adjust_frame_size(s); |
1340 |
|
1341 |
deinterleave_input_samples(s, samples, planar_samples); |
1342 |
|
1343 |
apply_mdct(s, planar_samples, exp_shift, mdct_coef); |
1344 |
|
1345 |
frame_bits = process_exponents(s, mdct_coef, exp_shift, exp, exp_strategy, encoded_exp); |
1346 |
|
1347 |
compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits); |
1348 |
|
1349 |
output_frame(s, frame, exp_strategy, encoded_exp, bap, mdct_coef, exp_shift); |
1350 |
|
1351 |
return s->frame_size;
|
1352 |
} |
1353 |
|
1354 |
|
1355 |
/**
|
1356 |
* Finalize encoding and free any memory allocated by the encoder.
|
1357 |
*/
|
1358 |
static av_cold int ac3_encode_close(AVCodecContext *avctx) |
1359 |
{ |
1360 |
av_freep(&avctx->coded_frame); |
1361 |
return 0; |
1362 |
} |
1363 |
|
1364 |
|
1365 |
/**
|
1366 |
* Set channel information during initialization.
|
1367 |
*/
|
1368 |
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, |
1369 |
int64_t *channel_layout) |
1370 |
{ |
1371 |
int ch_layout;
|
1372 |
|
1373 |
if (channels < 1 || channels > AC3_MAX_CHANNELS) |
1374 |
return AVERROR(EINVAL);
|
1375 |
if ((uint64_t)*channel_layout > 0x7FF) |
1376 |
return AVERROR(EINVAL);
|
1377 |
ch_layout = *channel_layout; |
1378 |
if (!ch_layout)
|
1379 |
ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
|
1380 |
if (av_get_channel_layout_nb_channels(ch_layout) != channels)
|
1381 |
return AVERROR(EINVAL);
|
1382 |
|
1383 |
s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY); |
1384 |
s->channels = channels; |
1385 |
s->fbw_channels = channels - s->lfe_on; |
1386 |
s->lfe_channel = s->lfe_on ? s->fbw_channels : -1;
|
1387 |
if (s->lfe_on)
|
1388 |
ch_layout -= AV_CH_LOW_FREQUENCY; |
1389 |
|
1390 |
switch (ch_layout) {
|
1391 |
case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break; |
1392 |
case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break; |
1393 |
case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break; |
1394 |
case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break; |
1395 |
case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break; |
1396 |
case AV_CH_LAYOUT_QUAD:
|
1397 |
case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break; |
1398 |
case AV_CH_LAYOUT_5POINT0:
|
1399 |
case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break; |
1400 |
default:
|
1401 |
return AVERROR(EINVAL);
|
1402 |
} |
1403 |
|
1404 |
s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on]; |
1405 |
*channel_layout = ch_layout; |
1406 |
if (s->lfe_on)
|
1407 |
*channel_layout |= AV_CH_LOW_FREQUENCY; |
1408 |
|
1409 |
return 0; |
1410 |
} |
1411 |
|
1412 |
|
1413 |
static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) |
1414 |
{ |
1415 |
int i, ret;
|
1416 |
|
1417 |
/* validate channel layout */
|
1418 |
if (!avctx->channel_layout) {
|
1419 |
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
|
1420 |
"encoder will guess the layout, but it "
|
1421 |
"might be incorrect.\n");
|
1422 |
} |
1423 |
ret = set_channel_info(s, avctx->channels, &avctx->channel_layout); |
1424 |
if (ret) {
|
1425 |
av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
|
1426 |
return ret;
|
1427 |
} |
1428 |
|
1429 |
/* validate sample rate */
|
1430 |
for (i = 0; i < 9; i++) { |
1431 |
if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate) |
1432 |
break;
|
1433 |
} |
1434 |
if (i == 9) { |
1435 |
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
|
1436 |
return AVERROR(EINVAL);
|
1437 |
} |
1438 |
s->sample_rate = avctx->sample_rate; |
1439 |
s->bit_alloc.sr_shift = i % 3;
|
1440 |
s->bit_alloc.sr_code = i / 3;
|
1441 |
|
1442 |
/* validate bit rate */
|
1443 |
for (i = 0; i < 19; i++) { |
1444 |
if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) |
1445 |
break;
|
1446 |
} |
1447 |
if (i == 19) { |
1448 |
av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
|
1449 |
return AVERROR(EINVAL);
|
1450 |
} |
1451 |
s->bit_rate = avctx->bit_rate; |
1452 |
s->frame_size_code = i << 1;
|
1453 |
|
1454 |
return 0; |
1455 |
} |
1456 |
|
1457 |
|
1458 |
/**
|
1459 |
* Set bandwidth for all channels.
