Statistics
| Branch: | Revision:

ffmpeg / postproc / swscale.c @ 6d606c4f

History | View | Annotate | Download (72.3 KB)

1
/*
2
    Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3

4
    This program is free software; you can redistribute it and/or modify
5
    it under the terms of the GNU General Public License as published by
6
    the Free Software Foundation; either version 2 of the License, or
7
    (at your option) any later version.
8

9
    This program is distributed in the hope that it will be useful,
10
    but WITHOUT ANY WARRANTY; without even the implied warranty of
11
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
    GNU General Public License for more details.
13

14
    You should have received a copy of the GNU General Public License
15
    along with this program; if not, write to the Free Software
16
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17
*/
18

    
19
/*
20
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22
  {BGR,RGB}{1,4,8,15,16} support dithering
23
  
24
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26
  x -> x
27
  YUV9 -> YV12
28
  YUV9/YV12 -> Y800
29
  Y800 -> YUV9/YV12
30
  BGR24 -> BGR32 & RGB24 -> RGB32
31
  BGR32 -> BGR24 & RGB32 -> RGB24
32
  BGR15 -> BGR16
33
*/
34

    
35
/* 
36
tested special converters (most are tested actually but i didnt write it down ...)
37
 YV12 -> BGR16
38
 YV12 -> YV12
39
 BGR15 -> BGR16
40
 BGR16 -> BGR16
41
 YVU9 -> YV12
42

43
untested special converters
44
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45
  YV12/I420 -> YV12/I420
46
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47
  BGR24 -> BGR32 & RGB24 -> RGB32
48
  BGR32 -> BGR24 & RGB32 -> RGB24
49
  BGR24 -> YV12
50
*/
51

    
52
#include <inttypes.h>
53
#include <string.h>
54
#include <math.h>
55
#include <stdio.h>
56
#include "../config.h"
57
#include "../mangle.h"
58
#include <assert.h>
59
#ifdef HAVE_MALLOC_H
60
#include <malloc.h>
61
#else
62
#include <stdlib.h>
63
#endif
64
#include "swscale.h"
65
#include "swscale_internal.h"
66
#include "../cpudetect.h"
67
#include "../bswap.h"
68
#include "../libvo/img_format.h"
69
#include "rgb2rgb.h"
70
#include "../libvo/fastmemcpy.h"
71

    
72
#undef MOVNTQ
73
#undef PAVGB
74

    
75
//#undef HAVE_MMX2
76
//#define HAVE_3DNOW
77
//#undef HAVE_MMX
78
//#undef ARCH_X86
79
//#define WORDS_BIGENDIAN
80
#define DITHER1XBPP
81

    
82
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
83

    
84
#define RET 0xC3 //near return opcode for X86
85

    
86
#ifdef MP_DEBUG
87
#define ASSERT(x) assert(x);
88
#else
89
#define ASSERT(x) ;
90
#endif
91

    
92
#ifdef M_PI
93
#define PI M_PI
94
#else
95
#define PI 3.14159265358979323846
96
#endif
97

    
98
//FIXME replace this with something faster
99
#define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
100
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
101
#define isYUV(x)       ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
102
#define isGray(x)      ((x)==IMGFMT_Y800)
103
#define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
104
#define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
105
#define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
106
                        || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
107
                        || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
108
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
109
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
110
#define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
111
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
112
                        || isRGB(x) || isBGR(x)\
113
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
114
#define isPacked(x)    ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
115

    
116
#define RGB2YUV_SHIFT 16
117
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
118
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
119
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
120
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
121
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
122
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
123
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
124
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
125
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
126

    
127
extern const int32_t Inverse_Table_6_9[8][4];
128

    
129
/*
130
NOTES
131
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
132

133
TODO
134
more intelligent missalignment avoidance for the horizontal scaler
135
write special vertical cubic upscale version
136
Optimize C code (yv12 / minmax)
137
add support for packed pixel yuv input & output
138
add support for Y8 output
139
optimize bgr24 & bgr32
140
add BGR4 output support
141
write special BGR->BGR scaler
142
*/
143

    
144
#define ABS(a) ((a) > 0 ? (a) : (-(a)))
145
#define MIN(a,b) ((a) > (b) ? (b) : (a))
146
#define MAX(a,b) ((a) < (b) ? (b) : (a))
147

    
148
#if defined(ARCH_X86) || defined(ARCH_X86_64)
149
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
150
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
151
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
152
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
153
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
154
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
155
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
156
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
157

    
158
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
159
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
160
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
161
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
162

    
163
static uint64_t __attribute__((aligned(8))) dither4[2]={
164
        0x0103010301030103LL,
165
        0x0200020002000200LL,};
166

    
167
static uint64_t __attribute__((aligned(8))) dither8[2]={
168
        0x0602060206020602LL,
169
        0x0004000400040004LL,};
170

    
171
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
172
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
173
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
174
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
175
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
176
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
177

    
178
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
179
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
180
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
181

    
182
#ifdef FAST_BGR2YV12
183
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
184
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
185
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
186
#else
187
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
188
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
189
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
190
#endif
191
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
192
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
193
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
194
#endif
195

    
196
// clipping helper table for C implementations:
197
static unsigned char clip_table[768];
198

    
199
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
200
                  
201
extern const uint8_t dither_2x2_4[2][8];
202
extern const uint8_t dither_2x2_8[2][8];
203
extern const uint8_t dither_8x8_32[8][8];
204
extern const uint8_t dither_8x8_73[8][8];
205
extern const uint8_t dither_8x8_220[8][8];
206

    
207
#if defined(ARCH_X86) || defined(ARCH_X86_64)
208
void in_asm_used_var_warning_killer()
209
{
210
 volatile int i= bF8+bFC+w10+
211
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
212
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
213
 if(i) i=0;
214
}
215
#endif
216

    
217
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
218
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
219
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
220
{
221
        //FIXME Optimize (just quickly writen not opti..)
222
        int i;
223
        for(i=0; i<dstW; i++)
224
        {
225
                int val=1<<18;
226
                int j;
227
                for(j=0; j<lumFilterSize; j++)
228
                        val += lumSrc[j][i] * lumFilter[j];
229

    
230
                dest[i]= MIN(MAX(val>>19, 0), 255);
231
        }
232

    
233
        if(uDest != NULL)
234
                for(i=0; i<chrDstW; i++)
235
                {
236
                        int u=1<<18;
237
                        int v=1<<18;
238
                        int j;
239
                        for(j=0; j<chrFilterSize; j++)
240
                        {
241
                                u += chrSrc[j][i] * chrFilter[j];
242
                                v += chrSrc[j][i + 2048] * chrFilter[j];
243
                        }
244

    
245
                        uDest[i]= MIN(MAX(u>>19, 0), 255);
246
                        vDest[i]= MIN(MAX(v>>19, 0), 255);
247
                }
248
}
249

    
250

    
251
#define YSCALE_YUV_2_PACKEDX_C(type) \
252
                for(i=0; i<(dstW>>1); i++){\
253
                        int j;\
254
                        int Y1=1<<18;\
255
                        int Y2=1<<18;\
256
                        int U=1<<18;\
257
                        int V=1<<18;\
258
                        type *r, *b, *g;\
259
                        const int i2= 2*i;\
260
                        \
261
                        for(j=0; j<lumFilterSize; j++)\
262
                        {\
263
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
264
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
265
                        }\
266
                        for(j=0; j<chrFilterSize; j++)\
267
                        {\
268
                                U += chrSrc[j][i] * chrFilter[j];\
269
                                V += chrSrc[j][i+2048] * chrFilter[j];\
270
                        }\
271
                        Y1>>=19;\
272
                        Y2>>=19;\
273
                        U >>=19;\
274
                        V >>=19;\
275
                        if((Y1|Y2|U|V)&256)\
276
                        {\
277
                                if(Y1>255)   Y1=255;\
278
                                else if(Y1<0)Y1=0;\
279
                                if(Y2>255)   Y2=255;\
280
                                else if(Y2<0)Y2=0;\
281
                                if(U>255)    U=255;\
282
                                else if(U<0) U=0;\
283
                                if(V>255)    V=255;\
284
                                else if(V<0) V=0;\
285
                        }
286
                        
287
#define YSCALE_YUV_2_RGBX_C(type) \
288
                        YSCALE_YUV_2_PACKEDX_C(type)\
289
                        r = c->table_rV[V];\
290
                        g = c->table_gU[U] + c->table_gV[V];\
291
                        b = c->table_bU[U];\
292

    
293
#define YSCALE_YUV_2_PACKED2_C \
294
                for(i=0; i<(dstW>>1); i++){\
295
                        const int i2= 2*i;\
296
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
297
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
298
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
299
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
300

    
301
#define YSCALE_YUV_2_RGB2_C(type) \
302
                        YSCALE_YUV_2_PACKED2_C\
303
                        type *r, *b, *g;\
304
                        r = c->table_rV[V];\
305
                        g = c->table_gU[U] + c->table_gV[V];\
306
                        b = c->table_bU[U];\
307

    
308
#define YSCALE_YUV_2_PACKED1_C \
309
                for(i=0; i<(dstW>>1); i++){\
310
                        const int i2= 2*i;\
311
                        int Y1= buf0[i2  ]>>7;\
312
                        int Y2= buf0[i2+1]>>7;\
313
                        int U= (uvbuf1[i     ])>>7;\
314
                        int V= (uvbuf1[i+2048])>>7;\
315

    
316
#define YSCALE_YUV_2_RGB1_C(type) \
317
                        YSCALE_YUV_2_PACKED1_C\
318
                        type *r, *b, *g;\
319
                        r = c->table_rV[V];\
320
                        g = c->table_gU[U] + c->table_gV[V];\
321
                        b = c->table_bU[U];\
322

    
323
#define YSCALE_YUV_2_PACKED1B_C \
324
                for(i=0; i<(dstW>>1); i++){\
325
                        const int i2= 2*i;\
326
                        int Y1= buf0[i2  ]>>7;\
327
                        int Y2= buf0[i2+1]>>7;\
328
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
329
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
330

