Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 72415b2a

History | View | Annotate | Download (62.1 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "get_bits.h"
23
#include "put_bits.h"
24
#include "bytestream.h"
25

    
26
/**
27
 * @file libavcodec/adpcm.c
28
 * ADPCM codecs.
29
 * First version by Francois Revol (revol@free.fr)
30
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31
 *   by Mike Melanson (melanson@pcisys.net)
32
 * CD-ROM XA ADPCM codec by BERO
33
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40
 *
41
 * Features and limitations:
42
 *
43
 * Reference documents:
44
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46
 * http://openquicktime.sourceforge.net/plugins.htm
47
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50
 *
51
 * CD-ROM XA:
52
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54
 * readstr http://www.geocities.co.jp/Playtown/2004/
55
 */
56

    
57
#define BLKSIZE 1024
58

    
59
/* step_table[] and index_table[] are from the ADPCM reference source */
60
/* This is the index table: */
61
static const int index_table[16] = {
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
    -1, -1, -1, -1, 2, 4, 6, 8,
64
};
65

    
66
/**
67
 * This is the step table. Note that many programs use slight deviations from
68
 * this table, but such deviations are negligible:
69
 */
70
static const int step_table[89] = {
71
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80
};
81

    
82
/* These are for MS-ADPCM */
83
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84
static const int AdaptationTable[] = {
85
        230, 230, 230, 230, 307, 409, 512, 614,
86
        768, 614, 512, 409, 307, 230, 230, 230
87
};
88

    
89
/** Divided by 4 to fit in 8-bit integers */
90
static const uint8_t AdaptCoeff1[] = {
91
        64, 128, 0, 48, 60, 115, 98
92
};
93

    
94
/** Divided by 4 to fit in 8-bit integers */
95
static const int8_t AdaptCoeff2[] = {
96
        0, -64, 0, 16, 0, -52, -58
97
};
98

    
99
/* These are for CD-ROM XA ADPCM */
100
static const int xa_adpcm_table[5][2] = {
101
   {   0,   0 },
102
   {  60,   0 },
103
   { 115, -52 },
104
   {  98, -55 },
105
   { 122, -60 }
106
};
107

    
108
static const int ea_adpcm_table[] = {
109
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111
};
112

    
113
// padded to zero where table size is less then 16
114
static const int swf_index_tables[4][16] = {
115
    /*2*/ { -1, 2 },
116
    /*3*/ { -1, -1, 2, 4 },
117
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119
};
120

    
121
static const int yamaha_indexscale[] = {
122
    230, 230, 230, 230, 307, 409, 512, 614,
123
    230, 230, 230, 230, 307, 409, 512, 614
124
};
125

    
126
static const int yamaha_difflookup[] = {
127
    1, 3, 5, 7, 9, 11, 13, 15,
128
    -1, -3, -5, -7, -9, -11, -13, -15
129
};
130

    
131
/* end of tables */
132

    
133
typedef struct ADPCMChannelStatus {
134
    int predictor;
135
    short int step_index;
136
    int step;
137
    /* for encoding */
138
    int prev_sample;
139

    
140
    /* MS version */
141
    short sample1;
142
    short sample2;
143
    int coeff1;
144
    int coeff2;
145
    int idelta;
146
} ADPCMChannelStatus;
147

    
148
typedef struct ADPCMContext {
149
    ADPCMChannelStatus status[6];
150
} ADPCMContext;
151

    
152
/* XXX: implement encoding */
153

    
154
#if CONFIG_ENCODERS
155
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
156
{
157
    uint8_t *extradata;
158
    int i;
159
    if (avctx->channels > 2)
160
        return -1; /* only stereo or mono =) */
161

    
162
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
163
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
164
        return -1;
165
    }
166

    
167
    switch(avctx->codec->id) {
168
    case CODEC_ID_ADPCM_IMA_WAV:
169
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
170
                                                             /* and we have 4 bytes per channel overhead */
171
        avctx->block_align = BLKSIZE;
172
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
173
        break;
174
    case CODEC_ID_ADPCM_IMA_QT:
175
        avctx->frame_size = 64;
176
        avctx->block_align = 34 * avctx->channels;
177
        break;
178
    case CODEC_ID_ADPCM_MS:
179
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
180
                                                             /* and we have 7 bytes per channel overhead */
181
        avctx->block_align = BLKSIZE;
182
        avctx->extradata_size = 32;
183
        extradata = avctx->extradata = av_malloc(avctx->extradata_size);
184
        if (!extradata)
185
            return AVERROR(ENOMEM);
186
        bytestream_put_le16(&extradata, avctx->frame_size);
187
        bytestream_put_le16(&extradata, 7); /* wNumCoef */
188
        for (i = 0; i < 7; i++) {
189
            bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
190
            bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
191
        }
192
        break;
193
    case CODEC_ID_ADPCM_YAMAHA:
194
        avctx->frame_size = BLKSIZE * avctx->channels;
195
        avctx->block_align = BLKSIZE;
196
        break;
197
    case CODEC_ID_ADPCM_SWF:
198
        if (avctx->sample_rate != 11025 &&
199
            avctx->sample_rate != 22050 &&
200
            avctx->sample_rate != 44100) {
201
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
202
            return -1;
203
        }
204
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
205
        break;
206
    default:
207
        return -1;
208
    }
209

    
210
    avctx->coded_frame= avcodec_alloc_frame();
211
    avctx->coded_frame->key_frame= 1;
212

    
213
    return 0;
214
}
215

    
216
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
217
{
218
    av_freep(&avctx->coded_frame);
219

    
220
    return 0;
221
}
222

    
223

    
224
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
225
{
226
    int delta = sample - c->prev_sample;
227
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
228
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
229
    c->prev_sample = av_clip_int16(c->prev_sample);
230
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
231
    return nibble;
232
}
233

    
234
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
235
{
236
    int predictor, nibble, bias;
237

    
238
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
239

    
240
    nibble= sample - predictor;
241
    if(nibble>=0) bias= c->idelta/2;
242
    else          bias=-c->idelta/2;
243

    
244
    nibble= (nibble + bias) / c->idelta;
245
    nibble= av_clip(nibble, -8, 7)&0x0F;
246

    
247
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
248

    
249
    c->sample2 = c->sample1;
250
    c->sample1 = av_clip_int16(predictor);
251