|
1460 |
* The user can optionally supply a cutoff frequency. Otherwise an appropriate
|
1461 |
* default value will be used.
|
1462 |
*/
|
1463 |
static av_cold void set_bandwidth(AC3EncodeContext *s, int cutoff) |
1464 |
{ |
1465 |
int ch, bw_code;
|
1466 |
|
1467 |
if (cutoff) {
|
1468 |
/* calculate bandwidth based on user-specified cutoff frequency */
|
1469 |
int fbw_coeffs;
|
1470 |
cutoff = av_clip(cutoff, 1, s->sample_rate >> 1); |
1471 |
fbw_coeffs = cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
|
1472 |
bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
1473 |
} else {
|
1474 |
/* use default bandwidth setting */
|
1475 |
/* XXX: should compute the bandwidth according to the frame
|
1476 |
size, so that we avoid annoying high frequency artifacts */
|
1477 |
bw_code = 50;
|
1478 |
} |
1479 |
|
1480 |
/* set number of coefficients for each channel */
|
1481 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
1482 |
s->bandwidth_code[ch] = bw_code; |
1483 |
s->nb_coefs[ch] = bw_code * 3 + 73; |
1484 |
} |
1485 |
if (s->lfe_on)
|
1486 |
s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */ |
1487 |
} |
1488 |
|
1489 |
|
1490 |
/**
|
1491 |
* Initialize the encoder.
|
1492 |
*/
|
1493 |
static av_cold int ac3_encode_init(AVCodecContext *avctx) |
1494 |
{ |
1495 |
AC3EncodeContext *s = avctx->priv_data; |
1496 |
int ret;
|
1497 |
|
1498 |
avctx->frame_size = AC3_FRAME_SIZE; |
1499 |
|
1500 |
ac3_common_init(); |
1501 |
|
1502 |
ret = validate_options(avctx, s); |
1503 |
if (ret)
|
1504 |
return ret;
|
1505 |
|
1506 |
s->bitstream_id = 8 + s->bit_alloc.sr_shift;
|
1507 |
s->bitstream_mode = 0; /* complete main audio service */ |
1508 |
|
1509 |
s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
|
1510 |
s->bits_written = 0;
|
1511 |
s->samples_written = 0;
|
1512 |
s->frame_size = s->frame_size_min; |
1513 |
|
1514 |
set_bandwidth(s, avctx->cutoff); |
1515 |
|
1516 |
/* initial snr offset */
|
1517 |
s->coarse_snr_offset = 40;
|
1518 |
|
1519 |
mdct_init(9);
|
1520 |
|
1521 |
avctx->coded_frame= avcodec_alloc_frame(); |
1522 |
avctx->coded_frame->key_frame= 1;
|
1523 |
|
1524 |
return 0; |
1525 |
} |
1526 |
|
1527 |
|
1528 |
#ifdef TEST
|
1529 |
/*************************************************************************/
|
1530 |
/* TEST */
|
1531 |
|
1532 |
#include "libavutil/lfg.h" |
1533 |
|
1534 |
#define FN (MDCT_SAMPLES/4) |
1535 |
|
1536 |
|
1537 |
static void fft_test(AVLFG *lfg) |
1538 |
{ |
1539 |
IComplex in[FN], in1[FN]; |
1540 |
int k, n, i;
|
1541 |
float sum_re, sum_im, a;
|
1542 |
|
1543 |
for (i = 0; i < FN; i++) { |
1544 |
in[i].re = av_lfg_get(lfg) % 65535 - 32767; |
1545 |
in[i].im = av_lfg_get(lfg) % 65535 - 32767; |
1546 |
in1[i] = in[i]; |
1547 |
} |
1548 |
fft(in, 7);
|
1549 |
|
1550 |
/* do it by hand */
|
1551 |
for (k = 0; k < FN; k++) { |
1552 |
sum_re = 0;
|
1553 |
sum_im = 0;
|
1554 |
for (n = 0; n < FN; n++) { |
1555 |
a = -2 * M_PI * (n * k) / FN;
|
