Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 696d6889

History | View | Annotate | Download (47.3 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
 */
19
#include "avcodec.h"
20
#include "bitstream.h"
21

    
22
/**
23
 * @file adpcm.c
24
 * ADPCM codecs.
25
 * First version by Francois Revol (revol@free.fr)
26
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
27
 *   by Mike Melanson (melanson@pcisys.net)
28
 * CD-ROM XA ADPCM codec by BERO
29
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
30
 *
31
 * Features and limitations:
32
 *
33
 * Reference documents:
34
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
35
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
36
 * http://openquicktime.sourceforge.net/plugins.htm
37
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
38
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
39
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
40
 *
41
 * CD-ROM XA:
42
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
43
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
44
 * readstr http://www.geocities.co.jp/Playtown/2004/
45
 */
46

    
47
#define BLKSIZE 1024
48

    
49
#define CLAMP_TO_SHORT(value) \
50
if (value > 32767) \
51
    value = 32767; \
52
else if (value < -32768) \
53
    value = -32768; \
54

    
55
/* step_table[] and index_table[] are from the ADPCM reference source */
56
/* This is the index table: */
57
static const int index_table[16] = {
58
    -1, -1, -1, -1, 2, 4, 6, 8,
59
    -1, -1, -1, -1, 2, 4, 6, 8,
60
};
61

    
62
/**
63
 * This is the step table. Note that many programs use slight deviations from
64
 * this table, but such deviations are negligible:
65
 */
66
static const int step_table[89] = {
67
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
68
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
69
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
70
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
71
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
72
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
73
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
74
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
75
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
76
};
77

    
78
/* These are for MS-ADPCM */
79
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
80
static const int AdaptationTable[] = {
81
        230, 230, 230, 230, 307, 409, 512, 614,
82
        768, 614, 512, 409, 307, 230, 230, 230
83
};
84

    
85
static const int AdaptCoeff1[] = {
86
        256, 512, 0, 192, 240, 460, 392
87
};
88

    
89
static const int AdaptCoeff2[] = {
90
        0, -256, 0, 64, 0, -208, -232
91
};
92

    
93
/* These are for CD-ROM XA ADPCM */
94
static const int xa_adpcm_table[5][2] = {
95
   {   0,   0 },
96
   {  60,   0 },
97
   { 115, -52 },
98
   {  98, -55 },
99
   { 122, -60 }
100
};
101

    
102
static const int ea_adpcm_table[] = {
103
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
104
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
105
};
106

    
107
static const int ct_adpcm_table[8] = {
108
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
109
    0x0133, 0x0199, 0x0200, 0x0266
110
};
111

    
112
// padded to zero where table size is less then 16
113
static const int swf_index_tables[4][16] = {
114
    /*2*/ { -1, 2 },
115
    /*3*/ { -1, -1, 2, 4 },
116
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
117
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
118
};
119

    
120
static const int yamaha_indexscale[] = {
121
    230, 230, 230, 230, 307, 409, 512, 614,
122
    230, 230, 230, 230, 307, 409, 512, 614
123
};
124

    
125
static const int yamaha_difflookup[] = {
126
    1, 3, 5, 7, 9, 11, 13, 15,
127
    -1, -3, -5, -7, -9, -11, -13, -15
128
};
129

    
130
/* end of tables */
131

    
132
typedef struct ADPCMChannelStatus {
133
    int predictor;
134
    short int step_index;
135
    int step;
136
    /* for encoding */
137
    int prev_sample;
138

    
139
    /* MS version */
140
    short sample1;
141
    short sample2;
142
    int coeff1;
143
    int coeff2;
144
    int idelta;
145
} ADPCMChannelStatus;
146

    
147
typedef struct ADPCMContext {
148
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
149
    ADPCMChannelStatus status[2];
150
    short sample_buffer[32]; /* hold left samples while waiting for right samples */
151

    
152
    /* SWF only */
153
    int nb_bits;
154
    int nb_samples;
155
} ADPCMContext;
156

    
157
/* XXX: implement encoding */
158

    
159
#ifdef CONFIG_ENCODERS
160
static int adpcm_encode_init(AVCodecContext *avctx)
161
{
162
    if (avctx->channels > 2)
163
        return -1; /* only stereo or mono =) */
164
    switch(avctx->codec->id) {
165
    case CODEC_ID_ADPCM_IMA_QT:
166
        av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
167
        avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
168
        return -1;
169
        break;
170
    case CODEC_ID_ADPCM_IMA_WAV:
171
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
172
                                                             /* and we have 4 bytes per channel overhead */
173
        avctx->block_align = BLKSIZE;
174
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
175
        break;
176
    case CODEC_ID_ADPCM_MS:
177
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
178
                                                             /* and we have 7 bytes per channel overhead */
179
        avctx->block_align = BLKSIZE;
180
        break;
181
    case CODEC_ID_ADPCM_YAMAHA:
182
        avctx->frame_size = BLKSIZE * avctx->channels;
183
        avctx->block_align = BLKSIZE;
184
        break;
185
    default:
186
        return -1;
187
        break;
188
    }
189

    
190
    avctx->coded_frame= avcodec_alloc_frame();
191
    avctx->coded_frame->key_frame= 1;
192

