ffmpeg / libavcodec / cook.c @ 72415b2a
History  View  Annotate  Download (43.3 KB)
1 
/*


2 
* COOK compatible decoder

3 
* Copyright (c) 2003 Sascha Sommer

4 
* Copyright (c) 2005 Benjamin Larsson

5 
*

6 
* This file is part of FFmpeg.

7 
*

8 
* FFmpeg is free software; you can redistribute it and/or

9 
* modify it under the terms of the GNU Lesser General Public

10 
* License as published by the Free Software Foundation; either

11 
* version 2.1 of the License, or (at your option) any later version.

12 
*

13 
* FFmpeg is distributed in the hope that it will be useful,

14 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

15 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

16 
* Lesser General Public License for more details.

17 
*

18 
* You should have received a copy of the GNU Lesser General Public

19 
* License along with FFmpeg; if not, write to the Free Software

20 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

21 
*/

22  
23 
/**

24 
* @file libavcodec/cook.c

25 
* Cook compatible decoder. Bastardization of the G.722.1 standard.

26 
* This decoder handles RealNetworks, RealAudio G2 data.

27 
* Cook is identified by the codec name cook in RM files.

28 
*

29 
* To use this decoder, a calling application must supply the extradata

30 
* bytes provided from the RM container; 8+ bytes for mono streams and

31 
* 16+ for stereo streams (maybe more).

32 
*

33 
* Codec technicalities (all this assume a buffer length of 1024):

34 
* Cook works with several different techniques to achieve its compression.

35 
* In the timedomain the buffer is divided into 8 pieces and quantized. If

36 
* two neighboring pieces have different quantization index a smooth

37 
* quantization curve is used to get a smooth overlap between the different

38 
* pieces.

39 
* To get to the transformdomain Cook uses a modulated lapped transform.

40 
* The transform domain has 50 subbands with 20 elements each. This

41 
* means only a maximum of 50*20=1000 coefficients are used out of the 1024

42 
* available.

43 
*/

44  
45 
#include <math.h> 
46 
#include <stddef.h> 
47 
#include <stdio.h> 
48  
49 
#include "libavutil/lfg.h" 
50 
#include "libavutil/random_seed.h" 
51 
#include "avcodec.h" 
52 
#include "get_bits.h" 
53 
#include "dsputil.h" 
54 
#include "bytestream.h" 
55 
#include "fft.h" 
56  
57 
#include "cookdata.h" 
58  
59 
/* the different Cook versions */

60 
#define MONO 0x1000001 
61 
#define STEREO 0x1000002 
62 
#define JOINT_STEREO 0x1000003 
63 
#define MC_COOK 0x2000000 //multichannel Cook, not supported 
64  
65 
#define SUBBAND_SIZE 20 
66 
#define MAX_SUBPACKETS 5 
67 
//#define COOKDEBUG

68  
69 
typedef struct { 
70 
int *now;

71 
int *previous;

72 
} cook_gains; 
73  
74 
typedef struct { 
75 
int ch_idx;

76 
int size;

77 
int num_channels;

78 
int cookversion;

79 
int samples_per_frame;

80 
int subbands;

81 
int js_subband_start;

82 
int js_vlc_bits;

83 
int samples_per_channel;

84 
int log2_numvector_size;

85 
unsigned int channel_mask; 
86 
VLC ccpl; ///< channel coupling

87 
int joint_stereo;

88 
int bits_per_subpacket;

89 
int bits_per_subpdiv;

90 
int total_subbands;

91 
int numvector_size; ///< 1 << log2_numvector_size; 
92  
93 
float mono_previous_buffer1[1024]; 
94 
float mono_previous_buffer2[1024]; 
95 
/** gain buffers */

96 
cook_gains gains1; 
97 
cook_gains gains2; 
98 
int gain_1[9]; 
99 
int gain_2[9]; 
100 
int gain_3[9]; 
101 
int gain_4[9]; 
102 
} COOKSubpacket; 
103  
104 
typedef struct cook { 
105 
/*

106 
* The following 5 functions provide the lowlevel arithmetic on

107 
* the internal audio buffers.

108 
*/

109 
void (* scalar_dequant)(struct cook *q, int index, int quant_index, 
110 
int* subband_coef_index, int* subband_coef_sign, 
111 
float* mlt_p);

112  
113 
void (* decouple) (struct cook *q, 
114 
COOKSubpacket *p, 
115 
int subband,

116 
float f1, float f2, 
117 
float *decode_buffer,

118 
float *mlt_buffer1, float *mlt_buffer2); 
119  
120 
void (* imlt_window) (struct cook *q, float *buffer1, 
121 
cook_gains *gains_ptr, float *previous_buffer);

122  
123 
void (* interpolate) (struct cook *q, float* buffer, 
124 
int gain_index, int gain_index_next); 
125  
126 
void (* saturate_output) (struct cook *q, int chan, int16_t *out); 
127  
128 
AVCodecContext* avctx; 
129 
GetBitContext gb; 
130 
/* stream data */

131 
int nb_channels;

132 
int bit_rate;

133 
int sample_rate;

134 
int num_vectors;

135 
int samples_per_channel;

