Statistics
| Branch: | Revision:

ffmpeg / libavcodec / rdft.c @ 68602540

History | View | Annotate | Download (4.36 KB)

1
/*
2
 * (I)RDFT transforms
3
 * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include <math.h>
22
#include "dsputil.h"
23

    
24
/**
25
 * @file rdft.c
26
 * (Inverse) Real Discrete Fourier Transforms.
27
 */
28

    
29
/* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
30
DECLARE_ALIGNED_16(FFTSample, ff_sin_16[8]);
31
DECLARE_ALIGNED_16(FFTSample, ff_sin_32[16]);
32
DECLARE_ALIGNED_16(FFTSample, ff_sin_64[32]);
33
DECLARE_ALIGNED_16(FFTSample, ff_sin_128[64]);
34
DECLARE_ALIGNED_16(FFTSample, ff_sin_256[128]);
35
DECLARE_ALIGNED_16(FFTSample, ff_sin_512[256]);
36
DECLARE_ALIGNED_16(FFTSample, ff_sin_1024[512]);
37
DECLARE_ALIGNED_16(FFTSample, ff_sin_2048[1024]);
38
DECLARE_ALIGNED_16(FFTSample, ff_sin_4096[2048]);
39
DECLARE_ALIGNED_16(FFTSample, ff_sin_8192[4096]);
40
DECLARE_ALIGNED_16(FFTSample, ff_sin_16384[8192]);
41
DECLARE_ALIGNED_16(FFTSample, ff_sin_32768[16384]);
42
DECLARE_ALIGNED_16(FFTSample, ff_sin_65536[32768]);
43
FFTSample *ff_sin_tabs[] = {
44
    ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
45
    ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
46
};
47

    
48
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
49
{
50
    int n = 1 << nbits;
51
    int i;
52
    const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n;
53

    
54
    s->nbits           = nbits;
55
    s->inverse         = trans == IRDFT || trans == IRIDFT;
56
    s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1;
57

    
58
    if (nbits < 4 || nbits > 16)
59
        return -1;
60

    
61
    if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0)
62
        return -1;
63

    
64
    s->tcos = ff_cos_tabs[nbits-4];
65
    s->tsin = ff_sin_tabs[nbits-4]+(trans == RDFT || trans == IRIDFT)*(n>>2);
66
    for (i = 0; i < (n>>2); i++) {
67
        s->tcos[i] = cos(i*theta);
68
        s->tsin[i] = sin(i*theta);
69
    }
70
    return 0;
71
}
72

    
73
/** Map one real FFT into two parallel real even and odd FFTs. Then interleave
74
 * the two real FFTs into one complex FFT. Unmangle the results.
75
 * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
76
 */
77
void ff_rdft_calc_c(RDFTContext* s, FFTSample* data)
78
{
79
    int i, i1, i2;
80
    FFTComplex ev, od;
81
    const int n = 1 << s->nbits;
82
    const float k1 = 0.5;
83
    const float k2 = 0.5 - s->inverse;
84
    const FFTSample *tcos = s->tcos;
85
    const FFTSample *tsin = s->tsin;
86

    
87
    if (!s->inverse) {
88
        ff_fft_permute(&s->fft, (FFTComplex*)data);
89
        ff_fft_calc(&s->fft, (FFTComplex*)data);
90
    }
91
    /* i=0 is a special case because of packing, the DC term is real, so we
92
       are going to throw the N/2 term (also real) in with it. */
93
    ev.re = data[0];
94
    data[0] = ev.re+data[1];
95
    data[1] = ev.re-data[1];
96
    for (i = 1; i < (n>>2); i++) {
97
        i1 = 2*i;
98
        i2 = n-i1;
99
        /* Separate even and odd FFTs */
100
        ev.re =  k1*(data[i1  ]+data[i2  ]);
101
        od.im = -k2*(data[i1  ]-data[i2  ]);
102
        ev.im =  k1*(data[i1+1]-data[i2+1]);
103
        od.re =  k2*(data[i1+1]+data[i2+1]);
104
        /* Apply twiddle factors to the odd FFT and add to the even FFT */
105
        data[i1  ] =  ev.re + od.re*tcos[i] - od.im*tsin[i];
106
        data[i1+1] =  ev.im + od.im*tcos[i] + od.re*tsin[i];
107
        data[i2  ] =  ev.re - od.re*tcos[i] + od.im*tsin[i];
108
        data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
109
    }
110
    data[2*i+1]=s->sign_convention*data[2*i+1];
111
    if (s->inverse) {
112
        data[0] *= k1;
113
        data[1] *= k1;
114
        ff_fft_permute(&s->fft, (FFTComplex*)data);
115
        ff_fft_calc(&s->fft, (FFTComplex*)data);
116
    }
117
}
118

    
119
void ff_rdft_calc(RDFTContext *s, FFTSample *data)
120
{
121
    ff_rdft_calc_c(s, data);
122
}
123

    
124
av_cold void ff_rdft_end(RDFTContext *s)
125
{
126
    ff_fft_end(&s->fft);
127
}