ffmpeg / libavcodec / fft.c @ 7087ce08
History | View | Annotate | Download (7.81 KB)
1 |
/*
|
---|---|
2 |
* FFT/IFFT transforms
|
3 |
* Copyright (c) 2008 Loren Merritt
|
4 |
* Copyright (c) 2002 Fabrice Bellard
|
5 |
* Partly based on libdjbfft by D. J. Bernstein
|
6 |
*
|
7 |
* This file is part of Libav.
|
8 |
*
|
9 |
* Libav is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* Libav is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with Libav; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
/**
|
25 |
* @file
|
26 |
* FFT/IFFT transforms.
|
27 |
*/
|
28 |
|
29 |
#include <stdlib.h> |
30 |
#include <string.h> |
31 |
#include "libavutil/mathematics.h" |
32 |
#include "fft.h" |
33 |
#include "fft-internal.h" |
34 |
|
35 |
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
|
36 |
#if !CONFIG_HARDCODED_TABLES
|
37 |
COSTABLE(16);
|
38 |
COSTABLE(32);
|
39 |
COSTABLE(64);
|
40 |
COSTABLE(128);
|
41 |
COSTABLE(256);
|
42 |
COSTABLE(512);
|
43 |
COSTABLE(1024);
|
44 |
COSTABLE(2048);
|
45 |
COSTABLE(4096);
|
46 |
COSTABLE(8192);
|
47 |
COSTABLE(16384);
|
48 |
COSTABLE(32768);
|
49 |
COSTABLE(65536);
|
50 |
#endif
|
51 |
COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
|
52 |
NULL, NULL, NULL, NULL, |
53 |
FFT_NAME(ff_cos_16), |
54 |
FFT_NAME(ff_cos_32), |
55 |
FFT_NAME(ff_cos_64), |
56 |
FFT_NAME(ff_cos_128), |
57 |
FFT_NAME(ff_cos_256), |
58 |
FFT_NAME(ff_cos_512), |
59 |
FFT_NAME(ff_cos_1024), |
60 |
FFT_NAME(ff_cos_2048), |
61 |
FFT_NAME(ff_cos_4096), |
62 |
FFT_NAME(ff_cos_8192), |
63 |
FFT_NAME(ff_cos_16384), |
64 |
FFT_NAME(ff_cos_32768), |
65 |
FFT_NAME(ff_cos_65536), |
66 |
}; |
67 |
|
68 |
static void ff_fft_permute_c(FFTContext *s, FFTComplex *z); |
69 |
static void ff_fft_calc_c(FFTContext *s, FFTComplex *z); |
70 |
|
71 |
static int split_radix_permutation(int i, int n, int inverse) |
72 |
{ |
73 |
int m;
|
74 |
if(n <= 2) return i&1; |
75 |
m = n >> 1;
|
76 |
if(!(i&m)) return split_radix_permutation(i, m, inverse)*2; |
77 |
m >>= 1;
|
78 |
if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1; |
79 |
else return split_radix_permutation(i, m, inverse)*4 - 1; |
80 |
} |
81 |
|
82 |
av_cold void ff_init_ff_cos_tabs(int index) |
83 |
{ |
84 |
#if !CONFIG_HARDCODED_TABLES
|
85 |
int i;
|
86 |
int m = 1<<index; |
87 |
double freq = 2*M_PI/m; |
88 |
FFTSample *tab = FFT_NAME(ff_cos_tabs)[index]; |
89 |
for(i=0; i<=m/4; i++) |
90 |
tab[i] = FIX15(cos(i*freq)); |
91 |
for(i=1; i<m/4; i++) |
92 |
tab[m/2-i] = tab[i];
|
93 |
#endif
|
94 |
} |
95 |
|
96 |
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse) |
97 |
{ |
98 |
int i, j, n;
|
99 |
|
100 |
if (nbits < 2 || nbits > 16) |
101 |
goto fail;
|
102 |
s->nbits = nbits; |
103 |
n = 1 << nbits;
|
104 |
|
105 |
s->revtab = av_malloc(n * sizeof(uint16_t));
|
106 |
if (!s->revtab)
|
107 |
goto fail;
|
108 |
s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
|
109 |
if (!s->tmp_buf)
|
110 |
goto fail;
|
111 |
s->inverse = inverse; |
112 |
s->fft_permutation = FF_FFT_PERM_DEFAULT; |
113 |
|
114 |
s->fft_permute = ff_fft_permute_c; |