136 
/* states */

137 
AVLFG random_state; 
138  
139 
/* transform data */

140 
FFTContext mdct_ctx; 
141 
float* mlt_window;

142  
143 
/* VLC data */

144 
VLC envelope_quant_index[13];

145 
VLC sqvh[7]; //scalar quantization 
146  
147 
/* generatable tables and related variables */

148 
int gain_size_factor;

149 
float gain_table[23]; 
150  
151 
/* data buffers */

152  
153 
uint8_t* decoded_bytes_buffer; 
154 
DECLARE_ALIGNED(16, float,mono_mdct_output)[2048]; 
155 
float decode_buffer_1[1024]; 
156 
float decode_buffer_2[1024]; 
157 
float decode_buffer_0[1060]; /* static allocation for joint decode */ 
158  
159 
const float *cplscales[5]; 
160 
int num_subpackets;

161 
COOKSubpacket subpacket[MAX_SUBPACKETS]; 
162 
} COOKContext; 
163  
164 
static float pow2tab[127]; 
165 
static float rootpow2tab[127]; 
166  
167 
/* debug functions */

168  
169 
#ifdef COOKDEBUG

170 
static void dump_float_table(float* table, int size, int delimiter) { 
171 
int i=0; 
172 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
173 
for (i=0 ; i<size ; i++) { 
174 
av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]); 
175 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
176 
} 
177 
} 
178  
179 
static void dump_int_table(int* table, int size, int delimiter) { 
180 
int i=0; 
181 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
182 
for (i=0 ; i<size ; i++) { 
183 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
184 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
185 
} 
186 
} 
187  
188 
static void dump_short_table(short* table, int size, int delimiter) { 
189 
int i=0; 
190 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
191 
for (i=0 ; i<size ; i++) { 
192 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
193 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
194 
} 
195 
} 
196  
197 
#endif

198  
199 
/*************** init functions ***************/

200  
201 
/* table generator */

202 
static av_cold void init_pow2table(void){ 
203 
int i;

204 
for (i=63 ; i<64 ; i++){ 
205 
pow2tab[63+i]= pow(2, i); 
206 
rootpow2tab[63+i]=sqrt(pow(2, i)); 
207 
} 
208 
} 
209  
210 
/* table generator */

211 
static av_cold void init_gain_table(COOKContext *q) { 
212 
int i;

213 
q>gain_size_factor = q>samples_per_channel/8;

214 
for (i=0 ; i<23 ; i++) { 
215 
q>gain_table[i] = pow(pow2tab[i+52] ,

216 
(1.0/(double)q>gain_size_factor)); 
217 
} 
218 
} 
219  
220  
221 
static av_cold int init_cook_vlc_tables(COOKContext *q) { 
222 
int i, result;

223  
224 
result = 0;

225 
for (i=0 ; i<13 ; i++) { 
226 
result = init_vlc (&q>envelope_quant_index[i], 9, 24, 
227 
envelope_quant_index_huffbits[i], 1, 1, 
228 
envelope_quant_index_huffcodes[i], 2, 2, 0); 
229 
} 
230 
av_log(q>avctx,AV_LOG_DEBUG,"sqvh VLC init\n");

231 
for (i=0 ; i<7 ; i++) { 
232 
result = init_vlc (&q>sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], 
233 
cvh_huffbits[i], 1, 1, 
234 
cvh_huffcodes[i], 2, 2, 0); 
235 
} 
236  
237 
for(i=0;i<q>num_subpackets;i++){ 
238 
if (q>subpacket[i].joint_stereo==1){ 
239 
result = init_vlc (&q>subpacket[i].ccpl, 6, (1<<q>subpacket[i].js_vlc_bits)1, 
240 
ccpl_huffbits[q>subpacket[i].js_vlc_bits2], 1, 1, 
241 
ccpl_huffcodes[q>subpacket[i].js_vlc_bits2], 2, 2, 0); 
242 
av_log(q>avctx,AV_LOG_DEBUG,"subpacket %i Jointstereo VLC used.\n",i);

243 
} 
244 
} 
245  
246 
av_log(q>avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");

247 
return result;

248 
} 
249  
250 
static av_cold int init_cook_mlt(COOKContext *q) { 
251 
int j;

252 
int mlt_size = q>samples_per_channel;

253  
254 
if ((q>mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0) 
255 
return 1; 
256  
257 
/* Initialize the MLT window: simple sine window. */

258 
ff_sine_window_init(q>mlt_window, mlt_size); 
259 
for(j=0 ; j<mlt_size ; j++) 
260 
q>mlt_window[j] *= sqrt(2.0 / q>samples_per_channel); 
261  
262 
/* Initialize the MDCT. */

263 
if (ff_mdct_init(&q>mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) { 
264 
av_free(q>mlt_window); 
265 
return 1; 
266 
} 
267 
av_log(q>avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",

268 
av_log2(mlt_size)+1);

269  
270 
return 0; 
271 
} 
272  
273 
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n) 
274 
{ 
275 
if (1) 
276 
return ptr;

277 
} 
278  
279 
static av_cold void init_cplscales_table (COOKContext *q) { 
280 
int i;

281 
for (i=0;i<5;i++) 
282 
q>cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))1); 
283 
} 
284  
285 
/*************** init functions end ***********/

286  
287 
/**

288 
* Cook indata decoding, every 32 bits are XORed with 0x37c511f2.