    
193
    return 0;
194
}
195

    
196
static int adpcm_encode_close(AVCodecContext *avctx)
197
{
198
    av_freep(&avctx->coded_frame);
199

    
200
    return 0;
201
}
202

    
203

    
204
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
205
{
206
    int delta = sample - c->prev_sample;
207
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
208
    c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
209
    CLAMP_TO_SHORT(c->prev_sample);
210
    c->step_index = clip(c->step_index + index_table[nibble], 0, 88);
211
    return nibble;
212
}
213

    
214
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
215
{
216
    int predictor, nibble, bias;
217

    
218
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
219

    
220
    nibble= sample - predictor;
221
    if(nibble>=0) bias= c->idelta/2;
222
    else          bias=-c->idelta/2;
223

    
224
    nibble= (nibble + bias) / c->idelta;
225
    nibble= clip(nibble, -8, 7)&0x0F;
226

    
227
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
228
    CLAMP_TO_SHORT(predictor);
229

    
230
    c->sample2 = c->sample1;
231
    c->sample1 = predictor;
232

    
233
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
234
    if (c->idelta < 16) c->idelta = 16;
235

    
236
    return nibble;
237
}
238

    
239
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
240
{
241
    int nibble, delta;
242

    
243
    if(!c->step) {
244
        c->predictor = 0;
245
        c->step = 127;
246
    }
247

    
248
    delta = sample - c->predictor;
249

    
250
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
251

    
252
    c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
253
    CLAMP_TO_SHORT(c->predictor);
254
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
255
    c->step = clip(c->step, 127, 24567);
256

    
257
    return nibble;
258
}
259

    
260
typedef struct TrellisPath {
261
    int nibble;
262
    int prev;
263
} TrellisPath;
264

    
265
typedef struct TrellisNode {
266
    uint32_t ssd;
267
    int path;
268
    int sample1;
269
    int sample2;
270
    int step;
271
} TrellisNode;
272

    
273
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
274
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
275
{
276
#define FREEZE_INTERVAL 128
277
    //FIXME 6% faster if frontier is a compile-time constant
278
    const int frontier = 1 << avctx->trellis;
279
    const int stride = avctx->channels;
280
    const int version = avctx->codec->id;
281
    const int max_paths = frontier*FREEZE_INTERVAL;
282
    TrellisPath paths[max_paths], *p;
283
    TrellisNode node_buf[2][frontier];
284
    TrellisNode *nodep_buf[2][frontier];
285
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
286
    TrellisNode **nodes_next = nodep_buf[1];
287
    int pathn = 0, froze = -1, i, j, k;
288

    
289
    assert(!(max_paths&(max_paths-1)));
290

    
291
    memset(nodep_buf, 0, sizeof(nodep_buf));
292
    nodes[0] = &node_buf[1][0];
293
    nodes[0]->ssd = 0;
294
    nodes[0]->path = 0;
295
    nodes[0]->step = c->step_index;
296
    nodes[0]->sample1 = c->sample1;
297
    nodes[0]->sample2 = c->sample2;
298
    if(version == CODEC_ID_ADPCM_IMA_WAV)
299
        nodes[0]->sample1 = c->prev_sample;
300
    if(version == CODEC_ID_ADPCM_MS)
301
        nodes[0]->step = c->idelta;
302
    if(version == CODEC_ID_ADPCM_YAMAHA) {
303
        if(c->step == 0) {
304
            nodes[0]->step = 127;
305
            nodes[0]->sample1 = 0;
306
        } else {
307
            nodes[0]->step = c->step;
308
            nodes[0]->sample1 = c->predictor;
309
        }
310
    }
311