    
331
#define YSCALE_YUV_2_RGB1B_C(type) \
332
                        YSCALE_YUV_2_PACKED1B_C\
333
                        type *r, *b, *g;\
334
                        r = c->table_rV[V];\
335
                        g = c->table_gU[U] + c->table_gV[V];\
336
                        b = c->table_bU[U];\
337

    
338
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
339
        switch(c->dstFormat)\
340
        {\
341
        case IMGFMT_BGR32:\
342
        case IMGFMT_RGB32:\
343
                func(uint32_t)\
344
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
345
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
346
                }                \
347
                break;\
348
        case IMGFMT_RGB24:\
349
                func(uint8_t)\
350
                        ((uint8_t*)dest)[0]= r[Y1];\
351
                        ((uint8_t*)dest)[1]= g[Y1];\
352
                        ((uint8_t*)dest)[2]= b[Y1];\
353
                        ((uint8_t*)dest)[3]= r[Y2];\
354
                        ((uint8_t*)dest)[4]= g[Y2];\
355
                        ((uint8_t*)dest)[5]= b[Y2];\
356
                        dest+=6;\
357
                }\
358
                break;\
359
        case IMGFMT_BGR24:\
360
                func(uint8_t)\
361
                        ((uint8_t*)dest)[0]= b[Y1];\
362
                        ((uint8_t*)dest)[1]= g[Y1];\
363
                        ((uint8_t*)dest)[2]= r[Y1];\
364
                        ((uint8_t*)dest)[3]= b[Y2];\
365
                        ((uint8_t*)dest)[4]= g[Y2];\
366
                        ((uint8_t*)dest)[5]= r[Y2];\
367
                        dest+=6;\
368
                }\
369
                break;\
370
        case IMGFMT_RGB16:\
371
        case IMGFMT_BGR16:\
372
                {\
373
                        const int dr1= dither_2x2_8[y&1    ][0];\
374
                        const int dg1= dither_2x2_4[y&1    ][0];\
375
                        const int db1= dither_2x2_8[(y&1)^1][0];\
376
                        const int dr2= dither_2x2_8[y&1    ][1];\
377
                        const int dg2= dither_2x2_4[y&1    ][1];\
378
                        const int db2= dither_2x2_8[(y&1)^1][1];\
379
                        func(uint16_t)\
380
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
381
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
382
                        }\
383
                }\
384
                break;\
385
        case IMGFMT_RGB15:\
386
        case IMGFMT_BGR15:\
387
                {\
388
                        const int dr1= dither_2x2_8[y&1    ][0];\
389
                        const int dg1= dither_2x2_8[y&1    ][1];\
390
                        const int db1= dither_2x2_8[(y&1)^1][0];\
391
                        const int dr2= dither_2x2_8[y&1    ][1];\
392
                        const int dg2= dither_2x2_8[y&1    ][0];\
393
                        const int db2= dither_2x2_8[(y&1)^1][1];\
394
                        func(uint16_t)\
395
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
396
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
397
                        }\
398
                }\
399
                break;\
400
        case IMGFMT_RGB8:\
401
        case IMGFMT_BGR8:\
402
                {\
403
                        const uint8_t * const d64= dither_8x8_73[y&7];\
404
                        const uint8_t * const d32= dither_8x8_32[y&7];\
405
                        func(uint8_t)\
406
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
407
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
408
                        }\
409
                }\
410
                break;\
411
        case IMGFMT_RGB4:\
412
        case IMGFMT_BGR4:\
413
                {\
414
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
415
                        const uint8_t * const d128=dither_8x8_220[y&7];\
416
                        func(uint8_t)\
417
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
418
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
419
                        }\
420
                }\
421
                break;\
422
        case IMGFMT_RG4B:\
423
        case IMGFMT_BG4B:\
424
                {\
425
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
426
                        const uint8_t * const d128=dither_8x8_220[y&7];\
427
                        func(uint8_t)\
428
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
429
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
430
                        }\
431
                }\
432
                break;\
433
        case IMGFMT_RGB1:\
434
        case IMGFMT_BGR1:\
435
                {\
436
                        const uint8_t * const d128=dither_8x8_220[y&7];\
437
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
438
                        for(i=0; i<dstW-7; i+=8){\
439
                                int acc;\
440
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
441
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
442
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
443
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
444
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
445
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
446
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
447
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
448
                                ((uint8_t*)dest)[0]= acc;\
449
                                dest++;\
450
                        }\
451
\
452
/*\
453
((uint8_t*)dest)-= dstW>>4;\
454
{\
455
                        int acc=0;\
456
                        int left=0;\
457
                        static int top[1024];\
458
                        static int last_new[1024][1024];\
459
                        static int last_in3[1024][1024];\
460
                        static int drift[1024][1024];\
461
                        int topLeft=0;\
462
                        int shift=0;\
463
                        int count=0;\
464
                        const uint8_t * const d128=dither_8x8_220[y&7];\
465
                        int error_new=0;\
466
                        int error_in3=0;\
467
                        int f=0;\
468
                        \
469
                        for(i=dstW>>1; i<dstW; i++){\
470
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
471
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
472
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
473
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
474
                                        + (last_new[y][i] - in3)*f/256;\
475
                                int new= old> 128 ? 255 : 0;\
476
\
477
                                error_new+= ABS(last_new[y][i] - new);\
478
                                error_in3+= ABS(last_in3[y][i] - in3);\
479
                                f= error_new - error_in3*4;\
480
                                if(f<0) f=0;\
481
                                if(f>256) f=256;\
482
\
483
                                topLeft= top[i];\
484
                                left= top[i]= old - new;\
485
                                last_new[y][i]= new;\
486
                                last_in3[y][i]= in3;\
487
\
488
                                acc+= acc + (new&1);\
489
                                if((i&7)==6){\
490
                                        ((uint8_t*)dest)[0]= acc;\
491
                                        ((uint8_t*)dest)++;\
492
                                }\
493
                        }\
494
}\
495
*/\
496
                }\
497
                break;\
498
        case IMGFMT_YUY2:\
499
                func2\
500
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
501
                        ((uint8_t*)dest)[2*i2+1]= U;\
502
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
503
                        ((uint8_t*)dest)[2*i2+3]= V;\
504
                }                \
505
                break;\
506
        case IMGFMT_UYVY:\
507
                func2\
508
                        ((uint8_t*)dest)[2*i2+0]= U;\
509
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
510
                        ((uint8_t*)dest)[2*i2+2]= V;\
511
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
512
                }                \
513
                break;\
514
        }\
515

    
516

    
517
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
518
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
519
                                    uint8_t *dest, int dstW, int y)
520
{
521
        int i;
522
        switch(c->dstFormat)
523
        {
524
        case IMGFMT_RGB32:
525
        case IMGFMT_BGR32:
526
                YSCALE_YUV_2_RGBX_C(uint32_t)
527
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
528
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
529
                }
530
                break;
531
        case IMGFMT_RGB24:
532
                YSCALE_YUV_2_RGBX_C(uint8_t)
533
                        ((uint8_t*)dest)[0]= r[Y1];
534
                        ((uint8_t*)dest)[1]= g[Y1];
535
                        ((uint8_t*)dest)[2]= b[Y1];
536
                        ((uint8_t*)dest)[3]= r[Y2];
537
                        ((uint8_t*)dest)[4]= g[Y2];
538
                        ((uint8_t*)dest)[5]= b[Y2];
539
                        dest+=6;
540
                }
541
                break;
542
        case IMGFMT_BGR24:
543
                YSCALE_YUV_2_RGBX_C(uint8_t)
544
                        ((uint8_t*)dest)[0]= b[Y1];
545
                        ((uint8_t*)dest)[1]= g[Y1];
546
                        ((uint8_t*)dest)[2]= r[Y1];
547
                        ((uint8_t*)dest)[3]= b[Y2];
548
                        ((uint8_t*)dest)[4]= g[Y2];
549
                        ((uint8_t*)dest)[5]= r[Y2];
550
                        dest+=6;
551
                }
552
                break;
553
        case IMGFMT_RGB16:
554
        case IMGFMT_BGR16:
555
                {
556
                        const int dr1= dither_2x2_8[y&1    ][0];
557
                        const int dg1= dither_2x2_4[y&1    ][0];
558
                        const int db1= dither_2x2_8[(y&1)^1][0];
559
                        const int dr2= dither_2x2_8[y&1    ][1];
560
                        const int dg2= dither_2x2_4[y&1    ][1];
561
                        const int db2= dither_2x2_8[(y&1)^1][1];
562
                        YSCALE_YUV_2_RGBX_C(uint16_t)
563
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
564
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
565
                        }
566
                }
567
                break;
568
        case IMGFMT_RGB15:
569
        case IMGFMT_BGR15:
570
                {
571
                        const int dr1= dither_2x2_8[y&1    ][0];
572
                        const int dg1= dither_2x2_8[y&1    ][1];
573
                        const int db1= dither_2x2_8[(y&1)^1][0];
574
                        const int dr2= dither_2x2_8[y&1    ][1];
575
                        const int dg2= dither_2x2_8[y&1    ][0];
576
                        const int db2= dither_2x2_8[(y&1)^1][1];
577
                        YSCALE_YUV_2_RGBX_C(uint16_t)
578
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
579
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
580
                        }
581
                }
582
                break;
583
        case IMGFMT_RGB8:
584
        case IMGFMT_BGR8:
585
                {
586
                        const uint8_t * const d64= dither_8x8_73[y&7];
587
                        const uint8_t * const d32= dither_8x8_32[y&7];
588
                        YSCALE_YUV_2_RGBX_C(uint8_t)
589
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
590
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
591
                        }
592
                }
593
                break;
594
        case IMGFMT_RGB4:
595
        case IMGFMT_BGR4:
596
                {
597
                        const uint8_t * const d64= dither_8x8_73 [y&7];
598
                        const uint8_t * const d128=dither_8x8_220[y&7];
599
                        YSCALE_YUV_2_RGBX_C(uint8_t)
600
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
601
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
602
                        }
603
                }
604
                break;
605
        case IMGFMT_RG4B:
606
        case IMGFMT_BG4B:
607
                {
608
                        const uint8_t * const d64= dither_8x8_73 [y&7];
609
                        const uint8_t * const d128=dither_8x8_220[y&7];
610
                        YSCALE_YUV_2_RGBX_C(uint8_t)
611
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
612
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
613
                        }
614
                }
615
                break;
616
        case IMGFMT_RGB1:
617
        case IMGFMT_BGR1:
618
                {
619
                        const uint8_t * const d128=dither_8x8_220[y&7];
620
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
621
                        int acc=0;
622
                        for(i=0; i<dstW-1; i+=2){
623
                                int j;
624
                                int Y1=1<<18;
625
                                int Y2=1<<18;
626

