Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ 7146d2c2

History | View | Annotate | Download (103 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This library is free software; you can redistribute it and/or
5
 * modify it under the terms of the GNU Lesser General Public
6
 * License as published by the Free Software Foundation; either
7
 * version 2 of the License, or (at your option) any later version.
8
 *
9
 * This library is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12
 * Lesser General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU Lesser General Public
15
 * License along with this library; if not, write to the Free Software
16
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17
 *
18
 */
19

    
20
/**
21
 * @file vp3.c
22
 * On2 VP3 Video Decoder
23
 *
24
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
25
 * For more information about the VP3 coding process, visit:
26
 *   http://multimedia.cx/
27
 *
28
 * Theora decoder by Alex Beregszaszi
29
 */
30

    
31
#include <stdio.h>
32
#include <stdlib.h>
33
#include <string.h>
34
#include <unistd.h>
35

    
36
#include "common.h"
37
#include "avcodec.h"
38
#include "dsputil.h"
39
#include "mpegvideo.h"
40

    
41
#include "vp3data.h"
42

    
43
#define FRAGMENT_PIXELS 8
44

    
45
/* 
46
 * Debugging Variables
47
 * 
48
 * Define one or more of the following compile-time variables to 1 to obtain
49
 * elaborate information about certain aspects of the decoding process.
50
 *
51
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52
 * DEBUG_VP3: high-level decoding flow
53
 * DEBUG_INIT: initialization parameters
54
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
55
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
56
 * DEBUG_MODES: unpacking the coding modes for individual fragments
57
 * DEBUG_VECTORS: display the motion vectors
58
 * DEBUG_TOKEN: display exhaustive information about each DCT token
59
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
60
 * DEBUG_DC_PRED: display the process of reversing DC prediction
61
 * DEBUG_IDCT: show every detail of the IDCT process
62
 */
63

    
64
#define KEYFRAMES_ONLY 0
65

    
66
#define DEBUG_VP3 0
67
#define DEBUG_INIT 0
68
#define DEBUG_DEQUANTIZERS 0
69
#define DEBUG_BLOCK_CODING 0
70
#define DEBUG_MODES 0
71
#define DEBUG_VECTORS 0
72
#define DEBUG_TOKEN 0
73
#define DEBUG_VLC 0
74
#define DEBUG_DC_PRED 0
75
#define DEBUG_IDCT 0
76

    
77
#if DEBUG_VP3
78
#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
79
#else
80
static inline void debug_vp3(const char *format, ...) { }
81
#endif
82

    
83
#if DEBUG_INIT
84
#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
85
#else
86
static inline void debug_init(const char *format, ...) { }
87
#endif
88

    
89
#if DEBUG_DEQUANTIZERS
90
#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
91
#else
92
static inline void debug_dequantizers(const char *format, ...) { } 
93
#endif
94

    
95
#if DEBUG_BLOCK_CODING
96
#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
97
#else
98
static inline void debug_block_coding(const char *format, ...) { } 
99
#endif
100

    
101
#if DEBUG_MODES
102
#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args) 
103
#else
104
static inline void debug_modes(const char *format, ...) { } 
105
#endif
106

    
107
#if DEBUG_VECTORS
108
#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
109
#else
110
static inline void debug_vectors(const char *format, ...) { } 
111
#endif
112

    
113
#if DEBUG_TOKEN 
114
#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
115
#else
116
static inline void debug_token(const char *format, ...) { } 
117
#endif
118

    
119
#if DEBUG_VLC
120
#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
121
#else
122
static inline void debug_vlc(const char *format, ...) { } 
123
#endif
124

    
125
#if DEBUG_DC_PRED
126
#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
127
#else
128
static inline void debug_dc_pred(const char *format, ...) { } 
129
#endif
130

    
131
#if DEBUG_IDCT
132
#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
133
#else
134
static inline void debug_idct(const char *format, ...) { } 
135
#endif
136

    
137
typedef struct Coeff {
138
    struct Coeff *next;
139
    DCTELEM coeff;
140
    uint8_t index;
141
} Coeff;
142

    
143
//FIXME split things out into their own arrays
144
typedef struct Vp3Fragment {
145
    Coeff *next_coeff;
146
    /* address of first pixel taking into account which plane the fragment
147
     * lives on as well as the plane stride */
148
    int first_pixel;
149
    /* this is the macroblock that the fragment belongs to */
150
    uint16_t macroblock;
151
    uint8_t coding_method;
152
    uint8_t coeff_count;
153
    int8_t motion_x;
154
    int8_t motion_y;
155
} Vp3Fragment;
156

    
157
#define SB_NOT_CODED        0
158
#define SB_PARTIALLY_CODED  1
159
#define SB_FULLY_CODED      2
160

    
161
#define MODE_INTER_NO_MV      0
162
#define MODE_INTRA            1
163
#define MODE_INTER_PLUS_MV    2
164
#define MODE_INTER_LAST_MV    3
165
#define MODE_INTER_PRIOR_LAST 4
166
#define MODE_USING_GOLDEN     5
167
#define MODE_GOLDEN_MV        6
168
#define MODE_INTER_FOURMV     7
169
#define CODING_MODE_COUNT     8
170

    
171
/* special internal mode */
172
#define MODE_COPY             8
173

    
174
/* There are 6 preset schemes, plus a free-form scheme */
175
static int ModeAlphabet[7][CODING_MODE_COUNT] =
176
{
177
    /* this is the custom scheme */
178
    { 0, 0, 0, 0, 0, 0, 0, 0 },
179

    
180
    /* scheme 1: Last motion vector dominates */
181
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
182
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
183
         MODE_INTRA,            MODE_USING_GOLDEN,      
184
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
185

    
186
    /* scheme 2 */
187
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,  
188
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
189
         MODE_INTRA,            MODE_USING_GOLDEN,      
190
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
191

    
192
    /* scheme 3 */
193
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
194
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
195
         MODE_INTRA,            MODE_USING_GOLDEN,      
196
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
197

    
198
    /* scheme 4 */
199
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,     
200
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
201
         MODE_INTRA,            MODE_USING_GOLDEN,      
202
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
203

    
204
    /* scheme 5: No motion vector dominates */
205
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,     
206
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
207
         MODE_INTRA,            MODE_USING_GOLDEN,      
208
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
209

    
210
    /* scheme 6 */
211
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,      
212
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
213
         MODE_INTER_PLUS_MV,    MODE_INTRA,             
214
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
215

    
216
};
217

    
218
#define MIN_DEQUANT_VAL 2
219

    
220
typedef struct Vp3DecodeContext {
221
    AVCodecContext *avctx;
222
    int theora, theora_tables;
223
    int version;
224
    int width, height;
225
    AVFrame golden_frame;
226
    AVFrame last_frame;
227
    AVFrame current_frame;
228
    int keyframe;
229
    DSPContext dsp;
230
    int flipped_image;
231

    
232
    int quality_index;
233
    int last_quality_index;
234

    
235
    int superblock_count;
236
    int superblock_width;
237
    int superblock_height;
238
    int y_superblock_width;
239
    int y_superblock_height;
240
    int c_superblock_width;
241
    int c_superblock_height;
242
    int u_superblock_start;
243
    int v_superblock_start;
244
    unsigned char *superblock_coding;
245

    
246
    int macroblock_count;
247
    int macroblock_width;
248
    int macroblock_height;
249

    
250
    int fragment_count;
251
    int fragment_width;
252
    int fragment_height;
253

    
254
    Vp3Fragment *all_fragments;
255
    Coeff *coeffs;
256
    Coeff *next_coeff;
257
    int u_fragment_start;
258
    int v_fragment_start;
259
    
260
    ScanTable scantable;
261
    
262
    /* tables */
263
    uint16_t coded_dc_scale_factor[64];
264
    uint32_t coded_ac_scale_factor[64];
265
    uint16_t coded_intra_y_dequant[64];
266
    uint16_t coded_intra_c_dequant[64];
267
    uint16_t coded_inter_dequant[64];
268

    
269
    /* this is a list of indices into the all_fragments array indicating
270
     * which of the fragments are coded */
271
    int *coded_fragment_list;
272
    int coded_fragment_list_index;
273
    int pixel_addresses_inited;
274

    
275
    VLC dc_vlc[16];
276
    VLC ac_vlc_1[16];
277
    VLC ac_vlc_2[16];
278
    VLC ac_vlc_3[16];
279
    VLC ac_vlc_4[16];
280

    
281
    VLC superblock_run_length_vlc;
282
    VLC fragment_run_length_vlc;
283
    VLC mode_code_vlc;
284
    VLC motion_vector_vlc;
285

    
286
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
287
     * index into them */
288
    int16_t __align16 intra_y_dequant[64];
289
    int16_t __align16 intra_c_dequant[64];
290
    int16_t __align16 inter_dequant[64];
291

    
292
    /* This table contains superblock_count * 16 entries. Each set of 16
293
     * numbers corresponds to the fragment indices 0..15 of the superblock.
294
     * An entry will be -1 to indicate that no entry corresponds to that
295
     * index. */
296
    int *superblock_fragments;
297

    
298
    /* This table contains superblock_count * 4 entries. Each set of 4
299
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
300
     * An entry will be -1 to indicate that no entry corresponds to that
301
     * index. */
302
    int *superblock_macroblocks;
303

    
304
    /* This table contains macroblock_count * 6 entries. Each set of 6
305
     * numbers corresponds to the fragment indices 0..5 which comprise
306
     * the macroblock (4 Y fragments and 2 C fragments). */
307
    int *macroblock_fragments;
308
    /* This is an array that indicates how a particular macroblock 
309
     * is coded. */
310
    unsigned char *macroblock_coding;
311

    
312
    int first_coded_y_fragment;
313
    int first_coded_c_fragment;
314
    int last_coded_y_fragment;
315
    int last_coded_c_fragment;
316

    
317
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
318
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
319

    
320
    /* Huffman decode */
321
    int hti;
322
    unsigned int hbits;
323
    int entries;
324
    int huff_code_size;
325
    uint16_t huffman_table[80][32][2];
326

    
327
    uint32_t filter_limit_values[64];
328
    int bounding_values_array[256];
329
} Vp3DecodeContext;
330

    
331
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb);
332
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb);
333

    
334
/************************************************************************
335
 * VP3 specific functions
336
 ************************************************************************/
337

    
338
/*
339
 * This function sets up all of the various blocks mappings:
340
 * superblocks <-> fragments, macroblocks <-> fragments,
341
 * superblocks <-> macroblocks
342
 *
343
 * Returns 0 is successful; returns 1 if *anything* went wrong.
344
 */
345
static int init_block_mapping(Vp3DecodeContext *s) 
346
{
347
    int i, j;
348
    signed int hilbert_walk_y[16];
349
    signed int hilbert_walk_c[16];
350
    signed int hilbert_walk_mb[4];
351

    
352
    int current_fragment = 0;
353
    int current_width = 0;
354
    int current_height = 0;
355
    int right_edge = 0;
356
    int bottom_edge = 0;
357
    int superblock_row_inc = 0;
358
    int *hilbert = NULL;
359
    int mapping_index = 0;
360

    
361
    int current_macroblock;
362
    int c_fragment;
363

    
364
    signed char travel_width[16] = {
365
         1,  1,  0, -1, 
366
         0,  0,  1,  0,
367
         1,  0,  1,  0,
368
         0, -1,  0,  1
369
    };
370

    
371
    signed char travel_height[16] = {
372
         0,  0,  1,  0,
373
         1,  1,  0, -1,
374
         0,  1,  0, -1,
375
        -1,  0, -1,  0
376
    };
377

    
378
    signed char travel_width_mb[4] = {
379
         1,  0,  1,  0
380
    };
381

    
382
    signed char travel_height_mb[4] = {
383
         0,  1,  0, -1
384
    };
385

    
386
    debug_vp3("  vp3: initialize block mapping tables\n");
387

    
388
    /* figure out hilbert pattern per these frame dimensions */
389
    hilbert_walk_y[0]  = 1;
390
    hilbert_walk_y[1]  = 1;
391
    hilbert_walk_y[2]  = s->fragment_width;
392
    hilbert_walk_y[3]  = -1;
393
    hilbert_walk_y[4]  = s->fragment_width;
394
    hilbert_walk_y[5]  = s->fragment_width;
395
    hilbert_walk_y[6]  = 1;
396
    hilbert_walk_y[7]  = -s->fragment_width;
397
    hilbert_walk_y[8]  = 1;
398
    hilbert_walk_y[9]  = s->fragment_width;
399
    hilbert_walk_y[10]  = 1;
400
    hilbert_walk_y[11] = -s->fragment_width;
401
    hilbert_walk_y[12] = -s->fragment_width;
402
    hilbert_walk_y[13] = -1;
403
    hilbert_walk_y[14] = -s->fragment_width;
404
    hilbert_walk_y[15] = 1;
405