289 
* Why? No idea, some checksum/error detection method maybe.

290 
*

291 
* Out buffer size: extra bytes are needed to cope with

292 
* padding/misalignment.

293 
* Subpackets passed to the decoder can contain two, consecutive

294 
* halfsubpackets, of identical but arbitrary size.

295 
* 1234 1234 1234 1234 extraA extraB

296 
* Case 1: AAAA BBBB 0 0

297 
* Case 2: AAAA ABBB BB 3 3

298 
* Case 3: AAAA AABB BBBB 2 2

299 
* Case 4: AAAA AAAB BBBB BB 1 5

300 
*

301 
* Nice way to waste CPU cycles.

302 
*

303 
* @param inbuffer pointer to byte array of indata

304 
* @param out pointer to byte array of outdata

305 
* @param bytes number of bytes

306 
*/

307 
#define DECODE_BYTES_PAD1(bytes) (3  ((bytes)+3) % 4) 
308 
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) 
309  
310 
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ 
311 
int i, off;

312 
uint32_t c; 
313 
const uint32_t* buf;

314 
uint32_t* obuf = (uint32_t*) out; 
315 
/* FIXME: 64 bit platforms would be able to do 64 bits at a time.

316 
* I'm too lazy though, should be something like

317 
* for(i=0 ; i<bitamount/64 ; i++)

318 
* (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);

319 
* Buffer alignment needs to be checked. */

320  
321 
off = (intptr_t)inbuffer & 3;

322 
buf = (const uint32_t*) (inbuffer  off);

323 
c = be2me_32((0x37c511f2 >> (off*8))  (0x37c511f2 << (32(off*8)))); 
324 
bytes += 3 + off;

325 
for (i = 0; i < bytes/4; i++) 
326 
obuf[i] = c ^ buf[i]; 
327  
328 
return off;

329 
} 
330  
331 
/**

332 
* Cook uninit

333 
*/

334  
335 
static av_cold int cook_decode_close(AVCodecContext *avctx) 
336 
{ 
337 
int i;

338 
COOKContext *q = avctx>priv_data; 
339 
av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");

340  
341 
/* Free allocated memory buffers. */

342 
av_free(q>mlt_window); 
343 
av_free(q>decoded_bytes_buffer); 
344  
345 
/* Free the transform. */

346 
ff_mdct_end(&q>mdct_ctx); 
347  
348 
/* Free the VLC tables. */

349 
for (i=0 ; i<13 ; i++) { 
350 
free_vlc(&q>envelope_quant_index[i]); 
351 
} 
352 
for (i=0 ; i<7 ; i++) { 
353 
free_vlc(&q>sqvh[i]); 
354 
} 
355 
for (i=0 ; i<q>num_subpackets ; i++) { 
356 
free_vlc(&q>subpacket[i].ccpl); 
357 
} 
358  
359 
av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");

360  
361 
return 0; 
362 
} 
363  
364 
/**

365 
* Fill the gain array for the timedomain quantization.

366 
*

367 
* @param q pointer to the COOKContext

368 
* @param gaininfo[9] array of gain indexes

369 
*/

370  
371 
static void decode_gain_info(GetBitContext *gb, int *gaininfo) 
372 
{ 
373 
int i, n;

374  
375 
while (get_bits1(gb)) {}

376 
n = get_bits_count(gb)  1; //amount of elements*2 to update 
377  
378 
i = 0;

379 
while (n) {

380 
int index = get_bits(gb, 3); 
381 
int gain = get_bits1(gb) ? get_bits(gb, 4)  7 : 1; 
382  
383 
while (i <= index) gaininfo[i++] = gain;

384 
} 
385 
while (i <= 8) gaininfo[i++] = 0; 
386 
} 
387  
388 
/**

389 
* Create the quant index table needed for the envelope.

390 
*

391 
* @param q pointer to the COOKContext

392 
* @param quant_index_table pointer to the array

393 
*/

394  
395 
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) { 
396 
int i,j, vlc_index;

397  
398 
quant_index_table[0]= get_bits(&q>gb,6)  6; //This is used later in categorize 
399  
400 
for (i=1 ; i < p>total_subbands ; i++){ 
401 
vlc_index=i; 
402 
if (i >= p>js_subband_start * 2) { 
403 
vlc_index=p>js_subband_start; 
404 
} else {

405 
vlc_index/=2;

406 
if(vlc_index < 1) vlc_index = 1; 
407 
} 
408 
if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 
409  
410 
j = get_vlc2(&q>gb, q>envelope_quant_index[vlc_index1].table,

411 
q>envelope_quant_index[vlc_index1].bits,2); 
412 
quant_index_table[i] = quant_index_table[i1] + j  12; //differential encoding 
413 
} 
414 
} 
415  
416 
/**

417 
* Calculate the category and category_index vector.