    
252
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
253
    if (c->idelta < 16) c->idelta = 16;
254

    
255
    return nibble;
256
}
257

    
258
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
259
{
260
    int nibble, delta;
261

    
262
    if(!c->step) {
263
        c->predictor = 0;
264
        c->step = 127;
265
    }
266

    
267
    delta = sample - c->predictor;
268

    
269
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
270

    
271
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
272
    c->predictor = av_clip_int16(c->predictor);
273
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
274
    c->step = av_clip(c->step, 127, 24567);
275

    
276
    return nibble;
277
}
278

    
279
typedef struct TrellisPath {
280
    int nibble;
281
    int prev;
282
} TrellisPath;
283

    
284
typedef struct TrellisNode {
285
    uint32_t ssd;
286
    int path;
287
    int sample1;
288
    int sample2;
289
    int step;
290
} TrellisNode;
291

    
292
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
293
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
294
{
295
#define FREEZE_INTERVAL 128
296
    //FIXME 6% faster if frontier is a compile-time constant
297
    const int frontier = 1 << avctx->trellis;
298
    const int stride = avctx->channels;
299
    const int version = avctx->codec->id;
300
    const int max_paths = frontier*FREEZE_INTERVAL;
301
    TrellisPath paths[max_paths], *p;
302
    TrellisNode node_buf[2][frontier];
303
    TrellisNode *nodep_buf[2][frontier];
304
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
305
    TrellisNode **nodes_next = nodep_buf[1];
306
    int pathn = 0, froze = -1, i, j, k;
307

    
308
    assert(!(max_paths&(max_paths-1)));
309

    
310
    memset(nodep_buf, 0, sizeof(nodep_buf));
311
    nodes[0] = &node_buf[1][0];
312
    nodes[0]->ssd = 0;
313
    nodes[0]->path = 0;
314
    nodes[0]->step = c->step_index;
315
    nodes[0]->sample1 = c->sample1;
316
    nodes[0]->sample2 = c->sample2;
317
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
318
        nodes[0]->sample1 = c->prev_sample;
319
    if(version == CODEC_ID_ADPCM_MS)
320
        nodes[0]->step = c->idelta;
321
    if(version == CODEC_ID_ADPCM_YAMAHA) {
322
        if(c->step == 0) {
323
            nodes[0]->step = 127;
324
            nodes[0]->sample1 = 0;
325
        } else {
326
            nodes[0]->step = c->step;
327
            nodes[0]->sample1 = c->predictor;
328
        }
329
    }
330

    
331
    for(i=0; i<n; i++) {
332
        TrellisNode *t = node_buf[i&1];
333
        TrellisNode **u;
334
        int sample = samples[i*stride];
335
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
336
        for(j=0; j<frontier && nodes[j]; j++) {
337
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
338
            const int range = (j < frontier/2) ? 1 : 0;
339
            const int step = nodes[j]->step;
340
            int nidx;
341
            if(version == CODEC_ID_ADPCM_MS) {
342
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
343
                const int div = (sample - predictor) / step;
344
                const int nmin = av_clip(div-range, -8, 6);
345
                const int nmax = av_clip(div+range, -7, 7);
346
                for(nidx=nmin; nidx<=nmax; nidx++) {
347
                    const int nibble = nidx & 0xf;
348
                    int dec_sample = predictor + nidx * step;
349
#define STORE_NODE(NAME, STEP_INDEX)\
350
                    int d;\
351
                    uint32_t ssd;\
352
                    dec_sample = av_clip_int16(dec_sample);\
353
                    d = sample - dec_sample;\
354
                    ssd = nodes[j]->ssd + d*d;\
355
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
356
                        continue;\
357
                    /* Collapse any two states with the same previous sample value. \
358
                     * One could also distinguish states by step and by 2nd to last
359
                     * sample, but the effects of that are negligible. */\
360
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
361
                        if(dec_sample == nodes_next[k]->sample1) {\
362
                            assert(ssd >= nodes_next[k]->ssd);\
363
                            goto next_##NAME;\
364
                        }\
365
                    }\
366
                    for(k=0; k<frontier; k++) {\
367
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
368
                            TrellisNode *u = nodes_next[frontier-1];\
369
                            if(!u) {\
370
                                assert(pathn < max_paths);\
371
                                u = t++;\
372
                                u->path = pathn++;\
373
                            }\
374
                            u->ssd = ssd;\
375
                            u->step = STEP_INDEX;\
376
                            u->sample2 = nodes[j]->sample1;\
377
                            u->sample1 = dec_sample;\
378
                            paths[u->path].nibble = nibble;\
379
                            paths[u->path].prev = nodes[j]->path;\
380
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
381
                            nodes_next[k] = u;\
382
                            break;\
383
                        }\
384
                    }\
385
                    next_##NAME:;
386
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
387
                }
388
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
389
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
390
                const int predictor = nodes[j]->sample1;\
391
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
392
                int nmin = av_clip(div-range, -7, 6);\
393
                int nmax = av_clip(div+range, -6, 7);\
394
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
395
                if(nmax<0) nmax--;\
396
                for(nidx=nmin; nidx<=nmax; nidx++) {\
397
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
398
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
399
                    STORE_NODE(NAME, STEP_INDEX);\
400
                }
401
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
402
            } else { //CODEC_ID_ADPCM_YAMAHA
403
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
404
#undef LOOP_NODES
405
#undef STORE_NODE
406
            }
407
        }
408

    
409
        u = nodes;
410
        nodes = nodes_next;
411
        nodes_next = u;
412

    
413
        // prevent overflow
414
        if(nodes[0]->ssd > (1<<28)) {
415
            for(j=1; j<frontier && nodes[j]; j++)
416
                nodes[j]->ssd -= nodes[0]->ssd;
417
            nodes[0]->ssd = 0;
418
        }
419

    
420
        // merge old paths to save memory
421
        if(i == froze + FREEZE_INTERVAL) {
422
            p = &paths[nodes[0]->path];
423
            for(k=i; k>froze; k--) {
424
                dst[k] = p->nibble;
425
                p = &paths[p->prev];
426
            }
427
            froze = i;
428
            pathn = 0;
429
            // other nodes might use paths that don't coincide with the frozen one.
430
            // checking which nodes do so is too slow, so just kill them all.
431
            // this also slightly improves quality, but I don't know why.
432
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
433
        }
434
    }
435

