Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ 6cb35b45

History | View | Annotate | Download (76.5 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file libavcodec/vp3.c
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35

    
36
#include "avcodec.h"
37
#include "dsputil.h"
38
#include "get_bits.h"
39

    
40
#include "vp3data.h"
41
#include "xiph.h"
42

    
43
#define FRAGMENT_PIXELS 8
44

    
45
static av_cold int vp3_decode_end(AVCodecContext *avctx);
46

    
47
typedef struct Coeff {
48
    struct Coeff *next;
49
    DCTELEM coeff;
50
    uint8_t index;
51
} Coeff;
52

    
53
//FIXME split things out into their own arrays
54
typedef struct Vp3Fragment {
55
    Coeff *next_coeff;
56
    uint8_t coding_method;
57
    int8_t motion_x;
58
    int8_t motion_y;
59
    uint8_t qpi;
60
} Vp3Fragment;
61

    
62
#define SB_NOT_CODED        0
63
#define SB_PARTIALLY_CODED  1
64
#define SB_FULLY_CODED      2
65

    
66
// This is the maximum length of a single long bit run that can be encoded
67
// for superblock coding or block qps. Theora special-cases this to read a
68
// bit instead of flipping the current bit to allow for runs longer than 4129.
69
#define MAXIMUM_LONG_BIT_RUN 4129
70

    
71
#define MODE_INTER_NO_MV      0
72
#define MODE_INTRA            1
73
#define MODE_INTER_PLUS_MV    2
74
#define MODE_INTER_LAST_MV    3
75
#define MODE_INTER_PRIOR_LAST 4
76
#define MODE_USING_GOLDEN     5
77
#define MODE_GOLDEN_MV        6
78
#define MODE_INTER_FOURMV     7
79
#define CODING_MODE_COUNT     8
80

    
81
/* special internal mode */
82
#define MODE_COPY             8
83

    
84
/* There are 6 preset schemes, plus a free-form scheme */
85
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
86
{
87
    /* scheme 1: Last motion vector dominates */
88
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
89
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
90
         MODE_INTRA,            MODE_USING_GOLDEN,
91
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
92

    
93
    /* scheme 2 */
94
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
95
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
96
         MODE_INTRA,            MODE_USING_GOLDEN,
97
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
98

    
99
    /* scheme 3 */
100
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
101
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
102
         MODE_INTRA,            MODE_USING_GOLDEN,
103
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
104

    
105
    /* scheme 4 */
106
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
107
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
108
         MODE_INTRA,            MODE_USING_GOLDEN,
109
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
110

    
111
    /* scheme 5: No motion vector dominates */
112
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
113
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
114
         MODE_INTRA,            MODE_USING_GOLDEN,
115
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
116

    
117
    /* scheme 6 */
118
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
119
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
120
         MODE_INTER_PLUS_MV,    MODE_INTRA,
121
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
122

    
123
};
124

    
125
#define MIN_DEQUANT_VAL 2
126

    
127
typedef struct Vp3DecodeContext {
128
    AVCodecContext *avctx;
129
    int theora, theora_tables;
130
    int version;
131
    int width, height;
132
    AVFrame golden_frame;
133
    AVFrame last_frame;
134
    AVFrame current_frame;
135
    int keyframe;
136
    DSPContext dsp;
137
    int flipped_image;
138
    int last_slice_end;
139

    
140
    int qps[3];
141
    int nqps;
142
    int last_qps[3];
143

    
144
    int superblock_count;
145
    int y_superblock_width;
146
    int y_superblock_height;
147
    int c_superblock_width;
148
    int c_superblock_height;
149
    int u_superblock_start;
150
    int v_superblock_start;
151
    unsigned char *superblock_coding;
152

    
153
    int macroblock_count;
154
    int macroblock_width;
155
    int macroblock_height;
156

    
157
    int fragment_count;
158
    int fragment_width;
159
    int fragment_height;
160

    
161
    Vp3Fragment *all_fragments;
162
    uint8_t *coeff_counts;
163
    Coeff *coeffs;
164
    Coeff *next_coeff;
165
    int fragment_start[3];
166
    int data_offset[3];
167

    
168
    ScanTable scantable;
169

    
170
    /* tables */
171
    uint16_t coded_dc_scale_factor[64];
172
    uint32_t coded_ac_scale_factor[64];
173
    uint8_t base_matrix[384][64];
174
    uint8_t qr_count[2][3];
175
    uint8_t qr_size [2][3][64];
176
    uint16_t qr_base[2][3][64];
177

    
178
    /* this is a list of indexes into the all_fragments array indicating
179
     * which of the fragments are coded */
180
    int *coded_fragment_list;
181
    int coded_fragment_list_index;
182

    
183
    /* track which fragments have already been decoded; called 'fast'
184
     * because this data structure avoids having to iterate through every
185
     * fragment in coded_fragment_list; once a fragment has been fully
186
     * decoded, it is removed from this list */
187
    int *fast_fragment_list;
188
    int fragment_list_y_head;
189
    int fragment_list_c_head;
190

    
191
    VLC dc_vlc[16];
192
    VLC ac_vlc_1[16];
193
    VLC ac_vlc_2[16];
194
    VLC ac_vlc_3[16];
195
    VLC ac_vlc_4[16];
196

    
197
    VLC superblock_run_length_vlc;
198
    VLC fragment_run_length_vlc;
199
    VLC mode_code_vlc;
200
    VLC motion_vector_vlc;
201

    
202
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
203
     * index into them */
204
    DECLARE_ALIGNED_16(int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
205

    
206
    /* This table contains superblock_count * 16 entries. Each set of 16
207
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
208
     * An entry will be -1 to indicate that no entry corresponds to that
209
     * index. */
210
    int *superblock_fragments;
211

    
212
    /* This is an array that indicates how a particular macroblock
213
     * is coded. */
214
    unsigned char *macroblock_coding;
215

    
216
    int first_coded_y_fragment;
217
    int first_coded_c_fragment;
218
    int last_coded_y_fragment;
219
    int last_coded_c_fragment;
220

    
221
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
223

    
224
    /* Huffman decode */
225
    int hti;
226
    unsigned int hbits;
227
    int entries;
228
    int huff_code_size;
229
    uint16_t huffman_table[80][32][2];
230

    
231
    uint8_t filter_limit_values[64];
232
    DECLARE_ALIGNED_8(int, bounding_values_array)[256+2];
233
} Vp3DecodeContext;
234

    
235
/************************************************************************
236
 * VP3 specific functions
237
 ************************************************************************/
238

    
239
/*
240
 * This function sets up all of the various blocks mappings:
241
 * superblocks <-> fragments, macroblocks <-> fragments,
242
 * superblocks <-> macroblocks
243
 *
244
 * Returns 0 is successful; returns 1 if *anything* went wrong.
245
 */
246
static int init_block_mapping(Vp3DecodeContext *s)
247
{
248
    int i, j;
249
    signed int hilbert_walk_mb[4];
250

    
251
    int current_fragment = 0;
252
    int current_width = 0;
253
    int current_height = 0;
254
    int right_edge = 0;
255
    int bottom_edge = 0;
256
    int superblock_row_inc = 0;
257
    int mapping_index = 0;
258

    
259
    int current_macroblock;
260
    int c_fragment;
261

    
262
    static const signed char travel_width[16] = {
263
         1,  1,  0, -1,
264
         0,  0,  1,  0,
265
         1,  0,  1,  0,
266
         0, -1,  0,  1
267
    };
268

    
269
    static const signed char travel_height[16] = {
270
         0,  0,  1,  0,
271
         1,  1,  0, -1,
272
         0,  1,  0, -1,
273
        -1,  0, -1,  0
274
    };
275

    
276
    hilbert_walk_mb[0] = 1;
277
    hilbert_walk_mb[1] = s->macroblock_width;
278
    hilbert_walk_mb[2] = 1;
279
    hilbert_walk_mb[3] = -s->macroblock_width;
280

    
281
    /* iterate through each superblock (all planes) and map the fragments */
282
    for (i = 0; i < s->superblock_count; i++) {
283
        /* time to re-assign the limits? */
284
        if (i == 0) {
285

    
286
            /* start of Y superblocks */
287
            right_edge = s->fragment_width;
288
            bottom_edge = s->fragment_height;
289
            current_width = -1;
290
            current_height = 0;
291
            superblock_row_inc = 3 * s->fragment_width -
292
                (s->y_superblock_width * 4 - s->fragment_width);
293

    
294
            /* the first operation for this variable is to advance by 1 */
295
            current_fragment = -1;
296

    
297
        } else if (i == s->u_superblock_start) {
298

    
299
            /* start of U superblocks */
300
            right_edge = s->fragment_width / 2;
301
            bottom_edge = s->fragment_height / 2;
302
            current_width = -1;
303
            current_height = 0;
304
            superblock_row_inc = 3 * (s->fragment_width / 2) -
305
                (s->c_superblock_width * 4 - s->fragment_width / 2);
306

    
307
            /* the first operation for this variable is to advance by 1 */
308
            current_fragment = s->fragment_start[1] - 1;
309