    
406
    hilbert_walk_c[0]  = 1;
407
    hilbert_walk_c[1]  = 1;
408
    hilbert_walk_c[2]  = s->fragment_width / 2;
409
    hilbert_walk_c[3]  = -1;
410
    hilbert_walk_c[4]  = s->fragment_width / 2;
411
    hilbert_walk_c[5]  = s->fragment_width / 2;
412
    hilbert_walk_c[6]  = 1;
413
    hilbert_walk_c[7]  = -s->fragment_width / 2;
414
    hilbert_walk_c[8]  = 1;
415
    hilbert_walk_c[9]  = s->fragment_width / 2;
416
    hilbert_walk_c[10]  = 1;
417
    hilbert_walk_c[11] = -s->fragment_width / 2;
418
    hilbert_walk_c[12] = -s->fragment_width / 2;
419
    hilbert_walk_c[13] = -1;
420
    hilbert_walk_c[14] = -s->fragment_width / 2;
421
    hilbert_walk_c[15] = 1;
422

    
423
    hilbert_walk_mb[0] = 1;
424
    hilbert_walk_mb[1] = s->macroblock_width;
425
    hilbert_walk_mb[2] = 1;
426
    hilbert_walk_mb[3] = -s->macroblock_width;
427

    
428
    /* iterate through each superblock (all planes) and map the fragments */
429
    for (i = 0; i < s->superblock_count; i++) {
430
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
431
            i, s->u_superblock_start, s->v_superblock_start);
432

    
433
        /* time to re-assign the limits? */
434
        if (i == 0) {
435

    
436
            /* start of Y superblocks */
437
            right_edge = s->fragment_width;
438
            bottom_edge = s->fragment_height;
439
            current_width = -1;
440
            current_height = 0;
441
            superblock_row_inc = 3 * s->fragment_width - 
442
                (s->y_superblock_width * 4 - s->fragment_width);
443
            hilbert = hilbert_walk_y;
444

    
445
            /* the first operation for this variable is to advance by 1 */
446
            current_fragment = -1;
447

    
448
        } else if (i == s->u_superblock_start) {
449

    
450
            /* start of U superblocks */
451
            right_edge = s->fragment_width / 2;
452
            bottom_edge = s->fragment_height / 2;
453
            current_width = -1;
454
            current_height = 0;
455
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
456
                (s->c_superblock_width * 4 - s->fragment_width / 2);
457
            hilbert = hilbert_walk_c;
458

    
459
            /* the first operation for this variable is to advance by 1 */
460
            current_fragment = s->u_fragment_start - 1;
461

    
462
        } else if (i == s->v_superblock_start) {
463

    
464
            /* start of V superblocks */
465
            right_edge = s->fragment_width / 2;
466
            bottom_edge = s->fragment_height / 2;
467
            current_width = -1;
468
            current_height = 0;
469
            superblock_row_inc = 3 * (s->fragment_width / 2) - 
470
                (s->c_superblock_width * 4 - s->fragment_width / 2);
471
            hilbert = hilbert_walk_c;
472

    
473
            /* the first operation for this variable is to advance by 1 */
474
            current_fragment = s->v_fragment_start - 1;
475

    
476
        }
477

    
478
        if (current_width >= right_edge - 1) {
479
            /* reset width and move to next superblock row */
480
            current_width = -1;
481
            current_height += 4;
482

    
483
            /* fragment is now at the start of a new superblock row */
484
            current_fragment += superblock_row_inc;
485
        }
486

    
487
        /* iterate through all 16 fragments in a superblock */
488
        for (j = 0; j < 16; j++) {
489
            current_fragment += hilbert[j];
490
            current_width += travel_width[j];
491
            current_height += travel_height[j];
492

    
493
            /* check if the fragment is in bounds */
494
            if ((current_width < right_edge) &&
495
                (current_height < bottom_edge)) {
496
                s->superblock_fragments[mapping_index] = current_fragment;
497
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n", 
498
                    s->superblock_fragments[mapping_index], i, j,
499
                    current_width, right_edge, current_height, bottom_edge);
500
            } else {
501
                s->superblock_fragments[mapping_index] = -1;
502
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n", 
503
                    i, j,
504
                    current_width, right_edge, current_height, bottom_edge);
505
            }
506

    
507
            mapping_index++;
508
        }
509
    }
510

    
511
    /* initialize the superblock <-> macroblock mapping; iterate through
512
     * all of the Y plane superblocks to build this mapping */
513
    right_edge = s->macroblock_width;
514
    bottom_edge = s->macroblock_height;
515
    current_width = -1;
516
    current_height = 0;
517
    superblock_row_inc = s->macroblock_width -
518
        (s->y_superblock_width * 2 - s->macroblock_width);;
519
    hilbert = hilbert_walk_mb;
520
    mapping_index = 0;
521
    current_macroblock = -1;
522
    for (i = 0; i < s->u_superblock_start; i++) {
523

    
524
        if (current_width >= right_edge - 1) {
525
            /* reset width and move to next superblock row */
526
            current_width = -1;
527
            current_height += 2;
528

    
529
            /* macroblock is now at the start of a new superblock row */
530
            current_macroblock += superblock_row_inc;
531
        }
532

    
533
        /* iterate through each potential macroblock in the superblock */
534
        for (j = 0; j < 4; j++) {
535
            current_macroblock += hilbert_walk_mb[j];
536
            current_width += travel_width_mb[j];
537
            current_height += travel_height_mb[j];
538

    
539
            /* check if the macroblock is in bounds */
540
            if ((current_width < right_edge) &&
541
                (current_height < bottom_edge)) {
542
                s->superblock_macroblocks[mapping_index] = current_macroblock;
543
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
544
                    s->superblock_macroblocks[mapping_index], i, j,
545
                    current_width, right_edge, current_height, bottom_edge);
546
            } else {
547
                s->superblock_macroblocks[mapping_index] = -1;
548
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
549
                    i, j,
550
                    current_width, right_edge, current_height, bottom_edge);
551
            }
552

    
553
            mapping_index++;
554
        }
555
    }
556

    
557
    /* initialize the macroblock <-> fragment mapping */
558
    current_fragment = 0;
559
    current_macroblock = 0;
560
    mapping_index = 0;
561
    for (i = 0; i < s->fragment_height; i += 2) {
562

    
563
        for (j = 0; j < s->fragment_width; j += 2) {
564

    
565
            debug_init("    macroblock %d contains fragments: ", current_macroblock);
566
            s->all_fragments[current_fragment].macroblock = current_macroblock;
567
            s->macroblock_fragments[mapping_index++] = current_fragment;
568
            debug_init("%d ", current_fragment);
569

    
570
            if (j + 1 < s->fragment_width) {
571
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
572
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
573
                debug_init("%d ", current_fragment + 1);
574
            } else
575
                s->macroblock_fragments[mapping_index++] = -1;
576

    
577
            if (i + 1 < s->fragment_height) {
578
                s->all_fragments[current_fragment + s->fragment_width].macroblock = 
579
                    current_macroblock;
580
                s->macroblock_fragments[mapping_index++] = 
581
                    current_fragment + s->fragment_width;
582
                debug_init("%d ", current_fragment + s->fragment_width);
583
            } else
584
                s->macroblock_fragments[mapping_index++] = -1;
585

    
586
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
587
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = 
588
                    current_macroblock;
589
                s->macroblock_fragments[mapping_index++] = 
590
                    current_fragment + s->fragment_width + 1;
591
                debug_init("%d ", current_fragment + s->fragment_width + 1);
592
            } else
593
                s->macroblock_fragments[mapping_index++] = -1;
594

    
595
            /* C planes */
596
            c_fragment = s->u_fragment_start + 
597
                (i * s->fragment_width / 4) + (j / 2);
598
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
599
            s->macroblock_fragments[mapping_index++] = c_fragment;
600
            debug_init("%d ", c_fragment);
601

    
602
            c_fragment = s->v_fragment_start + 
603
                (i * s->fragment_width / 4) + (j / 2);
604
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
605
            s->macroblock_fragments[mapping_index++] = c_fragment;
606
            debug_init("%d ", c_fragment);
607

    
608
            debug_init("\n");
609

    
610
            if (j + 2 <= s->fragment_width)
611
                current_fragment += 2;
612
            else 
613
                current_fragment++;
614
            current_macroblock++;
615
        }
616

    
617
        current_fragment += s->fragment_width;
618
    }
619

    
620
    return 0;  /* successful path out */
621
}
622

    
623
/*
624
 * This function wipes out all of the fragment data.
625
 */
626
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
627
{
628
    int i;
629

    
630
    /* zero out all of the fragment information */
631
    s->coded_fragment_list_index = 0;
632
    for (i = 0; i < s->fragment_count; i++) {
633
        s->all_fragments[i].coeff_count = 0;
634
        s->all_fragments[i].motion_x = 127;
635
        s->all_fragments[i].motion_y = 127;
636
        s->all_fragments[i].next_coeff= NULL;
637
        s->coeffs[i].index=
638
        s->coeffs[i].coeff=0;
639
        s->coeffs[i].next= NULL;
640
    }
641
}
642

    
643
/*
644
 * This function sets up the dequantization tables used for a particular
645
 * frame.
646
 */
647
static void init_dequantizer(Vp3DecodeContext *s)
648
{
649

    
650
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
651
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
652
    int i, j;
653

    
654
    debug_vp3("  vp3: initializing dequantization tables\n");
655

    
656
    /* 
657
     * Scale dequantizers:
658
     *
659
     *   quantizer * sf
660
     *   --------------
661
     *        100
662
     *
663
     * where sf = dc_scale_factor for DC quantizer
664
     *         or ac_scale_factor for AC quantizer
665
     *
666
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
667
     */
668
#define SCALER 4
669

    
670
    /* scale DC quantizers */
671
    s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
672
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
673
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
674
    s->intra_y_dequant[0] *= SCALER;
675

    
676
    s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
677
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
678
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
679
    s->intra_c_dequant[0] *= SCALER;
680

    
681
    s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
682
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
683
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
684
    s->inter_dequant[0] *= SCALER;
685

    
686
    /* scale AC quantizers, zigzag at the same time in preparation for
687
     * the dequantization phase */
688
    for (i = 1; i < 64; i++) {
689
        int k= s->scantable.scantable[i];
690
        j = s->scantable.permutated[i];
691

    
692
        s->intra_y_dequant[j] = s->coded_intra_y_dequant[k] * ac_scale_factor / 100;
693
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
694
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
695
        s->intra_y_dequant[j] *= SCALER;
696

    
697
        s->intra_c_dequant[j] = s->coded_intra_c_dequant[k] * ac_scale_factor / 100;
698
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
699
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
700
        s->intra_c_dequant[j] *= SCALER;
701

    
702
        s->inter_dequant[j] = s->coded_inter_dequant[k] * ac_scale_factor / 100;
703
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
704
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
705
        s->inter_dequant[j] *= SCALER;
706
    }
707
    
708
    memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
709

    
710
    /* print debug information as requested */
711
    debug_dequantizers("intra Y dequantizers:\n");
712
    for (i = 0; i < 8; i++) {
713
      for (j = i * 8; j < i * 8 + 8; j++) {
714
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
715
      }
716
      debug_dequantizers("\n");
717
    }
718
    debug_dequantizers("\n");
719

    
720
    debug_dequantizers("intra C dequantizers:\n");
721
    for (i = 0; i < 8; i++) {
722
      for (j = i * 8; j < i * 8 + 8; j++) {
723
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
724
      }
725
      debug_dequantizers("\n");
726
    }
727
    debug_dequantizers("\n");
728

    
729
    debug_dequantizers("interframe dequantizers:\n");
730
    for (i = 0; i < 8; i++) {
731
      for (j = i * 8; j < i * 8 + 8; j++) {
732
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
733
      }
734
      debug_dequantizers("\n");
735
    }
736
    debug_dequantizers("\n");
737
}
738

    
739
/*
740
 * This function initializes the loop filter boundary limits if the frame's
741
 * quality index is different from the previous frame's.
742
 */
743
static void init_loop_filter(Vp3DecodeContext *s)
744
{
745
    int *bounding_values= s->bounding_values_array+127;
746
    int filter_limit;
747
    int x;
748

    
749
    filter_limit = s->filter_limit_values[s->quality_index];
750

    
751
    /* set up the bounding values */
752
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
753
    for (x = 0; x < filter_limit; x++) {
754
        bounding_values[-x - filter_limit] = -filter_limit + x;
755
        bounding_values[-x] = -x;
756
        bounding_values[x] = x;
757
        bounding_values[x + filter_limit] = filter_limit - x;
758
    }
759
}
760

