Statistics
| Branch: | Revision:

ffmpeg / libavutil / lls.c @ 699b3f99

History | View | Annotate | Download (4.04 KB)

1
/*
2
 * linear least squares model
3
 *
4
 * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21
 */
22

    
23
/**
24
 * @file lls.c
25
 * linear least squares model
26
 */
27

    
28
#include <math.h>
29
#include <string.h>
30

    
31
#include "lls.h"
32

    
33
#ifdef TEST
34
#define av_log(a,b,...) printf(__VA_ARGS__)
35
#endif
36

    
37
void av_init_lls(LLSModel *m, int indep_count){
38
    memset(m, 0, sizeof(LLSModel));
39

    
40
    m->indep_count= indep_count;
41
}
42

    
43
void av_update_lls(LLSModel *m, double *var, double decay){
44
    int i,j;
45

    
46
    for(i=0; i<=m->indep_count; i++){
47
        for(j=i; j<=m->indep_count; j++){
48
            m->covariance[i][j] *= decay;
49
            m->covariance[i][j] += var[i]*var[j];
50
        }
51
    }
52
}
53

    
54
void av_solve_lls(LLSModel *m, double threshold, int min_order){
55
    int i,j,k;
56
    double (*factor)[MAX_VARS+1]= &m->covariance[1][0];
57
    double (*covar )[MAX_VARS+1]= &m->covariance[1][1];
58
    double  *covar_y            =  m->covariance[0];
59
    int count= m->indep_count;
60

    
61
    for(i=0; i<count; i++){
62
        for(j=i; j<count; j++){
63
            double sum= covar[i][j];
64

    
65
            for(k=i-1; k>=0; k--)
66
                sum -= factor[i][k]*factor[j][k];
67

    
68
            if(i==j){
69
                if(sum < threshold)
70
                    sum= 1.0;
71
                factor[i][i]= sqrt(sum);
72
            }else
73
                factor[j][i]= sum / factor[i][i];
74
        }
75
    }
76
    for(i=0; i<count; i++){
77
        double sum= covar_y[i+1];
78
        for(k=i-1; k>=0; k--)
79
            sum -= factor[i][k]*m->coeff[0][k];
80
        m->coeff[0][i]= sum / factor[i][i];
81
    }
82

    
83
    for(j=count-1; j>=min_order; j--){
84
        for(i=j; i>=0; i--){
85
            double sum= m->coeff[0][i];
86
            for(k=i+1; k<=j; k++)
87
                sum -= factor[k][i]*m->coeff[j][k];
88
            m->coeff[j][i]= sum / factor[i][i];
89
        }
90

    
91
        m->variance[j]= covar_y[0];
92
        for(i=0; i<=j; i++){
93
            double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1];
94
            for(k=0; k<i; k++)
95
                sum += 2*m->coeff[j][k]*covar[k][i];
96
            m->variance[j] += m->coeff[j][i]*sum;
97
        }
98
    }
99
}
100

    
101
double av_evaluate_lls(LLSModel *m, double *param, int order){
102
    int i;
103
    double out= 0;
104

    
105
    for(i=0; i<=order; i++)
106
        out+= param[i]*m->coeff[order][i];
107

    
108
    return out;
109
}
110

    
111
#ifdef TEST
112

    
113
#include <stdlib.h>
114
#include <stdio.h>
115

    
116
int main(){
117
    LLSModel m;
118
    int i, order;
119

    
120
    av_init_lls(&m, 3);
121

    
122
    for(i=0; i<100; i++){
123
        double var[4];
124
        double eval, variance;
125
#if 0
126
        var[1] = rand() / (double)RAND_MAX;
127
        var[2] = rand() / (double)RAND_MAX;
128
        var[3] = rand() / (double)RAND_MAX;
129

130
        var[2]= var[1] + var[3]/2;
131

132
        var[0] = var[1] + var[2] + var[3] +  var[1]*var[2]/100;
133
#else
134
        var[0] = (rand() / (double)RAND_MAX - 0.5)*2;
135
        var[1] = var[0] + rand() / (double)RAND_MAX - 0.5;
136
        var[2] = var[1] + rand() / (double)RAND_MAX - 0.5;
137
        var[3] = var[2] + rand() / (double)RAND_MAX - 0.5;
138
#endif
139
        av_update_lls(&m, var, 0.99);
140
        av_solve_lls(&m, 0.001, 0);
141
        for(order=0; order<3; order++){
142
            eval= av_evaluate_lls(&m, var+1, order);
143
            av_log(NULL, AV_LOG_DEBUG, "real:%f order:%d pred:%f var:%f coeffs:%f %f %f\n",
144
                var[0], order, eval, sqrt(m.variance[order] / (i+1)),
145
                m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]);
146
        }
147
    }
148
    return 0;
149
}
150

    
151
#endif