    
310
        } else if (i == s->v_superblock_start) {
311

    
312
            /* start of V superblocks */
313
            right_edge = s->fragment_width / 2;
314
            bottom_edge = s->fragment_height / 2;
315
            current_width = -1;
316
            current_height = 0;
317
            superblock_row_inc = 3 * (s->fragment_width / 2) -
318
                (s->c_superblock_width * 4 - s->fragment_width / 2);
319

    
320
            /* the first operation for this variable is to advance by 1 */
321
            current_fragment = s->fragment_start[2] - 1;
322

    
323
        }
324

    
325
        if (current_width >= right_edge - 1) {
326
            /* reset width and move to next superblock row */
327
            current_width = -1;
328
            current_height += 4;
329

    
330
            /* fragment is now at the start of a new superblock row */
331
            current_fragment += superblock_row_inc;
332
        }
333

    
334
        /* iterate through all 16 fragments in a superblock */
335
        for (j = 0; j < 16; j++) {
336
            current_fragment += travel_width[j] + right_edge * travel_height[j];
337
            current_width += travel_width[j];
338
            current_height += travel_height[j];
339

    
340
            /* check if the fragment is in bounds */
341
            if ((current_width < right_edge) &&
342
                (current_height < bottom_edge)) {
343
                s->superblock_fragments[mapping_index] = current_fragment;
344
            } else {
345
                s->superblock_fragments[mapping_index] = -1;
346
            }
347

    
348
            mapping_index++;
349
        }
350
    }
351

    
352
    return 0;  /* successful path out */
353
}
354

    
355
/*
356
 * This function wipes out all of the fragment data.
357
 */
358
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
359
{
360
    int i;
361

    
362
    /* zero out all of the fragment information */
363
    s->coded_fragment_list_index = 0;
364
    for (i = 0; i < s->fragment_count; i++) {
365
        s->coeff_counts[i] = 0;
366
        s->all_fragments[i].motion_x = 127;
367
        s->all_fragments[i].motion_y = 127;
368
        s->all_fragments[i].next_coeff= NULL;
369
        s->all_fragments[i].qpi = 0;
370
        s->coeffs[i].index=
371
        s->coeffs[i].coeff=0;
372
        s->coeffs[i].next= NULL;
373
    }
374
}
375

    
376
/*
377
 * This function sets up the dequantization tables used for a particular
378
 * frame.
379
 */
380
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
381
{
382
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
383
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
384
    int i, plane, inter, qri, bmi, bmj, qistart;
385

    
386
    for(inter=0; inter<2; inter++){
387
        for(plane=0; plane<3; plane++){
388
            int sum=0;
389
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
390
                sum+= s->qr_size[inter][plane][qri];
391
                if(s->qps[qpi] <= sum)
392
                    break;
393
            }
394
            qistart= sum - s->qr_size[inter][plane][qri];
395
            bmi= s->qr_base[inter][plane][qri  ];
396
            bmj= s->qr_base[inter][plane][qri+1];
397
            for(i=0; i<64; i++){
398
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
399
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
400
                            + s->qr_size[inter][plane][qri])
401
                           / (2*s->qr_size[inter][plane][qri]);
402

    
403
                int qmin= 8<<(inter + !i);
404
                int qscale= i ? ac_scale_factor : dc_scale_factor;
405

    
406
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
407
            }
408
            // all DC coefficients use the same quant so as not to interfere with DC prediction
409
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
410
        }
411
    }
412

    
413
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
414
}
415

    
416
/*
417
 * This function initializes the loop filter boundary limits if the frame's
418
 * quality index is different from the previous frame's.
419
 *
420
 * The filter_limit_values may not be larger than 127.
421
 */
422
static void init_loop_filter(Vp3DecodeContext *s)
423
{
424
    int *bounding_values= s->bounding_values_array+127;
425
    int filter_limit;
426
    int x;
427
    int value;
428

    
429
    filter_limit = s->filter_limit_values[s->qps[0]];
430

    
431
    /* set up the bounding values */
432
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
433
    for (x = 0; x < filter_limit; x++) {
434
        bounding_values[-x] = -x;
435
        bounding_values[x] = x;
436
    }
437
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
438
        bounding_values[ x] =  value;
439
        bounding_values[-x] = -value;
440
    }
441
    if (value)
442
        bounding_values[128] = value;
443
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
444
}
445

    
446
/*
447
 * This function unpacks all of the superblock/macroblock/fragment coding
448
 * information from the bitstream.
449
 */
450
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
451
{
452
    int bit = 0;
453
    int current_superblock = 0;
454
    int current_run = 0;
455
    int num_partial_superblocks = 0;
456
    int first_c_fragment_seen;
457

    
458
    int i, j;
459
    int current_fragment;
460

    
461
    if (s->keyframe) {
462
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
463

    
464
    } else {
465

    
466
        /* unpack the list of partially-coded superblocks */
467
        bit = get_bits1(gb);
468
        while (current_superblock < s->superblock_count) {
469
                current_run = get_vlc2(gb,
470
                    s->superblock_run_length_vlc.table, 6, 2) + 1;
471
                if (current_run == 34)
472
                    current_run += get_bits(gb, 12);
473

    
474
            if (current_superblock + current_run > s->superblock_count) {
475
                av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
476
                return -1;
477
            }
478

    
479
            memset(s->superblock_coding + current_superblock, bit, current_run);
480

    
481
            current_superblock += current_run;
482
            if (bit)
483
                num_partial_superblocks += current_run;
484

    
485
            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
486
                bit = get_bits1(gb);
487
            else
488
                bit ^= 1;
489
        }
490

    
491
        /* unpack the list of fully coded superblocks if any of the blocks were
492
         * not marked as partially coded in the previous step */
493
        if (num_partial_superblocks < s->superblock_count) {
494
            int superblocks_decoded = 0;
495

    
496
            current_superblock = 0;
497
            bit = get_bits1(gb);
498
            while (superblocks_decoded < s->superblock_count - num_partial_superblocks) {
499
                        current_run = get_vlc2(gb,
500
                            s->superblock_run_length_vlc.table, 6, 2) + 1;
501
                        if (current_run == 34)
502
                            current_run += get_bits(gb, 12);
503

    
504
                for (j = 0; j < current_run; current_superblock++) {
505
                    if (current_superblock >= s->superblock_count) {
506
                        av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
507
                        return -1;
508
                    }
509

    
510
                /* skip any superblocks already marked as partially coded */
511
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
512
                    s->superblock_coding[current_superblock] = 2*bit;
513
                    j++;
514
                }
515
                }
516
                superblocks_decoded += current_run;
517

    
518
                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
519
                    bit = get_bits1(gb);
520
                else
521
                    bit ^= 1;
522
            }
523
        }
524

    
525
        /* if there were partial blocks, initialize bitstream for
526
         * unpacking fragment codings */
527
        if (num_partial_superblocks) {
528

    
529
            current_run = 0;
530
            bit = get_bits1(gb);
531
            /* toggle the bit because as soon as the first run length is
532
             * fetched the bit will be toggled again */
533
            bit ^= 1;
534
        }
535
    }
536

    
537
    /* figure out which fragments are coded; iterate through each
538
     * superblock (all planes) */
539
    s->coded_fragment_list_index = 0;
540
    s->next_coeff= s->coeffs + s->fragment_count;
541
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
542
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
543
    first_c_fragment_seen = 0;
544
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
545
    for (i = 0; i < s->superblock_count; i++) {
546

    
547
        /* iterate through all 16 fragments in a superblock */
548
        for (j = 0; j < 16; j++) {
549

    
550
            /* if the fragment is in bounds, check its coding status */
551
            current_fragment = s->superblock_fragments[i * 16 + j];
552
            if (current_fragment >= s->fragment_count) {
553
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
554
                    current_fragment, s->fragment_count);
555
                return 1;
556
            }
557
            if (current_fragment != -1) {
558
                int coded = s->superblock_coding[i];
559

    
560
                if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
561

    
562
                    /* fragment may or may not be coded; this is the case
563
                     * that cares about the fragment coding runs */
564
                    if (current_run-- == 0) {
565
                        bit ^= 1;
566
                        current_run = get_vlc2(gb,
567
                            s->fragment_run_length_vlc.table, 5, 2);
568
                    }
569
                    coded = bit;
570
                }
571

    
572
                    if (coded) {
573
                        /* default mode; actual mode will be decoded in
574
                         * the next phase */
575
                        s->all_fragments[current_fragment].coding_method =
576
                            MODE_INTER_NO_MV;
577
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
578
                        s->coded_fragment_list[s->coded_fragment_list_index] =
579
                            current_fragment;
580
                        if ((current_fragment >= s->fragment_start[1]) &&
581
                            (s->last_coded_y_fragment == -1) &&
582
                            (!first_c_fragment_seen)) {
583
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
584
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
585
                            first_c_fragment_seen = 1;
586
                        }
587
                        s->coded_fragment_list_index++;
588
                    } else {
589
                        /* not coded; copy this fragment from the prior frame */
590
                        s->all_fragments[current_fragment].coding_method =
591
                            MODE_COPY;
592
                    }
593
            }
594
        }
595
    }
596

    
597
    if (!first_c_fragment_seen)
598
        /* only Y fragments coded in this frame */
599
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
600
    else
601
        /* end the list of coded C fragments */
602
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
603