418 
*

419 
* @param q pointer to the COOKContext

420 
* @param quant_index_table pointer to the array

421 
* @param category pointer to the category array

422 
* @param category_index pointer to the category_index array

423 
*/

424  
425 
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table, 
426 
int* category, int* category_index){ 
427 
int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;

428 
int exp_index2[102]; 
429 
int exp_index1[102]; 
430  
431 
int tmp_categorize_array[128*2]; 
432 
int tmp_categorize_array1_idx=p>numvector_size;

433 
int tmp_categorize_array2_idx=p>numvector_size;

434  
435 
bits_left = p>bits_per_subpacket  get_bits_count(&q>gb); 
436  
437 
if(bits_left > q>samples_per_channel) {

438 
bits_left = q>samples_per_channel + 
439 
((bits_left  q>samples_per_channel)*5)/8; 
440 
//av_log(q>avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);

441 
} 
442  
443 
memset(&exp_index1,0,102*sizeof(int)); 
444 
memset(&exp_index2,0,102*sizeof(int)); 
445 
memset(&tmp_categorize_array,0,128*2*sizeof(int)); 
446  
447 
bias=32;

448  
449 
/* Estimate bias. */

450 
for (i=32 ; i>0 ; i=i/2){ 
451 
num_bits = 0;

452 
index = 0;

453 
for (j=p>total_subbands ; j>0 ; j){ 
454 
exp_idx = av_clip((i  quant_index_table[index] + bias) / 2, 0, 7); 
455 
index++; 
456 
num_bits+=expbits_tab[exp_idx]; 
457 
} 
458 
if(num_bits >= bits_left  32){ 
459 
bias+=i; 
460 
} 
461 
} 
462  
463 
/* Calculate total number of bits. */

464 
num_bits=0;

465 
for (i=0 ; i<p>total_subbands ; i++) { 
466 
exp_idx = av_clip((bias  quant_index_table[i]) / 2, 0, 7); 
467 
num_bits += expbits_tab[exp_idx]; 
468 
exp_index1[i] = exp_idx; 
469 
exp_index2[i] = exp_idx; 
470 
} 
471 
tmpbias1 = tmpbias2 = num_bits; 
472  
473 
for (j = 1 ; j < p>numvector_size ; j++) { 
474 
if (tmpbias1 + tmpbias2 > 2*bits_left) { /* > */ 
475 
int max = 999999; 
476 
index=1;

477 
for (i=0 ; i<p>total_subbands ; i++){ 
478 
if (exp_index1[i] < 7) { 
479 
v = (2*exp_index1[i])  quant_index_table[i] + bias;

480 
if ( v >= max) {

481 
max = v; 
482 
index = i; 
483 
} 
484 
} 
485 
} 
486 
if(index==1)break; 
487 
tmp_categorize_array[tmp_categorize_array1_idx++] = index; 
488 
tmpbias1 = expbits_tab[exp_index1[index]]  
489 
expbits_tab[exp_index1[index]+1];

490 
++exp_index1[index]; 
491 
} else { /* < */ 
492 
int min = 999999; 
493 
index=1;

494 
for (i=0 ; i<p>total_subbands ; i++){ 
495 
if(exp_index2[i] > 0){ 
496 
v = (2*exp_index2[i])quant_index_table[i]+bias;

497 
if ( v < min) {

498 
min = v; 
499 
index = i; 
500 
} 
501 
} 
502 
} 
503 
if(index == 1)break; 
504 
tmp_categorize_array[tmp_categorize_array2_idx] = index; 
505 
tmpbias2 = expbits_tab[exp_index2[index]]  
506 
expbits_tab[exp_index2[index]1];

507 
exp_index2[index]; 
508 
} 
509 
} 
510  
511 
for(i=0 ; i<p>total_subbands ; i++) 
512 
category[i] = exp_index2[i]; 
513  
514 
for(i=0 ; i<p>numvector_size1 ; i++) 
515 
category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; 
516  
517 
} 
518  
519  
520 
/**

521 
* Expand the category vector.

522 
*

523 
* @param q pointer to the COOKContext

524 
* @param category pointer to the category array

525 
* @param category_index pointer to the category_index array

526 
*/

527  
528 
static inline void expand_category(COOKContext *q, int* category, 
529 
int* category_index){

530 
int i;

531 
for(i=0 ; i<q>num_vectors ; i++){ 
532 
++category[category_index[i]]; 
533 
} 
534 
} 
535  
536 
/**

537 
* The real requantization of the mltcoefs

538 
*

539 
* @param q pointer to the COOKContext

540 
* @param index index

541 
* @param quant_index quantisation index

542 
* @param subband_coef_index array of indexes to quant_centroid_tab

543 
* @param subband_coef_sign signs of coefficients

544 
* @param mlt_p pointer into the mlt buffer

545 
*/

546  
547 
static void scalar_dequant_float(COOKContext *q, int index, int quant_index, 
548 
int* subband_coef_index, int* subband_coef_sign, 
549 
float* mlt_p){

550 
int i;

551 
float f1;

552  
553 
for(i=0 ; i<SUBBAND_SIZE ; i++) { 
554 
if (subband_coef_index[i]) {

555 
f1 = quant_centroid_tab[index][subband_coef_index[i]]; 
556 
if (subband_coef_sign[i]) f1 = f1;

557 
} else {

558 
/* noise coding if subband_coef_index[i] == 0 */

559 
f1 = dither_tab[index]; 
560 
if (av_lfg_get(&q>random_state) < 0x80000000) f1 = f1; 
561 
} 
562 
mlt_p[i] = f1 * rootpow2tab[quant_index+63];

563 
} 
564 
} 
565 
/**

566 
* Unpack the subband_coef_index and subband_coef_sign vectors.