    
312
    for(i=0; i<n; i++) {
313
        TrellisNode *t = node_buf[i&1];
314
        TrellisNode **u;
315
        int sample = samples[i*stride];
316
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
317
        for(j=0; j<frontier && nodes[j]; j++) {
318
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
319
            const int range = (j < frontier/2) ? 1 : 0;
320
            const int step = nodes[j]->step;
321
            int nidx;
322
            if(version == CODEC_ID_ADPCM_MS) {
323
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
324
                const int div = (sample - predictor) / step;
325
                const int nmin = clip(div-range, -8, 6);
326
                const int nmax = clip(div+range, -7, 7);
327
                for(nidx=nmin; nidx<=nmax; nidx++) {
328
                    const int nibble = nidx & 0xf;
329
                    int dec_sample = predictor + nidx * step;
330
#define STORE_NODE(NAME, STEP_INDEX)\
331
                    int d;\
332
                    uint32_t ssd;\
333
                    CLAMP_TO_SHORT(dec_sample);\
334
                    d = sample - dec_sample;\
335
                    ssd = nodes[j]->ssd + d*d;\
336
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
337
                        continue;\
338
                    /* Collapse any two states with the same previous sample value. \
339
                     * One could also distinguish states by step and by 2nd to last
340
                     * sample, but the effects of that are negligible. */\
341
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
342
                        if(dec_sample == nodes_next[k]->sample1) {\
343
                            assert(ssd >= nodes_next[k]->ssd);\
344
                            goto next_##NAME;\
345
                        }\
346
                    }\
347
                    for(k=0; k<frontier; k++) {\
348
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
349
                            TrellisNode *u = nodes_next[frontier-1];\
350
                            if(!u) {\
351
                                assert(pathn < max_paths);\
352
                                u = t++;\
353
                                u->path = pathn++;\
354
                            }\
355
                            u->ssd = ssd;\
356
                            u->step = STEP_INDEX;\
357
                            u->sample2 = nodes[j]->sample1;\
358
                            u->sample1 = dec_sample;\
359
                            paths[u->path].nibble = nibble;\
360
                            paths[u->path].prev = nodes[j]->path;\
361
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
362
                            nodes_next[k] = u;\
363
                            break;\
364
                        }\
365
                    }\
366
                    next_##NAME:;
367
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
368
                }
369
            } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
370
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
371
                const int predictor = nodes[j]->sample1;\
372
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
373
                int nmin = clip(div-range, -7, 6);\
374
                int nmax = clip(div+range, -6, 7);\
375
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
376
                if(nmax<0) nmax--;\
377
                for(nidx=nmin; nidx<=nmax; nidx++) {\
378
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
379
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
380
                    STORE_NODE(NAME, STEP_INDEX);\
381
                }
382
                LOOP_NODES(ima, step_table[step], clip(step + index_table[nibble], 0, 88));
383
            } else { //CODEC_ID_ADPCM_YAMAHA
384
                LOOP_NODES(yamaha, step, clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
385
#undef LOOP_NODES
386
#undef STORE_NODE
387
            }
388
        }
389

    
390
        u = nodes;
391
        nodes = nodes_next;
392
        nodes_next = u;
393

    
394
        // prevent overflow
395
        if(nodes[0]->ssd > (1<<28)) {
396
            for(j=1; j<frontier && nodes[j]; j++)
397
                nodes[j]->ssd -= nodes[0]->ssd;
398
            nodes[0]->ssd = 0;
399
        }
400

    
401
        // merge old paths to save memory
402
        if(i == froze + FREEZE_INTERVAL) {
403
            p = &paths[nodes[0]->path];
404
            for(k=i; k>froze; k--) {
405
                dst[k] = p->nibble;
406
                p = &paths[p->prev];
407
            }
408
            froze = i;
409
            pathn = 0;
410
            // other nodes might use paths that don't coincide with the frozen one.
411
            // checking which nodes do so is too slow, so just kill them all.
412
            // this also slightly improves quality, but I don't know why.
413
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
414
        }
415
    }
416

    
417
    p = &paths[nodes[0]->path];
418
    for(i=n-1; i>froze; i--) {
419
        dst[i] = p->nibble;
420
        p = &paths[p->prev];
421
    }
422

    
423
    c->predictor = nodes[0]->sample1;
424
    c->sample1 = nodes[0]->sample1;
425
    c->sample2 = nodes[0]->sample2;
426
    c->step_index = nodes[0]->step;
427
    c->step = nodes[0]->step;
428
    c->idelta = nodes[0]->step;
429
}
430

    
431
static int adpcm_encode_frame(AVCodecContext *avctx,
432
                            unsigned char *frame, int buf_size, void *data)
433
{
434
    int n, i, st;
435
    short *samples;
436
    unsigned char *dst;
437
    ADPCMContext *c = avctx->priv_data;
438

    
439
    dst = frame;
440
    samples = (short *)data;
441
    st= avctx->channels == 2;
442
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
443

    
444
    switch(avctx->codec->id) {
445
    case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
446
        break;
447
    case CODEC_ID_ADPCM_IMA_WAV:
448
        n = avctx->frame_size / 8;
449
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
450
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
451
            *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
452
            *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
453
            *dst++ = (unsigned char)c->status[0].step_index;
454
            *dst++ = 0; /* unknown */
455
            samples++;
456
            if (avctx->channels == 2) {
457
                c->status[1].prev_sample = (signed short)samples[1];
458
/*                c->status[1].step_index = 0; */
459
                *dst++ = (c->status[1].prev_sample) & 0xFF;
460
                *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
461
                *dst++ = (unsigned char)c->status[1].step_index;
462
                *dst++ = 0;
463
                samples++;
464
            }
465

    
466
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
467
            if(avctx->trellis > 0) {
468
                uint8_t buf[2][n*8];
469
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
470
                if(avctx->channels == 2)
471
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
472
                for(i=0; i<n; i++) {
473
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
474
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
475
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
476
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
477
                    if (avctx->channels == 2) {
478
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
479
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
480
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
481
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
482
                    }
483
                }
484
            } else
485
            for (; n>0; n--) {
486
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
487
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
488
                dst++;
489
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
490
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
491
                dst++;
492
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
493
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
494
                dst++;
495
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
496
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
497
                dst++;
498
                /* right channel */
499
                if (avctx->channels == 2) {
500
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
501
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
502
                    dst++;
503
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
504
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
505
                    dst++;
506
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
507
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
508
                    dst++;
509
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
510
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
511
                    dst++;
512
                }
513
                samples += 8 * avctx->channels;
514
            }
515
        break;
516
    case CODEC_ID_ADPCM_MS:
517
        for(i=0; i<avctx->channels; i++){
518
            int predictor=0;
519

