Statistics
| Branch: | Revision:

ffmpeg / libavcodec / fft.c @ 7087ce08

History | View | Annotate | Download (7.81 KB)

1
/*
2
 * FFT/IFFT transforms
3
 * Copyright (c) 2008 Loren Merritt
4
 * Copyright (c) 2002 Fabrice Bellard
5
 * Partly based on libdjbfft by D. J. Bernstein
6
 *
7
 * This file is part of Libav.
8
 *
9
 * Libav is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * Libav is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with Libav; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23

    
24
/**
25
 * @file
26
 * FFT/IFFT transforms.
27
 */
28

    
29
#include <stdlib.h>
30
#include <string.h>
31
#include "libavutil/mathematics.h"
32
#include "fft.h"
33
#include "fft-internal.h"
34

    
35
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
36
#if !CONFIG_HARDCODED_TABLES
37
COSTABLE(16);
38
COSTABLE(32);
39
COSTABLE(64);
40
COSTABLE(128);
41
COSTABLE(256);
42
COSTABLE(512);
43
COSTABLE(1024);
44
COSTABLE(2048);
45
COSTABLE(4096);
46
COSTABLE(8192);
47
COSTABLE(16384);
48
COSTABLE(32768);
49
COSTABLE(65536);
50
#endif
51
COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
52
    NULL, NULL, NULL, NULL,
53
    FFT_NAME(ff_cos_16),
54
    FFT_NAME(ff_cos_32),
55
    FFT_NAME(ff_cos_64),
56
    FFT_NAME(ff_cos_128),
57
    FFT_NAME(ff_cos_256),
58
    FFT_NAME(ff_cos_512),
59
    FFT_NAME(ff_cos_1024),
60
    FFT_NAME(ff_cos_2048),
61
    FFT_NAME(ff_cos_4096),
62
    FFT_NAME(ff_cos_8192),
63
    FFT_NAME(ff_cos_16384),
64
    FFT_NAME(ff_cos_32768),
65
    FFT_NAME(ff_cos_65536),
66
};
67

    
68
static void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
69
static void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
70

    
71
static int split_radix_permutation(int i, int n, int inverse)
72
{
73
    int m;
74
    if(n <= 2) return i&1;
75
    m = n >> 1;
76
    if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
77
    m >>= 1;
78
    if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
79
    else                  return split_radix_permutation(i, m, inverse)*4 - 1;
80
}
81

    
82
av_cold void ff_init_ff_cos_tabs(int index)
83
{
84
#if !CONFIG_HARDCODED_TABLES
85
    int i;
86
    int m = 1<<index;
87
    double freq = 2*M_PI/m;
88
    FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
89
    for(i=0; i<=m/4; i++)
90
        tab[i] = FIX15(cos(i*freq));
91
    for(i=1; i<m/4; i++)
92
        tab[m/2-i] = tab[i];
93
#endif
94
}
95

    
96
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
97
{
98
    int i, j, n;
99

    
100
    if (nbits < 2 || nbits > 16)
101
        goto fail;
102
    s->nbits = nbits;
103
    n = 1 << nbits;
104

    
105
    s->revtab = av_malloc(n * sizeof(uint16_t));
106
    if (!s->revtab)
107
        goto fail;
108
    s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
109
    if (!s->tmp_buf)
110
        goto fail;
111
    s->inverse = inverse;
112
    s->fft_permutation = FF_FFT_PERM_DEFAULT;
113

    
114
    s->fft_permute = ff_fft_permute_c;
115
    s->fft_calc    = ff_fft_calc_c;
116
#if CONFIG_MDCT
117
    s->imdct_calc  = ff_imdct_calc_c;
118
    s->imdct_half  = ff_imdct_half_c;
119
    s->mdct_calc   = ff_mdct_calc_c;
120
#endif
121

    
122
#if CONFIG_FFT_FLOAT
123
    if (ARCH_ARM)     ff_fft_init_arm(s);
124
    if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
125
    if (HAVE_MMX)     ff_fft_init_mmx(s);
126
#endif
127

    
128
    for(j=4; j<=nbits; j++) {
129
        ff_init_ff_cos_tabs(j);
130
    }
131
    for(i=0; i<n; i++) {
132
        int j = i;
133
        if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
134
            j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
135
        s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
136
    }
137

    
138
    return 0;
139
 fail:
140
    av_freep(&s->revtab);
141
    av_freep(&s->tmp_buf);
142
    return -1;
143
}
144

    
145
static void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
146
{
147
    int j, np;
148
    const uint16_t *revtab = s->revtab;
149
    np = 1 << s->nbits;
150
    /* TODO: handle split-radix permute in a more optimal way, probably in-place */
151
    for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
152
    memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
153
}
154

    
155
av_cold void ff_fft_end(FFTContext *s)
156
{
157
    av_freep(&s->revtab);
158
    av_freep(&s->tmp_buf);
159
}
160