    
604
    for (i = 0; i < s->fragment_count - 1; i++) {
605
        s->fast_fragment_list[i] = i + 1;
606
    }
607
    s->fast_fragment_list[s->fragment_count - 1] = -1;
608

    
609
    if (s->last_coded_y_fragment == -1)
610
        s->fragment_list_y_head = -1;
611
    else {
612
        s->fragment_list_y_head = s->first_coded_y_fragment;
613
        s->fast_fragment_list[s->last_coded_y_fragment] = -1;
614
    }
615

    
616
    if (s->last_coded_c_fragment == -1)
617
        s->fragment_list_c_head = -1;
618
    else {
619
        s->fragment_list_c_head = s->first_coded_c_fragment;
620
        s->fast_fragment_list[s->last_coded_c_fragment] = -1;
621
    }
622

    
623
    return 0;
624
}
625

    
626
/*
627
 * This function unpacks all the coding mode data for individual macroblocks
628
 * from the bitstream.
629
 */
630
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
631
{
632
    int i, j, k, sb_x, sb_y;
633
    int scheme;
634
    int current_macroblock;
635
    int current_fragment;
636
    int coding_mode;
637
    int custom_mode_alphabet[CODING_MODE_COUNT];
638
    const int *alphabet;
639

    
640
    if (s->keyframe) {
641
        for (i = 0; i < s->fragment_count; i++)
642
            s->all_fragments[i].coding_method = MODE_INTRA;
643

    
644
    } else {
645

    
646
        /* fetch the mode coding scheme for this frame */
647
        scheme = get_bits(gb, 3);
648

    
649
        /* is it a custom coding scheme? */
650
        if (scheme == 0) {
651
            for (i = 0; i < 8; i++)
652
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
653
            for (i = 0; i < 8; i++)
654
                custom_mode_alphabet[get_bits(gb, 3)] = i;
655
            alphabet = custom_mode_alphabet;
656
        } else
657
            alphabet = ModeAlphabet[scheme-1];
658

    
659
        /* iterate through all of the macroblocks that contain 1 or more
660
         * coded fragments */
661
        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
662
            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
663

    
664
            for (j = 0; j < 4; j++) {
665
                int mb_x = 2*sb_x +   (j>>1);
666
                int mb_y = 2*sb_y + (((j>>1)+j)&1);
667
                int frags_coded = 0;
668
                current_macroblock = mb_y * s->macroblock_width + mb_x;
669

    
670
                if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
671
                    continue;
672

    
673
#define BLOCK_X (2*mb_x + (k&1))
674
#define BLOCK_Y (2*mb_y + (k>>1))
675
                /* coding modes are only stored if the macroblock has at least one
676
                 * luma block coded, otherwise it must be INTER_NO_MV */
677
                for (k = 0; k < 4; k++) {
678
                    current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
679
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
680
                        break;
681
                }
682
                if (k == 4) {
683
                    s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
684
                    continue;
685
                }
686

    
687
                /* mode 7 means get 3 bits for each coding mode */
688
                if (scheme == 7)
689
                    coding_mode = get_bits(gb, 3);
690
                else
691
                    coding_mode = alphabet
692
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
693

    
694
                s->macroblock_coding[current_macroblock] = coding_mode;
695
                for (k = 0; k < 4; k++) {
696
                    current_fragment =
697
                        BLOCK_Y*s->fragment_width + BLOCK_X;
698
                    if (s->all_fragments[current_fragment].coding_method !=
699
                        MODE_COPY)
700
                        s->all_fragments[current_fragment].coding_method =
701
                            coding_mode;
702
                }
703
                for (k = 0; k < 2; k++) {
704
                    current_fragment = s->fragment_start[k+1] +
705
                        mb_y*(s->fragment_width>>1) + mb_x;
706
                    if (s->all_fragments[current_fragment].coding_method !=
707
                        MODE_COPY)
708
                        s->all_fragments[current_fragment].coding_method =
709
                            coding_mode;
710
                }
711
            }
712
            }
713
        }
714
    }
715

    
716
    return 0;
717
}
718

    
719
/*
720
 * This function unpacks all the motion vectors for the individual
721
 * macroblocks from the bitstream.
722
 */
723
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
724
{
725
    int j, k, sb_x, sb_y;
726
    int coding_mode;
727
    int motion_x[6];
728
    int motion_y[6];
729
    int last_motion_x = 0;
730
    int last_motion_y = 0;
731
    int prior_last_motion_x = 0;
732
    int prior_last_motion_y = 0;
733
    int current_macroblock;
734
    int current_fragment;
735

    
736
    if (s->keyframe)
737
        return 0;
738

    
739
    memset(motion_x, 0, 6 * sizeof(int));
740
    memset(motion_y, 0, 6 * sizeof(int));
741

    
742
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
743
    coding_mode = get_bits1(gb);
744

    
745
    /* iterate through all of the macroblocks that contain 1 or more
746
     * coded fragments */
747
    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
748
        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
749

    
750
        for (j = 0; j < 4; j++) {
751
            int mb_x = 2*sb_x +   (j>>1);
752
            int mb_y = 2*sb_y + (((j>>1)+j)&1);
753
            current_macroblock = mb_y * s->macroblock_width + mb_x;
754

    
755
            if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
756
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
757
                continue;
758

    
759
            switch (s->macroblock_coding[current_macroblock]) {
760

    
761
            case MODE_INTER_PLUS_MV:
762
            case MODE_GOLDEN_MV:
763
                /* all 6 fragments use the same motion vector */
764
                if (coding_mode == 0) {
765
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
766
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
767
                } else {
768
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
769
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
770
                }
771

    
772
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
773
                if (s->macroblock_coding[current_macroblock] ==
774
                    MODE_INTER_PLUS_MV) {
775
                    prior_last_motion_x = last_motion_x;
776
                    prior_last_motion_y = last_motion_y;
777
                    last_motion_x = motion_x[0];
778
                    last_motion_y = motion_y[0];
779
                }
780
                break;
781

    
782
            case MODE_INTER_FOURMV:
783
                /* vector maintenance */
784
                prior_last_motion_x = last_motion_x;
785
                prior_last_motion_y = last_motion_y;
786

    
787
                /* fetch 4 vectors from the bitstream, one for each
788
                 * Y fragment, then average for the C fragment vectors */
789
                motion_x[4] = motion_y[4] = 0;
790
                for (k = 0; k < 4; k++) {
791
                    current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
792
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
793
                        if (coding_mode == 0) {
794
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
795
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
796
                        } else {
797
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
798
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
799
                        }
800
                        last_motion_x = motion_x[k];
801
                        last_motion_y = motion_y[k];
802
                    } else {
803
                        motion_x[k] = 0;
804
                        motion_y[k] = 0;
805
                    }
806
                    motion_x[4] += motion_x[k];
807
                    motion_y[4] += motion_y[k];
808
                }
809

    
810
                motion_x[5]=
811
                motion_x[4]= RSHIFT(motion_x[4], 2);
812
                motion_y[5]=
813
                motion_y[4]= RSHIFT(motion_y[4], 2);
814
                break;
815

    
816
            case MODE_INTER_LAST_MV:
817
                /* all 6 fragments use the last motion vector */
818
                motion_x[0] = last_motion_x;
819
                motion_y[0] = last_motion_y;
820

    
821
                /* no vector maintenance (last vector remains the
822
                 * last vector) */
823
                break;
824

    
825
            case MODE_INTER_PRIOR_LAST:
826
                /* all 6 fragments use the motion vector prior to the
827
                 * last motion vector */
828
                motion_x[0] = prior_last_motion_x;
829
                motion_y[0] = prior_last_motion_y;
830

    
831
                /* vector maintenance */
832
                prior_last_motion_x = last_motion_x;
833
                prior_last_motion_y = last_motion_y;
834
                last_motion_x = motion_x[0];
835
                last_motion_y = motion_y[0];
836
                break;
837

    
838
            default:
839
                /* covers intra, inter without MV, golden without MV */
840
                motion_x[0] = 0;
841
                motion_y[0] = 0;
842

    
843
                /* no vector maintenance */
844
                break;
845
            }
846

    
847
            /* assign the motion vectors to the correct fragments */
848
            for (k = 0; k < 4; k++) {
849
                current_fragment =
850
                    BLOCK_Y*s->fragment_width + BLOCK_X;
851
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
852
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
853
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
854
                } else {
855
                    s->all_fragments[current_fragment].motion_x = motion_x[0];
856
                    s->all_fragments[current_fragment].motion_y = motion_y[0];
857
                }
858
            }
859
            for (k = 0; k < 2; k++) {
860
                current_fragment = s->fragment_start[k+1] +
861
                    mb_y*(s->fragment_width>>1) + mb_x;
862
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
863
                    s->all_fragments[current_fragment].motion_x = motion_x[k+4];
864
                    s->all_fragments[current_fragment].motion_y = motion_y[k+4];
865
                } else {
866
                    s->all_fragments[current_fragment].motion_x = motion_x[0];
867
                    s->all_fragments[current_fragment].motion_y = motion_y[0];
868
                }
869
            }
870
        }
871
        }
872
    }
873

    
874
    return 0;
875
}
876

    
877
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
878
{
879
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
880
    int num_blocks = s->coded_fragment_list_index;
881

    
882
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
883
        i = blocks_decoded = num_blocks_at_qpi = 0;
884