    
627
                                for(j=0; j<lumFilterSize; j++)
628
                                {
629
                                        Y1 += lumSrc[j][i] * lumFilter[j];
630
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
631
                                }
632
                                Y1>>=19;
633
                                Y2>>=19;
634
                                if((Y1|Y2)&256)
635
                                {
636
                                        if(Y1>255)   Y1=255;
637
                                        else if(Y1<0)Y1=0;
638
                                        if(Y2>255)   Y2=255;
639
                                        else if(Y2<0)Y2=0;
640
                                }
641
                                acc+= acc + g[Y1+d128[(i+0)&7]];
642
                                acc+= acc + g[Y2+d128[(i+1)&7]];
643
                                if((i&7)==6){
644
                                        ((uint8_t*)dest)[0]= acc;
645
                                        dest++;
646
                                }
647
                        }
648
                }
649
                break;
650
        case IMGFMT_YUY2:
651
                YSCALE_YUV_2_PACKEDX_C(void)
652
                        ((uint8_t*)dest)[2*i2+0]= Y1;
653
                        ((uint8_t*)dest)[2*i2+1]= U;
654
                        ((uint8_t*)dest)[2*i2+2]= Y2;
655
                        ((uint8_t*)dest)[2*i2+3]= V;
656
                }
657
                break;
658
        case IMGFMT_UYVY:
659
                YSCALE_YUV_2_PACKEDX_C(void)
660
                        ((uint8_t*)dest)[2*i2+0]= U;
661
                        ((uint8_t*)dest)[2*i2+1]= Y1;
662
                        ((uint8_t*)dest)[2*i2+2]= V;
663
                        ((uint8_t*)dest)[2*i2+3]= Y2;
664
                }
665
                break;
666
        }
667
}
668

    
669

    
670
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
671
//Plain C versions
672
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
673
#define COMPILE_C
674
#endif
675

    
676
#ifdef ARCH_POWERPC
677
#ifdef HAVE_ALTIVEC
678
#define COMPILE_ALTIVEC
679
#endif //HAVE_ALTIVEC
680
#endif //ARCH_POWERPC
681

    
682
#if defined(ARCH_X86) || defined(ARCH_X86_64)
683

    
684
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
685
#define COMPILE_MMX
686
#endif
687

    
688
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
689
#define COMPILE_MMX2
690
#endif
691

    
692
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
693
#define COMPILE_3DNOW
694
#endif
695
#endif //ARCH_X86 || ARCH_X86_64
696

    
697
#undef HAVE_MMX
698
#undef HAVE_MMX2
699
#undef HAVE_3DNOW
700

    
701
#ifdef COMPILE_C
702
#undef HAVE_MMX
703
#undef HAVE_MMX2
704
#undef HAVE_3DNOW
705
#undef HAVE_ALTIVEC
706
#define RENAME(a) a ## _C
707
#include "swscale_template.c"
708
#endif
709

    
710
#ifdef ARCH_POWERPC
711
#ifdef COMPILE_ALTIVEC
712
#undef RENAME
713
#define HAVE_ALTIVEC
714
#define RENAME(a) a ## _altivec
715
#include "swscale_template.c"
716
#endif
717
#endif //ARCH_POWERPC
718

    
719
#if defined(ARCH_X86) || defined(ARCH_X86_64)
720

    
721
//X86 versions
722
/*
723
#undef RENAME
724
#undef HAVE_MMX
725
#undef HAVE_MMX2
726
#undef HAVE_3DNOW
727
#define ARCH_X86
728
#define RENAME(a) a ## _X86
729
#include "swscale_template.c"
730
*/
731
//MMX versions
732
#ifdef COMPILE_MMX
733
#undef RENAME
734
#define HAVE_MMX
735
#undef HAVE_MMX2
736
#undef HAVE_3DNOW
737
#define RENAME(a) a ## _MMX
738
#include "swscale_template.c"
739
#endif
740

    
741
//MMX2 versions
742
#ifdef COMPILE_MMX2
743
#undef RENAME
744
#define HAVE_MMX
745
#define HAVE_MMX2
746
#undef HAVE_3DNOW
747
#define RENAME(a) a ## _MMX2
748
#include "swscale_template.c"
749
#endif
750

    
751
//3DNOW versions
752
#ifdef COMPILE_3DNOW
753
#undef RENAME
754
#define HAVE_MMX
755
#undef HAVE_MMX2
756
#define HAVE_3DNOW
757
#define RENAME(a) a ## _3DNow
758
#include "swscale_template.c"
759
#endif
760

    
761
#endif //ARCH_X86 || ARCH_X86_64
762

    
763
// minor note: the HAVE_xyz is messed up after that line so don't use it
764

    
765
static double getSplineCoeff(double a, double b, double c, double d, double dist)
766
{
767
//        printf("%f %f %f %f %f\n", a,b,c,d,dist);
768
        if(dist<=1.0)         return ((d*dist + c)*dist + b)*dist +a;
769
        else                return getSplineCoeff(        0.0, 
770
                                                 b+ 2.0*c + 3.0*d,
771
                                                        c + 3.0*d,
772
                                                -b- 3.0*c - 6.0*d,
773
                                                dist-1.0);
774
}
775

    
776
static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
777
                              int srcW, int dstW, int filterAlign, int one, int flags,
778
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
779
{
780
        int i;
781
        int filterSize;
782
        int filter2Size;
783
        int minFilterSize;
784
        double *filter=NULL;
785
        double *filter2=NULL;
786
#if defined(ARCH_X86) || defined(ARCH_X86_64)
787
        if(flags & SWS_CPU_CAPS_MMX)
788
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
789
#endif
790

    
791
        // Note the +1 is for the MMXscaler which reads over the end
792
        *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
793

    
794
        if(ABS(xInc - 0x10000) <10) // unscaled
795
        {
796
                int i;
797
                filterSize= 1;
798
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
799
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
800

    
801
                for(i=0; i<dstW; i++)
802
                {
803
                        filter[i*filterSize]=1;
804
                        (*filterPos)[i]=i;
805
                }
806

    
807
        }
808
        else if(flags&SWS_POINT) // lame looking point sampling mode
809
        {
810
                int i;
811
                int xDstInSrc;
812
                filterSize= 1;
813
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
814
                
815
                xDstInSrc= xInc/2 - 0x8000;
816
                for(i=0; i<dstW; i++)
817
                {
818
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
819

    
820
                        (*filterPos)[i]= xx;
821
                        filter[i]= 1.0;
822
                        xDstInSrc+= xInc;
823
                }
824
        }
825
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
826
        {
827
                int i;
828
                int xDstInSrc;
829
                if     (flags&SWS_BICUBIC) filterSize= 4;
830
                else if(flags&SWS_X      ) filterSize= 4;
831
                else                           filterSize= 2; // SWS_BILINEAR / SWS_AREA 
832
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
833

    
834
                xDstInSrc= xInc/2 - 0x8000;
835
                for(i=0; i<dstW; i++)
836
                {
837
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
838
                        int j;
839

    
840
                        (*filterPos)[i]= xx;
841
                                //Bilinear upscale / linear interpolate / Area averaging
842
                                for(j=0; j<filterSize; j++)
843
                                {
844
                                        double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
845
                                        double coeff= 1.0 - d;
846
                                        if(coeff<0) coeff=0;
847
                                        filter[i*filterSize + j]= coeff;
848
                                        xx++;
849
                                }
850
                        xDstInSrc+= xInc;
851
                }
852
        }
853
        else
854
        {
855
                double xDstInSrc;
856
                double sizeFactor, filterSizeInSrc;
857
                const double xInc1= (double)xInc / (double)(1<<16);
858

    
859
                if     (flags&SWS_BICUBIC)        sizeFactor= 4.0;
860
                else if(flags&SWS_X)                sizeFactor= 8.0;
861
                else if(flags&SWS_AREA)                sizeFactor= 1.0; //downscale only, for upscale it is bilinear
862
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
863
                else if(flags&SWS_LANCZOS)        sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
864
                else if(flags&SWS_SINC)                sizeFactor= 20.0; // infinite ;)
865
                else if(flags&SWS_SPLINE)        sizeFactor= 20.0;  // infinite ;)
866
                else if(flags&SWS_BILINEAR)        sizeFactor= 2.0;
867
                else {
868
                        sizeFactor= 0.0; //GCC warning killer
869
                        ASSERT(0)
870
                }
871
                
872
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
873
                else                        filterSizeInSrc= sizeFactor*srcW / (double)dstW;
874

    
875
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
876
                if(filterSize > srcW-2) filterSize=srcW-2;
877

    
878
                filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
879

    
880
                xDstInSrc= xInc1 / 2.0 - 0.5;
881
                for(i=0; i<dstW; i++)
882
                {
883
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
884
                        int j;
885
                        (*filterPos)[i]= xx;
886
                        for(j=0; j<filterSize; j++)
887
                        {
888
                                double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
889
                                double coeff;
890
                                if(flags & SWS_BICUBIC)
891
                                {
892
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
893
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
894

    
895
                                        if(d<1.0) 
896
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
897
                                        else if(d<2.0)
898
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
899
                                        else
900
                                                coeff=0.0;
901
                                }
902
/*                                else if(flags & SWS_X)
903
                                {
904
                                        double p= param ? param*0.01 : 0.3;
905
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
906
                                        coeff*= pow(2.0, - p*d*d);
907
                                }*/
908
                                else if(flags & SWS_X)
909
                                {
910
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
911
                                        