567 
*

568 
* @param q pointer to the COOKContext

569 
* @param category pointer to the category array

570 
* @param subband_coef_index array of indexes to quant_centroid_tab

571 
* @param subband_coef_sign signs of coefficients

572 
*/

573  
574 
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index, 
575 
int* subband_coef_sign) {

576 
int i,j;

577 
int vlc, vd ,tmp, result;

578  
579 
vd = vd_tab[category]; 
580 
result = 0;

581 
for(i=0 ; i<vpr_tab[category] ; i++){ 
582 
vlc = get_vlc2(&q>gb, q>sqvh[category].table, q>sqvh[category].bits, 3);

583 
if (p>bits_per_subpacket < get_bits_count(&q>gb)){

584 
vlc = 0;

585 
result = 1;

586 
} 
587 
for(j=vd1 ; j>=0 ; j){ 
588 
tmp = (vlc * invradix_tab[category])/0x100000;

589 
subband_coef_index[vd*i+j] = vlc  tmp * (kmax_tab[category]+1);

590 
vlc = tmp; 
591 
} 
592 
for(j=0 ; j<vd ; j++){ 
593 
if (subband_coef_index[i*vd + j]) {

594 
if(get_bits_count(&q>gb) < p>bits_per_subpacket){

595 
subband_coef_sign[i*vd+j] = get_bits1(&q>gb); 
596 
} else {

597 
result=1;

598 
subband_coef_sign[i*vd+j]=0;

599 
} 
600 
} else {

601 
subband_coef_sign[i*vd+j]=0;

602 
} 
603 
} 
604 
} 
605 
return result;

606 
} 
607  
608  
609 
/**

610 
* Fill the mlt_buffer with mlt coefficients.

611 
*

612 
* @param q pointer to the COOKContext

613 
* @param category pointer to the category array

614 
* @param quant_index_table pointer to the array

615 
* @param mlt_buffer pointer to mlt coefficients

616 
*/

617  
618  
619 
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category, 
620 
int *quant_index_table, float* mlt_buffer){ 
621 
/* A zero in this table means that the subband coefficient is

622 
random noise coded. */

623 
int subband_coef_index[SUBBAND_SIZE];

624 
/* A zero in this table means that the subband coefficient is a

625 
positive multiplicator. */

626 
int subband_coef_sign[SUBBAND_SIZE];

627 
int band, j;

628 
int index=0; 
629  
630 
for(band=0 ; band<p>total_subbands ; band++){ 
631 
index = category[band]; 
632 
if(category[band] < 7){ 
633 
if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){

634 
index=7;

635 
for(j=0 ; j<p>total_subbands ; j++) category[band+j]=7; 
636 
} 
637 
} 
638 
if(index>=7) { 
639 
memset(subband_coef_index, 0, sizeof(subband_coef_index)); 
640 
memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); 
641 
} 
642 
q>scalar_dequant(q, index, quant_index_table[band], 
643 
subband_coef_index, subband_coef_sign, 
644 
&mlt_buffer[band * SUBBAND_SIZE]); 
645 
} 
646  
647 
if(p>total_subbands*SUBBAND_SIZE >= q>samples_per_channel){

648 
return;

649 
} /* FIXME: should this be removed, or moved into loop above? */

650 
} 
651  
652  
653 
/**

654 
* function for decoding mono data

655 
*

656 
* @param q pointer to the COOKContext

657 
* @param mlt_buffer pointer to mlt coefficients

658 
*/

659  
660 
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) { 
661  
662 
int category_index[128]; 
663 
int quant_index_table[102]; 
664 
int category[128]; 
665  
666 
memset(&category, 0, 128*sizeof(int)); 
667 
memset(&category_index, 0, 128*sizeof(int)); 
668  
669 
decode_envelope(q, p, quant_index_table); 
670 
q>num_vectors = get_bits(&q>gb,p>log2_numvector_size); 
671 
categorize(q, p, quant_index_table, category, category_index); 
672 
expand_category(q, category, category_index); 
673 
decode_vectors(q, p, category, quant_index_table, mlt_buffer); 
674 
} 
675  
676  
677 
/**

678 
* the actual requantization of the timedomain samples

679 
*

680 
* @param q pointer to the COOKContext

681 
* @param buffer pointer to the timedomain buffer

682 
* @param gain_index index for the block multiplier

683 
* @param gain_index_next index for the next block multiplier

684 
*/

685  
686 
static void interpolate_float(COOKContext *q, float* buffer, 
687 
int gain_index, int gain_index_next){ 
688 
int i;

689 
float fc1, fc2;

690 
fc1 = pow2tab[gain_index+63];

691  
692 
if(gain_index == gain_index_next){ //static gain 
693 
for(i=0 ; i<q>gain_size_factor ; i++){ 
694 
buffer[i]*=fc1; 
695 
} 
696 
return;

697 
} else { //smooth gain 
698 
fc2 = q>gain_table[11 + (gain_index_nextgain_index)];

699 
for(i=0 ; i<q>gain_size_factor ; i++){ 
700 
buffer[i]*=fc1; 
701 
fc1*=fc2; 
702 
} 
703 
return;

704 
} 
705 
} 
706  
707 
/**

708 
* Apply transform window, overlap buffers.