115 |
s->fft_calc = ff_fft_calc_c; |
116 |
#if CONFIG_MDCT
|
117 |
s->imdct_calc = ff_imdct_calc_c; |
118 |
s->imdct_half = ff_imdct_half_c; |
119 |
s->mdct_calc = ff_mdct_calc_c; |
120 |
#endif
|
121 |
|
122 |
#if CONFIG_FFT_FLOAT
|
123 |
if (ARCH_ARM) ff_fft_init_arm(s);
|
124 |
if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
|
125 |
if (HAVE_MMX) ff_fft_init_mmx(s);
|
126 |
#endif
|
127 |
|
128 |
for(j=4; j<=nbits; j++) { |
129 |
ff_init_ff_cos_tabs(j); |
130 |
} |
131 |
for(i=0; i<n; i++) { |
132 |
int j = i;
|
133 |
if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
|
134 |
j = (j&~3) | ((j>>1)&1) | ((j<<1)&2); |
135 |
s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
|
136 |
} |
137 |
|
138 |
return 0; |
139 |
fail:
|
140 |
av_freep(&s->revtab); |
141 |
av_freep(&s->tmp_buf); |
142 |
return -1; |
143 |
} |
144 |
|
145 |
static void ff_fft_permute_c(FFTContext *s, FFTComplex *z) |
146 |
{ |
147 |
int j, np;
|
148 |
const uint16_t *revtab = s->revtab;
|
149 |
np = 1 << s->nbits;
|
150 |
/* TODO: handle split-radix permute in a more optimal way, probably in-place */
|
151 |
for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j]; |
152 |
memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
|
153 |
} |
154 |
|
155 |
av_cold void ff_fft_end(FFTContext *s)
|
156 |
{ |
157 |
av_freep(&s->revtab); |
158 |
av_freep(&s->tmp_buf); |
159 |
} |
160 |
|
161 |
#define BUTTERFLIES(a0,a1,a2,a3) {\
|
162 |
BF(t3, t5, t5, t1);\ |
163 |
BF(a2.re, a0.re, a0.re, t5);\ |
164 |
BF(a3.im, a1.im, a1.im, t3);\ |
165 |
BF(t4, t6, t2, t6);\ |
166 |
BF(a3.re, a1.re, a1.re, t4);\ |
167 |
BF(a2.im, a0.im, a0.im, t6);\ |
168 |
} |
169 |
|
170 |
// force loading all the inputs before storing any.
|
171 |
// this is slightly slower for small data, but avoids store->load aliasing
|
172 |
// for addresses separated by large powers of 2.
|
173 |
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
|
174 |
FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ |
175 |
BF(t3, t5, t5, t1);\ |
176 |
BF(a2.re, a0.re, r0, t5);\ |
177 |
BF(a3.im, a1.im, i1, t3);\ |
178 |
BF(t4, t6, t2, t6);\ |
179 |
BF(a3.re, a1.re, r1, t4);\ |
180 |
BF(a2.im, a0.im, i0, t6);\ |
181 |
} |
182 |
|
183 |
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
|
184 |
CMUL(t1, t2, a2.re, a2.im, wre, -wim);\ |
185 |
CMUL(t5, t6, a3.re, a3.im, wre, wim);\ |
186 |
BUTTERFLIES(a0,a1,a2,a3)\ |
187 |
} |
188 |
|
189 |
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
|
190 |
t1 = a2.re;\ |
191 |
t2 = a2.im;\ |
192 |
t5 = a3.re;\ |
193 |
t6 = a3.im;\ |
194 |
BUTTERFLIES(a0,a1,a2,a3)\ |
195 |
} |
196 |
|
197 |
/* z[0...8n-1], w[1...2n-1] */
|
198 |
#define PASS(name)\
|
199 |
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ |
200 |
{\ |
201 |
FFTDouble t1, t2, t3, t4, t5, t6;\ |
202 |
int o1 = 2*n;\ |
203 |
int o2 = 4*n;\ |
204 |
int o3 = 6*n;\ |
205 |
const FFTSample *wim = wre+o1;\
|
206 |
n--;\ |
207 |
\ |
208 |
TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
|
209 |
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ |
210 |