912
                                        if(d<1.0)
913
                                                coeff = cos(d*PI);
914
                                        else
915
                                                coeff=-1.0;
916
                                        if(coeff<0.0)         coeff= -pow(-coeff, A);
917
                                        else                coeff=  pow( coeff, A);
918
                                        coeff= coeff*0.5 + 0.5;
919
                                }
920
                                else if(flags & SWS_AREA)
921
                                {
922
                                        double srcPixelSize= 1.0/xInc1;
923
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
924
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
925
                                        else coeff=0.0;
926
                                }
927
                                else if(flags & SWS_GAUSS)
928
                                {
929
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
930
                                        coeff = pow(2.0, - p*d*d);
931
                                }
932
                                else if(flags & SWS_SINC)
933
                                {
934
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
935
                                }
936
                                else if(flags & SWS_LANCZOS)
937
                                {
938
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
939
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
940
                                        if(d>p) coeff=0;
941
                                }
942
                                else if(flags & SWS_BILINEAR)
943
                                {
944
                                        coeff= 1.0 - d;
945
                                        if(coeff<0) coeff=0;
946
                                }
947
                                else if(flags & SWS_SPLINE)
948
                                {
949
                                        double p=-2.196152422706632;
950
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
951
                                }
952
                                else {
953
                                        coeff= 0.0; //GCC warning killer
954
                                        ASSERT(0)
955
                                }
956

    
957
                                filter[i*filterSize + j]= coeff;
958
                                xx++;
959
                        }
960
                        xDstInSrc+= xInc1;
961
                }
962
        }
963

    
964
        /* apply src & dst Filter to filter -> filter2
965
           free(filter);
966
        */
967
        ASSERT(filterSize>0)
968
        filter2Size= filterSize;
969
        if(srcFilter) filter2Size+= srcFilter->length - 1;
970
        if(dstFilter) filter2Size+= dstFilter->length - 1;
971
        ASSERT(filter2Size>0)
972
        filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
973

    
974
        for(i=0; i<dstW; i++)
975
        {
976
                int j;
977
                SwsVector scaleFilter;
978
                SwsVector *outVec;
979

    
980
                scaleFilter.coeff= filter + i*filterSize;
981
                scaleFilter.length= filterSize;
982

    
983
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
984
                else              outVec= &scaleFilter;
985

    
986
                ASSERT(outVec->length == filter2Size)
987
                //FIXME dstFilter
988

    
989
                for(j=0; j<outVec->length; j++)
990
                {
991
                        filter2[i*filter2Size + j]= outVec->coeff[j];
992
                }
993

    
994
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
995

    
996
                if(outVec != &scaleFilter) sws_freeVec(outVec);
997
        }
998
        free(filter); filter=NULL;
999

    
1000
        /* try to reduce the filter-size (step1 find size and shift left) */
1001
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1002
        minFilterSize= 0;
1003
        for(i=dstW-1; i>=0; i--)
1004
        {
1005
                int min= filter2Size;
1006
                int j;
1007
                double cutOff=0.0;
1008

    
1009
                /* get rid off near zero elements on the left by shifting left */
1010
                for(j=0; j<filter2Size; j++)
1011
                {
1012
                        int k;
1013
                        cutOff += ABS(filter2[i*filter2Size]);
1014

    
1015
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1016

    
1017
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1018
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1019

    
1020
                        // Move filter coeffs left
1021
                        for(k=1; k<filter2Size; k++)
1022
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1023
                        filter2[i*filter2Size + k - 1]= 0.0;
1024
                        (*filterPos)[i]++;
1025
                }
1026

    
1027
                cutOff=0.0;
1028
                /* count near zeros on the right */
1029
                for(j=filter2Size-1; j>0; j--)
1030
                {
1031
                        cutOff += ABS(filter2[i*filter2Size + j]);
1032

    
1033
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1034
                        min--;
1035
                }
1036

    
1037
                if(min>minFilterSize) minFilterSize= min;
1038
        }
1039

    
1040
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1041
          // we can handle the special case 4,
1042
          // so we don't want to go to the full 8
1043
          if (minFilterSize < 5)
1044
            filterAlign = 4;
1045

    
1046
          // we really don't want to waste our time
1047
          // doing useless computation, so fall-back on
1048
          // the scalar C code for very small filter.
1049
          // vectorizing is worth it only if you have
1050
          // decent-sized vector.
1051
          if (minFilterSize < 3)
1052
            filterAlign = 1;
1053
        }
1054

    
1055
        ASSERT(minFilterSize > 0)
1056
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1057
        ASSERT(filterSize > 0)
1058
        filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1059
        *outFilterSize= filterSize;
1060

    
1061
        if(flags&SWS_PRINT_INFO)
1062
                MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1063
        /* try to reduce the filter-size (step2 reduce it) */
1064
        for(i=0; i<dstW; i++)
1065
        {
1066
                int j;
1067

    
1068
                for(j=0; j<filterSize; j++)
1069
                {
1070
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1071
                        else                   filter[i*filterSize + j]= filter2[i*filter2Size + j];
1072
                }
1073
        }
1074
        free(filter2); filter2=NULL;
1075
        
1076

    
1077
        //FIXME try to align filterpos if possible
1078

    
1079
        //fix borders
1080
        for(i=0; i<dstW; i++)
1081
        {
1082
                int j;
1083
                if((*filterPos)[i] < 0)
1084
                {
1085
                        // Move filter coeffs left to compensate for filterPos
1086
                        for(j=1; j<filterSize; j++)
1087
                        {
1088
                                int left= MAX(j + (*filterPos)[i], 0);
1089
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1090
                                filter[i*filterSize + j]=0;
1091
                        }
1092
                        (*filterPos)[i]= 0;
1093
                }
1094

    
1095
                if((*filterPos)[i] + filterSize > srcW)
1096
                {
1097
                        int shift= (*filterPos)[i] + filterSize - srcW;
1098
                        // Move filter coeffs right to compensate for filterPos
1099
                        for(j=filterSize-2; j>=0; j--)
1100
                        {
1101
                                int right= MIN(j + shift, filterSize-1);
1102
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1103
                                filter[i*filterSize +j]=0;
1104
                        }
1105
                        (*filterPos)[i]= srcW - filterSize;
1106
                }
1107
        }
1108

    
1109
        // Note the +1 is for the MMXscaler which reads over the end
1110
        *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t));
1111
        memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1112

    
1113
        /* Normalize & Store in outFilter */
1114
        for(i=0; i<dstW; i++)
1115
        {
1116
                int j;
1117
                double error=0;
1118
                double sum=0;
1119
                double scale= one;
1120

    
1121
                for(j=0; j<filterSize; j++)
1122
                {
1123
                        sum+= filter[i*filterSize + j];
1124
                }
1125
                scale/= sum;
1126
                for(j=0; j<*outFilterSize; j++)
1127
                {
1128
                        double v= filter[i*filterSize + j]*scale + error;
1129
                        int intV= floor(v + 0.5);
1130
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1131
                        error = v - intV;
1132
                }
1133
        }
1134
        
1135
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1136
        for(i=0; i<*outFilterSize; i++)
1137
        {
1138
                int j= dstW*(*outFilterSize);
1139
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1140
        }
1141

    
1142
        free(filter);
1143
}
1144

    
1145
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1146
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1147
{
1148
        uint8_t *fragmentA;
1149
        long imm8OfPShufW1A;
1150
        long imm8OfPShufW2A;
1151
        long fragmentLengthA;
1152
        uint8_t *fragmentB;
1153
        long imm8OfPShufW1B;
1154
        long imm8OfPShufW2B;
1155
        long fragmentLengthB;
1156
        int fragmentPos;
1157

    
1158
        int xpos, i;
1159

    
1160
        // create an optimized horizontal scaling routine
1161

    
1162
        //code fragment
1163

    
1164
        asm volatile(
1165
                "jmp 9f                                \n\t"
1166
        // Begin
1167
                "0:                                \n\t"
1168
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1169
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1170
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1171
                "punpcklbw %%mm7, %%mm1                \n\t"
1172
                "punpcklbw %%mm7, %%mm0                \n\t"
1173
                "pshufw $0xFF, %%mm1, %%mm1        \n\t"
1174
                "1:                                \n\t"
1175
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1176
                "2:                                \n\t"
1177
                "psubw %%mm1, %%mm0                \n\t"
1178
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1179
                "pmullw %%mm3, %%mm0                \n\t"
1180
                "psllw $7, %%mm1                \n\t"
1181
                "paddw %%mm1, %%mm0                \n\t"
1182

    
1183
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1184

    
1185
                "add $8, %%"REG_a"                \n\t"
1186
        // End
1187
                "9:                                \n\t"
1188
//                "int $3\n\t"
1189
                "lea 0b, %0                        \n\t"
1190
                "lea 1b, %1                        \n\t"
1191
                "lea 2b, %2                        \n\t"
1192
                "dec %1                                \n\t"
1193
                "dec %2                                \n\t"
1194
                "sub %0, %1                        \n\t"
1195
                "sub %0, %2                        \n\t"
1196
                "lea 9b, %3                        \n\t"
1197
                "sub %0, %3                        \n\t"
1198

    
1199

    
1200
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1201
                "=r" (fragmentLengthA)
1202
        );
1203

    
1204
        asm volatile(
1205
                "jmp 9f                                \n\t"
1206
        // Begin
1207
                "0:                                \n\t"
1208
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1209
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1210
                "punpcklbw %%mm7, %%mm0                \n\t"
1211
                "pshufw $0xFF, %%mm0, %%mm1        \n\t"
1212
                "1:                                \n\t"
1213
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1214
                "2:                                \n\t"
1215
                "psubw %%mm1, %%mm0                \n\t"
1216
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1217
                "pmullw %%mm3, %%mm0                \n\t"
1218
                "psllw $7, %%mm1                \n\t"
1219
                "paddw %%mm1, %%mm0                \n\t"
1220

    
1221
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1222

    
1223
                "add $8, %%"REG_a"                \n\t"
1224
        // End
1225
                "9:                                \n\t"
1226
//                "int $3\n\t"
1227
                "lea 0b, %0                        \n\t"
1228
                "lea 1b, %1                        \n\t"
1229
                "lea 2b, %2                        \n\t"
1230
                "dec %1                                \n\t"
1231
                "dec %2                                \n\t"
1232
                "sub %0, %1                        \n\t"
1233
                "sub %0, %2                        \n\t"
1234
                "lea 9b, %3                        \n\t"
1235
                "sub %0, %3                        \n\t"
1236