    
761
/*
762
 * This function unpacks all of the superblock/macroblock/fragment coding 
763
 * information from the bitstream.
764
 */
765
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
766
{
767
    int bit = 0;
768
    int current_superblock = 0;
769
    int current_run = 0;
770
    int decode_fully_flags = 0;
771
    int decode_partial_blocks = 0;
772
    int first_c_fragment_seen;
773

    
774
    int i, j;
775
    int current_fragment;
776

    
777
    debug_vp3("  vp3: unpacking superblock coding\n");
778

    
779
    if (s->keyframe) {
780

    
781
        debug_vp3("    keyframe-- all superblocks are fully coded\n");
782
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
783

    
784
    } else {
785

    
786
        /* unpack the list of partially-coded superblocks */
787
        bit = get_bits(gb, 1);
788
        /* toggle the bit because as soon as the first run length is 
789
         * fetched the bit will be toggled again */
790
        bit ^= 1;
791
        while (current_superblock < s->superblock_count) {
792
            if (current_run-- == 0) {
793
                bit ^= 1;
794
                current_run = get_vlc2(gb, 
795
                    s->superblock_run_length_vlc.table, 6, 2);
796
                if (current_run == 33)
797
                    current_run += get_bits(gb, 12);
798
                debug_block_coding("      setting superblocks %d..%d to %s\n",
799
                    current_superblock,
800
                    current_superblock + current_run - 1,
801
                    (bit) ? "partially coded" : "not coded");
802

    
803
                /* if any of the superblocks are not partially coded, flag
804
                 * a boolean to decode the list of fully-coded superblocks */
805
                if (bit == 0) {
806
                    decode_fully_flags = 1;
807
                } else {
808

    
809
                    /* make a note of the fact that there are partially coded
810
                     * superblocks */
811
                    decode_partial_blocks = 1;
812
                }
813
            }
814
            s->superblock_coding[current_superblock++] = bit;
815
        }
816

    
817
        /* unpack the list of fully coded superblocks if any of the blocks were
818
         * not marked as partially coded in the previous step */
819
        if (decode_fully_flags) {
820

    
821
            current_superblock = 0;
822
            current_run = 0;
823
            bit = get_bits(gb, 1);
824
            /* toggle the bit because as soon as the first run length is 
825
             * fetched the bit will be toggled again */
826
            bit ^= 1;
827
            while (current_superblock < s->superblock_count) {
828

    
829
                /* skip any superblocks already marked as partially coded */
830
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
831

    
832
                    if (current_run-- == 0) {
833
                        bit ^= 1;
834
                        current_run = get_vlc2(gb, 
835
                            s->superblock_run_length_vlc.table, 6, 2);
836
                        if (current_run == 33)
837
                            current_run += get_bits(gb, 12);
838
                    }
839

    
840
                    debug_block_coding("      setting superblock %d to %s\n",
841
                        current_superblock,
842
                        (bit) ? "fully coded" : "not coded");
843
                    s->superblock_coding[current_superblock] = 2*bit;
844
                }
845
                current_superblock++;
846
            }
847
        }
848

    
849
        /* if there were partial blocks, initialize bitstream for
850
         * unpacking fragment codings */
851
        if (decode_partial_blocks) {
852

    
853
            current_run = 0;
854
            bit = get_bits(gb, 1);
855
            /* toggle the bit because as soon as the first run length is 
856
             * fetched the bit will be toggled again */
857
            bit ^= 1;
858
        }
859
    }
860

    
861
    /* figure out which fragments are coded; iterate through each
862
     * superblock (all planes) */
863
    s->coded_fragment_list_index = 0;
864
    s->next_coeff= s->coeffs + s->fragment_count;
865
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
866
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
867
    first_c_fragment_seen = 0;
868
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
869
    for (i = 0; i < s->superblock_count; i++) {
870

    
871
        /* iterate through all 16 fragments in a superblock */
872
        for (j = 0; j < 16; j++) {
873

    
874
            /* if the fragment is in bounds, check its coding status */
875
            current_fragment = s->superblock_fragments[i * 16 + j];
876
            if (current_fragment >= s->fragment_count) {
877
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
878
                    current_fragment, s->fragment_count);
879
                return 1;
880
            }
881
            if (current_fragment != -1) {
882
                if (s->superblock_coding[i] == SB_NOT_CODED) {
883

    
884
                    /* copy all the fragments from the prior frame */
885
                    s->all_fragments[current_fragment].coding_method = 
886
                        MODE_COPY;
887

    
888
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
889

    
890
                    /* fragment may or may not be coded; this is the case
891
                     * that cares about the fragment coding runs */
892
                    if (current_run-- == 0) {
893
                        bit ^= 1;
894
                        current_run = get_vlc2(gb, 
895
                            s->fragment_run_length_vlc.table, 5, 2);
896
                    }
897

    
898
                    if (bit) {
899
                        /* default mode; actual mode will be decoded in 
900
                         * the next phase */
901
                        s->all_fragments[current_fragment].coding_method = 
902
                            MODE_INTER_NO_MV;
903
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
904
                        s->coded_fragment_list[s->coded_fragment_list_index] = 
905
                            current_fragment;
906
                        if ((current_fragment >= s->u_fragment_start) &&
907
                            (s->last_coded_y_fragment == -1) &&
908
                            (!first_c_fragment_seen)) {
909
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
910
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
911
                            first_c_fragment_seen = 1;
912
                        }
913
                        s->coded_fragment_list_index++;
914
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
915
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
916
                            i, current_fragment);
917
                    } else {
918
                        /* not coded; copy this fragment from the prior frame */
919
                        s->all_fragments[current_fragment].coding_method =
920
                            MODE_COPY;
921
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
922
                            i, current_fragment);
923
                    }
924

    
925
                } else {
926

    
927
                    /* fragments are fully coded in this superblock; actual
928
                     * coding will be determined in next step */
929
                    s->all_fragments[current_fragment].coding_method = 
930
                        MODE_INTER_NO_MV;
931
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
932
                    s->coded_fragment_list[s->coded_fragment_list_index] = 
933
                        current_fragment;
934
                    if ((current_fragment >= s->u_fragment_start) &&
935
                        (s->last_coded_y_fragment == -1) &&
936
                        (!first_c_fragment_seen)) {
937
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
938
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
939
                        first_c_fragment_seen = 1;
940
                    }
941
                    s->coded_fragment_list_index++;
942
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
943
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
944
                        i, current_fragment);
945
                }
946
            }
947
        }
948
    }
949

    
950
    if (!first_c_fragment_seen)
951
        /* only Y fragments coded in this frame */
952
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
953
    else 
954
        /* end the list of coded C fragments */
955
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
956

    
957
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
958
        s->coded_fragment_list_index,
959
        s->first_coded_y_fragment,
960
        s->last_coded_y_fragment,
961
        s->first_coded_c_fragment,
962
        s->last_coded_c_fragment);
963

    
964
    return 0;
965
}
966

    
967
/*
968
 * This function unpacks all the coding mode data for individual macroblocks
969
 * from the bitstream.
970
 */
971
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
972
{
973
    int i, j, k;
974
    int scheme;
975
    int current_macroblock;
976
    int current_fragment;
977
    int coding_mode;
978

    
979
    debug_vp3("  vp3: unpacking encoding modes\n");
980

    
981
    if (s->keyframe) {
982
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");
983

    
984
        for (i = 0; i < s->fragment_count; i++)
985
            s->all_fragments[i].coding_method = MODE_INTRA;
986

    
987
    } else {
988

    
989
        /* fetch the mode coding scheme for this frame */
990
        scheme = get_bits(gb, 3);
991
        debug_modes("    using mode alphabet %d\n", scheme);
992

    
993
        /* is it a custom coding scheme? */
994
        if (scheme == 0) {
995
            debug_modes("    custom mode alphabet ahead:\n");
996
            for (i = 0; i < 8; i++)
997
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
998
        }
999

    
1000
        for (i = 0; i < 8; i++)
1001
            debug_modes("      mode[%d][%d] = %d\n", scheme, i, 
1002
                ModeAlphabet[scheme][i]);
1003

    
1004
        /* iterate through all of the macroblocks that contain 1 or more
1005
         * coded fragments */
1006
        for (i = 0; i < s->u_superblock_start; i++) {
1007

    
1008
            for (j = 0; j < 4; j++) {
1009
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
1010
                if ((current_macroblock == -1) ||
1011
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1012
                    continue;
1013
                if (current_macroblock >= s->macroblock_count) {
1014
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1015
                        current_macroblock, s->macroblock_count);
1016
                    return 1;
1017
                }
1018

    
1019
                /* mode 7 means get 3 bits for each coding mode */
1020
                if (scheme == 7)
1021
                    coding_mode = get_bits(gb, 3);
1022
                else
1023
                    coding_mode = ModeAlphabet[scheme]
1024
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
1025

    
1026
                s->macroblock_coding[current_macroblock] = coding_mode;
1027
                for (k = 0; k < 6; k++) {
1028
                    current_fragment = 
1029
                        s->macroblock_fragments[current_macroblock * 6 + k];
1030
                    if (current_fragment == -1)
1031
                        continue;
1032
                    if (current_fragment >= s->fragment_count) {
1033
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1034
                            current_fragment, s->fragment_count);
1035
                        return 1;
1036
                    }
1037
                    if (s->all_fragments[current_fragment].coding_method != 
1038
                        MODE_COPY)
1039
                        s->all_fragments[current_fragment].coding_method =
1040
                            coding_mode;
1041
                }
1042

    
1043
                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
1044
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
1045
            }
1046
        }
1047
    }
1048

    
1049
    return 0;
1050
}
1051

    
1052
/*
1053
 * This function unpacks all the motion vectors for the individual
1054
 * macroblocks from the bitstream.
1055
 */
1056
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1057
{
1058
    int i, j, k;
1059
    int coding_mode;
1060
    int motion_x[6];
1061
    int motion_y[6];
1062
    int last_motion_x = 0;
1063
    int last_motion_y = 0;
1064
    int prior_last_motion_x = 0;
1065
    int prior_last_motion_y = 0;
1066
    int current_macroblock;
1067
    int current_fragment;
1068

    
1069
    debug_vp3("  vp3: unpacking motion vectors\n");
1070
    if (s->keyframe) {
1071

    
1072
        debug_vp3("    keyframe-- there are no motion vectors\n");
1073

    
1074
    } else {
1075

    
1076
        memset(motion_x, 0, 6 * sizeof(int));
1077
        memset(motion_y, 0, 6 * sizeof(int));
1078

    
1079
        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
1080
        coding_mode = get_bits(gb, 1);
1081
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
1082
            (coding_mode == 0) ? "VLC" : "fixed-length");
1083

    
1084
        /* iterate through all of the macroblocks that contain 1 or more
1085
         * coded fragments */
1086
        for (i = 0; i < s->u_superblock_start; i++) {
1087

    
1088
            for (j = 0; j < 4; j++) {
1089
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
1090
                if ((current_macroblock == -1) ||
1091
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1092
                    continue;
1093
                if (current_macroblock >= s->macroblock_count) {
1094
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1095
                        current_macroblock, s->macroblock_count);
1096
                    return 1;
1097
                }
1098

    
1099
                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1100
                if (current_fragment >= s->fragment_count) {
1101
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1102
                        current_fragment, s->fragment_count);
1103
                    return 1;
1104
                }
1105
                switch (s->macroblock_coding[current_macroblock]) {
1106

    
1107
                case MODE_INTER_PLUS_MV:
1108
                case MODE_GOLDEN_MV:
1109
                    /* all 6 fragments use the same motion vector */
1110
                    if (coding_mode == 0) {
1111
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1112
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1113
                    } else {
1114
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1115
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1116
                    }
1117

    
1118
                    for (k = 1; k < 6; k++) {
1119
                        motion_x[k] = motion_x[0];
1120
                        motion_y[k] = motion_y[0];
1121
                    }
1122

    
1123
                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1124
                    if (s->macroblock_coding[current_macroblock] ==
1125
                        MODE_INTER_PLUS_MV) {
1126
                        prior_last_motion_x = last_motion_x;
1127
                        prior_last_motion_y = last_motion_y;
1128
                        last_motion_x = motion_x[0];
1129
                        last_motion_y = motion_y[0];
1130
                    }
1131
                    break;
1132