709 
*

710 
* @param q pointer to the COOKContext

711 
* @param inbuffer pointer to the mltcoefficients

712 
* @param gains_ptr current and previous gains

713 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

714 
*/

715  
716 
static void imlt_window_float (COOKContext *q, float *buffer1, 
717 
cook_gains *gains_ptr, float *previous_buffer)

718 
{ 
719 
const float fc = pow2tab[gains_ptr>previous[0] + 63]; 
720 
int i;

721 
/* The weird thing here, is that the two halves of the time domain

722 
* buffer are swapped. Also, the newest data, that we save away for

723 
* next frame, has the wrong sign. Hence the subtraction below.

724 
* Almost sounds like a complex conjugate/reverse data/FFT effect.

725 
*/

726  
727 
/* Apply window and overlap */

728 
for(i = 0; i < q>samples_per_channel; i++){ 
729 
buffer1[i] = buffer1[i] * fc * q>mlt_window[i]  
730 
previous_buffer[i] * q>mlt_window[q>samples_per_channel  1  i];

731 
} 
732 
} 
733  
734 
/**

735 
* The modulated lapped transform, this takes transform coefficients

736 
* and transforms them into timedomain samples.

737 
* Apply transform window, overlap buffers, apply gain profile

738 
* and buffer management.

739 
*

740 
* @param q pointer to the COOKContext

741 
* @param inbuffer pointer to the mltcoefficients

742 
* @param gains_ptr current and previous gains

743 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

744 
*/

745  
746 
static void imlt_gain(COOKContext *q, float *inbuffer, 
747 
cook_gains *gains_ptr, float* previous_buffer)

748 
{ 
749 
float *buffer0 = q>mono_mdct_output;

750 
float *buffer1 = q>mono_mdct_output + q>samples_per_channel;

751 
int i;

752  
753 
/* Inverse modified discrete cosine transform */

754 
ff_imdct_calc(&q>mdct_ctx, q>mono_mdct_output, inbuffer); 
755  
756 
q>imlt_window (q, buffer1, gains_ptr, previous_buffer); 
757  
758 
/* Apply gain profile */

759 
for (i = 0; i < 8; i++) { 
760 
if (gains_ptr>now[i]  gains_ptr>now[i + 1]) 
761 
q>interpolate(q, &buffer1[q>gain_size_factor * i], 
762 
gains_ptr>now[i], gains_ptr>now[i + 1]);

763 
} 
764  
765 
/* Save away the current to be previous block. */

766 
memcpy(previous_buffer, buffer0, sizeof(float)*q>samples_per_channel); 
767 
} 
768  
769  
770 
/**

771 
* function for getting the jointstereo coupling information

772 
*

773 
* @param q pointer to the COOKContext

774 
* @param decouple_tab decoupling array

775 
*

776 
*/

777  
778 
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){ 
779 
int length, i;

780  
781 
if(get_bits1(&q>gb)) {

782 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
783  
784 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
785 
for (i=0 ; i<length ; i++) { 
786 
decouple_tab[cplband[p>js_subband_start] + i] = get_vlc2(&q>gb, p>ccpl.table, p>ccpl.bits, 2);

787 
} 
788 
return;

789 
} 
790  
791 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
792  
793 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
794 
for (i=0 ; i<length ; i++) { 
795 
decouple_tab[cplband[p>js_subband_start] + i] = get_bits(&q>gb, p>js_vlc_bits); 
796 
} 
797 
return;

798 
} 
799  
800 
/*

801 
* function decouples a pair of signals from a single signal via multiplication.

802 
*

803 
* @param q pointer to the COOKContext

804 
* @param subband index of the current subband

805 
* @param f1 multiplier for channel 1 extraction

806 
* @param f2 multiplier for channel 2 extraction

807 
* @param decode_buffer input buffer

808 
* @param mlt_buffer1 pointer to left channel mlt coefficients

809 
* @param mlt_buffer2 pointer to right channel mlt coefficients

810 
*/

811 
static void decouple_float (COOKContext *q, 
812 
COOKSubpacket *p, 
813 
int subband,

814 
float f1, float f2, 
815 
float *decode_buffer,

816 
float *mlt_buffer1, float *mlt_buffer2) 
817 
{ 
818 
int j, tmp_idx;

819 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
820 
tmp_idx = ((p>js_subband_start + subband)*SUBBAND_SIZE)+j; 
821 
mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx]; 
822 
mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx]; 
823 
} 
824 
} 
825  
826 
/**

827 
* function for decoding joint stereo data

828 
*

829 
* @param q pointer to the COOKContext

830 
* @param mlt_buffer1 pointer to left channel mlt coefficients

831 
* @param mlt_buffer2 pointer to right channel mlt coefficients

832 
*/

833  
834 
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1, 
835 
float* mlt_buffer2) {