    
1237

    
1238
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1239
                "=r" (fragmentLengthB)
1240
        );
1241

    
1242
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1243
        fragmentPos=0;
1244
        
1245
        for(i=0; i<dstW/numSplits; i++)
1246
        {
1247
                int xx=xpos>>16;
1248

    
1249
                if((i&3) == 0)
1250
                {
1251
                        int a=0;
1252
                        int b=((xpos+xInc)>>16) - xx;
1253
                        int c=((xpos+xInc*2)>>16) - xx;
1254
                        int d=((xpos+xInc*3)>>16) - xx;
1255

    
1256
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1257
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1258
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1259
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1260
                        filterPos[i/2]= xx;
1261

    
1262
                        if(d+1<4)
1263
                        {
1264
                                int maxShift= 3-(d+1);
1265
                                int shift=0;
1266

    
1267
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1268

    
1269
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1270
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1271
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1272
                                        a | (b<<2) | (c<<4) | (d<<6);
1273

    
1274
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1275
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1276

    
1277
                                if(shift && i>=shift)
1278
                                {
1279
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1280
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1281
                                        filterPos[i/2]-=shift;
1282
                                }
1283

    
1284
                                fragmentPos+= fragmentLengthB;
1285
                        }
1286
                        else
1287
                        {
1288
                                int maxShift= 3-d;
1289
                                int shift=0;
1290

    
1291
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1292

    
1293
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1294
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1295
                                        a | (b<<2) | (c<<4) | (d<<6);
1296

    
1297
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1298
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1299

    
1300
                                if(shift && i>=shift)
1301
                                {
1302
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1303
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1304
                                        filterPos[i/2]-=shift;
1305
                                }
1306

    
1307
                                fragmentPos+= fragmentLengthA;
1308
                        }
1309

    
1310
                        funnyCode[fragmentPos]= RET;
1311
                }
1312
                xpos+=xInc;
1313
        }
1314
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1315
}
1316
#endif // ARCH_X86 || ARCH_X86_64
1317

    
1318
static void globalInit(){
1319
    // generating tables:
1320
    int i;
1321
    for(i=0; i<768; i++){
1322
        int c= MIN(MAX(i-256, 0), 255);
1323
        clip_table[i]=c;
1324
    }
1325
}
1326

    
1327
static SwsFunc getSwsFunc(int flags){
1328
    
1329
#ifdef RUNTIME_CPUDETECT
1330
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1331
        // ordered per speed fasterst first
1332
        if(flags & SWS_CPU_CAPS_MMX2)
1333
                return swScale_MMX2;
1334
        else if(flags & SWS_CPU_CAPS_3DNOW)
1335
                return swScale_3DNow;
1336
        else if(flags & SWS_CPU_CAPS_MMX)
1337
                return swScale_MMX;
1338
        else
1339
                return swScale_C;
1340

    
1341
#else
1342
#ifdef ARCH_POWERPC
1343
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1344
          return swScale_altivec;
1345
        else
1346
          return swScale_C;
1347
#endif
1348
        return swScale_C;
1349
#endif
1350
#else //RUNTIME_CPUDETECT
1351
#ifdef HAVE_MMX2
1352
        return swScale_MMX2;
1353
#elif defined (HAVE_3DNOW)
1354
        return swScale_3DNow;
1355
#elif defined (HAVE_MMX)
1356
        return swScale_MMX;
1357
#elif defined (HAVE_ALTIVEC)
1358
        return swScale_altivec;
1359
#else
1360
        return swScale_C;
1361
#endif
1362
#endif //!RUNTIME_CPUDETECT
1363
}
1364

    
1365
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1366
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1367
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1368
        /* Copy Y plane */
1369
        if(dstStride[0]==srcStride[0])
1370
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1371
        else
1372
        {
1373
                int i;
1374
                uint8_t *srcPtr= src[0];
1375
                uint8_t *dstPtr= dst;
1376
                for(i=0; i<srcSliceH; i++)
1377
                {
1378
                        memcpy(dstPtr, srcPtr, srcStride[0]);
1379
                        srcPtr+= srcStride[0];
1380
                        dstPtr+= dstStride[0];
1381
                }
1382
        }
1383
        dst = dstParam[1] + dstStride[1]*srcSliceY;
1384
        interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] );
1385

    
1386
        return srcSliceH;
1387
}
1388

    
1389
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1390
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1391
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1392

    
1393
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1394

    
1395
        return srcSliceH;
1396
}
1397

    
1398
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1399
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1400
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1401

    
1402
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1403

    
1404
        return srcSliceH;
1405
}
1406

    
1407
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1408
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1409
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1410
        const int srcFormat= c->srcFormat;
1411
        const int dstFormat= c->dstFormat;
1412
        const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1413
        const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1414
        const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1415
        const int dstId= (dstFormat&0xFF)>>2;
1416
        void (*conv)(const uint8_t *src, uint8_t *dst, unsigned src_size)=NULL;
1417

    
1418
        /* BGR -> BGR */
1419
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1420
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1421
                switch(srcId | (dstId<<4)){
1422
                case 0x34: conv= rgb16to15; break;
1423
                case 0x36: conv= rgb24to15; break;
1424
                case 0x38: conv= rgb32to15; break;
1425
                case 0x43: conv= rgb15to16; break;
1426
                case 0x46: conv= rgb24to16; break;
1427
                case 0x48: conv= rgb32to16; break;
1428
                case 0x63: conv= rgb15to24; break;
1429
                case 0x64: conv= rgb16to24; break;
1430
                case 0x68: conv= rgb32to24; break;
1431
                case 0x83: conv= rgb15to32; break;
1432
                case 0x84: conv= rgb16to32; break;
1433
                case 0x86: conv= rgb24to32; break;
1434
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1435
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1436
                }
1437
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1438
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1439
                switch(srcId | (dstId<<4)){
1440
                case 0x33: conv= rgb15tobgr15; break;
1441
                case 0x34: conv= rgb16tobgr15; break;
1442
                case 0x36: conv= rgb24tobgr15; break;
1443
                case 0x38: conv= rgb32tobgr15; break;
1444
                case 0x43: conv= rgb15tobgr16; break;
1445
                case 0x44: conv= rgb16tobgr16; break;
1446
                case 0x46: conv= rgb24tobgr16; break;
1447
                case 0x48: conv= rgb32tobgr16; break;
1448
                case 0x63: conv= rgb15tobgr24; break;
1449
                case 0x64: conv= rgb16tobgr24; break;
1450
                case 0x66: conv= rgb24tobgr24; break;
1451
                case 0x68: conv= rgb32tobgr24; break;
1452
                case 0x83: conv= rgb15tobgr32; break;
1453
                case 0x84: conv= rgb16tobgr32; break;
1454
                case 0x86: conv= rgb24tobgr32; break;
1455
                case 0x88: conv= rgb32tobgr32; break;
1456
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1457
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1458
                }
1459
        }else{
1460
                MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1461
                         vo_format_name(srcFormat), vo_format_name(dstFormat));
1462
        }
1463

    
1464
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1465
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1466
        else
1467
        {
1468
                int i;
1469
                uint8_t *srcPtr= src[0];
1470
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1471

    
1472
                for(i=0; i<srcSliceH; i++)
1473
                {
1474
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1475
                        srcPtr+= srcStride[0];
1476
                        dstPtr+= dstStride[0];
1477
                }
1478
        }     
1479
        return srcSliceH;
1480
}
1481

    
1482
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1483
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1484

    
1485
        rgb24toyv12(
1486
                src[0], 
1487
                dst[0]+ srcSliceY    *dstStride[0], 
1488
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1489
                dst[2]+(srcSliceY>>1)*dstStride[2],
1490
                c->srcW, srcSliceH, 
1491
                dstStride[0], dstStride[1], srcStride[0]);
1492
        return srcSliceH;
1493
}
1494

    
1495
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1496
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1497
        int i;
1498

    
1499
        /* copy Y */
1500
        if(srcStride[0]==dstStride[0]) 
1501
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1502
        else{
1503
                uint8_t *srcPtr= src[0];
1504
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1505

    
1506
                for(i=0; i<srcSliceH; i++)
1507
                {
1508
                        memcpy(dstPtr, srcPtr, c->srcW);
1509
                        srcPtr+= srcStride[0];
1510
                        dstPtr+= dstStride[0];
1511
                }
1512
        }
1513

    
1514
        if(c->dstFormat==IMGFMT_YV12){
1515
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1516
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1517
        }else{
1518
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1519
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1520
        }
1521
        return srcSliceH;
1522
}
1523

    
1524
/**
1525
 * bring pointers in YUV order instead of YVU
1526
 */
1527
static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1528
        if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1529
           || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1530
                sortedP[0]= p[0];
1531
                sortedP[1]= p[2];
1532
                sortedP[2]= p[1];
1533
                sortedStride[0]= stride[0];
1534
                sortedStride[1]= stride[2];
1535
                sortedStride[2]= stride[1];
1536
        }
1537
        else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1538
        {
1539
                sortedP[0]= p[0];
1540
                sortedP[1]= 
1541
                sortedP[2]= NULL;
1542
                sortedStride[0]= stride[0];
1543
                sortedStride[1]= 
1544
                sortedStride[2]= 0;
1545
        }
1546
        else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1547
        {
1548
                sortedP[0]= p[0];
1549
                sortedP[1]= p[1];
1550
                sortedP[2]= p[2];
1551
                sortedStride[0]= stride[0];
1552
                sortedStride[1]= stride[1];
1553
                sortedStride[2]= stride[2];
1554
        }else{
1555
                MSG_ERR("internal error in orderYUV\n");
1556
        }
1557
}
1558

    
1559
/* unscaled copy like stuff (assumes nearly identical formats) */
1560
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1561
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1562

    
1563
        if(isPacked(c->srcFormat))
1564
        {
1565
                if(dstStride[0]==srcStride[0])
1566
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1567
                else
1568
                {
1569
                        int i;
1570
                        uint8_t *srcPtr= src[0];
1571
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1572
                        int length=0;
1573