    
1133
                case MODE_INTER_FOURMV:
1134
                    /* fetch 4 vectors from the bitstream, one for each
1135
                     * Y fragment, then average for the C fragment vectors */
1136
                    motion_x[4] = motion_y[4] = 0;
1137
                    for (k = 0; k < 4; k++) {
1138
                        if (coding_mode == 0) {
1139
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1140
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1141
                        } else {
1142
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1143
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1144
                        }
1145
                        motion_x[4] += motion_x[k];
1146
                        motion_y[4] += motion_y[k];
1147
                    }
1148

    
1149
                    if (motion_x[4] >= 0) 
1150
                        motion_x[4] = (motion_x[4] + 2) / 4;
1151
                    else
1152
                        motion_x[4] = (motion_x[4] - 2) / 4;
1153
                    motion_x[5] = motion_x[4];
1154

    
1155
                    if (motion_y[4] >= 0) 
1156
                        motion_y[4] = (motion_y[4] + 2) / 4;
1157
                    else
1158
                        motion_y[4] = (motion_y[4] - 2) / 4;
1159
                    motion_y[5] = motion_y[4];
1160

    
1161
                    /* vector maintenance; vector[3] is treated as the
1162
                     * last vector in this case */
1163
                    prior_last_motion_x = last_motion_x;
1164
                    prior_last_motion_y = last_motion_y;
1165
                    last_motion_x = motion_x[3];
1166
                    last_motion_y = motion_y[3];
1167
                    break;
1168

    
1169
                case MODE_INTER_LAST_MV:
1170
                    /* all 6 fragments use the last motion vector */
1171
                    motion_x[0] = last_motion_x;
1172
                    motion_y[0] = last_motion_y;
1173
                    for (k = 1; k < 6; k++) {
1174
                        motion_x[k] = motion_x[0];
1175
                        motion_y[k] = motion_y[0];
1176
                    }
1177

    
1178
                    /* no vector maintenance (last vector remains the
1179
                     * last vector) */
1180
                    break;
1181

    
1182
                case MODE_INTER_PRIOR_LAST:
1183
                    /* all 6 fragments use the motion vector prior to the
1184
                     * last motion vector */
1185
                    motion_x[0] = prior_last_motion_x;
1186
                    motion_y[0] = prior_last_motion_y;
1187
                    for (k = 1; k < 6; k++) {
1188
                        motion_x[k] = motion_x[0];
1189
                        motion_y[k] = motion_y[0];
1190
                    }
1191

    
1192
                    /* vector maintenance */
1193
                    prior_last_motion_x = last_motion_x;
1194
                    prior_last_motion_y = last_motion_y;
1195
                    last_motion_x = motion_x[0];
1196
                    last_motion_y = motion_y[0];
1197
                    break;
1198

    
1199
                default:
1200
                    /* covers intra, inter without MV, golden without MV */
1201
                    memset(motion_x, 0, 6 * sizeof(int));
1202
                    memset(motion_y, 0, 6 * sizeof(int));
1203

    
1204
                    /* no vector maintenance */
1205
                    break;
1206
                }
1207

    
1208
                /* assign the motion vectors to the correct fragments */
1209
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
1210
                    current_fragment,
1211
                    s->macroblock_coding[current_macroblock]);
1212
                for (k = 0; k < 6; k++) {
1213
                    current_fragment = 
1214
                        s->macroblock_fragments[current_macroblock * 6 + k];
1215
                    if (current_fragment == -1)
1216
                        continue;
1217
                    if (current_fragment >= s->fragment_count) {
1218
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1219
                            current_fragment, s->fragment_count);
1220
                        return 1;
1221
                    }
1222
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1223
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1224
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
1225
                        k, current_fragment, motion_x[k], motion_y[k]);
1226
                }
1227
            }
1228
        }
1229
    }
1230

    
1231
    return 0;
1232
}
1233

    
1234
/* 
1235
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1236
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1237
 * data. This function unpacks all the VLCs for either the Y plane or both
1238
 * C planes, and is called for DC coefficients or different AC coefficient
1239
 * levels (since different coefficient types require different VLC tables.
1240
 *
1241
 * This function returns a residual eob run. E.g, if a particular token gave
1242
 * instructions to EOB the next 5 fragments and there were only 2 fragments
1243
 * left in the current fragment range, 3 would be returned so that it could
1244
 * be passed into the next call to this same function.
1245
 */
1246
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1247
                        VLC *table, int coeff_index,
1248
                        int first_fragment, int last_fragment,
1249
                        int eob_run)
1250
{
1251
    int i;
1252
    int token;
1253
    int zero_run = 0;
1254
    DCTELEM coeff = 0;
1255
    Vp3Fragment *fragment;
1256
    uint8_t *perm= s->scantable.permutated;
1257
    int bits_to_get;
1258

    
1259
    if ((first_fragment >= s->fragment_count) ||
1260
        (last_fragment >= s->fragment_count)) {
1261

    
1262
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1263
            first_fragment, last_fragment);
1264
        return 0;
1265
    }
1266

    
1267
    for (i = first_fragment; i <= last_fragment; i++) {
1268

    
1269
        fragment = &s->all_fragments[s->coded_fragment_list[i]];
1270
        if (fragment->coeff_count > coeff_index)
1271
            continue;
1272

    
1273
        if (!eob_run) {
1274
            /* decode a VLC into a token */
1275
            token = get_vlc2(gb, table->table, 5, 3);
1276
            debug_vlc(" token = %2d, ", token);
1277
            /* use the token to get a zero run, a coefficient, and an eob run */
1278
            if (token <= 6) {
1279
                eob_run = eob_run_base[token];
1280
                if (eob_run_get_bits[token])
1281
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
1282
                coeff = zero_run = 0;
1283
            } else {
1284
                bits_to_get = coeff_get_bits[token];
1285
                if (!bits_to_get)
1286
                    coeff = coeff_tables[token][0];
1287
                else
1288
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1289

    
1290
                zero_run = zero_run_base[token];
1291
                if (zero_run_get_bits[token])
1292
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1293
            }
1294
        }
1295

    
1296
        if (!eob_run) {
1297
            fragment->coeff_count += zero_run;
1298
            if (fragment->coeff_count < 64){
1299
                fragment->next_coeff->coeff= coeff;
1300
                fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
1301
                fragment->next_coeff->next= s->next_coeff;
1302
                s->next_coeff->next=NULL;
1303
                fragment->next_coeff= s->next_coeff++;
1304
            }
1305
            debug_vlc(" fragment %d coeff = %d\n",
1306
                s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1307
        } else {
1308
            fragment->coeff_count |= 128;
1309
            debug_vlc(" fragment %d eob with %d coefficients\n", 
1310
                s->coded_fragment_list[i], fragment->coeff_count&127);
1311
            eob_run--;
1312
        }
1313
    }
1314

    
1315
    return eob_run;
1316
}
1317

    
1318
/*
1319
 * This function unpacks all of the DCT coefficient data from the
1320
 * bitstream.
1321
 */
1322
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1323
{
1324
    int i;
1325
    int dc_y_table;
1326
    int dc_c_table;
1327
    int ac_y_table;
1328
    int ac_c_table;
1329
    int residual_eob_run = 0;
1330

    
1331
    /* fetch the DC table indices */
1332
    dc_y_table = get_bits(gb, 4);
1333
    dc_c_table = get_bits(gb, 4);
1334

    
1335
    /* unpack the Y plane DC coefficients */
1336
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
1337
        dc_y_table);
1338
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, 
1339
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1340

    
1341
    /* unpack the C plane DC coefficients */
1342
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
1343
        dc_c_table);
1344
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1345
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1346

    
1347
    /* fetch the AC table indices */
1348
    ac_y_table = get_bits(gb, 4);
1349
    ac_c_table = get_bits(gb, 4);
1350

    
1351
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1352
    for (i = 1; i <= 5; i++) {
1353

    
1354
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1355
            i, ac_y_table);
1356
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, 
1357
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1358

    
1359
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1360
            i, ac_c_table);
1361
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, 
1362
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1363
    }
1364

    
1365
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1366
    for (i = 6; i <= 14; i++) {
1367

    
1368
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1369
            i, ac_y_table);
1370
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, 
1371
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1372

    
1373
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1374
            i, ac_c_table);
1375
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, 
1376
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1377
    }
1378

    
1379
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1380
    for (i = 15; i <= 27; i++) {
1381

    
1382
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1383
            i, ac_y_table);
1384
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, 
1385
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1386

    
1387
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1388
            i, ac_c_table);
1389
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, 
1390
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1391
    }
1392

    
1393
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1394
    for (i = 28; i <= 63; i++) {
1395

    
1396
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1397
            i, ac_y_table);
1398
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, 
1399
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1400

    
1401
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1402
            i, ac_c_table);
1403
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, 
1404
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1405
    }
1406

    
1407
    return 0;
1408
}
1409

    
1410
/*
1411
 * This function reverses the DC prediction for each coded fragment in
1412
 * the frame. Much of this function is adapted directly from the original 
1413
 * VP3 source code.
1414
 */
1415
#define COMPATIBLE_FRAME(x) \
1416
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1417
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1418
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1419
static inline int iabs (int x) { return ((x < 0) ? -x : x); }
1420

    
1421
static void reverse_dc_prediction(Vp3DecodeContext *s,
1422
                                  int first_fragment,
1423
                                  int fragment_width,
1424
                                  int fragment_height) 
1425
{
1426

    
1427
#define PUL 8
1428
#define PU 4
1429
#define PUR 2
1430
#define PL 1
1431

    
1432
    int x, y;
1433
    int i = first_fragment;
1434

    
1435
    /*
1436
     * Fragment prediction groups:
1437
     *
1438
     * 32222222226
1439
     * 10000000004
1440
     * 10000000004
1441
     * 10000000004
1442
     * 10000000004
1443
     *
1444
     * Note: Groups 5 and 7 do not exist as it would mean that the 
1445
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
1446
     */
1447
    int predictor_group;
1448
    short predicted_dc;
1449

    
1450
    /* validity flags for the left, up-left, up, and up-right fragments */
1451
    int fl, ful, fu, fur;
1452

    
1453
    /* DC values for the left, up-left, up, and up-right fragments */
1454
    int vl, vul, vu, vur;
1455

    
1456
    /* indices for the left, up-left, up, and up-right fragments */
1457
    int l, ul, u, ur;
1458

    
1459
    /* 
1460
     * The 6 fields mean:
1461
     *   0: up-left multiplier
1462
     *   1: up multiplier
1463
     *   2: up-right multiplier
1464
     *   3: left multiplier
1465
     *   4: mask
1466
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
1467
     */
1468
    int predictor_transform[16][6] = {
1469
        {  0,  0,  0,  0,   0,  0 },
1470
        {  0,  0,  0,  1,   0,  0 },        // PL
1471
        {  0,  0,  1,  0,   0,  0 },        // PUR
1472
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
1473
        {  0,  1,  0,  0,   0,  0 },        // PU
1474
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
1475
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
1476
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
1477
        {  1,  0,  0,  0,   0,  0 },        // PUL
1478
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
1479
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
1480
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
1481
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
1482
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
1483
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
1484
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
1485
    };
1486

    
1487
    /* This table shows which types of blocks can use other blocks for
1488
     * prediction. For example, INTRA is the only mode in this table to
1489
     * have a frame number of 0. That means INTRA blocks can only predict
1490
     * from other INTRA blocks. There are 2 golden frame coding types; 
1491
     * blocks encoding in these modes can only predict from other blocks
1492
     * that were encoded with these 1 of these 2 modes. */
1493
    unsigned char compatible_frame[8] = {
1494
        1,    /* MODE_INTER_NO_MV */
1495
        0,    /* MODE_INTRA */
1496
        1,    /* MODE_INTER_PLUS_MV */
1497
        1,    /* MODE_INTER_LAST_MV */
1498
        1,    /* MODE_INTER_PRIOR_MV */
1499
        2,    /* MODE_USING_GOLDEN */
1500
        2,    /* MODE_GOLDEN_MV */
1501
        1     /* MODE_INTER_FOUR_MV */
1502
    };
1503
    int current_frame_type;
1504

    
1505
    /* there is a last DC predictor for each of the 3 frame types */
1506
    short last_dc[3];
1507

    
1508
    int transform = 0;
1509

    
1510
    debug_vp3("  vp3: reversing DC prediction\n");
1511

    
1512
    vul = vu = vur = vl = 0;
1513
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1514

    
1515
    /* for each fragment row... */
1516
    for (y = 0; y < fragment_height; y++) {
1517

    
1518
        /* for each fragment in a row... */
1519
        for (x = 0; x < fragment_width; x++, i++) {
1520

    
1521
            /* reverse prediction if this block was coded */
1522
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1523