836 
int i,j;

837 
int decouple_tab[SUBBAND_SIZE];

838 
float *decode_buffer = q>decode_buffer_0;

839 
int idx, cpl_tmp;

840 
float f1,f2;

841 
const float* cplscale; 
842  
843 
memset(decouple_tab, 0, sizeof(decouple_tab)); 
844 
memset(decode_buffer, 0, sizeof(decode_buffer)); 
845  
846 
/* Make sure the buffers are zeroed out. */

847 
memset(mlt_buffer1,0, 1024*sizeof(float)); 
848 
memset(mlt_buffer2,0, 1024*sizeof(float)); 
849 
decouple_info(q, p, decouple_tab); 
850 
mono_decode(q, p, decode_buffer); 
851  
852 
/* The two channels are stored interleaved in decode_buffer. */

853 
for (i=0 ; i<p>js_subband_start ; i++) { 
854 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
855 
mlt_buffer1[i*20+j] = decode_buffer[i*40+j]; 
856 
mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j]; 
857 
} 
858 
} 
859  
860 
/* When we reach js_subband_start (the higher frequencies)

861 
the coefficients are stored in a coupling scheme. */

862 
idx = (1 << p>js_vlc_bits)  1; 
863 
for (i=p>js_subband_start ; i<p>subbands ; i++) {

864 
cpl_tmp = cplband[i]; 
865 
idx =decouple_tab[cpl_tmp]; 
866 
cplscale = q>cplscales[p>js_vlc_bits2]; //choose decoupler table 
867 
f1 = cplscale[decouple_tab[cpl_tmp]]; 
868 
f2 = cplscale[idx1];

869 
q>decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2); 
870 
idx = (1 << p>js_vlc_bits)  1; 
871 
} 
872 
} 
873  
874 
/**

875 
* First part of subpacket decoding:

876 
* decode raw stream bytes and read gain info.

877 
*

878 
* @param q pointer to the COOKContext

879 
* @param inbuffer pointer to raw stream data

880 
* @param gain_ptr array of current/prev gain pointers

881 
*/

882  
883 
static inline void 
884 
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,

885 
cook_gains *gains_ptr) 
886 
{ 
887 
int offset;

888  
889 
offset = decode_bytes(inbuffer, q>decoded_bytes_buffer, 
890 
p>bits_per_subpacket/8);

891 
init_get_bits(&q>gb, q>decoded_bytes_buffer + offset, 
892 
p>bits_per_subpacket); 
893 
decode_gain_info(&q>gb, gains_ptr>now); 
894  
895 
/* Swap current and previous gains */

896 
FFSWAP(int *, gains_ptr>now, gains_ptr>previous);

897 
} 
898  
899 
/**

900 
* Saturate the output signal to signed 16bit integers.

901 
*

902 
* @param q pointer to the COOKContext

903 
* @param chan channel to saturate

904 
* @param out pointer to the output vector

905 
*/

906 
static void 
907 
saturate_output_float (COOKContext *q, int chan, int16_t *out)

908 
{ 
909 
int j;

910 
float *output = q>mono_mdct_output + q>samples_per_channel;

911 
/* Clip and convert floats to 16 bits.

912 
*/

913 
for (j = 0; j < q>samples_per_channel; j++) { 
914 
out[chan + q>nb_channels * j] = 
915 
av_clip_int16(lrintf(output[j])); 
916 
} 
917 
} 
918  
919 
/**

920 
* Final part of subpacket decoding:

921 
* Apply modulated lapped transform, gain compensation,

922 
* clip and convert to integer.

923 
*

924 
* @param q pointer to the COOKContext

925 
* @param decode_buffer pointer to the mlt coefficients

926 
* @param gain_ptr array of current/prev gain pointers

927 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

928 
* @param out pointer to the output buffer

929 
* @param chan 0: left or single channel, 1: right channel

930 
*/

931  
932 
static inline void 
933 
mlt_compensate_output(COOKContext *q, float *decode_buffer,

934 
cook_gains *gains, float *previous_buffer,

935 
int16_t *out, int chan)

936 
{ 
937 
imlt_gain(q, decode_buffer, gains, previous_buffer); 
938 
q>saturate_output (q, chan, out); 
939 
} 
940  
941  
942 
/**

943 
* Cook subpacket decoding. This function returns one decoded subpacket,

944 
* usually 1024 samples per channel.