1556 |
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); |
1557 |
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); |
1558 |
} |
1559 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", |
1560 |
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); |
1561 |
} |
1562 |
} |
1563 |
|
1564 |
|
1565 |
static void mdct_test(AVLFG *lfg) |
1566 |
{ |
1567 |
int16_t input[MDCT_SAMPLES]; |
1568 |
int32_t output[AC3_MAX_COEFS]; |
1569 |
float input1[MDCT_SAMPLES];
|
1570 |
float output1[AC3_MAX_COEFS];
|
1571 |
float s, a, err, e, emax;
|
1572 |
int i, k, n;
|
1573 |
|
1574 |
for (i = 0; i < MDCT_SAMPLES; i++) { |
1575 |
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; |
1576 |
input1[i] = input[i]; |
1577 |
} |
1578 |
|
1579 |
mdct512(output, input); |
1580 |
|
1581 |
/* do it by hand */
|
1582 |
for (k = 0; k < AC3_MAX_COEFS; k++) { |
1583 |
s = 0;
|
1584 |
for (n = 0; n < MDCT_SAMPLES; n++) { |
1585 |
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); |
1586 |
s += input1[n] * cos(a); |
1587 |
} |
1588 |
output1[k] = -2 * s / MDCT_SAMPLES;
|
1589 |
} |
1590 |
|
1591 |
err = 0;
|
1592 |
emax = 0;
|
1593 |
for (i = 0; i < AC3_MAX_COEFS; i++) { |
1594 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); |
1595 |
e = output[i] - output1[i]; |
1596 |
if (e > emax)
|
1597 |
emax = e; |
1598 |
err += e * e; |
1599 |
} |
1600 |
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); |
1601 |
} |
1602 |
|
1603 |
|
1604 |
int main(void) |
1605 |
{ |
1606 |
AVLFG lfg; |
1607 |
|
1608 |
av_log_set_level(AV_LOG_DEBUG); |
1609 |
mdct_init(9);
|
1610 |
|
1611 |
fft_test(&lfg); |
1612 |
mdct_test(&lfg); |
1613 |
|
1614 |
return 0; |
1615 |
} |
1616 |
#endif /* TEST */ |
1617 |
|
1618 |
|
1619 |
AVCodec ac3_encoder = { |
1620 |
"ac3",
|
1621 |
AVMEDIA_TYPE_AUDIO, |
1622 |
CODEC_ID_AC3, |
1623 |
sizeof(AC3EncodeContext),
|
1624 |
ac3_encode_init, |
1625 |
ac3_encode_frame, |
1626 |
ac3_encode_close, |
1627 |
NULL,
|
1628 |
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, |
1629 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
1630 |
.channel_layouts = (const int64_t[]){
|
1631 |
AV_CH_LAYOUT_MONO, |
1632 |
AV_CH_LAYOUT_STEREO, |
1633 |
AV_CH_LAYOUT_2_1, |
1634 |
AV_CH_LAYOUT_SURROUND, |
1635 |
AV_CH_LAYOUT_2_2, |
1636 |
AV_CH_LAYOUT_QUAD, |
1637 |
AV_CH_LAYOUT_4POINT0, |
1638 |
AV_CH_LAYOUT_5POINT0, |
1639 |
AV_CH_LAYOUT_5POINT0_BACK, |
1640 |
(AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY), |
1641 |
(AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY), |
1642 |
(AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY), |
1643 |
(AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY), |
1644 |
(AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY), |
1645 |
(AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY), |
1646 |
(AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY), |
1647 |
AV_CH_LAYOUT_5POINT1, |
1648 |
AV_CH_LAYOUT_5POINT1_BACK, |
1649 |
0 },
|
1650 |
}; |