    
1524
                current_frame_type = 
1525
                    compatible_frame[s->all_fragments[i].coding_method];
1526
                predictor_group = (x == 0) + ((y == 0) << 1) +
1527
                    ((x + 1 == fragment_width) << 2);
1528
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
1529
                    i, predictor_group, DC_COEFF(i));
1530

    
1531
                switch (predictor_group) {
1532

    
1533
                case 0:
1534
                    /* main body of fragments; consider all 4 possible
1535
                     * fragments for prediction */
1536

    
1537
                    /* calculate the indices of the predicting fragments */
1538
                    ul = i - fragment_width - 1;
1539
                    u = i - fragment_width;
1540
                    ur = i - fragment_width + 1;
1541
                    l = i - 1;
1542

    
1543
                    /* fetch the DC values for the predicting fragments */
1544
                    vul = DC_COEFF(ul);
1545
                    vu = DC_COEFF(u);
1546
                    vur = DC_COEFF(ur);
1547
                    vl = DC_COEFF(l);
1548

    
1549
                    /* figure out which fragments are valid */
1550
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
1551
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
1552
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
1553
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
1554

    
1555
                    /* decide which predictor transform to use */
1556
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);
1557

    
1558
                    break;
1559

    
1560
                case 1:
1561
                    /* left column of fragments, not including top corner;
1562
                     * only consider up and up-right fragments */
1563

    
1564
                    /* calculate the indices of the predicting fragments */
1565
                    u = i - fragment_width;
1566
                    ur = i - fragment_width + 1;
1567

    
1568
                    /* fetch the DC values for the predicting fragments */
1569
                    vu = DC_COEFF(u);
1570
                    vur = DC_COEFF(ur);
1571

    
1572
                    /* figure out which fragments are valid */
1573
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
1574
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
1575

    
1576
                    /* decide which predictor transform to use */
1577
                    transform = (fu*PU) | (fur*PUR);
1578

    
1579
                    break;
1580

    
1581
                case 2:
1582
                case 6:
1583
                    /* top row of fragments, not including top-left frag;
1584
                     * only consider the left fragment for prediction */
1585

    
1586
                    /* calculate the indices of the predicting fragments */
1587
                    l = i - 1;
1588

    
1589
                    /* fetch the DC values for the predicting fragments */
1590
                    vl = DC_COEFF(l);
1591

    
1592
                    /* figure out which fragments are valid */
1593
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
1594

    
1595
                    /* decide which predictor transform to use */
1596
                    transform = (fl*PL);
1597

    
1598
                    break;
1599

    
1600
                case 3:
1601
                    /* top-left fragment */
1602

    
1603
                    /* nothing to predict from in this case */
1604
                    transform = 0;
1605

    
1606
                    break;
1607

    
1608
                case 4:
1609
                    /* right column of fragments, not including top corner;
1610
                     * consider up-left, up, and left fragments for
1611
                     * prediction */
1612

    
1613
                    /* calculate the indices of the predicting fragments */
1614
                    ul = i - fragment_width - 1;
1615
                    u = i - fragment_width;
1616
                    l = i - 1;
1617

    
1618
                    /* fetch the DC values for the predicting fragments */
1619
                    vul = DC_COEFF(ul);
1620
                    vu = DC_COEFF(u);
1621
                    vl = DC_COEFF(l);
1622

    
1623
                    /* figure out which fragments are valid */
1624
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
1625
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
1626
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
1627

    
1628
                    /* decide which predictor transform to use */
1629
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);
1630

    
1631
                    break;
1632

    
1633
                }
1634

    
1635
                debug_dc_pred("transform = %d, ", transform);
1636

    
1637
                if (transform == 0) {
1638

    
1639
                    /* if there were no fragments to predict from, use last
1640
                     * DC saved */
1641
                    predicted_dc = last_dc[current_frame_type];
1642
                    debug_dc_pred("from last DC (%d) = %d\n", 
1643
                        current_frame_type, DC_COEFF(i));
1644

    
1645
                } else {
1646

    
1647
                    /* apply the appropriate predictor transform */
1648
                    predicted_dc =
1649
                        (predictor_transform[transform][0] * vul) +
1650
                        (predictor_transform[transform][1] * vu) +
1651
                        (predictor_transform[transform][2] * vur) +
1652
                        (predictor_transform[transform][3] * vl);
1653

    
1654
                    /* if there is a shift value in the transform, add
1655
                     * the sign bit before the shift */
1656
                    if (predictor_transform[transform][5] != 0) {
1657
                        predicted_dc += ((predicted_dc >> 15) & 
1658
                            predictor_transform[transform][4]);
1659
                        predicted_dc >>= predictor_transform[transform][5];
1660
                    }
1661

    
1662
                    /* check for outranging on the [ul u l] and
1663
                     * [ul u ur l] predictors */
1664
                    if ((transform == 13) || (transform == 15)) {
1665
                        if (iabs(predicted_dc - vu) > 128)
1666
                            predicted_dc = vu;
1667
                        else if (iabs(predicted_dc - vl) > 128)
1668
                            predicted_dc = vl;
1669
                        else if (iabs(predicted_dc - vul) > 128)
1670
                            predicted_dc = vul;
1671
                    }
1672

    
1673
                    debug_dc_pred("from pred DC = %d\n", 
1674
                    DC_COEFF(i));
1675
                }
1676

    
1677
                /* at long last, apply the predictor */
1678
                if(s->coeffs[i].index){
1679
                    *s->next_coeff= s->coeffs[i];
1680
                    s->coeffs[i].index=0;
1681
                    s->coeffs[i].coeff=0;
1682
                    s->coeffs[i].next= s->next_coeff++;
1683
                }
1684
                s->coeffs[i].coeff += predicted_dc;
1685
                /* save the DC */
1686
                last_dc[current_frame_type] = DC_COEFF(i);
1687
                if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
1688
                    s->all_fragments[i].coeff_count= 129;
1689
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1690
                    s->coeffs[i].next= s->next_coeff;
1691
                    (s->next_coeff++)->next=NULL;
1692
                }
1693
            }
1694
        }
1695
    }
1696
}
1697

    
1698

    
1699
static void horizontal_filter(unsigned char *first_pixel, int stride,
1700
    int *bounding_values);
1701
static void vertical_filter(unsigned char *first_pixel, int stride,
1702
    int *bounding_values);
1703

    
1704
/*
1705
 * Perform the final rendering for a particular slice of data.
1706
 * The slice number ranges from 0..(macroblock_height - 1).
1707
 */
1708
static void render_slice(Vp3DecodeContext *s, int slice)
1709
{
1710
    int x, y;
1711
    int m, n;
1712
    int i;  /* indicates current fragment */
1713
    int16_t *dequantizer;
1714
    DCTELEM __align16 block[64];
1715
    unsigned char *output_plane;
1716
    unsigned char *last_plane;
1717
    unsigned char *golden_plane;
1718
    int stride;
1719
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1720
    int upper_motion_limit, lower_motion_limit;
1721
    int motion_halfpel_index;
1722
    uint8_t *motion_source;
1723
    int plane;
1724
    int plane_width;
1725
    int plane_height;
1726
    int slice_height;
1727
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1728
    int fragment_width;
1729

    
1730
    if (slice >= s->macroblock_height)
1731
        return;
1732

    
1733
    for (plane = 0; plane < 3; plane++) {
1734

    
1735
        /* set up plane-specific parameters */
1736
        if (plane == 0) {
1737
            output_plane = s->current_frame.data[0];
1738
            last_plane = s->last_frame.data[0];
1739
            golden_plane = s->golden_frame.data[0];
1740
            stride = s->current_frame.linesize[0];
1741
            if (!s->flipped_image) stride = -stride;
1742
            upper_motion_limit = 7 * s->current_frame.linesize[0];
1743
            lower_motion_limit = s->height * s->current_frame.linesize[0] + s->width - 8;
1744
            y = slice * FRAGMENT_PIXELS * 2;
1745
            plane_width = s->width;
1746
            plane_height = s->height;
1747
            slice_height = y + FRAGMENT_PIXELS * 2;
1748
            i = s->macroblock_fragments[current_macroblock_entry + 0];
1749
        } else if (plane == 1) {
1750
            output_plane = s->current_frame.data[1];
1751
            last_plane = s->last_frame.data[1];
1752
            golden_plane = s->golden_frame.data[1];
1753
            stride = s->current_frame.linesize[1];
1754
            if (!s->flipped_image) stride = -stride;
1755
            upper_motion_limit = 7 * s->current_frame.linesize[1];
1756
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[1] + (s->width / 2) - 8;
1757
            y = slice * FRAGMENT_PIXELS;
1758
            plane_width = s->width / 2;
1759
            plane_height = s->height / 2;
1760
            slice_height = y + FRAGMENT_PIXELS;
1761
            i = s->macroblock_fragments[current_macroblock_entry + 4];
1762
        } else {
1763
            output_plane = s->current_frame.data[2];
1764
            last_plane = s->last_frame.data[2];
1765
            golden_plane = s->golden_frame.data[2];
1766
            stride = s->current_frame.linesize[2];
1767
            if (!s->flipped_image) stride = -stride;
1768
            upper_motion_limit = 7 * s->current_frame.linesize[2];
1769
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[2] + (s->width / 2) - 8;
1770
            y = slice * FRAGMENT_PIXELS;
1771
            plane_width = s->width / 2;
1772
            plane_height = s->height / 2;
1773
            slice_height = y + FRAGMENT_PIXELS;
1774
            i = s->macroblock_fragments[current_macroblock_entry + 5];
1775
        }
1776
        fragment_width = plane_width / FRAGMENT_PIXELS;
1777
    
1778
        if(ABS(stride) > 2048)
1779
            return; //various tables are fixed size
1780

    
1781
        /* for each fragment row in the slice (both of them)... */
1782
        for (; y < slice_height; y += 8) {
1783

    
1784
            /* for each fragment in a row... */
1785
            for (x = 0; x < plane_width; x += 8, i++) {
1786

    
1787
                if ((i < 0) || (i >= s->fragment_count)) {
1788
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1789
                    return;
1790
                }
1791

    
1792
                /* transform if this block was coded */
1793
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1794
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1795

    
1796
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1797
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1798
                        motion_source= golden_plane;
1799
                    else 
1800
                        motion_source= last_plane;
1801

    
1802
                    motion_source += s->all_fragments[i].first_pixel;
1803
                    motion_halfpel_index = 0;
1804

    
1805
                    /* sort out the motion vector if this fragment is coded
1806
                     * using a motion vector method */
1807
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1808
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1809
                        int src_x, src_y;
1810
                        motion_x = s->all_fragments[i].motion_x;
1811
                        motion_y = s->all_fragments[i].motion_y;
1812
                        if(plane){
1813
                            motion_x= (motion_x>>1) | (motion_x&1);
1814
                            motion_y= (motion_y>>1) | (motion_y&1);
1815
                        }
1816

    
1817
                        src_x= (motion_x>>1) + x;
1818
                        src_y= (motion_y>>1) + y;
1819
                        if ((motion_x == 127) || (motion_y == 127))
1820
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1821

    
1822
                        motion_halfpel_index = motion_x & 0x01;
1823
                        motion_source += (motion_x >> 1);
1824

    
1825
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1826
                        motion_source += ((motion_y >> 1) * stride);
1827

    
1828
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1829
                            uint8_t *temp= s->edge_emu_buffer;
1830
                            if(stride<0) temp -= 9*stride;
1831
                            else temp += 9*stride;
1832

    
1833
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1834
                            motion_source= temp;
1835
                        }
1836
                    }
1837
                
1838

    
1839
                    /* first, take care of copying a block from either the
1840
                     * previous or the golden frame */
1841
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1842
                        /* Note, it is possible to implement all MC cases with 
1843
                           put_no_rnd_pixels_l2 which would look more like the 
1844
                           VP3 source but this would be slower as 
1845
                           put_no_rnd_pixels_tab is better optimzed */
1846
                        if(motion_halfpel_index != 3){
1847
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1848
                                output_plane + s->all_fragments[i].first_pixel,
1849
                                motion_source, stride, 8);
1850
                        }else{
1851
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1852
                            s->dsp.put_no_rnd_pixels_l2[1](
1853
                                output_plane + s->all_fragments[i].first_pixel,
1854
                                motion_source - d, 
1855
                                motion_source + stride + 1 + d, 
1856
                                stride, 8);
1857
                        }
1858
                        dequantizer = s->inter_dequant;
1859
                    }else{
1860
                        if (plane == 0)
1861
                            dequantizer = s->intra_y_dequant;
1862
                        else
1863
                            dequantizer = s->intra_c_dequant;
1864
                    }
1865

    
1866
                    /* dequantize the DCT coefficients */
1867
                    debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n", 
1868
                        i, s->all_fragments[i].coding_method, 
1869
                        DC_COEFF(i), dequantizer[0]);
1870