    
436
    p = &paths[nodes[0]->path];
437
    for(i=n-1; i>froze; i--) {
438
        dst[i] = p->nibble;
439
        p = &paths[p->prev];
440
    }
441

    
442
    c->predictor = nodes[0]->sample1;
443
    c->sample1 = nodes[0]->sample1;
444
    c->sample2 = nodes[0]->sample2;
445
    c->step_index = nodes[0]->step;
446
    c->step = nodes[0]->step;
447
    c->idelta = nodes[0]->step;
448
}
449

    
450
static int adpcm_encode_frame(AVCodecContext *avctx,
451
                            unsigned char *frame, int buf_size, void *data)
452
{
453
    int n, i, st;
454
    short *samples;
455
    unsigned char *dst;
456
    ADPCMContext *c = avctx->priv_data;
457

    
458
    dst = frame;
459
    samples = (short *)data;
460
    st= avctx->channels == 2;
461
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
462

    
463
    switch(avctx->codec->id) {
464
    case CODEC_ID_ADPCM_IMA_WAV:
465
        n = avctx->frame_size / 8;
466
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
467
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
468
            bytestream_put_le16(&dst, c->status[0].prev_sample);
469
            *dst++ = (unsigned char)c->status[0].step_index;
470
            *dst++ = 0; /* unknown */
471
            samples++;
472
            if (avctx->channels == 2) {
473
                c->status[1].prev_sample = (signed short)samples[0];
474
/*                c->status[1].step_index = 0; */
475
                bytestream_put_le16(&dst, c->status[1].prev_sample);
476
                *dst++ = (unsigned char)c->status[1].step_index;
477
                *dst++ = 0;
478
                samples++;
479
            }
480

    
481
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
482
            if(avctx->trellis > 0) {
483
                uint8_t buf[2][n*8];
484
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
485
                if(avctx->channels == 2)
486
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
487
                for(i=0; i<n; i++) {
488
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
489
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
490
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
491
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
492
                    if (avctx->channels == 2) {
493
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
494
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
495
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
496
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
497
                    }
498
                }
499
            } else
500
            for (; n>0; n--) {
501
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
502
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
503
                dst++;
504
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
505
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
506
                dst++;
507
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
508
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
509
                dst++;
510
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
511
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
512
                dst++;
513
                /* right channel */
514
                if (avctx->channels == 2) {
515
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
516
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
517
                    dst++;
518
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
519
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
520
                    dst++;
521
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
522
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
523
                    dst++;
524
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
525
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
526
                    dst++;
527
                }
528
                samples += 8 * avctx->channels;
529
            }
530
        break;
531
    case CODEC_ID_ADPCM_IMA_QT:
532
    {
533
        int ch, i;
534
        PutBitContext pb;
535
        init_put_bits(&pb, dst, buf_size*8);
536

    
537
        for(ch=0; ch<avctx->channels; ch++){
538
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
539
            put_bits(&pb, 7, c->status[ch].step_index);
540
            if(avctx->trellis > 0) {
541
                uint8_t buf[64];
542
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
543
                for(i=0; i<64; i++)
544
                    put_bits(&pb, 4, buf[i^1]);
545
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
546
            } else {
547
                for (i=0; i<64; i+=2){
548
                    int t1, t2;
549
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
550
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
551
                    put_bits(&pb, 4, t2);
552
                    put_bits(&pb, 4, t1);
553
                }
554
                c->status[ch].prev_sample &= ~0x7F;
555
            }
556
        }
557

    
558
        dst += put_bits_count(&pb)>>3;
559
        break;
560
    }
561
    case CODEC_ID_ADPCM_SWF:
562
    {
563
        int i;
564
        PutBitContext pb;
565
        init_put_bits(&pb, dst, buf_size*8);
566

    
567
        n = avctx->frame_size-1;
568

    
569
        //Store AdpcmCodeSize
570
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
571

    
572
        //Init the encoder state
573
        for(i=0; i<avctx->channels; i++){
574
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
575
            put_sbits(&pb, 16, samples[i]);
576
            put_bits(&pb, 6, c->status[i].step_index);
577
            c->status[i].prev_sample = (signed short)samples[i];
578
        }
579

    
580
        if(avctx->trellis > 0) {
581
            uint8_t buf[2][n];
582
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
583
            if (avctx->channels == 2)
584
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
585
            for(i=0; i<n; i++) {
586
                put_bits(&pb, 4, buf[0][i]);
587
                if (avctx->channels == 2)
588
                    put_bits(&pb, 4, buf[1][i]);
589
            }
590
        } else {
591
            for (i=1; i<avctx->frame_size; i++) {
592
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
593
                if (avctx->channels == 2)
594
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
595
            }
596
        }
597
        flush_put_bits(&pb);
598
        dst += put_bits_count(&pb)>>3;
599
        break;
600
    }
601
    case CODEC_ID_ADPCM_MS:
602
        for(i=0; i<avctx->channels; i++){
603
            int predictor=0;
604

    
605
            *dst++ = predictor;
606
            c->status[i].coeff1 = AdaptCoeff1[predictor];
607
            c->status[i].coeff2 = AdaptCoeff2[predictor];
608
        }
609
        for(i=0; i<avctx->channels; i++){
610
            if (c->status[i].idelta < 16)
611
                c->status[i].idelta = 16;
612

    
613
            bytestream_put_le16(&dst, c->status[i].idelta);
614
        }
615
        for(i=0; i<avctx->channels; i++){
616
            c->status[i].sample2= *samples++;
617
        }
618
        for(i=0; i<avctx->channels; i++){
619
            c->status[i].sample1= *samples++;
620

    
621
            bytestream_put_le16(&dst, c->status[i].sample1);
622
        }
623
        for(i=0; i<avctx->channels; i++)
624
            bytestream_put_le16(&dst, c->status[i].sample2);
625