    
520
            *dst++ = predictor;
521
            c->status[i].coeff1 = AdaptCoeff1[predictor];
522
            c->status[i].coeff2 = AdaptCoeff2[predictor];
523
        }
524
        for(i=0; i<avctx->channels; i++){
525
            if (c->status[i].idelta < 16)
526
                c->status[i].idelta = 16;
527

    
528
            *dst++ = c->status[i].idelta & 0xFF;
529
            *dst++ = c->status[i].idelta >> 8;
530
        }
531
        for(i=0; i<avctx->channels; i++){
532
            c->status[i].sample1= *samples++;
533

    
534
            *dst++ = c->status[i].sample1 & 0xFF;
535
            *dst++ = c->status[i].sample1 >> 8;
536
        }
537
        for(i=0; i<avctx->channels; i++){
538
            c->status[i].sample2= *samples++;
539

    
540
            *dst++ = c->status[i].sample2 & 0xFF;
541
            *dst++ = c->status[i].sample2 >> 8;
542
        }
543

    
544
        if(avctx->trellis > 0) {
545
            int n = avctx->block_align - 7*avctx->channels;
546
            uint8_t buf[2][n];
547
            if(avctx->channels == 1) {
548
                n *= 2;
549
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
550
                for(i=0; i<n; i+=2)
551
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
552
            } else {
553
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
554
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
555
                for(i=0; i<n; i++)
556
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
557
            }
558
        } else
559
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
560
            int nibble;
561
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
562
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
563
            *dst++ = nibble;
564
        }
565
        break;
566
    case CODEC_ID_ADPCM_YAMAHA:
567
        n = avctx->frame_size / 2;
568
        if(avctx->trellis > 0) {
569
            uint8_t buf[2][n*2];
570
            n *= 2;
571
            if(avctx->channels == 1) {
572
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
573
                for(i=0; i<n; i+=2)
574
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
575
            } else {
576
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
577
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
578
                for(i=0; i<n; i++)
579
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
580
            }
581
        } else
582
        for (; n>0; n--) {
583
            for(i = 0; i < avctx->channels; i++) {
584
                int nibble;
585
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
586
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
587
                *dst++ = nibble;
588
            }
589
            samples += 2 * avctx->channels;
590
        }
591
        break;
592
    default:
593
        return -1;
594
    }
595
    return dst - frame;
596
}
597
#endif //CONFIG_ENCODERS
598

    
599
static int adpcm_decode_init(AVCodecContext * avctx)
600
{
601
    ADPCMContext *c = avctx->priv_data;
602

    
603
    c->channel = 0;
604
    c->status[0].predictor = c->status[1].predictor = 0;
605
    c->status[0].step_index = c->status[1].step_index = 0;
606
    c->status[0].step = c->status[1].step = 0;
607

    
608
    switch(avctx->codec->id) {
609
    case CODEC_ID_ADPCM_CT:
610
        c->status[0].step = c->status[1].step = 511;
611
        break;
612
    default:
613
        break;
614
    }
615
    return 0;
616
}
617

    
618
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
619
{
620
    int step_index;
621
    int predictor;
622
    int sign, delta, diff, step;
623

    
624
    step = step_table[c->step_index];
625
    step_index = c->step_index + index_table[(unsigned)nibble];
626
    if (step_index < 0) step_index = 0;
627
    else if (step_index > 88) step_index = 88;
628

    
629
    sign = nibble & 8;
630
    delta = nibble & 7;
631
    /* perform direct multiplication instead of series of jumps proposed by
632
     * the reference ADPCM implementation since modern CPUs can do the mults
633
     * quickly enough */
634
    diff = ((2 * delta + 1) * step) >> shift;
635
    predictor = c->predictor;
636
    if (sign) predictor -= diff;
637
    else predictor += diff;
638

    
639
    CLAMP_TO_SHORT(predictor);
640
    c->predictor = predictor;
641
    c->step_index = step_index;
642

    
643
    return (short)predictor;
644
}
645

    
646
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
647
{
648
    int predictor;
649

    
650
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
651
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
652
    CLAMP_TO_SHORT(predictor);
653

    
654
    c->sample2 = c->sample1;
655
    c->sample1 = predictor;
656
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
657
    if (c->idelta < 16) c->idelta = 16;
658

    
659
    return (short)predictor;
660
}
661

    
662
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
663
{
664
    int predictor;
665
    int sign, delta, diff;
666
    int new_step;
667

    
668
    sign = nibble & 8;
669
    delta = nibble & 7;
670
    /* perform direct multiplication instead of series of jumps proposed by
671
     * the reference ADPCM implementation since modern CPUs can do the mults
672
     * quickly enough */
673
    diff = ((2 * delta + 1) * c->step) >> 3;
674
    predictor = c->predictor;
675
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
676
    if(sign)
677
        predictor = ((predictor * 254) >> 8) - diff;
678
    else
679
            predictor = ((predictor * 254) >> 8) + diff;
680
    /* calculate new step and clamp it to range 511..32767 */
681
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
682
    c->step = new_step;
683
    if(c->step < 511)
684
        c->step = 511;
685
    if(c->step > 32767)
686
        c->step = 32767;
687