    
1871
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1872
                        Coeff *coeff= s->coeffs + i;
1873
                        memset(block, 0, sizeof(block));
1874
                        while(coeff->next){
1875
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1876
                            coeff= coeff->next;
1877
                        }
1878
                    }else{
1879
                        Coeff *coeff= s->coeffs + i;
1880
                        memset(block, 0, sizeof(block));
1881
                        while(coeff->next){
1882
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1883
                            coeff= coeff->next;
1884
                        }
1885
                    }
1886

    
1887
                    /* invert DCT and place (or add) in final output */
1888
                
1889
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1890
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1891
                            block[0] += 128<<3;
1892
                        s->dsp.idct_put(
1893
                            output_plane + s->all_fragments[i].first_pixel,
1894
                            stride,
1895
                            block);
1896
                    } else {
1897
                        s->dsp.idct_add(
1898
                            output_plane + s->all_fragments[i].first_pixel,
1899
                            stride,
1900
                            block);
1901
                    }
1902

    
1903
                    debug_idct("block after idct_%s():\n",
1904
                        (s->all_fragments[i].coding_method == MODE_INTRA)?
1905
                        "put" : "add");
1906
                    for (m = 0; m < 8; m++) {
1907
                        for (n = 0; n < 8; n++) {
1908
                            debug_idct(" %3d", *(output_plane + 
1909
                                s->all_fragments[i].first_pixel + (m * stride + n)));
1910
                        }
1911
                        debug_idct("\n");
1912
                    }
1913
                    debug_idct("\n");
1914

    
1915
                } else {
1916

    
1917
                    /* copy directly from the previous frame */
1918
                    s->dsp.put_pixels_tab[1][0](
1919
                        output_plane + s->all_fragments[i].first_pixel,
1920
                        last_plane + s->all_fragments[i].first_pixel,
1921
                        stride, 8);
1922

    
1923
                }
1924
#if 0
1925
                /* perform the left edge filter if:
1926
                 *   - the fragment is not on the left column
1927
                 *   - the fragment is coded in this frame
1928
                 *   - the fragment is not coded in this frame but the left
1929
                 *     fragment is coded in this frame (this is done instead
1930
                 *     of a right edge filter when rendering the left fragment
1931
                 *     since this fragment is not available yet) */
1932
                if ((x > 0) &&
1933
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1934
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1935
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1936
                    horizontal_filter(
1937
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
1938
                        -stride, bounding_values);
1939
                }
1940

1941
                /* perform the top edge filter if:
1942
                 *   - the fragment is not on the top row
1943
                 *   - the fragment is coded in this frame
1944
                 *   - the fragment is not coded in this frame but the above
1945
                 *     fragment is coded in this frame (this is done instead
1946
                 *     of a bottom edge filter when rendering the above
1947
                 *     fragment since this fragment is not available yet) */
1948
                if ((y > 0) &&
1949
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1950
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1951
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1952
                    vertical_filter(
1953
                        output_plane + s->all_fragments[i].first_pixel - stride,
1954
                        -stride, bounding_values);
1955
                }
1956
#endif
1957
            }
1958
        }
1959
    }
1960

    
1961
     /* this looks like a good place for slice dispatch... */
1962
     /* algorithm:
1963
      *   if (slice == s->macroblock_height - 1)
1964
      *     dispatch (both last slice & 2nd-to-last slice);
1965
      *   else if (slice > 0)
1966
      *     dispatch (slice - 1);
1967
      */
1968

    
1969
    emms_c();
1970
}
1971

    
1972
static void horizontal_filter(unsigned char *first_pixel, int stride,
1973
    int *bounding_values)
1974
{
1975
    unsigned char *end;
1976
    int filter_value;
1977

    
1978
    for (end= first_pixel + 8*stride; first_pixel < end; first_pixel += stride) {
1979
        filter_value = 
1980
            (first_pixel[-2] - first_pixel[ 1])
1981
         +3*(first_pixel[ 0] - first_pixel[-1]);
1982
        filter_value = bounding_values[(filter_value + 4) >> 3];
1983
        first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
1984
        first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
1985
    }
1986
}
1987

    
1988
static void vertical_filter(unsigned char *first_pixel, int stride,
1989
    int *bounding_values)
1990
{
1991
    unsigned char *end;
1992
    int filter_value;
1993
    const int nstride= -stride;
1994

    
1995
    for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1996
        filter_value = 
1997
            (first_pixel[2 * nstride] - first_pixel[ stride])
1998
         +3*(first_pixel[0          ] - first_pixel[nstride]);
1999
        filter_value = bounding_values[(filter_value + 4) >> 3];
2000
        first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
2001
        first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
2002
    }
2003
}
2004

    
2005
static void apply_loop_filter(Vp3DecodeContext *s)
2006
{
2007
    int x, y, plane;
2008
    int width, height;
2009
    int fragment;
2010
    int stride;
2011
    unsigned char *plane_data;
2012
    int *bounding_values= s->bounding_values_array+127;
2013

    
2014
#if 0
2015
    int bounding_values_array[256];
2016
    int filter_limit;
2017

2018
    /* find the right loop limit value */
2019
    for (x = 63; x >= 0; x--) {
2020
        if (vp31_ac_scale_factor[x] >= s->quality_index)
2021
            break;
2022
    }
2023
    filter_limit = vp31_filter_limit_values[s->quality_index];
2024

2025
    /* set up the bounding values */
2026
    memset(bounding_values_array, 0, 256 * sizeof(int));
2027
    for (x = 0; x < filter_limit; x++) {
2028
        bounding_values[-x - filter_limit] = -filter_limit + x;
2029
        bounding_values[-x] = -x;
2030
        bounding_values[x] = x;
2031
        bounding_values[x + filter_limit] = filter_limit - x;
2032
    }
2033
#endif
2034

    
2035
    for (plane = 0; plane < 3; plane++) {
2036

    
2037
        if (plane == 0) {
2038
            /* Y plane parameters */
2039
            fragment = 0;
2040
            width = s->fragment_width;
2041
            height = s->fragment_height;
2042
            stride = s->current_frame.linesize[0];
2043
            plane_data = s->current_frame.data[0];
2044
        } else if (plane == 1) {
2045
            /* U plane parameters */
2046
            fragment = s->u_fragment_start;
2047
            width = s->fragment_width / 2;
2048
            height = s->fragment_height / 2;
2049
            stride = s->current_frame.linesize[1];
2050
            plane_data = s->current_frame.data[1];
2051
        } else {
2052
            /* V plane parameters */
2053
            fragment = s->v_fragment_start;
2054
            width = s->fragment_width / 2;
2055
            height = s->fragment_height / 2;
2056
            stride = s->current_frame.linesize[2];
2057
            plane_data = s->current_frame.data[2];
2058
        }
2059

    
2060
        for (y = 0; y < height; y++) {
2061

    
2062
            for (x = 0; x < width; x++) {
2063
START_TIMER
2064
                /* do not perform left edge filter for left columns frags */
2065
                if ((x > 0) &&
2066
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
2067
                    horizontal_filter(
2068
                        plane_data + s->all_fragments[fragment].first_pixel - 7*stride, 
2069
                        stride, bounding_values);
2070
                }
2071

    
2072
                /* do not perform top edge filter for top row fragments */
2073
                if ((y > 0) &&
2074
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
2075
                    vertical_filter(
2076
                        plane_data + s->all_fragments[fragment].first_pixel + stride, 
2077
                        stride, bounding_values);
2078
                }
2079

    
2080
                /* do not perform right edge filter for right column
2081
                 * fragments or if right fragment neighbor is also coded
2082
                 * in this frame (it will be filtered in next iteration) */
2083
                if ((x < width - 1) &&
2084
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
2085
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
2086
                    horizontal_filter(
2087
                        plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride, 
2088
                        stride, bounding_values);
2089
                }
2090

    
2091
                /* do not perform bottom edge filter for bottom row
2092
                 * fragments or if bottom fragment neighbor is also coded
2093
                 * in this frame (it will be filtered in the next row) */
2094
                if ((y < height - 1) &&
2095
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
2096
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
2097
                    vertical_filter(
2098
                        plane_data + s->all_fragments[fragment + width].first_pixel + stride, 
2099
                        stride, bounding_values);
2100
                }
2101

    
2102
                fragment++;
2103
STOP_TIMER("loop filter")
2104
            }
2105
        }
2106
    }
2107
}
2108

    
2109
/* 
2110
 * This function computes the first pixel addresses for each fragment.
2111
 * This function needs to be invoked after the first frame is allocated
2112
 * so that it has access to the plane strides.
2113
 */
2114
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) 
2115
{
2116

    
2117
    int i, x, y;
2118

    
2119
    /* figure out the first pixel addresses for each of the fragments */
2120
    /* Y plane */
2121
    i = 0;
2122
    for (y = s->fragment_height; y > 0; y--) {
2123
        for (x = 0; x < s->fragment_width; x++) {
2124
            s->all_fragments[i++].first_pixel = 
2125
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
2126
                    s->golden_frame.linesize[0] +
2127
                    x * FRAGMENT_PIXELS;
2128
            debug_init("  fragment %d, first pixel @ %d\n", 
2129
                i-1, s->all_fragments[i-1].first_pixel);
2130
        }
2131
    }
2132

    
2133
    /* U plane */
2134
    i = s->u_fragment_start;
2135
    for (y = s->fragment_height / 2; y > 0; y--) {
2136
        for (x = 0; x < s->fragment_width / 2; x++) {
2137
            s->all_fragments[i++].first_pixel = 
2138
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
2139
                    s->golden_frame.linesize[1] +
2140
                    x * FRAGMENT_PIXELS;
2141
            debug_init("  fragment %d, first pixel @ %d\n", 
2142
                i-1, s->all_fragments[i-1].first_pixel);
2143
        }
2144
    }
2145

    
2146
    /* V plane */
2147
    i = s->v_fragment_start;
2148
    for (y = s->fragment_height / 2; y > 0; y--) {
2149
        for (x = 0; x < s->fragment_width / 2; x++) {
2150
            s->all_fragments[i++].first_pixel = 
2151
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
2152
                    s->golden_frame.linesize[2] +
2153
                    x * FRAGMENT_PIXELS;
2154
            debug_init("  fragment %d, first pixel @ %d\n", 
2155
                i-1, s->all_fragments[i-1].first_pixel);
2156
        }
2157
    }
2158
}
2159

    
2160
/* FIXME: this should be merged with the above! */
2161
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) 
2162
{
2163

    
2164
    int i, x, y;
2165

    
2166
    /* figure out the first pixel addresses for each of the fragments */
2167
    /* Y plane */
2168
    i = 0;
2169
    for (y = 1; y <= s->fragment_height; y++) {
2170
        for (x = 0; x < s->fragment_width; x++) {
2171
            s->all_fragments[i++].first_pixel = 
2172
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
2173
                    s->golden_frame.linesize[0] +
2174
                    x * FRAGMENT_PIXELS;
2175
            debug_init("  fragment %d, first pixel @ %d\n", 
2176
                i-1, s->all_fragments[i-1].first_pixel);
2177
        }
2178
    }
2179

    
2180
    /* U plane */
2181
    i = s->u_fragment_start;
2182
    for (y = 1; y <= s->fragment_height / 2; y++) {
2183
        for (x = 0; x < s->fragment_width / 2; x++) {
2184
            s->all_fragments[i++].first_pixel = 
2185
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
2186
                    s->golden_frame.linesize[1] +
2187
                    x * FRAGMENT_PIXELS;
2188
            debug_init("  fragment %d, first pixel @ %d\n", 
2189
                i-1, s->all_fragments[i-1].first_pixel);
2190
        }
2191
    }
2192

    
2193
    /* V plane */
2194
    i = s->v_fragment_start;
2195
    for (y = 1; y <= s->fragment_height / 2; y++) {
2196
        for (x = 0; x < s->fragment_width / 2; x++) {
2197
            s->all_fragments[i++].first_pixel = 
2198
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
2199
                    s->golden_frame.linesize[2] +
2200
                    x * FRAGMENT_PIXELS;
2201
            debug_init("  fragment %d, first pixel @ %d\n", 
2202
                i-1, s->all_fragments[i-1].first_pixel);
2203
        }
2204
    }
2205
}
2206

    
2207
/*
2208
 * This is the ffmpeg/libavcodec API init function.
2209
 */
2210
static int vp3_decode_init(AVCodecContext *avctx)
2211
{
2212
    Vp3DecodeContext *s = avctx->priv_data;
2213
    int i;
2214
    int c_width;
2215
    int c_height;
2216
    int y_superblock_count;
2217
    int c_superblock_count;
2218