    
626
        if(avctx->trellis > 0) {
627
            int n = avctx->block_align - 7*avctx->channels;
628
            uint8_t buf[2][n];
629
            if(avctx->channels == 1) {
630
                n *= 2;
631
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
632
                for(i=0; i<n; i+=2)
633
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
634
            } else {
635
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
636
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
637
                for(i=0; i<n; i++)
638
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
639
            }
640
        } else
641
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
642
            int nibble;
643
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
644
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
645
            *dst++ = nibble;
646
        }
647
        break;
648
    case CODEC_ID_ADPCM_YAMAHA:
649
        n = avctx->frame_size / 2;
650
        if(avctx->trellis > 0) {
651
            uint8_t buf[2][n*2];
652
            n *= 2;
653
            if(avctx->channels == 1) {
654
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
655
                for(i=0; i<n; i+=2)
656
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
657
            } else {
658
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
659
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
660
                for(i=0; i<n; i++)
661
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
662
            }
663
        } else
664
            for (n *= avctx->channels; n>0; n--) {
665
                int nibble;
666
                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
667
                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
668
                *dst++ = nibble;
669
            }
670
        break;
671
    default:
672
        return -1;
673
    }
674
    return dst - frame;
675
}
676
#endif //CONFIG_ENCODERS
677

    
678
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
679
{
680
    ADPCMContext *c = avctx->priv_data;
681
    unsigned int max_channels = 2;
682

    
683
    switch(avctx->codec->id) {
684
    case CODEC_ID_ADPCM_EA_R1:
685
    case CODEC_ID_ADPCM_EA_R2:
686
    case CODEC_ID_ADPCM_EA_R3:
687
        max_channels = 6;
688
        break;
689
    }
690
    if(avctx->channels > max_channels){
691
        return -1;
692
    }
693

    
694
    switch(avctx->codec->id) {
695
    case CODEC_ID_ADPCM_CT:
696
        c->status[0].step = c->status[1].step = 511;
697
        break;
698
    case CODEC_ID_ADPCM_IMA_WS:
699
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
700
            c->status[0].predictor = AV_RL32(avctx->extradata);
701
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
702
        }
703
        break;
704
    default:
705
        break;
706
    }
707
    avctx->sample_fmt = SAMPLE_FMT_S16;
708
    return 0;
709
}
710

    
711
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
712
{
713
    int step_index;
714
    int predictor;
715
    int sign, delta, diff, step;
716

    
717
    step = step_table[c->step_index];
718
    step_index = c->step_index + index_table[(unsigned)nibble];
719
    if (step_index < 0) step_index = 0;
720
    else if (step_index > 88) step_index = 88;
721

    
722
    sign = nibble & 8;
723
    delta = nibble & 7;
724
    /* perform direct multiplication instead of series of jumps proposed by
725
     * the reference ADPCM implementation since modern CPUs can do the mults
726
     * quickly enough */
727
    diff = ((2 * delta + 1) * step) >> shift;
728
    predictor = c->predictor;
729
    if (sign) predictor -= diff;
730
    else predictor += diff;
731

    
732
    c->predictor = av_clip_int16(predictor);
733
    c->step_index = step_index;
734

    
735
    return (short)c->predictor;
736
}
737

    
738
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
739
{
740
    int predictor;
741

    
742
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
743
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
744

    
745
    c->sample2 = c->sample1;
746
    c->sample1 = av_clip_int16(predictor);
747
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
748
    if (c->idelta < 16) c->idelta = 16;
749

    
750
    return c->sample1;
751
}
752

    
753
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
754
{
755
    int sign, delta, diff;
756
    int new_step;
757

    
758
    sign = nibble & 8;
759
    delta = nibble & 7;
760
    /* perform direct multiplication instead of series of jumps proposed by
761
     * the reference ADPCM implementation since modern CPUs can do the mults
762
     * quickly enough */
763
    diff = ((2 * delta + 1) * c->step) >> 3;
764
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
765
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
766
    c->predictor = av_clip_int16(c->predictor);
767
    /* calculate new step and clamp it to range 511..32767 */
768
    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
769
    c->step = av_clip(new_step, 511, 32767);
770

    
771
    return (short)c->predictor;
772
}
773

    
774
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
775
{
776
    int sign, delta, diff;
777

    
778
    sign = nibble & (1<<(size-1));
779
    delta = nibble & ((1<<(size-1))-1);
780
    diff = delta << (7 + c->step + shift);
781

    
782
    /* clamp result */
783
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
784

    
785
    /* calculate new step */
786
    if (delta >= (2*size - 3) && c->step < 3)
787
        c->step++;
788
    else if (delta == 0 && c->step > 0)
789
        c->step--;
790

    
791
    return (short) c->predictor;
792
}
793

    
794
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
795
{
796
    if(!c->step) {
797
        c->predictor = 0;
798
        c->step = 127;
799
    }
800

    
801
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
802
    c->predictor = av_clip_int16(c->predictor);
803
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
804
    c->step = av_clip(c->step, 127, 24567);
805
    return c->predictor;
806
}
807

    
808
static void xa_decode(short *out, const unsigned char *in,
809
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
810
{
811
    int i, j;
812
    int shift,filter,f0,f1;
813
    int s_1,s_2;
814
    int d,s,t;
815

    
816
    for(i=0;i<4;i++) {
817

    
818
        shift  = 12 - (in[4+i*2] & 15);
819
        filter = in[4+i*2] >> 4;
820
        f0 = xa_adpcm_table[filter][0];
821
        f1 = xa_adpcm_table[filter][1];
822

    
823
        s_1 = left->sample1;
824
        s_2 = left->sample2;
825

    
826
        for(j=0;j<28;j++) {
827
            d = in[16+i+j*4];
828

    
829
            t = (signed char)(d<<4)>>4;
830
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
831
            s_2 = s_1;
832
            s_1 = av_clip_int16(s);
833
            *out = s_1;
834
            out += inc;
835
        }
836

    
837
        if (inc==2) { /* stereo */
838
            left->sample1 = s_1;
839
            left->sample2 = s_2;
840
            s_1 = right->sample1;
841
            s_2 = right->sample2;
842
            out = out + 1 - 28*2;
843
        }
844

    
845
        shift  = 12 - (in[5+i*2] & 15);
846
        filter = in[5+i*2] >> 4;
847

    
848
        f0 = xa_adpcm_table[filter][0];
849
        f1 = xa_adpcm_table[filter][1];
850

    
851
        for(j=0;j<28;j++) {
852
            d = in[16+i+j*4];
853

    
854
            t = (signed char)d >> 4;
855
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
856
            s_2 = s_1;
857
            s_1 = av_clip_int16(s);
858
            *out = s_1;
859
            out += inc;
860
        }
861