do {\
|
211 |
z += 2;\
|
212 |
wre += 2;\
|
213 |
wim -= 2;\
|
214 |
TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ |
215 |
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ |
216 |
} while(--n);\
|
217 |
} |
218 |
|
219 |
PASS(pass) |
220 |
#undef BUTTERFLIES
|
221 |
#define BUTTERFLIES BUTTERFLIES_BIG
|
222 |
PASS(pass_big) |
223 |
|
224 |
#define DECL_FFT(n,n2,n4)\
|
225 |
static void fft##n(FFTComplex *z)\ |
226 |
{\ |
227 |
fft##n2(z);\ |
228 |
fft##n4(z+n4*2);\ |
229 |
fft##n4(z+n4*3);\ |
230 |
pass(z,FFT_NAME(ff_cos_##n),n4/2);\ |
231 |
} |
232 |
|
233 |
static void fft4(FFTComplex *z) |
234 |
{ |
235 |
FFTDouble t1, t2, t3, t4, t5, t6, t7, t8; |
236 |
|
237 |
BF(t3, t1, z[0].re, z[1].re); |
238 |
BF(t8, t6, z[3].re, z[2].re); |
239 |
BF(z[2].re, z[0].re, t1, t6); |
240 |
BF(t4, t2, z[0].im, z[1].im); |
241 |
BF(t7, t5, z[2].im, z[3].im); |
242 |
BF(z[3].im, z[1].im, t4, t8); |
243 |
BF(z[3].re, z[1].re, t3, t7); |
244 |
BF(z[2].im, z[0].im, t2, t5); |
245 |
} |
246 |
|
247 |
static void fft8(FFTComplex *z) |
248 |
{ |
249 |
FFTDouble t1, t2, t3, t4, t5, t6, t7, t8; |
250 |
|
251 |
fft4(z); |
252 |
|
253 |
BF(t1, z[5].re, z[4].re, -z[5].re); |
254 |
BF(t2, z[5].im, z[4].im, -z[5].im); |
255 |
BF(t3, z[7].re, z[6].re, -z[7].re); |
256 |
BF(t4, z[7].im, z[6].im, -z[7].im); |
257 |
BF(t8, t1, t3, t1); |
258 |
BF(t7, t2, t2, t4); |
259 |
BF(z[4].re, z[0].re, z[0].re, t1); |
260 |
BF(z[4].im, z[0].im, z[0].im, t2); |
261 |
BF(z[6].re, z[2].re, z[2].re, t7); |
262 |
BF(z[6].im, z[2].im, z[2].im, t8); |
263 |
|
264 |
TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf); |
265 |
} |
266 |
|
267 |
#if !CONFIG_SMALL
|
268 |
static void fft16(FFTComplex *z) |
269 |
{ |
270 |
FFTDouble t1, t2, t3, t4, t5, t6; |
271 |
FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
|
272 |
FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
|
273 |
|
274 |
fft8(z); |
275 |
fft4(z+8);
|
276 |
fft4(z+12);
|
277 |
|
278 |
TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); |
279 |
TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf); |
280 |
TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3); |
281 |
TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1); |
282 |
} |
283 |
#else
|
284 |
DECL_FFT(16,8,4) |
285 |
#endif
|
286 |
DECL_FFT(32,16,8) |
287 |
DECL_FFT(64,32,16) |
288 |
DECL_FFT(128,64,32) |
289 |
DECL_FFT(256,128,64) |
290 |
DECL_FFT(512,256,128) |
291 |
#if !CONFIG_SMALL
|
292 |
#define pass pass_big
|
293 |
#endif
|
294 |
DECL_FFT(1024,512,256) |
295 |
DECL_FFT(2048,1024,512) |
296 |
DECL_FFT(4096,2048,1024) |
297 |
DECL_FFT(8192,4096,2048) |
298 |
DECL_FFT(16384,8192,4096) |
299 |
DECL_FFT(32768,16384,8192) |
300 |
DECL_FFT(65536,32768,16384) |
301 |
|
302 |
static void (* const fft_dispatch[])(FFTComplex*) = { |
303 |
fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, |
304 |
fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, |
305 |
}; |
306 |
|
307 |
static void ff_fft_calc_c(FFTContext *s, FFTComplex *z) |
308 |
{ |
309 |
fft_dispatch[s->nbits-2](z);
|
310 |
} |
311 |
|