    
2219
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
2220
        s->version = 0;
2221
    else
2222
        s->version = 1;
2223

    
2224
    s->avctx = avctx;
2225
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
2226
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
2227
    avctx->pix_fmt = PIX_FMT_YUV420P;
2228
    avctx->has_b_frames = 0;
2229
    if(avctx->idct_algo==FF_IDCT_AUTO)
2230
        avctx->idct_algo=FF_IDCT_VP3;
2231
    dsputil_init(&s->dsp, avctx);
2232
    
2233
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
2234

    
2235
    /* initialize to an impossible value which will force a recalculation
2236
     * in the first frame decode */
2237
    s->quality_index = -1;
2238

    
2239
    s->y_superblock_width = (s->width + 31) / 32;
2240
    s->y_superblock_height = (s->height + 31) / 32;
2241
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
2242

    
2243
    /* work out the dimensions for the C planes */
2244
    c_width = s->width / 2;
2245
    c_height = s->height / 2;
2246
    s->c_superblock_width = (c_width + 31) / 32;
2247
    s->c_superblock_height = (c_height + 31) / 32;
2248
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
2249

    
2250
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
2251
    s->u_superblock_start = y_superblock_count;
2252
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2253
    s->superblock_coding = av_malloc(s->superblock_count);
2254

    
2255
    s->macroblock_width = (s->width + 15) / 16;
2256
    s->macroblock_height = (s->height + 15) / 16;
2257
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
2258

    
2259
    s->fragment_width = s->width / FRAGMENT_PIXELS;
2260
    s->fragment_height = s->height / FRAGMENT_PIXELS;
2261

    
2262
    /* fragment count covers all 8x8 blocks for all 3 planes */
2263
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
2264
    s->u_fragment_start = s->fragment_width * s->fragment_height;
2265
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;
2266

    
2267
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
2268
    debug_init("  C plane: %d x %d\n", c_width, c_height);
2269
    debug_init("  Y superblocks: %d x %d, %d total\n",
2270
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
2271
    debug_init("  C superblocks: %d x %d, %d total\n",
2272
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
2273
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n", 
2274
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2275
    debug_init("  macroblocks: %d x %d, %d total\n",
2276
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
2277
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
2278
        s->fragment_count,
2279
        s->fragment_width,
2280
        s->fragment_height,
2281
        s->u_fragment_start,
2282
        s->v_fragment_start);
2283

    
2284
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2285
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2286
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
2287
    s->pixel_addresses_inited = 0;
2288

    
2289
    if (!s->theora_tables)
2290
    {
2291
        for (i = 0; i < 64; i++)
2292
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
2293
        for (i = 0; i < 64; i++)
2294
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2295
        for (i = 0; i < 64; i++)
2296
            s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
2297
        for (i = 0; i < 64; i++)
2298
            s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
2299
        for (i = 0; i < 64; i++)
2300
            s->coded_inter_dequant[i] = vp31_inter_dequant[i];
2301
        for (i = 0; i < 64; i++)
2302
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
2303

    
2304
        /* init VLC tables */
2305
        for (i = 0; i < 16; i++) {
2306

    
2307
            /* DC histograms */
2308
            init_vlc(&s->dc_vlc[i], 5, 32,
2309
                &dc_bias[i][0][1], 4, 2,
2310
                &dc_bias[i][0][0], 4, 2, 0);
2311

    
2312
            /* group 1 AC histograms */
2313
            init_vlc(&s->ac_vlc_1[i], 5, 32,
2314
                &ac_bias_0[i][0][1], 4, 2,
2315
                &ac_bias_0[i][0][0], 4, 2, 0);
2316

    
2317
            /* group 2 AC histograms */
2318
            init_vlc(&s->ac_vlc_2[i], 5, 32,
2319
                &ac_bias_1[i][0][1], 4, 2,
2320
                &ac_bias_1[i][0][0], 4, 2, 0);
2321

    
2322
            /* group 3 AC histograms */
2323
            init_vlc(&s->ac_vlc_3[i], 5, 32,
2324
                &ac_bias_2[i][0][1], 4, 2,
2325
                &ac_bias_2[i][0][0], 4, 2, 0);
2326

    
2327
            /* group 4 AC histograms */
2328
            init_vlc(&s->ac_vlc_4[i], 5, 32,
2329
                &ac_bias_3[i][0][1], 4, 2,
2330
                &ac_bias_3[i][0][0], 4, 2, 0);
2331
        }
2332
    } else {
2333
        for (i = 0; i < 16; i++) {
2334

    
2335
            /* DC histograms */
2336
            init_vlc(&s->dc_vlc[i], 5, 32,
2337
                &s->huffman_table[i][0][1], 4, 2,
2338
                &s->huffman_table[i][0][0], 4, 2, 0);
2339

    
2340
            /* group 1 AC histograms */
2341
            init_vlc(&s->ac_vlc_1[i], 5, 32,
2342
                &s->huffman_table[i+16][0][1], 4, 2,
2343
                &s->huffman_table[i+16][0][0], 4, 2, 0);
2344

    
2345
            /* group 2 AC histograms */
2346
            init_vlc(&s->ac_vlc_2[i], 5, 32,
2347
                &s->huffman_table[i+16*2][0][1], 4, 2,
2348
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);
2349

    
2350
            /* group 3 AC histograms */
2351
            init_vlc(&s->ac_vlc_3[i], 5, 32,
2352
                &s->huffman_table[i+16*3][0][1], 4, 2,
2353
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);
2354

    
2355
            /* group 4 AC histograms */
2356
            init_vlc(&s->ac_vlc_4[i], 5, 32,
2357
                &s->huffman_table[i+16*4][0][1], 4, 2,
2358
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
2359
        }
2360
    }
2361

    
2362
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
2363
        &superblock_run_length_vlc_table[0][1], 4, 2,
2364
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
2365

    
2366
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
2367
        &fragment_run_length_vlc_table[0][1], 4, 2,
2368
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
2369

    
2370
    init_vlc(&s->mode_code_vlc, 3, 8,
2371
        &mode_code_vlc_table[0][1], 2, 1,
2372
        &mode_code_vlc_table[0][0], 2, 1, 0);
2373

    
2374
    init_vlc(&s->motion_vector_vlc, 6, 63,
2375
        &motion_vector_vlc_table[0][1], 2, 1,
2376
        &motion_vector_vlc_table[0][0], 2, 1, 0);
2377

    
2378
    /* work out the block mapping tables */
2379
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
2380
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
2381
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2382
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2383
    init_block_mapping(s);
2384

    
2385
    for (i = 0; i < 3; i++) {
2386
        s->current_frame.data[i] = NULL;
2387
        s->last_frame.data[i] = NULL;
2388
        s->golden_frame.data[i] = NULL;
2389
    }
2390

    
2391
    return 0;
2392
}
2393

    
2394
/*
2395
 * This is the ffmpeg/libavcodec API frame decode function.
2396
 */
2397
static int vp3_decode_frame(AVCodecContext *avctx, 
2398
                            void *data, int *data_size,
2399
                            uint8_t *buf, int buf_size)
2400
{
2401
    Vp3DecodeContext *s = avctx->priv_data;
2402
    GetBitContext gb;
2403
    static int counter = 0;
2404
    int i;
2405

    
2406
    init_get_bits(&gb, buf, buf_size * 8);
2407
    
2408
    if (s->theora && get_bits1(&gb))
2409
    {
2410
#if 1
2411
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
2412
        return -1;
2413
#else
2414
        int ptype = get_bits(&gb, 7);        
2415

    
2416
        skip_bits(&gb, 6*8); /* "theora" */
2417
        
2418
        switch(ptype)
2419
        {
2420
            case 1:
2421
                theora_decode_comments(avctx, gb);
2422
                break;
2423
            case 2:
2424
                theora_decode_tables(avctx, gb);
2425
                    init_dequantizer(s);
2426
                break;
2427
            default:
2428
                av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
2429
        }
2430
        return buf_size;
2431
#endif
2432
    }
2433

    
2434
    s->keyframe = !get_bits1(&gb);
2435
    if (!s->theora)
2436
        skip_bits(&gb, 1);
2437
    s->last_quality_index = s->quality_index;
2438
    s->quality_index = get_bits(&gb, 6);
2439
    if (s->theora >= 0x030200)
2440
        skip_bits1(&gb);
2441

    
2442
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2443
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2444
            s->keyframe?"key":"", counter, s->quality_index);
2445
    counter++;
2446

    
2447
    if (s->quality_index != s->last_quality_index) {
2448
        init_dequantizer(s);
2449
        init_loop_filter(s);
2450
    }
2451

    
2452
    if (s->keyframe) {
2453
        if (!s->theora)
2454
        {
2455
            skip_bits(&gb, 4); /* width code */
2456
            skip_bits(&gb, 4); /* height code */
2457
            if (s->version)
2458
            {
2459
                s->version = get_bits(&gb, 5);
2460
                if (counter == 1)
2461
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
2462
            }
2463
        }
2464
        if (s->version || s->theora)
2465
        {
2466
                if (get_bits1(&gb))
2467
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
2468
            skip_bits(&gb, 2); /* reserved? */
2469
        }
2470

    
2471
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
2472
            if (s->golden_frame.data[0])
2473
                avctx->release_buffer(avctx, &s->golden_frame);
2474
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2475
        } else {
2476
            if (s->golden_frame.data[0])
2477
                avctx->release_buffer(avctx, &s->golden_frame);
2478
            if (s->last_frame.data[0])
2479
                avctx->release_buffer(avctx, &s->last_frame);
2480
        }
2481

    
2482
        s->golden_frame.reference = 3;
2483
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2484
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2485
            return -1;
2486
        }
2487

    
2488
        /* golden frame is also the current frame */
2489
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2490

    
2491
        /* time to figure out pixel addresses? */
2492
        if (!s->pixel_addresses_inited)
2493
        {
2494
            if (!s->flipped_image)
2495
                vp3_calculate_pixel_addresses(s);
2496
            else
2497
                theora_calculate_pixel_addresses(s);
2498
        }
2499
    } else {
2500
        /* allocate a new current frame */
2501
        s->current_frame.reference = 3;
2502
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2503
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2504
            return -1;
2505
        }
2506
    }
2507

    
2508
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
2509
    s->current_frame.qstride= 0;
2510

    
2511
    {START_TIMER
2512
    init_frame(s, &gb);
2513
    STOP_TIMER("init_frame")}
2514

    
2515
#if KEYFRAMES_ONLY
2516
if (!s->keyframe) {
2517

    
2518
    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
2519
        s->current_frame.linesize[0] * s->height);
2520
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
2521
        s->current_frame.linesize[1] * s->height / 2);
2522
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
2523
        s->current_frame.linesize[2] * s->height / 2);
2524

    
2525
} else {
2526
#endif
2527

    
2528
    {START_TIMER
2529
    if (unpack_superblocks(s, &gb)){
2530
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2531
        return -1;
2532
    }
2533
    STOP_TIMER("unpack_superblocks")}
2534
    {START_TIMER
2535
    if (unpack_modes(s, &gb)){
2536
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2537
        return -1;
2538
    }
2539
    STOP_TIMER("unpack_modes")}
2540
    {START_TIMER
2541
    if (unpack_vectors(s, &gb)){
2542
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2543
        return -1;
2544
    }
2545
    STOP_TIMER("unpack_vectors")}
2546
    {START_TIMER
2547
    if (unpack_dct_coeffs(s, &gb)){
2548
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2549
        return -1;
2550
    }
2551
    STOP_TIMER("unpack_dct_coeffs")}
2552
    {START_TIMER
2553

    
2554
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2555
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
2556
        reverse_dc_prediction(s, s->u_fragment_start,
2557
            s->fragment_width / 2, s->fragment_height / 2);
2558
        reverse_dc_prediction(s, s->v_fragment_start,
2559
            s->fragment_width / 2, s->fragment_height / 2);
2560
    }
2561
    STOP_TIMER("reverse_dc_prediction")}
2562
    {START_TIMER
2563

    
2564
    for (i = 0; i < s->macroblock_height; i++)
2565
        render_slice(s, i);
2566
    STOP_TIMER("render_fragments")}
2567

    
2568
    {START_TIMER
2569
    apply_loop_filter(s);
2570
    STOP_TIMER("apply_loop_filter")}
2571
#if KEYFRAMES_ONLY
2572
}
2573
#endif
2574

    
2575
    *data_size=sizeof(AVFrame);
2576
    *(AVFrame*)data= s->current_frame;
2577