    
862
        if (inc==2) { /* stereo */
863
            right->sample1 = s_1;
864
            right->sample2 = s_2;
865
            out -= 1;
866
        } else {
867
            left->sample1 = s_1;
868
            left->sample2 = s_2;
869
        }
870
    }
871
}
872

    
873

    
874
/* DK3 ADPCM support macro */
875
#define DK3_GET_NEXT_NIBBLE() \
876
    if (decode_top_nibble_next) \
877
    { \
878
        nibble = last_byte >> 4; \
879
        decode_top_nibble_next = 0; \
880
    } \
881
    else \
882
    { \
883
        last_byte = *src++; \
884
        if (src >= buf + buf_size) break; \
885
        nibble = last_byte & 0x0F; \
886
        decode_top_nibble_next = 1; \
887
    }
888

    
889
static int adpcm_decode_frame(AVCodecContext *avctx,
890
                            void *data, int *data_size,
891
                            AVPacket *avpkt)
892
{
893
    const uint8_t *buf = avpkt->data;
894
    int buf_size = avpkt->size;
895
    ADPCMContext *c = avctx->priv_data;
896
    ADPCMChannelStatus *cs;
897
    int n, m, channel, i;
898
    int block_predictor[2];
899
    short *samples;
900
    short *samples_end;
901
    const uint8_t *src;
902
    int st; /* stereo */
903

    
904
    /* DK3 ADPCM accounting variables */
905
    unsigned char last_byte = 0;
906
    unsigned char nibble;
907
    int decode_top_nibble_next = 0;
908
    int diff_channel;
909

    
910
    /* EA ADPCM state variables */
911
    uint32_t samples_in_chunk;
912
    int32_t previous_left_sample, previous_right_sample;
913
    int32_t current_left_sample, current_right_sample;
914
    int32_t next_left_sample, next_right_sample;
915
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
916
    uint8_t shift_left, shift_right;
917
    int count1, count2;
918
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
919

    
920
    if (!buf_size)
921
        return 0;
922

    
923
    //should protect all 4bit ADPCM variants
924
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
925
    //
926
    if(*data_size/4 < buf_size + 8)
927
        return -1;
928

    
929
    samples = data;
930
    samples_end= samples + *data_size/2;
931
    *data_size= 0;
932
    src = buf;
933

    
934
    st = avctx->channels == 2 ? 1 : 0;
935

    
936
    switch(avctx->codec->id) {
937
    case CODEC_ID_ADPCM_IMA_QT:
938
        n = buf_size - 2*avctx->channels;
939
        for (channel = 0; channel < avctx->channels; channel++) {
940
            cs = &(c->status[channel]);
941
            /* (pppppp) (piiiiiii) */
942

    
943
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
944
            cs->predictor = (*src++) << 8;
945
            cs->predictor |= (*src & 0x80);
946
            cs->predictor &= 0xFF80;
947

    
948
            /* sign extension */
949
            if(cs->predictor & 0x8000)
950
                cs->predictor -= 0x10000;
951

    
952
            cs->predictor = av_clip_int16(cs->predictor);
953

    
954
            cs->step_index = (*src++) & 0x7F;
955

    
956
            if (cs->step_index > 88){
957
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
958
                cs->step_index = 88;
959
            }
960

    
961
            cs->step = step_table[cs->step_index];
962

    
963
            samples = (short*)data + channel;
964

    
965
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
966
                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
967
                samples += avctx->channels;
968
                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
969
                samples += avctx->channels;
970
                src ++;
971
            }
972
        }
973
        if (st)
974
            samples--;
975
        break;
976
    case CODEC_ID_ADPCM_IMA_WAV:
977
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
978
            buf_size = avctx->block_align;
979

    
980
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
981

    
982
        for(i=0; i<avctx->channels; i++){
983
            cs = &(c->status[i]);
984
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
985

    
986
            cs->step_index = *src++;
987
            if (cs->step_index > 88){
988
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
989
                cs->step_index = 88;
990
            }
991
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
992
        }
993

    
994
        while(src < buf + buf_size){
995
            for(m=0; m<4; m++){
996
                for(i=0; i<=st; i++)
997
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
998
                for(i=0; i<=st; i++)
999
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
1000
                src++;
1001
            }
1002
            src += 4*st;
1003
        }
1004
        break;
1005
    case CODEC_ID_ADPCM_4XM:
1006
        cs = &(c->status[0]);
1007
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1008
        if(st){
1009
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1010
        }
1011
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1012
        if(st){
1013
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1014
        }
1015
        if (cs->step_index < 0) cs->step_index = 0;
1016
        if (cs->step_index > 88) cs->step_index = 88;
1017

    
1018
        m= (buf_size - (src - buf))>>st;
1019
        for(i=0; i<m; i++) {
1020
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1021
            if (st)
1022
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1023
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1024
            if (st)
1025
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1026
        }
1027

    
1028
        src += m<<st;
1029

    
1030
        break;
1031
    case CODEC_ID_ADPCM_MS:
1032
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1033
            buf_size = avctx->block_align;
1034
        n = buf_size - 7 * avctx->channels;
1035
        if (n < 0)
1036
            return -1;
1037
        block_predictor[0] = av_clip(*src++, 0, 6);
1038
        block_predictor[1] = 0;
1039
        if (st)
1040
            block_predictor[1] = av_clip(*src++, 0, 6);
1041
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1042
        if (st){
1043
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1044
        }
1045
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1046
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1047
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1048
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1049

    
1050
        c->status[0].sample1 = bytestream_get_le16(&src);
1051
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1052
        c->status[0].sample2 = bytestream_get_le16(&src);
1053
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1054

    
1055
        *samples++ = c->status[0].sample2;
1056
        if (st) *samples++ = c->status[1].sample2;
1057
        *samples++ = c->status[0].sample1;
1058
        if (st) *samples++ = c->status[1].sample1;
1059
        for(;n>0;n--) {
1060
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1061
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1062
            src ++;
1063
        }
1064
        break;
1065
    case CODEC_ID_ADPCM_IMA_DK4:
1066
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1067
            buf_size = avctx->block_align;
1068