    
885
        bit = get_bits1(gb);
886

    
887
        do {
888
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
889
            if (run_length == 34)
890
                run_length += get_bits(gb, 12);
891
            blocks_decoded += run_length;
892

    
893
            if (!bit)
894
                num_blocks_at_qpi += run_length;
895

    
896
            for (j = 0; j < run_length; i++) {
897
                if (i >= s->coded_fragment_list_index)
898
                    return -1;
899

    
900
                if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
901
                    s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
902
                    j++;
903
                }
904
            }
905

    
906
            if (run_length == MAXIMUM_LONG_BIT_RUN)
907
                bit = get_bits1(gb);
908
            else
909
                bit ^= 1;
910
        } while (blocks_decoded < num_blocks);
911

    
912
        num_blocks -= num_blocks_at_qpi;
913
    }
914

    
915
    return 0;
916
}
917

    
918
/*
919
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
920
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
921
 * data. This function unpacks all the VLCs for either the Y plane or both
922
 * C planes, and is called for DC coefficients or different AC coefficient
923
 * levels (since different coefficient types require different VLC tables.
924
 *
925
 * This function returns a residual eob run. E.g, if a particular token gave
926
 * instructions to EOB the next 5 fragments and there were only 2 fragments
927
 * left in the current fragment range, 3 would be returned so that it could
928
 * be passed into the next call to this same function.
929
 */
930
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
931
                        VLC *table, int coeff_index,
932
                        int y_plane,
933
                        int eob_run)
934
{
935
    int i;
936
    int token;
937
    int zero_run = 0;
938
    DCTELEM coeff = 0;
939
    Vp3Fragment *fragment;
940
    int bits_to_get;
941
    int next_fragment;
942
    int previous_fragment;
943
    int fragment_num;
944
    int *list_head;
945

    
946
    /* local references to structure members to avoid repeated deferences */
947
    uint8_t *perm= s->scantable.permutated;
948
    int *coded_fragment_list = s->coded_fragment_list;
949
    Vp3Fragment *all_fragments = s->all_fragments;
950
    uint8_t *coeff_counts = s->coeff_counts;
951
    VLC_TYPE (*vlc_table)[2] = table->table;
952
    int *fast_fragment_list = s->fast_fragment_list;
953

    
954
    if (y_plane) {
955
        next_fragment = s->fragment_list_y_head;
956
        list_head = &s->fragment_list_y_head;
957
    } else {
958
        next_fragment = s->fragment_list_c_head;
959
        list_head = &s->fragment_list_c_head;
960
    }
961

    
962
    i = next_fragment;
963
    previous_fragment = -1;  /* this indicates that the previous fragment is actually the list head */
964
    while (i != -1) {
965
        fragment_num = coded_fragment_list[i];
966

    
967
        if (coeff_counts[fragment_num] > coeff_index) {
968
            previous_fragment = i;
969
            i = fast_fragment_list[i];
970
            continue;
971
        }
972
        fragment = &all_fragments[fragment_num];
973

    
974
        if (!eob_run) {
975
            /* decode a VLC into a token */
976
            token = get_vlc2(gb, vlc_table, 5, 3);
977
            /* use the token to get a zero run, a coefficient, and an eob run */
978
            if (token <= 6) {
979
                eob_run = eob_run_base[token];
980
                if (eob_run_get_bits[token])
981
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
982
                coeff = zero_run = 0;
983
            } else {
984
                bits_to_get = coeff_get_bits[token];
985
                if (bits_to_get)
986
                    bits_to_get = get_bits(gb, bits_to_get);
987
                coeff = coeff_tables[token][bits_to_get];
988

    
989
                zero_run = zero_run_base[token];
990
                if (zero_run_get_bits[token])
991
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
992
            }
993
        }
994

    
995
        if (!eob_run) {
996
            coeff_counts[fragment_num] += zero_run;
997
            if (coeff_counts[fragment_num] < 64){
998
                fragment->next_coeff->coeff= coeff;
999
                fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already?
1000
                fragment->next_coeff->next= s->next_coeff;
1001
                s->next_coeff->next=NULL;
1002
                fragment->next_coeff= s->next_coeff++;
1003
            }
1004
            /* previous fragment is now this fragment */
1005
            previous_fragment = i;
1006
        } else {
1007
            coeff_counts[fragment_num] |= 128;
1008
            eob_run--;
1009
            /* remove this fragment from the list */
1010
            if (previous_fragment != -1)
1011
                fast_fragment_list[previous_fragment] = fast_fragment_list[i];
1012
            else
1013
                *list_head = fast_fragment_list[i];
1014
            /* previous fragment remains unchanged */
1015
        }
1016

    
1017
        i = fast_fragment_list[i];
1018
    }
1019

    
1020
    return eob_run;
1021
}
1022

    
1023
static void reverse_dc_prediction(Vp3DecodeContext *s,
1024
                                  int first_fragment,
1025
                                  int fragment_width,
1026
                                  int fragment_height);
1027
/*
1028
 * This function unpacks all of the DCT coefficient data from the
1029
 * bitstream.
1030
 */
1031
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1032
{
1033
    int i;
1034
    int dc_y_table;
1035
    int dc_c_table;
1036
    int ac_y_table;
1037
    int ac_c_table;
1038
    int residual_eob_run = 0;
1039
    VLC *y_tables[64];
1040
    VLC *c_tables[64];
1041

    
1042
    /* fetch the DC table indexes */
1043
    dc_y_table = get_bits(gb, 4);
1044
    dc_c_table = get_bits(gb, 4);
1045

    
1046
    /* unpack the Y plane DC coefficients */
1047
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1048
        1, residual_eob_run);
1049

    
1050
    /* reverse prediction of the Y-plane DC coefficients */
1051
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1052

    
1053
    /* unpack the C plane DC coefficients */
1054
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1055
        0, residual_eob_run);
1056

    
1057
    /* reverse prediction of the C-plane DC coefficients */
1058
    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1059
    {
1060
        reverse_dc_prediction(s, s->fragment_start[1],
1061
            s->fragment_width / 2, s->fragment_height / 2);
1062
        reverse_dc_prediction(s, s->fragment_start[2],
1063
            s->fragment_width / 2, s->fragment_height / 2);
1064
    }
1065

    
1066
    /* fetch the AC table indexes */
1067
    ac_y_table = get_bits(gb, 4);
1068
    ac_c_table = get_bits(gb, 4);
1069

    
1070
    /* build tables of AC VLC tables */
1071
    for (i = 1; i <= 5; i++) {
1072
        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1073
        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1074
    }
1075
    for (i = 6; i <= 14; i++) {
1076
        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1077
        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1078
    }
1079
    for (i = 15; i <= 27; i++) {
1080
        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1081
        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1082
    }
1083
    for (i = 28; i <= 63; i++) {
1084
        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1085
        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1086
    }
1087

    
1088
    /* decode all AC coefficents */
1089
    for (i = 1; i <= 63; i++) {
1090
        if (s->fragment_list_y_head != -1)
1091
            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1092
                1, residual_eob_run);
1093

    
1094
        if (s->fragment_list_c_head != -1)
1095
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1096
                0, residual_eob_run);
1097
    }
1098

    
1099
    return 0;
1100
}
1101

    
1102
/*
1103
 * This function reverses the DC prediction for each coded fragment in
1104
 * the frame. Much of this function is adapted directly from the original
1105
 * VP3 source code.
1106
 */
1107
#define COMPATIBLE_FRAME(x) \
1108
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1109
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1110

    
1111
static void reverse_dc_prediction(Vp3DecodeContext *s,
1112
                                  int first_fragment,
1113
                                  int fragment_width,
1114
                                  int fragment_height)
1115
{
1116

    
1117
#define PUL 8
1118
#define PU 4
1119
#define PUR 2
1120
#define PL 1
1121

    
1122
    int x, y;
1123
    int i = first_fragment;
1124

    
1125
    int predicted_dc;
1126

    
1127
    /* DC values for the left, up-left, up, and up-right fragments */
1128
    int vl, vul, vu, vur;
1129

    
1130
    /* indexes for the left, up-left, up, and up-right fragments */
1131
    int l, ul, u, ur;
1132

    
1133
    /*
1134
     * The 6 fields mean:
1135
     *   0: up-left multiplier
1136
     *   1: up multiplier
1137
     *   2: up-right multiplier
1138
     *   3: left multiplier
1139
     */
1140
    static const int predictor_transform[16][4] = {
1141
        {  0,  0,  0,  0},
1142
        {  0,  0,  0,128},        // PL
1143
        {  0,  0,128,  0},        // PUR
1144
        {  0,  0, 53, 75},        // PUR|PL
1145
        {  0,128,  0,  0},        // PU
1146
        {  0, 64,  0, 64},        // PU|PL
1147
        {  0,128,  0,  0},        // PU|PUR
1148
        {  0,  0, 53, 75},        // PU|PUR|PL
1149
        {128,  0,  0,  0},        // PUL
1150
        {  0,  0,  0,128},        // PUL|PL
1151
        { 64,  0, 64,  0},        // PUL|PUR
1152
        {  0,  0, 53, 75},        // PUL|PUR|PL
1153
        {  0,128,  0,  0},        // PUL|PU
1154
       {-104,116,  0,116},        // PUL|PU|PL
1155
        { 24, 80, 24,  0},        // PUL|PU|PUR
1156
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1157
    };
1158