    
2578
    /* release the last frame, if it is allocated and if it is not the
2579
     * golden frame */
2580
    if ((s->last_frame.data[0]) &&
2581
        (s->last_frame.data[0] != s->golden_frame.data[0]))
2582
        avctx->release_buffer(avctx, &s->last_frame);
2583

    
2584
    /* shuffle frames (last = current) */
2585
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2586
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2587

    
2588
    return buf_size;
2589
}
2590

    
2591
/*
2592
 * This is the ffmpeg/libavcodec API module cleanup function.
2593
 */
2594
static int vp3_decode_end(AVCodecContext *avctx)
2595
{
2596
    Vp3DecodeContext *s = avctx->priv_data;
2597

    
2598
    av_free(s->all_fragments);
2599
    av_free(s->coeffs);
2600
    av_free(s->coded_fragment_list);
2601
    av_free(s->superblock_fragments);
2602
    av_free(s->superblock_macroblocks);
2603
    av_free(s->macroblock_fragments);
2604
    av_free(s->macroblock_coding);
2605
    
2606
    /* release all frames */
2607
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2608
        avctx->release_buffer(avctx, &s->golden_frame);
2609
    if (s->last_frame.data[0])
2610
        avctx->release_buffer(avctx, &s->last_frame);
2611
    /* no need to release the current_frame since it will always be pointing
2612
     * to the same frame as either the golden or last frame */
2613

    
2614
    return 0;
2615
}
2616

    
2617
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2618
{
2619
    Vp3DecodeContext *s = avctx->priv_data;
2620

    
2621
    if (get_bits(gb, 1)) {
2622
        int token;
2623
        if (s->entries >= 32) { /* overflow */
2624
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2625
            return -1;
2626
        }
2627
        token = get_bits(gb, 5);
2628
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2629
        s->huffman_table[s->hti][token][0] = s->hbits;
2630
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2631
        s->entries++;
2632
    }
2633
    else {
2634
        if (s->huff_code_size >= 32) {/* overflow */
2635
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2636
            return -1;
2637
        }
2638
        s->huff_code_size++;
2639
        s->hbits <<= 1;
2640
        read_huffman_tree(avctx, gb);
2641
        s->hbits |= 1;
2642
        read_huffman_tree(avctx, gb);
2643
        s->hbits >>= 1;
2644
        s->huff_code_size--;
2645
    }
2646
    return 0;
2647
}
2648

    
2649
static int theora_decode_header(AVCodecContext *avctx, GetBitContext gb)
2650
{
2651
    Vp3DecodeContext *s = avctx->priv_data;
2652
    int major, minor, micro;
2653

    
2654
    major = get_bits(&gb, 8); /* version major */
2655
    minor = get_bits(&gb, 8); /* version minor */
2656
    micro = get_bits(&gb, 8); /* version micro */
2657
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %d.%d.%d\n",
2658
        major, minor, micro);
2659

    
2660
    /* FIXME: endianess? */
2661
    s->theora = (major << 16) | (minor << 8) | micro;
2662

    
2663
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2664
    /* but previous versions have the image flipped relative to vp3 */
2665
    if (s->theora < 0x030200)
2666
    {
2667
        s->flipped_image = 1;
2668
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2669
    }
2670

    
2671
    s->width = get_bits(&gb, 16) << 4;
2672
    s->height = get_bits(&gb, 16) << 4;
2673
    
2674
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2675
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2676
        s->width= s->height= 0;
2677
        return -1;
2678
    }
2679

    
2680
    if (s->theora >= 0x030400)
2681
    {
2682
        skip_bits(&gb, 32); /* total number of superblocks in a frame */
2683
        // fixme, the next field is 36bits long
2684
        skip_bits(&gb, 32); /* total number of blocks in a frame */
2685
        skip_bits(&gb, 4); /* total number of blocks in a frame */
2686
        skip_bits(&gb, 32); /* total number of macroblocks in a frame */
2687
        
2688
        skip_bits(&gb, 24); /* frame width */
2689
        skip_bits(&gb, 24); /* frame height */
2690
    }
2691
    else
2692
    {
2693
        skip_bits(&gb, 24); /* frame width */
2694
        skip_bits(&gb, 24); /* frame height */
2695
    }
2696

    
2697
    skip_bits(&gb, 8); /* offset x */
2698
    skip_bits(&gb, 8); /* offset y */
2699

    
2700
    skip_bits(&gb, 32); /* fps numerator */
2701
    skip_bits(&gb, 32); /* fps denumerator */
2702
    skip_bits(&gb, 24); /* aspect numerator */
2703
    skip_bits(&gb, 24); /* aspect denumerator */
2704
    
2705
    if (s->theora < 0x030200)
2706
        skip_bits(&gb, 5); /* keyframe frequency force */
2707
    skip_bits(&gb, 8); /* colorspace */
2708
    if (s->theora >= 0x030400)
2709
        skip_bits(&gb, 2); /* pixel format: 420,res,422,444 */
2710
    skip_bits(&gb, 24); /* bitrate */
2711

    
2712
    skip_bits(&gb, 6); /* quality hint */
2713
    
2714
    if (s->theora >= 0x030200)
2715
    {
2716
        skip_bits(&gb, 5); /* keyframe frequency force */
2717
        
2718
        if (s->theora < 0x030400)
2719
            skip_bits(&gb, 5); /* spare bits */
2720
    }
2721
    
2722
//    align_get_bits(&gb);
2723
    
2724
    avctx->width = s->width;
2725
    avctx->height = s->height;
2726

    
2727
    return 0;
2728
}
2729

    
2730
static inline int theora_get_32bit(GetBitContext gb)
2731
{
2732
    int ret = get_bits(&gb, 8);
2733
    ret += get_bits(&gb, 8) << 8;
2734
    ret += get_bits(&gb, 8) << 16;
2735
    ret += get_bits(&gb, 8) << 24;
2736
    
2737
    return ret;
2738
}
2739

    
2740
static int theora_decode_comments(AVCodecContext *avctx, GetBitContext gb)
2741
{
2742
    Vp3DecodeContext *s = avctx->priv_data;
2743
    int len;
2744

    
2745
    if (s->theora <= 0x030200)
2746
    {
2747
        int i, comments;
2748

    
2749
        // vendor string
2750
        len = get_bits_long(&gb, 32);
2751
        len = le2me_32(len);
2752
        while(len--)
2753
            skip_bits(&gb, 8);
2754

    
2755
        // user comments
2756
        comments = get_bits_long(&gb, 32);
2757
        comments = le2me_32(comments);
2758
        for (i = 0; i < comments; i++)
2759
        {
2760
            len = get_bits_long(&gb, 32);
2761
            len = be2me_32(len);
2762
            while(len--)
2763
                skip_bits(&gb, 8);
2764
        }
2765
    }
2766
    else
2767
    {
2768
        do {
2769
            len = get_bits_long(&gb, 32);
2770
            len = le2me_32(len);
2771
            if (len <= 0)
2772
                break;
2773
            while (len--)
2774
                skip_bits(&gb, 8);
2775
        } while (1);
2776
    }    
2777
    return 0;
2778
}
2779

    
2780
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext gb)
2781
{
2782
    Vp3DecodeContext *s = avctx->priv_data;
2783
    int i, n;
2784

    
2785
    if (s->theora >= 0x030200) {
2786
        n = get_bits(&gb, 3);
2787
        /* loop filter limit values table */
2788
        for (i = 0; i < 64; i++)
2789
            s->filter_limit_values[i] = get_bits(&gb, n);
2790
    }
2791
    
2792
    if (s->theora >= 0x030200)
2793
        n = get_bits(&gb, 4) + 1;
2794
    else
2795
        n = 16;
2796
    /* quality threshold table */
2797
    for (i = 0; i < 64; i++)
2798
        s->coded_ac_scale_factor[i] = get_bits(&gb, n);
2799

    
2800
    if (s->theora >= 0x030200)
2801
        n = get_bits(&gb, 4) + 1;
2802
    else
2803
        n = 16;
2804
    /* dc scale factor table */
2805
    for (i = 0; i < 64; i++)
2806
        s->coded_dc_scale_factor[i] = get_bits(&gb, n);
2807

    
2808
    if (s->theora >= 0x030200)
2809
        n = get_bits(&gb, 9) + 1;
2810
    else
2811
        n = 3;
2812
    if (n != 3) {
2813
        av_log(avctx,AV_LOG_ERROR, "unsupported nbms : %d\n", n);
2814
        return -1;
2815
    }
2816
    /* y coeffs */
2817
    for (i = 0; i < 64; i++)
2818
        s->coded_intra_y_dequant[i] = get_bits(&gb, 8);
2819

    
2820
    /* uv coeffs */
2821
    for (i = 0; i < 64; i++)
2822
        s->coded_intra_c_dequant[i] = get_bits(&gb, 8);
2823

    
2824
    /* inter coeffs */
2825
    for (i = 0; i < 64; i++)
2826
        s->coded_inter_dequant[i] = get_bits(&gb, 8);
2827

    
2828
    /* Huffman tables */
2829
    for (i = 0; i <= 1; i++) {
2830
        for (n = 0; n <= 2; n++) {
2831
            int newqr;
2832
            if (i > 0 || n > 0)
2833
                newqr = get_bits(&gb, 1);
2834
            else
2835
                newqr = 1;
2836
            if (!newqr) {
2837
                if (i > 0)
2838
                    get_bits(&gb, 1);
2839
            }
2840
            else {
2841
                int qi = 0;
2842
                skip_bits(&gb, av_log2(2)+1);
2843
                while (qi < 63) {
2844
                    qi += get_bits(&gb, av_log2(63-qi)+1) + 1;
2845
                    skip_bits(&gb, av_log2(2)+1);
2846
                }
2847
                if (qi > 63)
2848
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2849
            }
2850
        }
2851
    }
2852

    
2853
    for (s->hti = 0; s->hti < 80; s->hti++) {
2854
        s->entries = 0;
2855
        s->huff_code_size = 1;
2856
        if (!get_bits(&gb, 1)) {
2857
            s->hbits = 0;
2858
            read_huffman_tree(avctx, &gb);
2859
            s->hbits = 1;
2860
            read_huffman_tree(avctx, &gb);
2861
        }
2862
    }
2863
    
2864
    s->theora_tables = 1;
2865
    
2866
    return 0;
2867
}
2868

    
2869
static int theora_decode_init(AVCodecContext *avctx)
2870
{
2871
    Vp3DecodeContext *s = avctx->priv_data;
2872
    GetBitContext gb;
2873
    int ptype;
2874
    uint8_t *p= avctx->extradata;
2875
    int op_bytes, i;
2876
    
2877
    s->theora = 1;
2878

    
2879
    if (!avctx->extradata_size)
2880
    {
2881
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2882
        return -1;
2883
    }
2884

    
2885
  for(i=0;i<3;i++) {
2886
    op_bytes = *(p++)<<8;
2887
    op_bytes += *(p++);
2888

    
2889
    init_get_bits(&gb, p, op_bytes);
2890
    p += op_bytes;
2891

    
2892
    ptype = get_bits(&gb, 8);
2893
    debug_vp3("Theora headerpacket type: %x\n", ptype);
2894
            
2895
     if (!(ptype & 0x80))
2896
     {
2897
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2898
        return -1;
2899
     }        
2900

    
2901
    // FIXME: check for this aswell
2902
    skip_bits(&gb, 6*8); /* "theora" */
2903
        
2904
    switch(ptype)
2905
    {
2906
        case 0x80:
2907
            theora_decode_header(avctx, gb);
2908
                break;
2909
        case 0x81:
2910
            theora_decode_comments(avctx, gb);
2911
            break;
2912
        case 0x82:
2913
            theora_decode_tables(avctx, gb);
2914
            break;
2915
        default:
2916
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2917
            break;
2918
    }
2919
  }
2920

    
2921
    vp3_decode_init(avctx);
2922
    return 0;
2923
}
2924

    
2925
AVCodec vp3_decoder = {
2926
    "vp3",
2927
    CODEC_TYPE_VIDEO,
2928
    CODEC_ID_VP3,
2929
    sizeof(Vp3DecodeContext),
2930
    vp3_decode_init,
2931
    NULL,
2932
    vp3_decode_end,
2933
    vp3_decode_frame,
2934
    0,
2935
    NULL
2936
};
2937

    
2938
#ifndef CONFIG_LIBTHEORA
2939
AVCodec theora_decoder = {
2940
    "theora",
2941
    CODEC_TYPE_VIDEO,
2942
    CODEC_ID_THEORA,
2943
    sizeof(Vp3DecodeContext),
2944
    theora_decode_init,
2945
    NULL,
2946
    vp3_decode_end,
2947
    vp3_decode_frame,
2948
    0,
2949
    NULL
2950
};
2951
#endif