    
688
    CLAMP_TO_SHORT(predictor);
689
    c->predictor = predictor;
690
    return (short)predictor;
691
}
692

    
693
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
694
{
695
    int sign, delta, diff;
696

    
697
    sign = nibble & (1<<(size-1));
698
    delta = nibble & ((1<<(size-1))-1);
699
    diff = delta << (7 + c->step + shift);
700

    
701
    if (sign)
702
        c->predictor -= diff;
703
    else
704
        c->predictor += diff;
705

    
706
    /* clamp result */
707
    if (c->predictor > 16256)
708
        c->predictor = 16256;
709
    else if (c->predictor < -16384)
710
        c->predictor = -16384;
711

    
712
    /* calculate new step */
713
    if (delta >= (2*size - 3) && c->step < 3)
714
        c->step++;
715
    else if (delta == 0 && c->step > 0)
716
        c->step--;
717

    
718
    return (short) c->predictor;
719
}
720

    
721
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
722
{
723
    if(!c->step) {
724
        c->predictor = 0;
725
        c->step = 127;
726
    }
727

    
728
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
729
    CLAMP_TO_SHORT(c->predictor);
730
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
731
    c->step = clip(c->step, 127, 24567);
732
    return c->predictor;
733
}
734

    
735
static void xa_decode(short *out, const unsigned char *in,
736
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
737
{
738
    int i, j;
739
    int shift,filter,f0,f1;
740
    int s_1,s_2;
741
    int d,s,t;
742

    
743
    for(i=0;i<4;i++) {
744

    
745
        shift  = 12 - (in[4+i*2] & 15);
746
        filter = in[4+i*2] >> 4;
747
        f0 = xa_adpcm_table[filter][0];
748
        f1 = xa_adpcm_table[filter][1];
749

    
750
        s_1 = left->sample1;
751
        s_2 = left->sample2;
752

    
753
        for(j=0;j<28;j++) {
754
            d = in[16+i+j*4];
755

    
756
            t = (signed char)(d<<4)>>4;
757
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
758
            CLAMP_TO_SHORT(s);
759
            *out = s;
760
            out += inc;
761
            s_2 = s_1;
762
            s_1 = s;
763
        }
764

    
765
        if (inc==2) { /* stereo */
766
            left->sample1 = s_1;
767
            left->sample2 = s_2;
768
            s_1 = right->sample1;
769
            s_2 = right->sample2;
770
            out = out + 1 - 28*2;
771
        }
772

    
773
        shift  = 12 - (in[5+i*2] & 15);
774
        filter = in[5+i*2] >> 4;
775

    
776
        f0 = xa_adpcm_table[filter][0];
777
        f1 = xa_adpcm_table[filter][1];
778

    
779
        for(j=0;j<28;j++) {
780
            d = in[16+i+j*4];
781

    
782
            t = (signed char)d >> 4;
783
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
784
            CLAMP_TO_SHORT(s);
785
            *out = s;
786
            out += inc;
787
            s_2 = s_1;
788
            s_1 = s;
789
        }
790

    
791
        if (inc==2) { /* stereo */
792
            right->sample1 = s_1;
793
            right->sample2 = s_2;
794
            out -= 1;
795
        } else {
796
            left->sample1 = s_1;
797
            left->sample2 = s_2;
798
        }
799
    }
800
}
801

    
802

    
803
/* DK3 ADPCM support macro */
804
#define DK3_GET_NEXT_NIBBLE() \
805
    if (decode_top_nibble_next) \
806
    { \
807
        nibble = (last_byte >> 4) & 0x0F; \
808
        decode_top_nibble_next = 0; \
809
    } \
810
    else \
811
    { \
812
        last_byte = *src++; \
813
        if (src >= buf + buf_size) break; \
814
        nibble = last_byte & 0x0F; \
815
        decode_top_nibble_next = 1; \
816
    }
817

    
818
static int adpcm_decode_frame(AVCodecContext *avctx,
819
                            void *data, int *data_size,
820
                            uint8_t *buf, int buf_size)
821
{
822
    ADPCMContext *c = avctx->priv_data;
823
    ADPCMChannelStatus *cs;
824
    int n, m, channel, i;
825
    int block_predictor[2];
826
    short *samples;
827
    uint8_t *src;
828
    int st; /* stereo */
829

    
830
    /* DK3 ADPCM accounting variables */
831
    unsigned char last_byte = 0;
832
    unsigned char nibble;
833
    int decode_top_nibble_next = 0;
834
    int diff_channel;
835

    
836
    /* EA ADPCM state variables */
837
    uint32_t samples_in_chunk;
838
    int32_t previous_left_sample, previous_right_sample;
839
    int32_t current_left_sample, current_right_sample;
840
    int32_t next_left_sample, next_right_sample;
841
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
842
    uint8_t shift_left, shift_right;
843
    int count1, count2;
844

    
845
    if (!buf_size)
846
        return 0;
847

    
848
    samples = data;
849
    src = buf;
850

    
851
    st = avctx->channels == 2 ? 1 : 0;
852

    
853
    switch(avctx->codec->id) {
854
    case CODEC_ID_ADPCM_IMA_QT:
855
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
856
        channel = c->channel;
857
        cs = &(c->status[channel]);
858
        /* (pppppp) (piiiiiii) */
859