    
1159
    /* This table shows which types of blocks can use other blocks for
1160
     * prediction. For example, INTRA is the only mode in this table to
1161
     * have a frame number of 0. That means INTRA blocks can only predict
1162
     * from other INTRA blocks. There are 2 golden frame coding types;
1163
     * blocks encoding in these modes can only predict from other blocks
1164
     * that were encoded with these 1 of these 2 modes. */
1165
    static const unsigned char compatible_frame[9] = {
1166
        1,    /* MODE_INTER_NO_MV */
1167
        0,    /* MODE_INTRA */
1168
        1,    /* MODE_INTER_PLUS_MV */
1169
        1,    /* MODE_INTER_LAST_MV */
1170
        1,    /* MODE_INTER_PRIOR_MV */
1171
        2,    /* MODE_USING_GOLDEN */
1172
        2,    /* MODE_GOLDEN_MV */
1173
        1,    /* MODE_INTER_FOUR_MV */
1174
        3     /* MODE_COPY */
1175
    };
1176
    int current_frame_type;
1177

    
1178
    /* there is a last DC predictor for each of the 3 frame types */
1179
    short last_dc[3];
1180

    
1181
    int transform = 0;
1182

    
1183
    vul = vu = vur = vl = 0;
1184
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1185

    
1186
    /* for each fragment row... */
1187
    for (y = 0; y < fragment_height; y++) {
1188

    
1189
        /* for each fragment in a row... */
1190
        for (x = 0; x < fragment_width; x++, i++) {
1191

    
1192
            /* reverse prediction if this block was coded */
1193
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1194

    
1195
                current_frame_type =
1196
                    compatible_frame[s->all_fragments[i].coding_method];
1197

    
1198
                transform= 0;
1199
                if(x){
1200
                    l= i-1;
1201
                    vl = DC_COEFF(l);
1202
                    if(COMPATIBLE_FRAME(l))
1203
                        transform |= PL;
1204
                }
1205
                if(y){
1206
                    u= i-fragment_width;
1207
                    vu = DC_COEFF(u);
1208
                    if(COMPATIBLE_FRAME(u))
1209
                        transform |= PU;
1210
                    if(x){
1211
                        ul= i-fragment_width-1;
1212
                        vul = DC_COEFF(ul);
1213
                        if(COMPATIBLE_FRAME(ul))
1214
                            transform |= PUL;
1215
                    }
1216
                    if(x + 1 < fragment_width){
1217
                        ur= i-fragment_width+1;
1218
                        vur = DC_COEFF(ur);
1219
                        if(COMPATIBLE_FRAME(ur))
1220
                            transform |= PUR;
1221
                    }
1222
                }
1223

    
1224
                if (transform == 0) {
1225

    
1226
                    /* if there were no fragments to predict from, use last
1227
                     * DC saved */
1228
                    predicted_dc = last_dc[current_frame_type];
1229
                } else {
1230

    
1231
                    /* apply the appropriate predictor transform */
1232
                    predicted_dc =
1233
                        (predictor_transform[transform][0] * vul) +
1234
                        (predictor_transform[transform][1] * vu) +
1235
                        (predictor_transform[transform][2] * vur) +
1236
                        (predictor_transform[transform][3] * vl);
1237

    
1238
                    predicted_dc /= 128;
1239

    
1240
                    /* check for outranging on the [ul u l] and
1241
                     * [ul u ur l] predictors */
1242
                    if ((transform == 15) || (transform == 13)) {
1243
                        if (FFABS(predicted_dc - vu) > 128)
1244
                            predicted_dc = vu;
1245
                        else if (FFABS(predicted_dc - vl) > 128)
1246
                            predicted_dc = vl;
1247
                        else if (FFABS(predicted_dc - vul) > 128)
1248
                            predicted_dc = vul;
1249
                    }
1250
                }
1251

    
1252
                /* at long last, apply the predictor */
1253
                if(s->coeffs[i].index){
1254
                    *s->next_coeff= s->coeffs[i];
1255
                    s->coeffs[i].index=0;
1256
                    s->coeffs[i].coeff=0;
1257
                    s->coeffs[i].next= s->next_coeff++;
1258
                }
1259
                s->coeffs[i].coeff += predicted_dc;
1260
                /* save the DC */
1261
                last_dc[current_frame_type] = DC_COEFF(i);
1262
                if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1263
                    s->coeff_counts[i]= 129;
1264
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1265
                    s->coeffs[i].next= s->next_coeff;
1266
                    (s->next_coeff++)->next=NULL;
1267
                }
1268
            }
1269
        }
1270
    }
1271
}
1272

    
1273
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1274
{
1275
    int x, y;
1276
    int *bounding_values= s->bounding_values_array+127;
1277

    
1278
    int width           = s->fragment_width  >> !!plane;
1279
    int height          = s->fragment_height >> !!plane;
1280
    int fragment        = s->fragment_start        [plane] + ystart * width;
1281
    int stride          = s->current_frame.linesize[plane];
1282
    uint8_t *plane_data = s->current_frame.data    [plane];
1283
    if (!s->flipped_image) stride = -stride;
1284
    plane_data += s->data_offset[plane] + 8*ystart*stride;
1285

    
1286
    for (y = ystart; y < yend; y++) {
1287

    
1288
        for (x = 0; x < width; x++) {
1289
            /* This code basically just deblocks on the edges of coded blocks.
1290
             * However, it has to be much more complicated because of the
1291
             * braindamaged deblock ordering used in VP3/Theora. Order matters
1292
             * because some pixels get filtered twice. */
1293
            if( s->all_fragments[fragment].coding_method != MODE_COPY )
1294
            {
1295
                /* do not perform left edge filter for left columns frags */
1296
                if (x > 0) {
1297
                    s->dsp.vp3_h_loop_filter(
1298
                        plane_data + 8*x,
1299
                        stride, bounding_values);
1300
                }
1301

    
1302
                /* do not perform top edge filter for top row fragments */
1303
                if (y > 0) {
1304
                    s->dsp.vp3_v_loop_filter(
1305
                        plane_data + 8*x,
1306
                        stride, bounding_values);
1307
                }
1308

    
1309
                /* do not perform right edge filter for right column
1310
                 * fragments or if right fragment neighbor is also coded
1311
                 * in this frame (it will be filtered in next iteration) */
1312
                if ((x < width - 1) &&
1313
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1314
                    s->dsp.vp3_h_loop_filter(
1315
                        plane_data + 8*x + 8,
1316
                        stride, bounding_values);
1317
                }
1318

    
1319
                /* do not perform bottom edge filter for bottom row
1320
                 * fragments or if bottom fragment neighbor is also coded
1321
                 * in this frame (it will be filtered in the next row) */
1322
                if ((y < height - 1) &&
1323
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1324
                    s->dsp.vp3_v_loop_filter(
1325
                        plane_data + 8*x + 8*stride,
1326
                        stride, bounding_values);
1327
                }
1328
            }
1329

    
1330
            fragment++;
1331
        }
1332
        plane_data += 8*stride;
1333
    }
1334
}
1335

    
1336
/**
1337
 * called when all pixels up to row y are complete
1338
 */
1339
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1340
{
1341
    int h, cy;
1342
    int offset[4];
1343

    
1344
    if(s->avctx->draw_horiz_band==NULL)
1345
        return;
1346

    
1347
    h= y - s->last_slice_end;
1348
    y -= h;
1349

    
1350
    if (!s->flipped_image) {
1351
        if (y == 0)
1352
            h -= s->height - s->avctx->height;  // account for non-mod16
1353
        y = s->height - y - h;
1354
    }
1355

    
1356
    cy = y >> 1;
1357
    offset[0] = s->current_frame.linesize[0]*y;
1358
    offset[1] = s->current_frame.linesize[1]*cy;
1359
    offset[2] = s->current_frame.linesize[2]*cy;
1360
    offset[3] = 0;
1361

    
1362
    emms_c();
1363
    s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1364
    s->last_slice_end= y + h;
1365
}
1366

    
1367
/*
1368
 * Perform the final rendering for a particular slice of data.
1369
 * The slice number ranges from 0..(macroblock_height - 1).
1370
 */
1371
static void render_slice(Vp3DecodeContext *s, int slice)
1372
{
1373
    int x;
1374
    int16_t *dequantizer;
1375
    LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1376
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1377
    int motion_halfpel_index;
1378
    uint8_t *motion_source;
1379
    int plane;
1380

    
1381
    if (slice >= s->macroblock_height)
1382
        return;
1383

    
1384
    for (plane = 0; plane < 3; plane++) {
1385
        uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
1386
        uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
1387
        uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
1388
        int stride            = s->current_frame.linesize[plane];
1389
        int plane_width       = s->width  >> !!plane;
1390
        int plane_height      = s->height >> !!plane;
1391
        int y =        slice *  FRAGMENT_PIXELS << !plane ;
1392
        int slice_height = y + (FRAGMENT_PIXELS << !plane);
1393
        int i = s->fragment_start[plane] + (y>>3)*(s->fragment_width>>!!plane);
1394

    
1395
        if (!s->flipped_image) stride = -stride;
1396
        if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1397
            continue;
1398