    
1574
                        /* universal length finder */
1575
                        while(length+c->srcW <= ABS(dstStride[0]) 
1576
                           && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1577
                        ASSERT(length!=0);
1578

    
1579
                        for(i=0; i<srcSliceH; i++)
1580
                        {
1581
                                memcpy(dstPtr, srcPtr, length);
1582
                                srcPtr+= srcStride[0];
1583
                                dstPtr+= dstStride[0];
1584
                        }
1585
                }
1586
        }
1587
        else 
1588
        { /* Planar YUV or gray */
1589
                int plane;
1590
                for(plane=0; plane<3; plane++)
1591
                {
1592
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1593
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1594
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1595

    
1596
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1597
                        {
1598
                                if(!isGray(c->dstFormat))
1599
                                        memset(dst[plane], 128, dstStride[plane]*height);
1600
                        }
1601
                        else
1602
                        {
1603
                                if(dstStride[plane]==srcStride[plane])
1604
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1605
                                else
1606
                                {
1607
                                        int i;
1608
                                        uint8_t *srcPtr= src[plane];
1609
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1610
                                        for(i=0; i<height; i++)
1611
                                        {
1612
                                                memcpy(dstPtr, srcPtr, length);
1613
                                                srcPtr+= srcStride[plane];
1614
                                                dstPtr+= dstStride[plane];
1615
                                        }
1616
                                }
1617
                        }
1618
                }
1619
        }
1620
        return srcSliceH;
1621
}
1622

    
1623
static int remove_dup_fourcc(int fourcc)
1624
{
1625
        switch(fourcc)
1626
        {
1627
            case IMGFMT_I420:
1628
            case IMGFMT_IYUV: return IMGFMT_YV12;
1629
            case IMGFMT_Y8  : return IMGFMT_Y800;
1630
            case IMGFMT_IF09: return IMGFMT_YVU9;
1631
            default: return fourcc;
1632
        }
1633
}
1634

    
1635
static void getSubSampleFactors(int *h, int *v, int format){
1636
        switch(format){
1637
        case IMGFMT_UYVY:
1638
        case IMGFMT_YUY2:
1639
                *h=1;
1640
                *v=0;
1641
                break;
1642
        case IMGFMT_YV12:
1643
        case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1644
                *h=1;
1645
                *v=1;
1646
                break;
1647
        case IMGFMT_YVU9:
1648
                *h=2;
1649
                *v=2;
1650
                break;
1651
        case IMGFMT_444P:
1652
                *h=0;
1653
                *v=0;
1654
                break;
1655
        case IMGFMT_422P:
1656
                *h=1;
1657
                *v=0;
1658
                break;
1659
        case IMGFMT_411P:
1660
                *h=2;
1661
                *v=0;
1662
                break;
1663
        default:
1664
                *h=0;
1665
                *v=0;
1666
                break;
1667
        }
1668
}
1669

    
1670
static uint16_t roundToInt16(int64_t f){
1671
        int r= (f + (1<<15))>>16;
1672
             if(r<-0x7FFF) return 0x8000;
1673
        else if(r> 0x7FFF) return 0x7FFF;
1674
        else               return r;
1675
}
1676

    
1677
/**
1678
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1679
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1680
 * @return -1 if not supported
1681
 */
1682
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1683
        int64_t crv =  inv_table[0];
1684
        int64_t cbu =  inv_table[1];
1685
        int64_t cgu = -inv_table[2];
1686
        int64_t cgv = -inv_table[3];
1687
        int64_t cy  = 1<<16;
1688
        int64_t oy  = 0;
1689

    
1690
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1691
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1692
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1693

    
1694
        c->brightness= brightness;
1695
        c->contrast  = contrast;
1696
        c->saturation= saturation;
1697
        c->srcRange  = srcRange;
1698
        c->dstRange  = dstRange;
1699

    
1700
        c->uOffset=   0x0400040004000400LL;
1701
        c->vOffset=   0x0400040004000400LL;
1702

    
1703
        if(!srcRange){
1704
                cy= (cy*255) / 219;
1705
                oy= 16<<16;
1706
        }
1707

    
1708
        cy = (cy *contrast             )>>16;
1709
        crv= (crv*contrast * saturation)>>32;
1710
        cbu= (cbu*contrast * saturation)>>32;
1711
        cgu= (cgu*contrast * saturation)>>32;
1712
        cgv= (cgv*contrast * saturation)>>32;
1713

    
1714
        oy -= 256*brightness;
1715

    
1716
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1717
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1718
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1719
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1720
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1721
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1722

    
1723
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1724
        //FIXME factorize
1725

    
1726
#ifdef HAVE_ALTIVEC
1727
        yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1728
#endif        
1729
        return 0;
1730
}
1731

    
1732
/**
1733
 * @return -1 if not supported
1734
 */
1735
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1736
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1737

    
1738
        *inv_table = c->srcColorspaceTable;
1739
        *table     = c->dstColorspaceTable;
1740
        *srcRange  = c->srcRange;
1741
        *dstRange  = c->dstRange;
1742
        *brightness= c->brightness;
1743
        *contrast  = c->contrast;
1744
        *saturation= c->saturation;
1745
        
1746
        return 0;        
1747
}
1748

    
1749
SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1750
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1751

    
1752
        SwsContext *c;
1753
        int i;
1754
        int usesVFilter, usesHFilter;
1755
        int unscaled, needsDither;
1756
        int srcFormat, dstFormat;
1757
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1758
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1759
        if(flags & SWS_CPU_CAPS_MMX)
1760
                asm volatile("emms\n\t"::: "memory");
1761
#endif
1762

    
1763
#ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1764
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1765
#ifdef HAVE_MMX2
1766
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1767
#elif defined (HAVE_3DNOW)
1768
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1769
#elif defined (HAVE_MMX)
1770
        flags |= SWS_CPU_CAPS_MMX;
1771
#elif defined (HAVE_ALTIVEC)
1772
        flags |= SWS_CPU_CAPS_ALTIVEC;
1773
#endif
1774
#endif
1775
        if(clip_table[512] != 255) globalInit();
1776
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1777

    
1778
        /* avoid duplicate Formats, so we don't need to check to much */
1779
        srcFormat = remove_dup_fourcc(origSrcFormat);
1780
        dstFormat = remove_dup_fourcc(origDstFormat);
1781

    
1782
        unscaled = (srcW == dstW && srcH == dstH);
1783
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1784
                     && (dstFormat&0xFF)<24
1785
                     && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1786

    
1787
        if(!isSupportedIn(srcFormat)) 
1788
        {
1789
                MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1790
                return NULL;
1791
        }
1792
        if(!isSupportedOut(dstFormat))
1793
        {
1794
                MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1795
                return NULL;
1796
        }
1797

    
1798
        /* sanity check */
1799
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1800
        {
1801
                 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1802
                        srcW, srcH, dstW, dstH);
1803
                return NULL;
1804
        }
1805

    
1806
        if(!dstFilter) dstFilter= &dummyFilter;
1807
        if(!srcFilter) srcFilter= &dummyFilter;
1808

    
1809
        c= memalign(64, sizeof(SwsContext));
1810
        memset(c, 0, sizeof(SwsContext));
1811

    
1812
        c->srcW= srcW;
1813
        c->srcH= srcH;
1814
        c->dstW= dstW;
1815
        c->dstH= dstH;
1816
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1817
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1818
        c->flags= flags;
1819
        c->dstFormat= dstFormat;
1820
        c->srcFormat= srcFormat;
1821
        c->origDstFormat= origDstFormat;
1822
        c->origSrcFormat= origSrcFormat;
1823
        c->vRounder= 4* 0x0001000100010001ULL;
1824

    
1825
        usesHFilter= usesVFilter= 0;
1826
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1827
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1828
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1829
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1830
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1831
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1832
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1833
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1834

    
1835
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1836
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1837

    
1838
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1839
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1840

    
1841
        // drop some chroma lines if the user wants it
1842
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1843
        c->chrSrcVSubSample+= c->vChrDrop;
1844

    
1845
        // drop every 2. pixel for chroma calculation unless user wants full chroma
1846
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
1847
                c->chrSrcHSubSample=1;
1848

    
1849
        if(param){
1850
                c->param[0] = param[0];
1851
                c->param[1] = param[1];
1852
        }else{
1853
                c->param[0] =
1854
                c->param[1] = SWS_PARAM_DEFAULT;
1855
        }
1856

    
1857
        c->chrIntHSubSample= c->chrDstHSubSample;
1858
        c->chrIntVSubSample= c->chrSrcVSubSample;
1859

    
1860
        // note the -((-x)>>y) is so that we allways round toward +inf
1861
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1862
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1863
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1864
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1865

    
1866
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16); 
1867

    
1868
        /* unscaled special Cases */
1869
        if(unscaled && !usesHFilter && !usesVFilter)
1870
        {
1871
                /* yv12_to_nv12 */
1872
                if(srcFormat == IMGFMT_YV12 && dstFormat == IMGFMT_NV12)
1873
                {
1874
                        c->swScale= PlanarToNV12Wrapper;
1875
                }
1876
                /* yuv2bgr */
1877
                if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1878
                {
1879
                        c->swScale= yuv2rgb_get_func_ptr(c);
1880
                }
1881
                
1882
                if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1883
                {
1884
                        c->swScale= yvu9toyv12Wrapper;
1885
                }
1886

    
1887
                /* bgr24toYV12 */
1888
                if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1889
                        c->swScale= bgr24toyv12Wrapper;
1890
                
1891
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1892
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
1893
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
1894
                   && !needsDither)
1895
                        c->swScale= rgb2rgbWrapper;
1896

    
1897
                /* LQ converters if -sws 0 or -sws 4*/
1898
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1899
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
1900
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
1901
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
1902
                          && needsDither)
1903
                                c->swScale= rgb2rgbWrapper;
1904

    
1905
                        /* yv12_to_yuy2 */
1906
                        if(srcFormat == IMGFMT_YV12 && 
1907
                            (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
1908
                        {
1909
                                if (dstFormat == IMGFMT_YUY2)
1910
                                    c->swScale= PlanarToYuy2Wrapper;
1911
                                else
1912
                                    c->swScale= PlanarToUyvyWrapper;
1913
                        }
1914
                }
1915