    
860
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
861
        cs->predictor = (*src++) << 8;
862
        cs->predictor |= (*src & 0x80);
863
        cs->predictor &= 0xFF80;
864

    
865
        /* sign extension */
866
        if(cs->predictor & 0x8000)
867
            cs->predictor -= 0x10000;
868

    
869
        CLAMP_TO_SHORT(cs->predictor);
870

    
871
        cs->step_index = (*src++) & 0x7F;
872

    
873
        if (cs->step_index > 88){
874
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
875
            cs->step_index = 88;
876
        }
877

    
878
        cs->step = step_table[cs->step_index];
879

    
880
        if (st && channel)
881
            samples++;
882

    
883
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
884
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
885
            samples += avctx->channels;
886
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
887
            samples += avctx->channels;
888
            src ++;
889
        }
890

    
891
        if(st) { /* handle stereo interlacing */
892
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
893
            if(channel == 1) { /* wait for the other packet before outputing anything */
894
                return src - buf;
895
            }
896
        }
897
        break;
898
    case CODEC_ID_ADPCM_IMA_WAV:
899
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
900
            buf_size = avctx->block_align;
901

    
902
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
903

    
904
        for(i=0; i<avctx->channels; i++){
905
            cs = &(c->status[i]);
906
            cs->predictor = (int16_t)(src[0] + (src[1]<<8));
907
            src+=2;
908

    
909
        // XXX: is this correct ??: *samples++ = cs->predictor;
910

    
911
            cs->step_index = *src++;
912
            if (cs->step_index > 88){
913
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
914
                cs->step_index = 88;
915
            }
916
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
917
        }
918

    
919
        while(src < buf + buf_size){
920
            for(m=0; m<4; m++){
921
                for(i=0; i<=st; i++)
922
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
923
                for(i=0; i<=st; i++)
924
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
925
                src++;
926
            }
927
            src += 4*st;
928
        }
929
        break;
930
    case CODEC_ID_ADPCM_4XM:
931
        cs = &(c->status[0]);
932
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
933
        if(st){
934
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
935
        }
936
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
937
        if(st){
938
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
939
        }
940
        if (cs->step_index < 0) cs->step_index = 0;
941
        if (cs->step_index > 88) cs->step_index = 88;
942

    
943
        m= (buf_size - (src - buf))>>st;
944
        for(i=0; i<m; i++) {
945
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
946
            if (st)
947
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
948
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
949
            if (st)
950
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
951
        }
952

    
953
        src += m<<st;
954

    
955
        break;
956
    case CODEC_ID_ADPCM_MS:
957
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
958
            buf_size = avctx->block_align;
959
        n = buf_size - 7 * avctx->channels;
960
        if (n < 0)
961
            return -1;
962
        block_predictor[0] = clip(*src++, 0, 7);
963
        block_predictor[1] = 0;
964
        if (st)
965
            block_predictor[1] = clip(*src++, 0, 7);
966
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
967
        src+=2;
968
        if (st){
969
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
970
            src+=2;
971
        }
972
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
973
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
974
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
975
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
976

    
977
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
978
        src+=2;
979
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
980
        if (st) src+=2;
981
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
982
        src+=2;
983
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
984
        if (st) src+=2;
985

    
986
        *samples++ = c->status[0].sample1;
987
        if (st) *samples++ = c->status[1].sample1;
988
        *samples++ = c->status[0].sample2;
989
        if (st) *samples++ = c->status[1].sample2;
990
        for(;n>0;n--) {
991
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
992
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
993
            src ++;
994
        }
995
        break;
996
    case CODEC_ID_ADPCM_IMA_DK4:
997
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
998
            buf_size = avctx->block_align;
999

    
1000
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1001
        c->status[0].step_index = src[2];
1002
        src += 4;
1003
        *samples++ = c->status[0].predictor;
1004
        if (st) {
1005
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1006
            c->status[1].step_index = src[2];
1007
            src += 4;
1008
            *samples++ = c->status[1].predictor;
1009
        }
1010
        while (src < buf + buf_size) {
1011

    
1012
            /* take care of the top nibble (always left or mono channel) */
1013
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1014
                (src[0] >> 4) & 0x0F, 3);
1015

    
1016
            /* take care of the bottom nibble, which is right sample for
1017
             * stereo, or another mono sample */
1018
            if (st)
1019
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1020
                    src[0] & 0x0F, 3);
1021
            else
1022
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1023
                    src[0] & 0x0F, 3);
1024

    
1025
            src++;
1026
        }
1027
        break;
1028
    case CODEC_ID_ADPCM_IMA_DK3:
1029
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1030
            buf_size = avctx->block_align;
1031

    
1032
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1033
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1034
        c->status[0].step_index = src[14];
1035
        c->status[1].step_index = src[15];
1036
        /* sign extend the predictors */
1037
        src += 16;
1038
        diff_channel = c->status[1].predictor;
1039

    
1040
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1041
         * the buffer is consumed */
1042
        while (1) {
1043