    
1399

    
1400
        if(FFABS(stride) > 2048)
1401
            return; //various tables are fixed size
1402

    
1403
        /* for each fragment row in the slice (both of them)... */
1404
        for (; y < slice_height; y += 8) {
1405

    
1406
            /* for each fragment in a row... */
1407
            for (x = 0; x < plane_width; x += 8, i++) {
1408
                int first_pixel = y*stride + x;
1409

    
1410
                if ((i < 0) || (i >= s->fragment_count)) {
1411
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1412
                    return;
1413
                }
1414

    
1415
                /* transform if this block was coded */
1416
                if (s->all_fragments[i].coding_method != MODE_COPY) {
1417

    
1418
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1419
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1420
                        motion_source= golden_plane;
1421
                    else
1422
                        motion_source= last_plane;
1423

    
1424
                    motion_source += first_pixel;
1425
                    motion_halfpel_index = 0;
1426

    
1427
                    /* sort out the motion vector if this fragment is coded
1428
                     * using a motion vector method */
1429
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1430
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1431
                        int src_x, src_y;
1432
                        motion_x = s->all_fragments[i].motion_x;
1433
                        motion_y = s->all_fragments[i].motion_y;
1434
                        if(plane){
1435
                            motion_x= (motion_x>>1) | (motion_x&1);
1436
                            motion_y= (motion_y>>1) | (motion_y&1);
1437
                        }
1438

    
1439
                        src_x= (motion_x>>1) + x;
1440
                        src_y= (motion_y>>1) + y;
1441
                        if ((motion_x == 127) || (motion_y == 127))
1442
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1443

    
1444
                        motion_halfpel_index = motion_x & 0x01;
1445
                        motion_source += (motion_x >> 1);
1446

    
1447
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1448
                        motion_source += ((motion_y >> 1) * stride);
1449

    
1450
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1451
                            uint8_t *temp= s->edge_emu_buffer;
1452
                            if(stride<0) temp -= 9*stride;
1453
                            else temp += 9*stride;
1454

    
1455
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1456
                            motion_source= temp;
1457
                        }
1458
                    }
1459

    
1460

    
1461
                    /* first, take care of copying a block from either the
1462
                     * previous or the golden frame */
1463
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1464
                        /* Note, it is possible to implement all MC cases with
1465
                           put_no_rnd_pixels_l2 which would look more like the
1466
                           VP3 source but this would be slower as
1467
                           put_no_rnd_pixels_tab is better optimzed */
1468
                        if(motion_halfpel_index != 3){
1469
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1470
                                output_plane + first_pixel,
1471
                                motion_source, stride, 8);
1472
                        }else{
1473
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1474
                            s->dsp.put_no_rnd_pixels_l2[1](
1475
                                output_plane + first_pixel,
1476
                                motion_source - d,
1477
                                motion_source + stride + 1 + d,
1478
                                stride, 8);
1479
                        }
1480
                        dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1481
                    }else{
1482
                        dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1483
                    }
1484

    
1485
                    /* dequantize the DCT coefficients */
1486
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1487
                        Coeff *coeff= s->coeffs + i;
1488
                        s->dsp.clear_block(block);
1489
                        while(coeff->next){
1490
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1491
                            coeff= coeff->next;
1492
                        }
1493
                    }else{
1494
                        Coeff *coeff= s->coeffs + i;
1495
                        s->dsp.clear_block(block);
1496
                        while(coeff->next){
1497
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1498
                            coeff= coeff->next;
1499
                        }
1500
                    }
1501

    
1502
                    /* invert DCT and place (or add) in final output */
1503

    
1504
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1505
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1506
                            block[0] += 128<<3;
1507
                        s->dsp.idct_put(
1508
                            output_plane + first_pixel,
1509
                            stride,
1510
                            block);
1511
                    } else {
1512
                        s->dsp.idct_add(
1513
                            output_plane + first_pixel,
1514
                            stride,
1515
                            block);
1516
                    }
1517
                } else {
1518

    
1519
                    /* copy directly from the previous frame */
1520
                    s->dsp.put_pixels_tab[1][0](
1521
                        output_plane + first_pixel,
1522
                        last_plane + first_pixel,
1523
                        stride, 8);
1524

    
1525
                }
1526
            }
1527
            // Filter the previous block row. We can't filter the current row yet
1528
            // since it needs pixels from the next row
1529
            if (y > 0)
1530
                apply_loop_filter(s, plane, (y>>3)-1, (y>>3));
1531
        }
1532
    }
1533

    
1534
     /* this looks like a good place for slice dispatch... */
1535
     /* algorithm:
1536
      *   if (slice == s->macroblock_height - 1)
1537
      *     dispatch (both last slice & 2nd-to-last slice);
1538
      *   else if (slice > 0)
1539
      *     dispatch (slice - 1);
1540
      */
1541

    
1542
    // now that we've filtered the last rows, they're safe to display
1543
    if (slice)
1544
        vp3_draw_horiz_band(s, 16*slice);
1545
}
1546

    
1547
/*
1548
 * This is the ffmpeg/libavcodec API init function.
1549
 */
1550
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1551
{
1552
    Vp3DecodeContext *s = avctx->priv_data;
1553
    int i, inter, plane;
1554
    int c_width;
1555
    int c_height;
1556
    int y_superblock_count;
1557
    int c_superblock_count;
1558

    
1559
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1560
        s->version = 0;
1561
    else
1562
        s->version = 1;
1563

    
1564
    s->avctx = avctx;
1565
    s->width = FFALIGN(avctx->width, 16);
1566
    s->height = FFALIGN(avctx->height, 16);
1567
    avctx->pix_fmt = PIX_FMT_YUV420P;
1568
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1569
    if(avctx->idct_algo==FF_IDCT_AUTO)
1570
        avctx->idct_algo=FF_IDCT_VP3;
1571
    dsputil_init(&s->dsp, avctx);
1572

    
1573
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1574

    
1575
    /* initialize to an impossible value which will force a recalculation
1576
     * in the first frame decode */
1577
    for (i = 0; i < 3; i++)
1578
        s->qps[i] = -1;
1579

    
1580
    s->y_superblock_width = (s->width + 31) / 32;
1581
    s->y_superblock_height = (s->height + 31) / 32;
1582
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1583

    
1584
    /* work out the dimensions for the C planes */
1585
    c_width = s->width / 2;
1586
    c_height = s->height / 2;
1587
    s->c_superblock_width = (c_width + 31) / 32;
1588
    s->c_superblock_height = (c_height + 31) / 32;
1589
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1590

    
1591
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1592
    s->u_superblock_start = y_superblock_count;
1593
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1594
    s->superblock_coding = av_malloc(s->superblock_count);
1595

    
1596
    s->macroblock_width = (s->width + 15) / 16;
1597
    s->macroblock_height = (s->height + 15) / 16;
1598
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1599

    
1600
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1601
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1602

    
1603
    /* fragment count covers all 8x8 blocks for all 3 planes */
1604
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1605
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1606
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1607

    
1608
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1609
    s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1610
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1611
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1612
    s->fast_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1613
    if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts ||
1614
        !s->coeffs || !s->coded_fragment_list || !s->fast_fragment_list) {
1615
        vp3_decode_end(avctx);
1616
        return -1;
1617
    }
1618

    
1619
    if (!s->theora_tables)
1620
    {
1621
        for (i = 0; i < 64; i++) {
1622
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1623
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1624
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1625
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1626
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1627
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1628
        }
1629

    
1630
        for(inter=0; inter<2; inter++){
1631
            for(plane=0; plane<3; plane++){
1632
                s->qr_count[inter][plane]= 1;
1633
                s->qr_size [inter][plane][0]= 63;
1634
                s->qr_base [inter][plane][0]=
1635
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1636
            }
1637
        }
1638

    
1639
        /* init VLC tables */
1640
        for (i = 0; i < 16; i++) {
1641

    
1642
            /* DC histograms */
1643
            init_vlc(&s->dc_vlc[i], 5, 32,
1644
                &dc_bias[i][0][1], 4, 2,
1645
                &dc_bias[i][0][0], 4, 2, 0);
1646

    
1647
            /* group 1 AC histograms */
1648
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1649
                &ac_bias_0[i][0][1], 4, 2,
1650
                &ac_bias_0[i][0][0], 4, 2, 0);
1651

    
1652
            /* group 2 AC histograms */
1653
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1654
                &ac_bias_1[i][0][1], 4, 2,
1655
                &ac_bias_1[i][0][0], 4, 2, 0);
1656

    
1657
            /* group 3 AC histograms */
1658
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1659
                &ac_bias_2[i][0][1], 4, 2,
1660
                &ac_bias_2[i][0][0], 4, 2, 0);
1661

    
1662
            /* group 4 AC histograms */
1663
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1664
                &ac_bias_3[i][0][1], 4, 2,
1665
                &ac_bias_3[i][0][0], 4, 2, 0);
1666
        }
1667
    } else {
1668
        for (i = 0; i < 16; i++) {
1669

    
1670
            /* DC histograms */
1671
            if (init_vlc(&s->dc_vlc[i], 5, 32,
1672
                &s->huffman_table[i][0][1], 4, 2,
1673
                &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1674
                goto vlc_fail;
1675

