ffmpeg / libavcodec / mdct.c @ 7087ce08
History  View  Annotate  Download (5.1 KB)
1 
/*


2 
* MDCT/IMDCT transforms

3 
* Copyright (c) 2002 Fabrice Bellard

4 
*

5 
* This file is part of Libav.

6 
*

7 
* Libav is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2.1 of the License, or (at your option) any later version.

11 
*

12 
* Libav is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with Libav; if not, write to the Free Software

19 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

20 
*/

21  
22 
#include <stdlib.h> 
23 
#include <string.h> 
24 
#include "libavutil/common.h" 
25 
#include "libavutil/mathematics.h" 
26 
#include "fft.h" 
27 
#include "fftinternal.h" 
28  
29 
/**

30 
* @file

31 
* MDCT/IMDCT transforms.

32 
*/

33  
34 
#if CONFIG_FFT_FLOAT

35 
# define RSCALE(x) (x)

36 
#else

37 
# define RSCALE(x) ((x) >> 1) 
38 
#endif

39  
40 
/**

41 
* init MDCT or IMDCT computation.

42 
*/

43 
av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale) 
44 
{ 
45 
int n, n4, i;

46 
double alpha, theta;

47 
int tstep;

48  
49 
memset(s, 0, sizeof(*s)); 
50 
n = 1 << nbits;

51 
s>mdct_bits = nbits; 
52 
s>mdct_size = n; 
53 
n4 = n >> 2;

54 
s>mdct_permutation = FF_MDCT_PERM_NONE; 
55  
56 
if (ff_fft_init(s, s>mdct_bits  2, inverse) < 0) 
57 
goto fail;

58  
59 
s>tcos = av_malloc(n/2 * sizeof(FFTSample)); 
60 
if (!s>tcos)

61 
goto fail;

62  
63 
switch (s>mdct_permutation) {

64 
case FF_MDCT_PERM_NONE:

65 
s>tsin = s>tcos + n4; 
66 
tstep = 1;

67 
break;

68 
case FF_MDCT_PERM_INTERLEAVE:

69 
s>tsin = s>tcos + 1;

70 
tstep = 2;

71 
break;

72 
default:

73 
goto fail;

74 
} 
75  
76 
theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0); 
77 
scale = sqrt(fabs(scale)); 
78 
for(i=0;i<n4;i++) { 
79 
alpha = 2 * M_PI * (i + theta) / n;

80 
s>tcos[i*tstep] = FIX15(cos(alpha) * scale); 
81 
s>tsin[i*tstep] = FIX15(sin(alpha) * scale); 
82 
} 
83 
return 0; 
84 
fail:

85 
ff_mdct_end(s); 
86 
return 1; 
87 
} 
88  
89 
/**

90 
* Compute the middle half of the inverse MDCT of size N = 2^nbits,

91 
* thus excluding the parts that can be derived by symmetry

92 
* @param output N/2 samples

93 
* @param input N/2 samples

94 
*/

95 
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input) 
96 
{ 
97 
int k, n8, n4, n2, n, j;

98 
const uint16_t *revtab = s>revtab;

99 
const FFTSample *tcos = s>tcos;

100 
const FFTSample *tsin = s>tsin;

101 
const FFTSample *in1, *in2;

102 
FFTComplex *z = (FFTComplex *)output; 
103  
104 
n = 1 << s>mdct_bits;

105 
n2 = n >> 1;

106 
n4 = n >> 2;

107 
n8 = n >> 3;

108  
109 
/* pre rotation */

110 
in1 = input; 
111 
in2 = input + n2  1;

112 
for(k = 0; k < n4; k++) { 
113 
j=revtab[k]; 
114 
CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]); 
115 
in1 += 2;

116 
in2 = 2;

117 
} 
118 
s>fft_calc(s, z); 
119  
120 
/* post rotation + reordering */

121 
for(k = 0; k < n8; k++) { 
122 
FFTSample r0, i0, r1, i1; 
123 
CMUL(r0, i1, z[n8k1].im, z[n8k1].re, tsin[n8k1], tcos[n8k1]); 
124 
CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]); 
125 
z[n8k1].re = r0;

126 
z[n8k1].im = i0;

127 
z[n8+k ].re = r1; 
128 
z[n8+k ].im = i1; 
129 
} 
130 
} 
131  
132 
/**

133 
* Compute inverse MDCT of size N = 2^nbits

134 
* @param output N samples

135 
* @param input N/2 samples

136 
*/

137 
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input) 
138 
{ 
139 
int k;

140 
int n = 1 << s>mdct_bits; 
141 
int n2 = n >> 1; 
142 
int n4 = n >> 2; 
143  
144 
ff_imdct_half_c(s, output+n4, input); 
145  
146 
for(k = 0; k < n4; k++) { 
147 
output[k] = output[n2k1];

148 
output[nk1] = output[n2+k];

149 
} 
150 
} 
151  
152 
/**

153 
* Compute MDCT of size N = 2^nbits

154 
* @param input N samples

155 
* @param out N/2 samples

156 
*/

157 
void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input) 
158 
{ 
159 
int i, j, n, n8, n4, n2, n3;

160 
FFTDouble re, im; 
161 
const uint16_t *revtab = s>revtab;

162 
const FFTSample *tcos = s>tcos;

163 
const FFTSample *tsin = s>tsin;

164 
FFTComplex *x = (FFTComplex *)out; 
165  
166 
n = 1 << s>mdct_bits;

167 
n2 = n >> 1;

168 
n4 = n >> 2;

169 
n8 = n >> 3;

170 
n3 = 3 * n4;

171  
172 
/* pre rotation */

173 
for(i=0;i<n8;i++) { 
174 
re = RSCALE(input[2*i+n3]  input[n312*i]); 
175 
im = RSCALE(input[n4+2*i] + input[n412*i]); 
176 
j = revtab[i]; 
177 
CMUL(x[j].re, x[j].im, re, im, tcos[i], tsin[i]); 
178  
179 
re = RSCALE( input[2*i]  input[n212*i]); 
180 
im = RSCALE(input[n2+2*i]  input[ n12*i]); 
181 
j = revtab[n8 + i]; 
182 
CMUL(x[j].re, x[j].im, re, im, tcos[n8 + i], tsin[n8 + i]); 
183 
} 
184  
185 
s>fft_calc(s, x); 
186  
187 
/* post rotation */

188 
for(i=0;i<n8;i++) { 
189 
FFTSample r0, i0, r1, i1; 
190 
CMUL(i1, r0, x[n8i1].re, x[n8i1].im, tsin[n8i1], tcos[n8i1]); 
191 
CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, tsin[n8+i ], tcos[n8+i ]); 
192 
x[n8i1].re = r0;

193 
x[n8i1].im = i0;

194 
x[n8+i ].re = r1; 
195 
x[n8+i ].im = i1; 
196 
} 
197 
} 
198  
199 
av_cold void ff_mdct_end(FFTContext *s)

200 
{ 
201 
av_freep(&s>tcos); 
202 
ff_fft_end(s); 
203 
} 