    
1069
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1070
        c->status[0].step_index = *src++;
1071
        src++;
1072
        *samples++ = c->status[0].predictor;
1073
        if (st) {
1074
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1075
            c->status[1].step_index = *src++;
1076
            src++;
1077
            *samples++ = c->status[1].predictor;
1078
        }
1079
        while (src < buf + buf_size) {
1080

    
1081
            /* take care of the top nibble (always left or mono channel) */
1082
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1083
                src[0] >> 4, 3);
1084

    
1085
            /* take care of the bottom nibble, which is right sample for
1086
             * stereo, or another mono sample */
1087
            if (st)
1088
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1089
                    src[0] & 0x0F, 3);
1090
            else
1091
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1092
                    src[0] & 0x0F, 3);
1093

    
1094
            src++;
1095
        }
1096
        break;
1097
    case CODEC_ID_ADPCM_IMA_DK3:
1098
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1099
            buf_size = avctx->block_align;
1100

    
1101
        if(buf_size + 16 > (samples_end - samples)*3/8)
1102
            return -1;
1103

    
1104
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1105
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1106
        c->status[0].step_index = src[14];
1107
        c->status[1].step_index = src[15];
1108
        /* sign extend the predictors */
1109
        src += 16;
1110
        diff_channel = c->status[1].predictor;
1111

    
1112
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1113
         * the buffer is consumed */
1114
        while (1) {
1115

    
1116
            /* for this algorithm, c->status[0] is the sum channel and
1117
             * c->status[1] is the diff channel */
1118

    
1119
            /* process the first predictor of the sum channel */
1120
            DK3_GET_NEXT_NIBBLE();
1121
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1122

    
1123
            /* process the diff channel predictor */
1124
            DK3_GET_NEXT_NIBBLE();
1125
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1126

    
1127
            /* process the first pair of stereo PCM samples */
1128
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1129
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1130
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1131

    
1132
            /* process the second predictor of the sum channel */
1133
            DK3_GET_NEXT_NIBBLE();
1134
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1135

    
1136
            /* process the second pair of stereo PCM samples */
1137
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1138
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1139
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1140
        }
1141
        break;
1142
    case CODEC_ID_ADPCM_IMA_ISS:
1143
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1144
        c->status[0].step_index = src[2];
1145
        src += 4;
1146
        if(st) {
1147
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1148
            c->status[1].step_index = src[2];
1149
            src += 4;
1150
        }
1151

    
1152
        while (src < buf + buf_size) {
1153

    
1154
            if (st) {
1155
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1156
                    src[0] >> 4  , 3);
1157
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1158
                    src[0] & 0x0F, 3);
1159
            } else {
1160
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1161
                    src[0] & 0x0F, 3);
1162
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1163
                    src[0] >> 4  , 3);
1164
            }
1165

    
1166
            src++;
1167
        }
1168
        break;
1169
    case CODEC_ID_ADPCM_IMA_WS:
1170
        /* no per-block initialization; just start decoding the data */
1171
        while (src < buf + buf_size) {
1172

    
1173
            if (st) {
1174
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1175
                    src[0] >> 4  , 3);
1176
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1177
                    src[0] & 0x0F, 3);
1178
            } else {
1179
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1180
                    src[0] >> 4  , 3);
1181
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1182
                    src[0] & 0x0F, 3);
1183
            }
1184

    
1185
            src++;
1186
        }
1187
        break;
1188
    case CODEC_ID_ADPCM_XA:
1189
        while (buf_size >= 128) {
1190
            xa_decode(samples, src, &c->status[0], &c->status[1],
1191
                avctx->channels);
1192
            src += 128;
1193
            samples += 28 * 8;
1194
            buf_size -= 128;
1195
        }
1196
        break;
1197
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1198
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1199

    
1200
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1201
            src += buf_size - 4;
1202
            break;
1203
        }
1204

    
1205
        for (i=0; i<=st; i++)
1206
            c->status[i].step_index = bytestream_get_le32(&src);
1207
        for (i=0; i<=st; i++)
1208
            c->status[i].predictor  = bytestream_get_le32(&src);
1209

    
1210
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1211
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1212
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1213
        }
1214
        break;
1215
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1216
        for (; src < buf+buf_size; src++) {
1217
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1218
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1219
        }
1220
        break;
1221
    case CODEC_ID_ADPCM_EA:
1222
        if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1223
            src += buf_size;
1224
            break;
1225
        }
1226
        samples_in_chunk = AV_RL32(src);
1227
        src += 4;
1228
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1229
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1230
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1231
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1232

    
1233
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1234
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1235
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1236
            coeff1r = ea_adpcm_table[*src & 0x0F];
1237
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1238
            src++;
1239

    
1240
            shift_left  = (*src >> 4  ) + 8;
1241
            shift_right = (*src & 0x0F) + 8;
1242
            src++;
1243

    
1244
            for (count2 = 0; count2 < 28; count2++) {
1245
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1246
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1247
                src++;
1248

    
1249
                next_left_sample = (next_left_sample +
1250
                    (current_left_sample * coeff1l) +
1251
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1252
                next_right_sample = (next_right_sample +
1253
                    (current_right_sample * coeff1r) +
1254
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1255

    
1256
                previous_left_sample = current_left_sample;
1257
                current_left_sample = av_clip_int16(next_left_sample);
1258
                previous_right_sample = current_right_sample;
1259
                current_right_sample = av_clip_int16(next_right_sample);
1260
                *samples++ = (unsigned short)current_left_sample;
1261
                *samples++ = (unsigned short)current_right_sample;
1262
            }
1263
        }
1264

    
1265
        if (src - buf == buf_size - 2)
1266
            src += 2; // Skip terminating 0x0000
1267

    
1268
        break;
1269
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1270
        for(channel = 0; channel < avctx->channels; channel++) {
1271
            for (i=0; i<2; i++)
1272
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1273
            shift[channel] = (*src & 0x0F) + 8;
1274
            src++;
1275
        }
1276
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1277
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1278
                for(channel = 0; channel < avctx->channels; channel++) {
1279
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1280
                    sample = (sample +
1281
                             c->status[channel].sample1 * coeff[channel][0] +
1282
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1283
                    c->status[channel].sample2 = c->status[channel].sample1;
1284
                    c->status[channel].sample1 = av_clip_int16(sample);
1285
                    *samples++ = c->status[channel].sample1;
1286
                }
1287
            }
1288
            src+=avctx->channels;
1289
        }
1290
        break;
1291
    case CODEC_ID_ADPCM_EA_R1:
1292
    case CODEC_ID_ADPCM_EA_R2:
1293
    case CODEC_ID_ADPCM_EA_R3: {
1294
        /* channel numbering
1295
           2chan: 0=fl, 1=fr
1296
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1297
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1298
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1299
        int32_t previous_sample, current_sample, next_sample;
1300
        int32_t coeff1, coeff2;
1301
        uint8_t shift;
1302
        unsigned int channel;
1303
        uint16_t *samplesC;
1304
        const uint8_t *srcC;
1305
        const uint8_t *src_end = buf + buf_size;
1306