    
1916
#ifdef HAVE_ALTIVEC
1917
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
1918
                    ((srcFormat == IMGFMT_YV12 && 
1919
                      (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY)))) {
1920
                  // unscaled YV12 -> packed YUV, we want speed
1921
                  if (dstFormat == IMGFMT_YUY2)
1922
                    c->swScale= yv12toyuy2_unscaled_altivec;
1923
                  else
1924
                    c->swScale= yv12touyvy_unscaled_altivec;
1925
                }
1926
#endif
1927

    
1928
                /* simple copy */
1929
                if(   srcFormat == dstFormat
1930
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
1931
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
1932
                  )
1933
                {
1934
                        c->swScale= simpleCopy;
1935
                }
1936

    
1937
                if(c->swScale){
1938
                        if(flags&SWS_PRINT_INFO)
1939
                                MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
1940
                                        vo_format_name(srcFormat), vo_format_name(dstFormat));
1941
                        return c;
1942
                }
1943
        }
1944

    
1945
        if(flags & SWS_CPU_CAPS_MMX2)
1946
        {
1947
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
1948
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
1949
                {
1950
                        if(flags&SWS_PRINT_INFO)
1951
                                MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
1952
                }
1953
                if(usesHFilter) c->canMMX2BeUsed=0;
1954
        }
1955
        else
1956
                c->canMMX2BeUsed=0;
1957

    
1958
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
1959
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
1960

    
1961
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
1962
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
1963
        // n-2 is the last chrominance sample available
1964
        // this is not perfect, but noone shuld notice the difference, the more correct variant
1965
        // would be like the vertical one, but that would require some special code for the
1966
        // first and last pixel
1967
        if(flags&SWS_FAST_BILINEAR)
1968
        {
1969
                if(c->canMMX2BeUsed)
1970
                {
1971
                        c->lumXInc+= 20;
1972
                        c->chrXInc+= 20;
1973
                }
1974
                //we don't use the x86asm scaler if mmx is available
1975
                else if(flags & SWS_CPU_CAPS_MMX)
1976
                {
1977
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
1978
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
1979
                }
1980
        }
1981

    
1982
        /* precalculate horizontal scaler filter coefficients */
1983
        {
1984
                const int filterAlign=
1985
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
1986
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1987
                  1;
1988

    
1989
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
1990
                                 srcW      ,       dstW, filterAlign, 1<<14,
1991
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
1992
                                 srcFilter->lumH, dstFilter->lumH, c->param);
1993
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
1994
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
1995
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1996
                                 srcFilter->chrH, dstFilter->chrH, c->param);
1997

    
1998
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1999
// can't downscale !!!
2000
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2001
                {
2002
                        c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
2003
                        c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
2004
                        c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
2005
                        c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
2006

    
2007
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2008
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2009
                }
2010
#endif
2011
        } // Init Horizontal stuff
2012

    
2013

    
2014

    
2015
        /* precalculate vertical scaler filter coefficients */
2016
        {
2017
                const int filterAlign=
2018
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2019
                  1;
2020

    
2021
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2022
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2023
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2024
                                srcFilter->lumV, dstFilter->lumV, c->param);
2025
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2026
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2027
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2028
                                srcFilter->chrV, dstFilter->chrV, c->param);
2029
        }
2030

    
2031
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2032
        c->vLumBufSize= c->vLumFilterSize;
2033
        c->vChrBufSize= c->vChrFilterSize;
2034
        for(i=0; i<dstH; i++)
2035
        {
2036
                int chrI= i*c->chrDstH / dstH;
2037
                int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2038
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2039

    
2040
                nextSlice>>= c->chrSrcVSubSample;
2041
                nextSlice<<= c->chrSrcVSubSample;
2042
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2043
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2044
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2045
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2046
        }
2047

    
2048
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2049
        c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
2050
        c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
2051
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2052
        for(i=0; i<c->vLumBufSize; i++)
2053
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
2054
        for(i=0; i<c->vChrBufSize; i++)
2055
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
2056

    
2057
        //try to avoid drawing green stuff between the right end and the stride end
2058
        for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2059
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2060

    
2061
        ASSERT(c->chrDstH <= dstH)
2062

    
2063
        if(flags&SWS_PRINT_INFO)
2064
        {
2065
#ifdef DITHER1XBPP
2066
                char *dither= " dithered";
2067
#else
2068
                char *dither= "";
2069
#endif
2070
                if(flags&SWS_FAST_BILINEAR)
2071
                        MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2072
                else if(flags&SWS_BILINEAR)
2073
                        MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2074
                else if(flags&SWS_BICUBIC)
2075
                        MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2076
                else if(flags&SWS_X)
2077
                        MSG_INFO("\nSwScaler: Experimental scaler, ");
2078
                else if(flags&SWS_POINT)
2079
                        MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2080
                else if(flags&SWS_AREA)
2081
                        MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2082
                else if(flags&SWS_BICUBLIN)
2083
                        MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2084
                else if(flags&SWS_GAUSS)
2085
                        MSG_INFO("\nSwScaler: Gaussian scaler, ");
2086
                else if(flags&SWS_SINC)
2087
                        MSG_INFO("\nSwScaler: Sinc scaler, ");
2088
                else if(flags&SWS_LANCZOS)
2089
                        MSG_INFO("\nSwScaler: Lanczos scaler, ");
2090
                else if(flags&SWS_SPLINE)
2091
                        MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2092
                else
2093
                        MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2094

    
2095
                if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2096
                        MSG_INFO("from %s to%s %s ", 
2097
                                vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2098
                else
2099
                        MSG_INFO("from %s to %s ", 
2100
                                vo_format_name(srcFormat), vo_format_name(dstFormat));
2101

    
2102
                if(flags & SWS_CPU_CAPS_MMX2)
2103
                        MSG_INFO("using MMX2\n");
2104
                else if(flags & SWS_CPU_CAPS_3DNOW)
2105
                        MSG_INFO("using 3DNOW\n");
2106
                else if(flags & SWS_CPU_CAPS_MMX)
2107
                        MSG_INFO("using MMX\n");
2108
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2109
                        MSG_INFO("using AltiVec\n");
2110
                else 
2111
                        MSG_INFO("using C\n");
2112
        }
2113

    
2114
        if(flags & SWS_PRINT_INFO)
2115
        {
2116
                if(flags & SWS_CPU_CAPS_MMX)
2117
                {
2118
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2119
                                MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2120
                        else
2121
                        {
2122
                                if(c->hLumFilterSize==4)
2123
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2124
                                else if(c->hLumFilterSize==8)
2125
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2126
                                else
2127
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2128

    
2129
                                if(c->hChrFilterSize==4)
2130
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2131
                                else if(c->hChrFilterSize==8)
2132
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2133
                                else
2134
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2135
                        }
2136
                }
2137
                else
2138
                {
2139
#if defined(ARCH_X86) || defined(ARCH_X86_64)
2140
                        MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2141
#else
2142
                        if(flags & SWS_FAST_BILINEAR)
2143
                                MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2144
                        else
2145
                                MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2146
#endif
2147
                }
2148
                if(isPlanarYUV(dstFormat))
2149
                {
2150
                        if(c->vLumFilterSize==1)
2151
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2152
                        else
2153
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2154
                }
2155
                else
2156
                {
2157
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2158
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2159
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2160
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2161
                                MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2162
                        else
2163
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2164
                }
2165

    
2166
                if(dstFormat==IMGFMT_BGR24)
2167
                        MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2168
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2169
                else if(dstFormat==IMGFMT_BGR32)
2170
                        MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2171
                else if(dstFormat==IMGFMT_BGR16)
2172
                        MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2173
                else if(dstFormat==IMGFMT_BGR15)
2174
                        MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2175

    
2176
                MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2177
        }
2178
        if(flags & SWS_PRINT_INFO)
2179
        {
2180
                MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2181
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2182
                MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2183
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2184
        }
2185

    
2186
        c->swScale= getSwsFunc(flags);
2187
        return c;
2188
}
2189

    
2190
/**
2191
 * swscale warper, so we don't need to export the SwsContext.
2192
 * assumes planar YUV to be in YUV order instead of YVU
2193
 */
2194
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2195
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2196
        //copy strides, so they can safely be modified
2197
        int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2198
        int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2199
        return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2200
}
2201

    
2202
/**
2203
 * swscale warper, so we don't need to export the SwsContext
2204
 */
2205
int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2206
                           int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2207
        int srcStride[3];
2208
        int dstStride[3];
2209
        uint8_t *src[3];
2210
        uint8_t *dst[3];
2211
        sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2212
        sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2213
//printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2214

    
2215
        return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2216
}
2217

    
2218
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2219
                                float lumaSharpen, float chromaSharpen,
2220
                                float chromaHShift, float chromaVShift,
2221
                                int verbose)
2222
{
2223
        SwsFilter *filter= malloc(sizeof(SwsFilter));
2224

    
2225
        if(lumaGBlur!=0.0){
2226
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2227
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2228
        }else{
2229
                filter->lumH= sws_getIdentityVec();
2230
                filter->lumV= sws_getIdentityVec();
2231
        }
2232

    
2233
        if(chromaGBlur!=0.0){
2234
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2235
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2236
        }else{
2237
                filter->chrH= sws_getIdentityVec();
2238
                filter->chrV= sws_getIdentityVec();
2239
        }
2240

    
2241
        if(chromaSharpen!=0.0){
2242
                SwsVector *g= sws_getConstVec(-1.0, 3);
2243
                SwsVector *id= sws_getConstVec(10.0/chromaSharpen, 1);
2244
                g->coeff[1]=2.0;
2245
                sws_addVec(id, g);
2246
                sws_convVec(filter->chrH, id);
2247
                sws_convVec(filter->chrV, id);
2248
                sws_freeVec(g);
2249
                sws_freeVec(id);
2250
        }
2251