    
1044
            /* for this algorithm, c->status[0] is the sum channel and
1045
             * c->status[1] is the diff channel */
1046

    
1047
            /* process the first predictor of the sum channel */
1048
            DK3_GET_NEXT_NIBBLE();
1049
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1050

    
1051
            /* process the diff channel predictor */
1052
            DK3_GET_NEXT_NIBBLE();
1053
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1054

    
1055
            /* process the first pair of stereo PCM samples */
1056
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1057
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1058
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1059

    
1060
            /* process the second predictor of the sum channel */
1061
            DK3_GET_NEXT_NIBBLE();
1062
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1063

    
1064
            /* process the second pair of stereo PCM samples */
1065
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1066
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1067
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1068
        }
1069
        break;
1070
    case CODEC_ID_ADPCM_IMA_WS:
1071
        /* no per-block initialization; just start decoding the data */
1072
        while (src < buf + buf_size) {
1073

    
1074
            if (st) {
1075
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1076
                    (src[0] >> 4) & 0x0F, 3);
1077
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1078
                    src[0] & 0x0F, 3);
1079
            } else {
1080
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1081
                    (src[0] >> 4) & 0x0F, 3);
1082
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1083
                    src[0] & 0x0F, 3);
1084
            }
1085

    
1086
            src++;
1087
        }
1088
        break;
1089
    case CODEC_ID_ADPCM_XA:
1090
        c->status[0].sample1 = c->status[0].sample2 =
1091
        c->status[1].sample1 = c->status[1].sample2 = 0;
1092
        while (buf_size >= 128) {
1093
            xa_decode(samples, src, &c->status[0], &c->status[1],
1094
                avctx->channels);
1095
            src += 128;
1096
            samples += 28 * 8;
1097
            buf_size -= 128;
1098
        }
1099
        break;
1100
    case CODEC_ID_ADPCM_EA:
1101
        samples_in_chunk = LE_32(src);
1102
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1103
            src += buf_size;
1104
            break;
1105
        }
1106
        src += 4;
1107
        current_left_sample = (int16_t)LE_16(src);
1108
        src += 2;
1109
        previous_left_sample = (int16_t)LE_16(src);
1110
        src += 2;
1111
        current_right_sample = (int16_t)LE_16(src);
1112
        src += 2;
1113
        previous_right_sample = (int16_t)LE_16(src);
1114
        src += 2;
1115

    
1116
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1117
            coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1118
            coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1119
            coeff1r = ea_adpcm_table[*src & 0x0F];
1120
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1121
            src++;
1122

    
1123
            shift_left = ((*src >> 4) & 0x0F) + 8;
1124
            shift_right = (*src & 0x0F) + 8;
1125
            src++;
1126

    
1127
            for (count2 = 0; count2 < 28; count2++) {
1128
                next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1129
                next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1130
                src++;
1131

    
1132
                next_left_sample = (next_left_sample +
1133
                    (current_left_sample * coeff1l) +
1134
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1135
                next_right_sample = (next_right_sample +
1136
                    (current_right_sample * coeff1r) +
1137
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1138
                CLAMP_TO_SHORT(next_left_sample);
1139
                CLAMP_TO_SHORT(next_right_sample);
1140

    
1141
                previous_left_sample = current_left_sample;
1142
                current_left_sample = next_left_sample;
1143
                previous_right_sample = current_right_sample;
1144
                current_right_sample = next_right_sample;
1145
                *samples++ = (unsigned short)current_left_sample;
1146
                *samples++ = (unsigned short)current_right_sample;
1147
            }
1148
        }
1149
        break;
1150
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1151
        c->status[0].predictor = *src;
1152
        src += 2;
1153
        c->status[0].step_index = *src++;
1154
        src++;  /* skip another byte before getting to the meat */
1155
        while (src < buf + buf_size) {
1156
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1157
                *src & 0x0F, 3);
1158
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1159
                (*src >> 4) & 0x0F, 3);
1160
            src++;
1161
        }
1162
        break;
1163
    case CODEC_ID_ADPCM_CT:
1164
        while (src < buf + buf_size) {
1165
            if (st) {
1166
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1167
                    (src[0] >> 4) & 0x0F);
1168
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1169
                    src[0] & 0x0F);
1170
            } else {
1171
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1172
                    (src[0] >> 4) & 0x0F);
1173
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1174
                    src[0] & 0x0F);
1175
            }
1176
            src++;
1177
        }
1178
        break;
1179
    case CODEC_ID_ADPCM_SBPRO_4:
1180
    case CODEC_ID_ADPCM_SBPRO_3:
1181
    case CODEC_ID_ADPCM_SBPRO_2:
1182
        if (!c->status[0].step_index) {
1183
            /* the first byte is a raw sample */
1184
            *samples++ = 128 * (*src++ - 0x80);
1185
            if (st)
1186
              *samples++ = 128 * (*src++ - 0x80);
1187
            c->status[0].step_index = 1;
1188
        }
1189
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1190
            while (src < buf + buf_size) {
1191
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1192
                    (src[0] >> 4) & 0x0F, 4, 0);
1193
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1194
                    src[0] & 0x0F, 4, 0);
1195
                src++;
1196
            }
1197
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1198
            while (src < buf + buf_size) {
1199
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1200
                    (src[0] >> 5) & 0x07, 3, 0);
1201
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1202
                    (src[0] >> 2) & 0x07, 3, 0);
1203
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1204
                    src[0] & 0x03, 2, 0);
1205
                src++;
1206
            }
1207
        } else {
1208
            while (src < buf + buf_size) {
1209
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1210
                    (src[0] >> 6) & 0x03, 2, 2);
1211
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1212
                    (src[0] >> 4) & 0x03, 2, 2);
1213
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1214
                    (src[0] >> 2) & 0x03, 2, 2);
1215
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1216
                    src[0] & 0x03, 2, 2);
1217
                src++;
1218
            }
1219
        }
1220
        break;
1221
    case CODEC_ID_ADPCM_SWF:
1222
    {
1223
        GetBitContext gb;
1224
        const int *table;
1225
        int k0, signmask;
1226
        int size = buf_size*8;
1227