    
1307
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1308
                                       : bytestream_get_le32(&src)) / 28;
1309
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1310
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1311
            src += buf_size - 4;
1312
            break;
1313
        }
1314

    
1315
        for (channel=0; channel<avctx->channels; channel++) {
1316
            int32_t offset = (big_endian ? bytestream_get_be32(&src)
1317
                                         : bytestream_get_le32(&src))
1318
                           + (avctx->channels-channel-1) * 4;
1319

    
1320
            if ((offset < 0) || (offset >= src_end - src - 4)) break;
1321
            srcC  = src + offset;
1322
            samplesC = samples + channel;
1323

    
1324
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1325
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1326
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1327
            } else {
1328
                current_sample  = c->status[channel].predictor;
1329
                previous_sample = c->status[channel].prev_sample;
1330
            }
1331

    
1332
            for (count1=0; count1<samples_in_chunk; count1++) {
1333
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1334
                    srcC++;
1335
                    if (srcC > src_end - 30*2) break;
1336
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1337
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1338

    
1339
                    for (count2=0; count2<28; count2++) {
1340
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1341
                        samplesC += avctx->channels;
1342
                    }
1343
                } else {
1344
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1345
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1346
                    shift = (*srcC++ & 0x0F) + 8;
1347

    
1348
                    if (srcC > src_end - 14) break;
1349
                    for (count2=0; count2<28; count2++) {
1350
                        if (count2 & 1)
1351
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1352
                        else
1353
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1354

    
1355
                        next_sample += (current_sample  * coeff1) +
1356
                                       (previous_sample * coeff2);
1357
                        next_sample = av_clip_int16(next_sample >> 8);
1358

    
1359
                        previous_sample = current_sample;
1360
                        current_sample  = next_sample;
1361
                        *samplesC = current_sample;
1362
                        samplesC += avctx->channels;
1363
                    }
1364
                }
1365
            }
1366

    
1367
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1368
                c->status[channel].predictor   = current_sample;
1369
                c->status[channel].prev_sample = previous_sample;
1370
            }
1371
        }
1372

    
1373
        src = src + buf_size - (4 + 4*avctx->channels);
1374
        samples += 28 * samples_in_chunk * avctx->channels;
1375
        break;
1376
    }
1377
    case CODEC_ID_ADPCM_EA_XAS:
1378
        if (samples_end-samples < 32*4*avctx->channels
1379
            || buf_size < (4+15)*4*avctx->channels) {
1380
            src += buf_size;
1381
            break;
1382
        }
1383
        for (channel=0; channel<avctx->channels; channel++) {
1384
            int coeff[2][4], shift[4];
1385
            short *s2, *s = &samples[channel];
1386
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1387
                for (i=0; i<2; i++)
1388
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1389
                shift[n] = (src[2]&0x0F) + 8;
1390
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1391
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1392
            }
1393

    
1394
            for (m=2; m<32; m+=2) {
1395
                s = &samples[m*avctx->channels + channel];
1396
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1397
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1398
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1399
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1400
                                  + s2[-2*avctx->channels] * coeff[1][n];
1401
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1402
                    }
1403
                }
1404
            }
1405
        }
1406
        samples += 32*4*avctx->channels;
1407
        break;
1408
    case CODEC_ID_ADPCM_IMA_AMV:
1409
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1410
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1411
        c->status[0].step_index = bytestream_get_le16(&src);
1412

    
1413
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1414
            src+=4;
1415

    
1416
        while (src < buf + buf_size) {
1417
            char hi, lo;
1418
            lo = *src & 0x0F;
1419
            hi = *src >> 4;
1420

    
1421
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1422
                FFSWAP(char, hi, lo);
1423

    
1424
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1425
                lo, 3);
1426
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1427
                hi, 3);
1428
            src++;
1429
        }
1430
        break;
1431
    case CODEC_ID_ADPCM_CT:
1432
        while (src < buf + buf_size) {
1433
            if (st) {
1434
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1435
                    src[0] >> 4);
1436
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1437
                    src[0] & 0x0F);
1438
            } else {
1439
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1440
                    src[0] >> 4);
1441
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1442
                    src[0] & 0x0F);
1443
            }
1444
            src++;
1445
        }
1446
        break;
1447
    case CODEC_ID_ADPCM_SBPRO_4:
1448
    case CODEC_ID_ADPCM_SBPRO_3:
1449
    case CODEC_ID_ADPCM_SBPRO_2:
1450
        if (!c->status[0].step_index) {
1451
            /* the first byte is a raw sample */
1452
            *samples++ = 128 * (*src++ - 0x80);
1453
            if (st)
1454
              *samples++ = 128 * (*src++ - 0x80);
1455
            c->status[0].step_index = 1;
1456
        }
1457
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1458
            while (src < buf + buf_size) {
1459
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1460
                    src[0] >> 4, 4, 0);
1461
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1462
                    src[0] & 0x0F, 4, 0);
1463
                src++;
1464
            }
1465
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1466
            while (src < buf + buf_size && samples + 2 < samples_end) {
1467
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1468
                     src[0] >> 5        , 3, 0);
1469
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1470
                    (src[0] >> 2) & 0x07, 3, 0);
1471
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1472
                    src[0] & 0x03, 2, 0);
1473
                src++;
1474
            }
1475
        } else {
1476
            while (src < buf + buf_size && samples + 3 < samples_end) {
1477
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1478
                     src[0] >> 6        , 2, 2);
1479
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1480
                    (src[0] >> 4) & 0x03, 2, 2);
1481
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1482
                    (src[0] >> 2) & 0x03, 2, 2);
1483
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1484
                    src[0] & 0x03, 2, 2);
1485
                src++;
1486
            }
1487
        }
1488
        break;
1489
    case CODEC_ID_ADPCM_SWF:
1490
    {
1491
        GetBitContext gb;
1492
        const int *table;
1493
        int k0, signmask, nb_bits, count;
1494
        int size = buf_size*8;
1495