    
2252
        if(lumaSharpen!=0.0){
2253
                SwsVector *g= sws_getConstVec(-1.0, 3);
2254
                SwsVector *id= sws_getConstVec(10.0/lumaSharpen, 1);
2255
                g->coeff[1]=2.0;
2256
                sws_addVec(id, g);
2257
                sws_convVec(filter->lumH, id);
2258
                sws_convVec(filter->lumV, id);
2259
                sws_freeVec(g);
2260
                sws_freeVec(id);
2261
        }
2262

    
2263
        if(chromaHShift != 0.0)
2264
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2265

    
2266
        if(chromaVShift != 0.0)
2267
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2268

    
2269
        sws_normalizeVec(filter->chrH, 1.0);
2270
        sws_normalizeVec(filter->chrV, 1.0);
2271
        sws_normalizeVec(filter->lumH, 1.0);
2272
        sws_normalizeVec(filter->lumV, 1.0);
2273

    
2274
        if(verbose) sws_printVec(filter->chrH);
2275
        if(verbose) sws_printVec(filter->lumH);
2276

    
2277
        return filter;
2278
}
2279

    
2280
/**
2281
 * returns a normalized gaussian curve used to filter stuff
2282
 * quality=3 is high quality, lowwer is lowwer quality
2283
 */
2284
SwsVector *sws_getGaussianVec(double variance, double quality){
2285
        const int length= (int)(variance*quality + 0.5) | 1;
2286
        int i;
2287
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2288
        double middle= (length-1)*0.5;
2289
        SwsVector *vec= malloc(sizeof(SwsVector));
2290

    
2291
        vec->coeff= coeff;
2292
        vec->length= length;
2293

    
2294
        for(i=0; i<length; i++)
2295
        {
2296
                double dist= i-middle;
2297
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2298
        }
2299

    
2300
        sws_normalizeVec(vec, 1.0);
2301

    
2302
        return vec;
2303
}
2304

    
2305
SwsVector *sws_getConstVec(double c, int length){
2306
        int i;
2307
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2308
        SwsVector *vec= malloc(sizeof(SwsVector));
2309

    
2310
        vec->coeff= coeff;
2311
        vec->length= length;
2312

    
2313
        for(i=0; i<length; i++)
2314
                coeff[i]= c;
2315

    
2316
        return vec;
2317
}
2318

    
2319

    
2320
SwsVector *sws_getIdentityVec(void){
2321
        double *coeff= memalign(sizeof(double), sizeof(double));
2322
        SwsVector *vec= malloc(sizeof(SwsVector));
2323
        coeff[0]= 1.0;
2324

    
2325
        vec->coeff= coeff;
2326
        vec->length= 1;
2327

    
2328
        return vec;
2329
}
2330

    
2331
void sws_normalizeVec(SwsVector *a, double height){
2332
        int i;
2333
        double sum=0;
2334
        double inv;
2335

    
2336
        for(i=0; i<a->length; i++)
2337
                sum+= a->coeff[i];
2338

    
2339
        inv= height/sum;
2340

    
2341
        for(i=0; i<a->length; i++)
2342
                a->coeff[i]*= inv;
2343
}
2344

    
2345
void sws_scaleVec(SwsVector *a, double scalar){
2346
        int i;
2347

    
2348
        for(i=0; i<a->length; i++)
2349
                a->coeff[i]*= scalar;
2350
}
2351

    
2352
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2353
        int length= a->length + b->length - 1;
2354
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2355
        int i, j;
2356
        SwsVector *vec= malloc(sizeof(SwsVector));
2357

    
2358
        vec->coeff= coeff;
2359
        vec->length= length;
2360

    
2361
        for(i=0; i<length; i++) coeff[i]= 0.0;
2362

    
2363
        for(i=0; i<a->length; i++)
2364
        {
2365
                for(j=0; j<b->length; j++)
2366
                {
2367
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2368
                }
2369
        }
2370

    
2371
        return vec;
2372
}
2373

    
2374
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2375
        int length= MAX(a->length, b->length);
2376
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2377
        int i;
2378
        SwsVector *vec= malloc(sizeof(SwsVector));
2379

    
2380
        vec->coeff= coeff;
2381
        vec->length= length;
2382

    
2383
        for(i=0; i<length; i++) coeff[i]= 0.0;
2384

    
2385
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2386
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2387

    
2388
        return vec;
2389
}
2390

    
2391
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2392
        int length= MAX(a->length, b->length);
2393
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2394
        int i;
2395
        SwsVector *vec= malloc(sizeof(SwsVector));
2396

    
2397
        vec->coeff= coeff;
2398
        vec->length= length;
2399

    
2400
        for(i=0; i<length; i++) coeff[i]= 0.0;
2401

    
2402
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2403
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2404

    
2405
        return vec;
2406
}
2407

    
2408
/* shift left / or right if "shift" is negative */
2409
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2410
        int length= a->length + ABS(shift)*2;
2411
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2412
        int i;
2413
        SwsVector *vec= malloc(sizeof(SwsVector));
2414

    
2415
        vec->coeff= coeff;
2416
        vec->length= length;
2417

    
2418
        for(i=0; i<length; i++) coeff[i]= 0.0;
2419

    
2420
        for(i=0; i<a->length; i++)
2421
        {
2422
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2423
        }
2424

    
2425
        return vec;
2426
}
2427

    
2428
void sws_shiftVec(SwsVector *a, int shift){
2429
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2430
        free(a->coeff);
2431
        a->coeff= shifted->coeff;
2432
        a->length= shifted->length;
2433
        free(shifted);
2434
}
2435

    
2436
void sws_addVec(SwsVector *a, SwsVector *b){
2437
        SwsVector *sum= sws_sumVec(a, b);
2438
        free(a->coeff);
2439
        a->coeff= sum->coeff;
2440
        a->length= sum->length;
2441
        free(sum);
2442
}
2443

    
2444
void sws_subVec(SwsVector *a, SwsVector *b){
2445
        SwsVector *diff= sws_diffVec(a, b);
2446
        free(a->coeff);
2447
        a->coeff= diff->coeff;
2448
        a->length= diff->length;
2449
        free(diff);
2450
}
2451

    
2452
void sws_convVec(SwsVector *a, SwsVector *b){
2453
        SwsVector *conv= sws_getConvVec(a, b);
2454
        free(a->coeff);  
2455
        a->coeff= conv->coeff;
2456
        a->length= conv->length;
2457
        free(conv);
2458
}
2459

    
2460
SwsVector *sws_cloneVec(SwsVector *a){
2461
        double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2462
        int i;
2463
        SwsVector *vec= malloc(sizeof(SwsVector));
2464

    
2465
        vec->coeff= coeff;
2466
        vec->length= a->length;
2467

    
2468
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2469

    
2470
        return vec;
2471
}
2472

    
2473
void sws_printVec(SwsVector *a){
2474
        int i;
2475
        double max=0;
2476
        double min=0;
2477
        double range;
2478

    
2479
        for(i=0; i<a->length; i++)
2480
                if(a->coeff[i]>max) max= a->coeff[i];
2481

    
2482
        for(i=0; i<a->length; i++)
2483
                if(a->coeff[i]<min) min= a->coeff[i];
2484

    
2485
        range= max - min;
2486

    
2487
        for(i=0; i<a->length; i++)
2488
        {
2489
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2490
                MSG_DBG2("%1.3f ", a->coeff[i]);
2491
                for(;x>0; x--) MSG_DBG2(" ");
2492
                MSG_DBG2("|\n");
2493
        }
2494
}
2495

    
2496
void sws_freeVec(SwsVector *a){
2497
        if(!a) return;
2498
        if(a->coeff) free(a->coeff);
2499
        a->coeff=NULL;
2500
        a->length=0;
2501
        free(a);
2502
}
2503

    
2504
void sws_freeFilter(SwsFilter *filter){
2505
        if(!filter) return;
2506

    
2507
        if(filter->lumH) sws_freeVec(filter->lumH);
2508
        if(filter->lumV) sws_freeVec(filter->lumV);
2509
        if(filter->chrH) sws_freeVec(filter->chrH);
2510
        if(filter->chrV) sws_freeVec(filter->chrV);
2511
        free(filter);
2512
}
2513

    
2514

    
2515
void sws_freeContext(SwsContext *c){
2516
        int i;
2517
        if(!c) return;
2518

    
2519
        if(c->lumPixBuf)
2520
        {
2521
                for(i=0; i<c->vLumBufSize; i++)
2522
                {
2523
                        if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2524
                        c->lumPixBuf[i]=NULL;
2525
                }
2526
                free(c->lumPixBuf);
2527
                c->lumPixBuf=NULL;
2528
        }
2529

    
2530
        if(c->chrPixBuf)
2531
        {
2532
                for(i=0; i<c->vChrBufSize; i++)
2533
                {
2534
                        if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2535
                        c->chrPixBuf[i]=NULL;
2536
                }
2537
                free(c->chrPixBuf);
2538
                c->chrPixBuf=NULL;
2539
        }
2540

    
2541
        if(c->vLumFilter) free(c->vLumFilter);
2542
        c->vLumFilter = NULL;
2543
        if(c->vChrFilter) free(c->vChrFilter);
2544
        c->vChrFilter = NULL;
2545
        if(c->hLumFilter) free(c->hLumFilter);
2546
        c->hLumFilter = NULL;
2547
        if(c->hChrFilter) free(c->hChrFilter);
2548
        c->hChrFilter = NULL;
2549

    
2550
        if(c->vLumFilterPos) free(c->vLumFilterPos);
2551
        c->vLumFilterPos = NULL;
2552
        if(c->vChrFilterPos) free(c->vChrFilterPos);
2553
        c->vChrFilterPos = NULL;
2554
        if(c->hLumFilterPos) free(c->hLumFilterPos);
2555
        c->hLumFilterPos = NULL;
2556
        if(c->hChrFilterPos) free(c->hChrFilterPos);
2557
        c->hChrFilterPos = NULL;
2558

    
2559
        if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2560
        c->lumMmx2Filter=NULL;
2561
        if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2562
        c->chrMmx2Filter=NULL;
2563
        if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2564
        c->lumMmx2FilterPos=NULL;
2565
        if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2566
        c->chrMmx2FilterPos=NULL;
2567
        if(c->yuvTable) free(c->yuvTable);
2568
        c->yuvTable=NULL;
2569

    
2570
        free(c);
2571
}
2572