    
1228
        init_get_bits(&gb, buf, size);
1229

    
1230
        // first frame, read bits & inital values
1231
        if (!c->nb_bits)
1232
        {
1233
            c->nb_bits = get_bits(&gb, 2)+2;
1234
//            av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits);
1235
        }
1236

    
1237
        table = swf_index_tables[c->nb_bits-2];
1238
        k0 = 1 << (c->nb_bits-2);
1239
        signmask = 1 << (c->nb_bits-1);
1240

    
1241
        while (get_bits_count(&gb) <= size)
1242
        {
1243
            int i;
1244

    
1245
            c->nb_samples++;
1246
            // wrap around at every 4096 samples...
1247
            if ((c->nb_samples & 0xfff) == 1)
1248
            {
1249
                for (i = 0; i <= st; i++)
1250
                {
1251
                    *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1252
                    c->status[i].step_index = get_bits(&gb, 6);
1253
                }
1254
            }
1255

    
1256
            // similar to IMA adpcm
1257
            for (i = 0; i <= st; i++)
1258
            {
1259
                int delta = get_bits(&gb, c->nb_bits);
1260
                int step = step_table[c->status[i].step_index];
1261
                long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1262
                int k = k0;
1263

    
1264
                do {
1265
                    if (delta & k)
1266
                        vpdiff += step;
1267
                    step >>= 1;
1268
                    k >>= 1;
1269
                } while(k);
1270
                vpdiff += step;
1271

    
1272
                if (delta & signmask)
1273
                    c->status[i].predictor -= vpdiff;
1274
                else
1275
                    c->status[i].predictor += vpdiff;
1276

    
1277
                c->status[i].step_index += table[delta & (~signmask)];
1278

    
1279
                c->status[i].step_index = clip(c->status[i].step_index, 0, 88);
1280
                c->status[i].predictor = clip(c->status[i].predictor, -32768, 32767);
1281

    
1282
                *samples++ = c->status[i].predictor;
1283
            }
1284
        }
1285

    
1286
//        src += get_bits_count(&gb)*8;
1287
        src += size;
1288

    
1289
        break;
1290
    }
1291
    case CODEC_ID_ADPCM_YAMAHA:
1292
        while (src < buf + buf_size) {
1293
            if (st) {
1294
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1295
                        src[0] & 0x0F);
1296
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1297
                        (src[0] >> 4) & 0x0F);
1298
            } else {
1299
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1300
                        src[0] & 0x0F);
1301
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1302
                        (src[0] >> 4) & 0x0F);
1303
            }
1304
            src++;
1305
        }
1306
        break;
1307
    default:
1308
        return -1;
1309
    }
1310
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1311
    return src - buf;
1312
}
1313

    
1314

    
1315

    
1316
#ifdef CONFIG_ENCODERS
1317
#define ADPCM_ENCODER(id,name)                  \
1318
AVCodec name ## _encoder = {                    \
1319
    #name,                                      \
1320
    CODEC_TYPE_AUDIO,                           \
1321
    id,                                         \
1322
    sizeof(ADPCMContext),                       \
1323
    adpcm_encode_init,                          \
1324
    adpcm_encode_frame,                         \
1325
    adpcm_encode_close,                         \
1326
    NULL,                                       \
1327
};
1328
#else
1329
#define ADPCM_ENCODER(id,name)
1330
#endif
1331

    
1332
#ifdef CONFIG_DECODERS
1333
#define ADPCM_DECODER(id,name)                  \
1334
AVCodec name ## _decoder = {                    \
1335
    #name,                                      \
1336
    CODEC_TYPE_AUDIO,                           \
1337
    id,                                         \
1338
    sizeof(ADPCMContext),                       \
1339
    adpcm_decode_init,                          \
1340
    NULL,                                       \
1341
    NULL,                                       \
1342
    adpcm_decode_frame,                         \
1343
};
1344
#else
1345
#define ADPCM_DECODER(id,name)
1346
#endif
1347

    
1348
#define ADPCM_CODEC(id, name)                   \
1349
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1350

    
1351
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1352
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1353
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1354
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1355
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1356
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1357
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1358
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1359
ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1360
ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);
1361
ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1362
ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1363
ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1364
ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1365
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1366
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1367
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1368

    
1369
#undef ADPCM_CODEC