    
161
#define BUTTERFLIES(a0,a1,a2,a3) {\
162
    BF(t3, t5, t5, t1);\
163
    BF(a2.re, a0.re, a0.re, t5);\
164
    BF(a3.im, a1.im, a1.im, t3);\
165
    BF(t4, t6, t2, t6);\
166
    BF(a3.re, a1.re, a1.re, t4);\
167
    BF(a2.im, a0.im, a0.im, t6);\
168
}
169

    
170
// force loading all the inputs before storing any.
171
// this is slightly slower for small data, but avoids store->load aliasing
172
// for addresses separated by large powers of 2.
173
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
174
    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
175
    BF(t3, t5, t5, t1);\
176
    BF(a2.re, a0.re, r0, t5);\
177
    BF(a3.im, a1.im, i1, t3);\
178
    BF(t4, t6, t2, t6);\
179
    BF(a3.re, a1.re, r1, t4);\
180
    BF(a2.im, a0.im, i0, t6);\
181
}
182

    
183
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
184
    CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
185
    CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
186
    BUTTERFLIES(a0,a1,a2,a3)\
187
}
188

    
189
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
190
    t1 = a2.re;\
191
    t2 = a2.im;\
192
    t5 = a3.re;\
193
    t6 = a3.im;\
194
    BUTTERFLIES(a0,a1,a2,a3)\
195
}
196

    
197
/* z[0...8n-1], w[1...2n-1] */
198
#define PASS(name)\
199
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
200
{\
201
    FFTDouble t1, t2, t3, t4, t5, t6;\
202
    int o1 = 2*n;\
203
    int o2 = 4*n;\
204
    int o3 = 6*n;\
205
    const FFTSample *wim = wre+o1;\
206
    n--;\
207
\
208
    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
209
    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
210
    do {\
211
        z += 2;\
212
        wre += 2;\
213
        wim -= 2;\
214
        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
215
        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
216
    } while(--n);\
217
}
218

    
219
PASS(pass)
220
#undef BUTTERFLIES
221
#define BUTTERFLIES BUTTERFLIES_BIG
222
PASS(pass_big)
223

    
224
#define DECL_FFT(n,n2,n4)\
225
static void fft##n(FFTComplex *z)\
226
{\
227
    fft##n2(z);\
228
    fft##n4(z+n4*2);\
229
    fft##n4(z+n4*3);\
230
    pass(z,FFT_NAME(ff_cos_##n),n4/2);\
231
}
232

    
233
static void fft4(FFTComplex *z)
234
{
235
    FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
236

    
237
    BF(t3, t1, z[0].re, z[1].re);
238
    BF(t8, t6, z[3].re, z[2].re);
239
    BF(z[2].re, z[0].re, t1, t6);
240
    BF(t4, t2, z[0].im, z[1].im);
241
    BF(t7, t5, z[2].im, z[3].im);
242
    BF(z[3].im, z[1].im, t4, t8);
243
    BF(z[3].re, z[1].re, t3, t7);
244
    BF(z[2].im, z[0].im, t2, t5);
245
}
246

    
247
static void fft8(FFTComplex *z)
248
{
249
    FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
250

    
251
    fft4(z);
252

    
253
    BF(t1, z[5].re, z[4].re, -z[5].re);
254
    BF(t2, z[5].im, z[4].im, -z[5].im);
255
    BF(t3, z[7].re, z[6].re, -z[7].re);
256
    BF(t4, z[7].im, z[6].im, -z[7].im);
257
    BF(t8, t1, t3, t1);
258
    BF(t7, t2, t2, t4);
259
    BF(z[4].re, z[0].re, z[0].re, t1);
260
    BF(z[4].im, z[0].im, z[0].im, t2);
261
    BF(z[6].re, z[2].re, z[2].re, t7);
262
    BF(z[6].im, z[2].im, z[2].im, t8);
263

    
264
    TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
265
}
266

    
267
#if !CONFIG_SMALL
268
static void fft16(FFTComplex *z)
269
{
270
    FFTDouble t1, t2, t3, t4, t5, t6;
271
    FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
272
    FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
273

    
274
    fft8(z);
275
    fft4(z+8);
276
    fft4(z+12);
277

    
278
    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
279
    TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
280
    TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
281
    TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
282
}
283
#else
284
DECL_FFT(16,8,4)
285
#endif
286
DECL_FFT(32,16,8)
287
DECL_FFT(64,32,16)
288
DECL_FFT(128,64,32)
289
DECL_FFT(256,128,64)
290
DECL_FFT(512,256,128)
291
#if !CONFIG_SMALL
292
#define pass pass_big
293
#endif
294
DECL_FFT(1024,512,256)
295
DECL_FFT(2048,1024,512)
296
DECL_FFT(4096,2048,1024)
297
DECL_FFT(8192,4096,2048)
298
DECL_FFT(16384,8192,4096)
299
DECL_FFT(32768,16384,8192)
300
DECL_FFT(65536,32768,16384)
301

    
302
static void (* const fft_dispatch[])(FFTComplex*) = {
303
    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
304
    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
305
};
306

    
307
static void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
308
{
309
    fft_dispatch[s->nbits-2](z);
310
}
311