    
1676
            /* group 1 AC histograms */
1677
            if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1678
                &s->huffman_table[i+16][0][1], 4, 2,
1679
                &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1680
                goto vlc_fail;
1681

    
1682
            /* group 2 AC histograms */
1683
            if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1684
                &s->huffman_table[i+16*2][0][1], 4, 2,
1685
                &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1686
                goto vlc_fail;
1687

    
1688
            /* group 3 AC histograms */
1689
            if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1690
                &s->huffman_table[i+16*3][0][1], 4, 2,
1691
                &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1692
                goto vlc_fail;
1693

    
1694
            /* group 4 AC histograms */
1695
            if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1696
                &s->huffman_table[i+16*4][0][1], 4, 2,
1697
                &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1698
                goto vlc_fail;
1699
        }
1700
    }
1701

    
1702
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1703
        &superblock_run_length_vlc_table[0][1], 4, 2,
1704
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1705

    
1706
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1707
        &fragment_run_length_vlc_table[0][1], 4, 2,
1708
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1709

    
1710
    init_vlc(&s->mode_code_vlc, 3, 8,
1711
        &mode_code_vlc_table[0][1], 2, 1,
1712
        &mode_code_vlc_table[0][0], 2, 1, 0);
1713

    
1714
    init_vlc(&s->motion_vector_vlc, 6, 63,
1715
        &motion_vector_vlc_table[0][1], 2, 1,
1716
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1717

    
1718
    /* work out the block mapping tables */
1719
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1720
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1721
    if (!s->superblock_fragments || !s->macroblock_coding) {
1722
        vp3_decode_end(avctx);
1723
        return -1;
1724
    }
1725
    init_block_mapping(s);
1726

    
1727
    for (i = 0; i < 3; i++) {
1728
        s->current_frame.data[i] = NULL;
1729
        s->last_frame.data[i] = NULL;
1730
        s->golden_frame.data[i] = NULL;
1731
    }
1732

    
1733
    return 0;
1734

    
1735
vlc_fail:
1736
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1737
    return -1;
1738
}
1739

    
1740
/*
1741
 * This is the ffmpeg/libavcodec API frame decode function.
1742
 */
1743
static int vp3_decode_frame(AVCodecContext *avctx,
1744
                            void *data, int *data_size,
1745
                            AVPacket *avpkt)
1746
{
1747
    const uint8_t *buf = avpkt->data;
1748
    int buf_size = avpkt->size;
1749
    Vp3DecodeContext *s = avctx->priv_data;
1750
    GetBitContext gb;
1751
    static int counter = 0;
1752
    int i;
1753

    
1754
    init_get_bits(&gb, buf, buf_size * 8);
1755

    
1756
    if (s->theora && get_bits1(&gb))
1757
    {
1758
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1759
        return -1;
1760
    }
1761

    
1762
    s->keyframe = !get_bits1(&gb);
1763
    if (!s->theora)
1764
        skip_bits(&gb, 1);
1765
    for (i = 0; i < 3; i++)
1766
        s->last_qps[i] = s->qps[i];
1767

    
1768
    s->nqps=0;
1769
    do{
1770
        s->qps[s->nqps++]= get_bits(&gb, 6);
1771
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1772
    for (i = s->nqps; i < 3; i++)
1773
        s->qps[i] = -1;
1774

    
1775
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1776
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1777
            s->keyframe?"key":"", counter, s->qps[0]);
1778
    counter++;
1779

    
1780
    if (s->qps[0] != s->last_qps[0])
1781
        init_loop_filter(s);
1782

    
1783
    for (i = 0; i < s->nqps; i++)
1784
        // reinit all dequantizers if the first one changed, because
1785
        // the DC of the first quantizer must be used for all matrices
1786
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1787
            init_dequantizer(s, i);
1788

    
1789
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1790
        return buf_size;
1791

    
1792
    if (s->keyframe) {
1793
        if (!s->theora)
1794
        {
1795
            skip_bits(&gb, 4); /* width code */
1796
            skip_bits(&gb, 4); /* height code */
1797
            if (s->version)
1798
            {
1799
                s->version = get_bits(&gb, 5);
1800
                if (counter == 1)
1801
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1802
            }
1803
        }
1804
        if (s->version || s->theora)
1805
        {
1806
                if (get_bits1(&gb))
1807
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1808
            skip_bits(&gb, 2); /* reserved? */
1809
        }
1810

    
1811
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1812
            if (s->golden_frame.data[0])
1813
                avctx->release_buffer(avctx, &s->golden_frame);
1814
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1815
        } else {
1816
            if (s->golden_frame.data[0])
1817
                avctx->release_buffer(avctx, &s->golden_frame);
1818
            if (s->last_frame.data[0])
1819
                avctx->release_buffer(avctx, &s->last_frame);
1820
        }
1821

    
1822
        s->golden_frame.reference = 3;
1823
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1824
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1825
            return -1;
1826
        }
1827

    
1828
        /* golden frame is also the current frame */
1829
        s->current_frame= s->golden_frame;
1830
    } else {
1831
        /* allocate a new current frame */
1832
        s->current_frame.reference = 3;
1833
        if (!s->golden_frame.data[0]) {
1834
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1835
            return -1;
1836
        }
1837
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1838
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1839
            return -1;
1840
        }
1841
    }
1842

    
1843
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1844
    s->current_frame.qstride= 0;
1845

    
1846
    init_frame(s, &gb);
1847

    
1848
    if (unpack_superblocks(s, &gb)){
1849
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1850
        return -1;
1851
    }
1852
    if (unpack_modes(s, &gb)){
1853
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1854
        return -1;
1855
    }
1856
    if (unpack_vectors(s, &gb)){
1857
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1858
        return -1;
1859
    }
1860
    if (unpack_block_qpis(s, &gb)){
1861
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1862
        return -1;
1863
    }
1864
    if (unpack_dct_coeffs(s, &gb)){
1865
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1866
        return -1;
1867
    }
1868

    
1869
    for (i = 0; i < 3; i++) {
1870
        if (s->flipped_image)
1871
            s->data_offset[i] = 0;
1872
        else
1873
            s->data_offset[i] = ((s->height>>!!i)-1) * s->current_frame.linesize[i];
1874
    }
1875

    
1876
    s->last_slice_end = 0;
1877
    for (i = 0; i < s->macroblock_height; i++)
1878
        render_slice(s, i);
1879

    
1880
    // filter the last row
1881
    for (i = 0; i < 3; i++) {
1882
        int row = (s->height >> (3+!!i)) - 1;
1883
        apply_loop_filter(s, i, row, row+1);
1884
    }
1885
    vp3_draw_horiz_band(s, s->height);
1886

    
1887
    *data_size=sizeof(AVFrame);
1888
    *(AVFrame*)data= s->current_frame;
1889

    
1890
    /* release the last frame, if it is allocated and if it is not the
1891
     * golden frame */
1892
    if ((s->last_frame.data[0]) &&
1893
        (s->last_frame.data[0] != s->golden_frame.data[0]))
1894
        avctx->release_buffer(avctx, &s->last_frame);
1895

    
1896
    /* shuffle frames (last = current) */
1897
    s->last_frame= s->current_frame;
1898
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1899

    
1900
    return buf_size;
1901
}
1902

    
1903
/*
1904
 * This is the ffmpeg/libavcodec API module cleanup function.
1905
 */
1906
static av_cold int vp3_decode_end(AVCodecContext *avctx)
1907
{
1908
    Vp3DecodeContext *s = avctx->priv_data;
1909
    int i;
1910

    
1911
    av_free(s->superblock_coding);
1912
    av_free(s->all_fragments);
1913
    av_free(s->coeff_counts);
1914
    av_free(s->coeffs);
1915
    av_free(s->coded_fragment_list);
1916
    av_free(s->fast_fragment_list);
1917
    av_free(s->superblock_fragments);
1918
    av_free(s->macroblock_coding);
1919

    
1920
    for (i = 0; i < 16; i++) {
1921
        free_vlc(&s->dc_vlc[i]);
1922
        free_vlc(&s->ac_vlc_1[i]);
1923
        free_vlc(&s->ac_vlc_2[i]);
1924
        free_vlc(&s->ac_vlc_3[i]);
1925
        free_vlc(&s->ac_vlc_4[i]);
1926
    }
1927

    
1928
    free_vlc(&s->superblock_run_length_vlc);
1929
    free_vlc(&s->fragment_run_length_vlc);
1930
    free_vlc(&s->mode_code_vlc);
1931
    free_vlc(&s->motion_vector_vlc);
1932

    
1933
    /* release all frames */
1934
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
1935
        avctx->release_buffer(avctx, &s->golden_frame);
1936
    if (s->last_frame.data[0])
1937
        avctx->release_buffer(avctx, &s->last_frame);
1938
    /* no need to release the current_frame since it will always be pointing
1939
     * to the same frame as either the golden or last frame */
1940

    
1941
    return 0;
1942
}
1943

    
1944
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1945
{
1946
    Vp3DecodeContext *s = avctx->priv_data;
1947