    
1496
        init_get_bits(&gb, buf, size);
1497

    
1498
        //read bits & initial values
1499
        nb_bits = get_bits(&gb, 2)+2;
1500
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1501
        table = swf_index_tables[nb_bits-2];
1502
        k0 = 1 << (nb_bits-2);
1503
        signmask = 1 << (nb_bits-1);
1504

    
1505
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1506
            for (i = 0; i < avctx->channels; i++) {
1507
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1508
                c->status[i].step_index = get_bits(&gb, 6);
1509
            }
1510

    
1511
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1512
                int i;
1513

    
1514
                for (i = 0; i < avctx->channels; i++) {
1515
                    // similar to IMA adpcm
1516
                    int delta = get_bits(&gb, nb_bits);
1517
                    int step = step_table[c->status[i].step_index];
1518
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1519
                    int k = k0;
1520

    
1521
                    do {
1522
                        if (delta & k)
1523
                            vpdiff += step;
1524
                        step >>= 1;
1525
                        k >>= 1;
1526
                    } while(k);
1527
                    vpdiff += step;
1528

    
1529
                    if (delta & signmask)
1530
                        c->status[i].predictor -= vpdiff;
1531
                    else
1532
                        c->status[i].predictor += vpdiff;
1533

    
1534
                    c->status[i].step_index += table[delta & (~signmask)];
1535

    
1536
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1537
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1538

    
1539
                    *samples++ = c->status[i].predictor;
1540
                    if (samples >= samples_end) {
1541
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1542
                        return -1;
1543
                    }
1544
                }
1545
            }
1546
        }
1547
        src += buf_size;
1548
        break;
1549
    }
1550
    case CODEC_ID_ADPCM_YAMAHA:
1551
        while (src < buf + buf_size) {
1552
            if (st) {
1553
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1554
                        src[0] & 0x0F);
1555
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1556
                        src[0] >> 4  );
1557
            } else {
1558
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1559
                        src[0] & 0x0F);
1560
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1561
                        src[0] >> 4  );
1562
            }
1563
            src++;
1564
        }
1565
        break;
1566
    case CODEC_ID_ADPCM_THP:
1567
    {
1568
        int table[2][16];
1569
        unsigned int samplecnt;
1570
        int prev[2][2];
1571
        int ch;
1572

    
1573
        if (buf_size < 80) {
1574
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1575
            return -1;
1576
        }
1577

    
1578
        src+=4;
1579
        samplecnt = bytestream_get_be32(&src);
1580

    
1581
        for (i = 0; i < 32; i++)
1582
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1583

    
1584
        /* Initialize the previous sample.  */
1585
        for (i = 0; i < 4; i++)
1586
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1587

    
1588
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1589
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1590
            return -1;
1591
        }
1592

    
1593
        for (ch = 0; ch <= st; ch++) {
1594
            samples = (unsigned short *) data + ch;
1595

    
1596
            /* Read in every sample for this channel.  */
1597
            for (i = 0; i < samplecnt / 14; i++) {
1598
                int index = (*src >> 4) & 7;
1599
                unsigned int exp = 28 - (*src++ & 15);
1600
                int factor1 = table[ch][index * 2];
1601
                int factor2 = table[ch][index * 2 + 1];
1602

    
1603
                /* Decode 14 samples.  */
1604
                for (n = 0; n < 14; n++) {
1605
                    int32_t sampledat;
1606
                    if(n&1) sampledat=  *src++    <<28;
1607
                    else    sampledat= (*src&0xF0)<<24;
1608

    
1609
                    sampledat = ((prev[ch][0]*factor1
1610
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1611
                    *samples = av_clip_int16(sampledat);
1612
                    prev[ch][1] = prev[ch][0];
1613
                    prev[ch][0] = *samples++;
1614

    
1615
                    /* In case of stereo, skip one sample, this sample
1616
                       is for the other channel.  */
1617
                    samples += st;
1618
                }
1619
            }
1620
        }
1621

    
1622
        /* In the previous loop, in case stereo is used, samples is
1623
           increased exactly one time too often.  */
1624
        samples -= st;
1625
        break;
1626
    }
1627

    
1628
    default:
1629
        return -1;
1630
    }
1631
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1632
    return src - buf;
1633
}
1634

    
1635

    
1636

    
1637
#if CONFIG_ENCODERS
1638
#define ADPCM_ENCODER(id,name,long_name_)       \
1639
AVCodec name ## _encoder = {                    \
1640
    #name,                                      \
1641
    AVMEDIA_TYPE_AUDIO,                         \
1642
    id,                                         \
1643
    sizeof(ADPCMContext),                       \
1644
    adpcm_encode_init,                          \
1645
    adpcm_encode_frame,                         \
1646
    adpcm_encode_close,                         \
1647
    NULL,                                       \
1648
    .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1649
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1650
};
1651
#else
1652
#define ADPCM_ENCODER(id,name,long_name_)
1653
#endif
1654

    
1655
#if CONFIG_DECODERS
1656
#define ADPCM_DECODER(id,name,long_name_)       \
1657
AVCodec name ## _decoder = {                    \
1658
    #name,                                      \
1659
    AVMEDIA_TYPE_AUDIO,                         \
1660
    id,                                         \
1661
    sizeof(ADPCMContext),                       \
1662
    adpcm_decode_init,                          \
1663
    NULL,                                       \
1664
    NULL,                                       \
1665
    adpcm_decode_frame,                         \
1666
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1667
};
1668
#else
1669
#define ADPCM_DECODER(id,name,long_name_)
1670
#endif
1671

    
1672
#define ADPCM_CODEC(id,name,long_name_)         \
1673
    ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1674

    
1675
/* Note: Do not forget to add new entries to the Makefile as well. */
1676
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1677
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1678
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1679
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1680
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1681
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1682
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1683
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1684
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1685
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1686
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1687
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1688
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1689
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1690
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1691
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1692
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1693
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1694
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1695
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1696
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1697
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1698
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1699
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1700
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1701
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");