    
1948
    if (get_bits1(gb)) {
1949
        int token;
1950
        if (s->entries >= 32) { /* overflow */
1951
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1952
            return -1;
1953
        }
1954
        token = get_bits(gb, 5);
1955
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1956
        s->huffman_table[s->hti][token][0] = s->hbits;
1957
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
1958
        s->entries++;
1959
    }
1960
    else {
1961
        if (s->huff_code_size >= 32) {/* overflow */
1962
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1963
            return -1;
1964
        }
1965
        s->huff_code_size++;
1966
        s->hbits <<= 1;
1967
        if (read_huffman_tree(avctx, gb))
1968
            return -1;
1969
        s->hbits |= 1;
1970
        if (read_huffman_tree(avctx, gb))
1971
            return -1;
1972
        s->hbits >>= 1;
1973
        s->huff_code_size--;
1974
    }
1975
    return 0;
1976
}
1977

    
1978
#if CONFIG_THEORA_DECODER
1979
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1980
{
1981
    Vp3DecodeContext *s = avctx->priv_data;
1982
    int visible_width, visible_height, colorspace;
1983

    
1984
    s->theora = get_bits_long(gb, 24);
1985
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
1986

    
1987
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
1988
    /* but previous versions have the image flipped relative to vp3 */
1989
    if (s->theora < 0x030200)
1990
    {
1991
        s->flipped_image = 1;
1992
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
1993
    }
1994

    
1995
    visible_width  = s->width  = get_bits(gb, 16) << 4;
1996
    visible_height = s->height = get_bits(gb, 16) << 4;
1997

    
1998
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
1999
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2000
        s->width= s->height= 0;
2001
        return -1;
2002
    }
2003

    
2004
    if (s->theora >= 0x030200) {
2005
        visible_width  = get_bits_long(gb, 24);
2006
        visible_height = get_bits_long(gb, 24);
2007

    
2008
        skip_bits(gb, 8); /* offset x */
2009
        skip_bits(gb, 8); /* offset y */
2010
    }
2011

    
2012
    skip_bits(gb, 32); /* fps numerator */
2013
    skip_bits(gb, 32); /* fps denumerator */
2014
    skip_bits(gb, 24); /* aspect numerator */
2015
    skip_bits(gb, 24); /* aspect denumerator */
2016

    
2017
    if (s->theora < 0x030200)
2018
        skip_bits(gb, 5); /* keyframe frequency force */
2019
    colorspace = get_bits(gb, 8);
2020
    skip_bits(gb, 24); /* bitrate */
2021

    
2022
    skip_bits(gb, 6); /* quality hint */
2023

    
2024
    if (s->theora >= 0x030200)
2025
    {
2026
        skip_bits(gb, 5); /* keyframe frequency force */
2027
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2028
        skip_bits(gb, 3); /* reserved */
2029
    }
2030

    
2031
//    align_get_bits(gb);
2032

    
2033
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2034
        && visible_height <= s->height && visible_height > s->height-16)
2035
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2036
    else
2037
        avcodec_set_dimensions(avctx, s->width, s->height);
2038

    
2039
    if (colorspace == 1) {
2040
        avctx->color_primaries = AVCOL_PRI_BT470M;
2041
    } else if (colorspace == 2) {
2042
        avctx->color_primaries = AVCOL_PRI_BT470BG;
2043
    }
2044
    if (colorspace == 1 || colorspace == 2) {
2045
        avctx->colorspace = AVCOL_SPC_BT470BG;
2046
        avctx->color_trc  = AVCOL_TRC_BT709;
2047
    }
2048

    
2049
    return 0;
2050
}
2051

    
2052
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2053
{
2054
    Vp3DecodeContext *s = avctx->priv_data;
2055
    int i, n, matrices, inter, plane;
2056

    
2057
    if (s->theora >= 0x030200) {
2058
        n = get_bits(gb, 3);
2059
        /* loop filter limit values table */
2060
        for (i = 0; i < 64; i++) {
2061
            s->filter_limit_values[i] = get_bits(gb, n);
2062
            if (s->filter_limit_values[i] > 127) {
2063
                av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2064
                s->filter_limit_values[i] = 127;
2065
            }
2066
        }
2067
    }
2068

    
2069
    if (s->theora >= 0x030200)
2070
        n = get_bits(gb, 4) + 1;
2071
    else
2072
        n = 16;
2073
    /* quality threshold table */
2074
    for (i = 0; i < 64; i++)
2075
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2076

    
2077
    if (s->theora >= 0x030200)
2078
        n = get_bits(gb, 4) + 1;
2079
    else
2080
        n = 16;
2081
    /* dc scale factor table */
2082
    for (i = 0; i < 64; i++)
2083
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2084

    
2085
    if (s->theora >= 0x030200)
2086
        matrices = get_bits(gb, 9) + 1;
2087
    else
2088
        matrices = 3;
2089

    
2090
    if(matrices > 384){
2091
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2092
        return -1;
2093
    }
2094

    
2095
    for(n=0; n<matrices; n++){
2096
        for (i = 0; i < 64; i++)
2097
            s->base_matrix[n][i]= get_bits(gb, 8);
2098
    }
2099

    
2100
    for (inter = 0; inter <= 1; inter++) {
2101
        for (plane = 0; plane <= 2; plane++) {
2102
            int newqr= 1;
2103
            if (inter || plane > 0)
2104
                newqr = get_bits1(gb);
2105
            if (!newqr) {
2106
                int qtj, plj;
2107
                if(inter && get_bits1(gb)){
2108
                    qtj = 0;
2109
                    plj = plane;
2110
                }else{
2111
                    qtj= (3*inter + plane - 1) / 3;
2112
                    plj= (plane + 2) % 3;
2113
                }
2114
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2115
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2116
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2117
            } else {
2118
                int qri= 0;
2119
                int qi = 0;
2120

    
2121
                for(;;){
2122
                    i= get_bits(gb, av_log2(matrices-1)+1);
2123
                    if(i>= matrices){
2124
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2125
                        return -1;
2126
                    }
2127
                    s->qr_base[inter][plane][qri]= i;
2128
                    if(qi >= 63)
2129
                        break;
2130
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2131
                    s->qr_size[inter][plane][qri++]= i;
2132
                    qi += i;
2133
                }
2134

    
2135
                if (qi > 63) {
2136
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2137
                    return -1;
2138
                }
2139
                s->qr_count[inter][plane]= qri;
2140
            }
2141
        }
2142
    }
2143

    
2144
    /* Huffman tables */
2145
    for (s->hti = 0; s->hti < 80; s->hti++) {
2146
        s->entries = 0;
2147
        s->huff_code_size = 1;
2148
        if (!get_bits1(gb)) {
2149
            s->hbits = 0;
2150
            if(read_huffman_tree(avctx, gb))
2151
                return -1;
2152
            s->hbits = 1;
2153
            if(read_huffman_tree(avctx, gb))
2154
                return -1;
2155
        }
2156
    }
2157

    
2158
    s->theora_tables = 1;
2159

    
2160
    return 0;
2161
}
2162

    
2163
static av_cold int theora_decode_init(AVCodecContext *avctx)
2164
{
2165
    Vp3DecodeContext *s = avctx->priv_data;
2166
    GetBitContext gb;
2167
    int ptype;
2168
    uint8_t *header_start[3];
2169
    int header_len[3];
2170
    int i;
2171

    
2172
    s->theora = 1;
2173

    
2174
    if (!avctx->extradata_size)
2175
    {
2176
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2177
        return -1;
2178
    }
2179

    
2180
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2181
                              42, header_start, header_len) < 0) {
2182
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2183
        return -1;
2184
    }
2185

    
2186
  for(i=0;i<3;i++) {
2187
    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2188

    
2189
    ptype = get_bits(&gb, 8);
2190

    
2191
     if (!(ptype & 0x80))
2192
     {
2193
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2194
//        return -1;
2195
     }
2196

    
2197
    // FIXME: Check for this as well.
2198
    skip_bits_long(&gb, 6*8); /* "theora" */
2199

    
2200
    switch(ptype)
2201
    {
2202
        case 0x80:
2203
            theora_decode_header(avctx, &gb);
2204
                break;
2205
        case 0x81:
2206
// FIXME: is this needed? it breaks sometimes
2207
//            theora_decode_comments(avctx, gb);
2208
            break;
2209
        case 0x82:
2210
            if (theora_decode_tables(avctx, &gb))
2211
                return -1;
2212
            break;
2213
        default:
2214
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2215
            break;
2216
    }
2217
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2218
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2219
    if (s->theora < 0x030200)
2220
        break;
2221
  }
2222

    
2223
    return vp3_decode_init(avctx);
2224
}
2225

    
2226
AVCodec theora_decoder = {
2227
    "theora",
2228
    CODEC_TYPE_VIDEO,
2229
    CODEC_ID_THEORA,
2230
    sizeof(Vp3DecodeContext),
2231
    theora_decode_init,
2232
    NULL,
2233
    vp3_decode_end,
2234
    vp3_decode_frame,
2235
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2236
    NULL,
2237
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2238
};
2239
#endif
2240

    
2241
AVCodec vp3_decoder = {
2242
    "vp3",
2243
    CODEC_TYPE_VIDEO,
2244
    CODEC_ID_VP3,
2245
    sizeof(Vp3DecodeContext),
2246
    vp3_decode_init,
2247
    NULL,
2248
    vp3_decode_end,
2249
    vp3_decode_frame,
2250
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2251
    NULL,
2252
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2253
};