945 
*

946 
* @param q pointer to the COOKContext

947 
* @param inbuffer pointer to the inbuffer

948 
* @param sub_packet_size subpacket size

949 
* @param outbuffer pointer to the outbuffer

950 
*/

951  
952  
953 
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) { 
954 
int sub_packet_size = p>size;

955 
/* packet dump */

956 
// for (i=0 ; i<sub_packet_size ; i++) {

957 
// av_log(q>avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);

958 
// }

959 
// av_log(q>avctx, AV_LOG_ERROR, "\n");

960 
memset(q>decode_buffer_1,0,sizeof(q>decode_buffer_1)); 
961 
decode_bytes_and_gain(q, p, inbuffer, &p>gains1); 
962  
963 
if (p>joint_stereo) {

964 
joint_decode(q, p, q>decode_buffer_1, q>decode_buffer_2); 
965 
} else {

966 
mono_decode(q, p, q>decode_buffer_1); 
967  
968 
if (p>num_channels == 2) { 
969 
decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p>gains2);

970 
mono_decode(q, p, q>decode_buffer_2); 
971 
} 
972 
} 
973  
974 
mlt_compensate_output(q, q>decode_buffer_1, &p>gains1, 
975 
p>mono_previous_buffer1, outbuffer, p>ch_idx); 
976  
977 
if (p>num_channels == 2) { 
978 
if (p>joint_stereo) {

979 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains1, 
980 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

981 
} else {

982 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains2, 
983 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

984 
} 
985 
} 
986  
987 
} 
988  
989  
990 
/**

991 
* Cook frame decoding

992 
*

993 
* @param avctx pointer to the AVCodecContext

994 
*/

995  
996 
static int cook_decode_frame(AVCodecContext *avctx, 
997 
void *data, int *data_size, 
998 
AVPacket *avpkt) { 
999 
const uint8_t *buf = avpkt>data;

1000 
int buf_size = avpkt>size;

1001 
COOKContext *q = avctx>priv_data; 
1002 
int i;

1003 
int offset = 0; 
1004 
int chidx = 0; 
1005  
1006 
if (buf_size < avctx>block_align)

1007 
return buf_size;

1008  
1009 
/* estimate subpacket sizes */

1010 
q>subpacket[0].size = avctx>block_align;

1011  
1012 
for(i=1;i<q>num_subpackets;i++){ 
1013 
q>subpacket[i].size = 2 * buf[avctx>block_align  q>num_subpackets + i];

1014 
q>subpacket[0].size = q>subpacket[i].size + 1; 
1015 
if (q>subpacket[0].size < 0) { 
1016 
av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx>block_align!\n");

1017 
return 1; 
1018 
} 
1019 
} 
1020  
1021 
/* decode supbackets */

1022 
*data_size = 0;

1023 
for(i=0;i<q>num_subpackets;i++){ 
1024 
q>subpacket[i].bits_per_subpacket = (q>subpacket[i].size*8)>>q>subpacket[i].bits_per_subpdiv;

1025 
q>subpacket[i].ch_idx = chidx; 
1026 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q>subpacket[i].size,q>subpacket[i].joint_stereo,offset,avctx>block_align);

1027 
decode_subpacket(q, &q>subpacket[i], buf + offset, (int16_t*)data); 
1028 
offset += q>subpacket[i].size; 
1029 
chidx += q>subpacket[i].num_channels; 
1030 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q>subpacket[i].size * 8,get_bits_count(&q>gb)); 
1031 
} 
1032 
*data_size = sizeof(int16_t) * q>nb_channels * q>samples_per_channel;

1033  
1034 
/* Discard the first two frames: no valid audio. */

1035 
if (avctx>frame_number < 2) *data_size = 0; 
1036  
1037 
return avctx>block_align;

1038 
} 
1039  
1040 
#ifdef COOKDEBUG

1041 
static void dump_cook_context(COOKContext *q) 
1042 
{ 
1043 
//int i=0;

1044 
#define PRINT(a,b) av_log(q>avctx,AV_LOG_ERROR," %s = %d\n", a, b); 
1045 
av_log(q>avctx,AV_LOG_ERROR,"COOKextradata\n");

1046 
av_log(q>avctx,AV_LOG_ERROR,"cookversion=%x\n",q>subpacket[0].cookversion); 
1047 
if (q>subpacket[0].cookversion > STEREO) { 
1048 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1049 
PRINT("js_vlc_bits",q>subpacket[0].js_vlc_bits); 
1050 
} 
1051 
av_log(q>avctx,AV_LOG_ERROR,"COOKContext\n");

1052 
PRINT("nb_channels",q>nb_channels);

1053 
PRINT("bit_rate",q>bit_rate);

1054 
PRINT("sample_rate",q>sample_rate);

1055 
PRINT("samples_per_channel",q>subpacket[0].samples_per_channel); 
1056 
PRINT("samples_per_frame",q>subpacket[0].samples_per_frame); 
1057 
PRINT("subbands",q>subpacket[0].subbands); 
1058 
PRINT("random_state",q>random_state);

1059 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1060 
PRINT("log2_numvector_size",q>subpacket[0].log2_numvector_size); 
1061 
PRINT("numvector_size",q>subpacket[0].numvector_size); 
1062 
PRINT("total_subbands",q>subpacket[0].total_subbands); 
1063 
} 
1064 
#endif

1065  
1066 
static av_cold int cook_count_channels(unsigned int mask){ 
1067 
int i;

1068 
int channels = 0; 
1069 
for(i = 0;i<32;i++){ 
1070 
if(mask & (1<<i)) 
1071 
++channels; 
1072 
} 
1073 
return channels;

1074 
} 
1075  
1076 
/**

1077 
* Cook initialization

1078 
*

1079 
* @param avctx pointer to the AVCodecContext

1080 
*/

1081  
1082 
static av_cold int cook_decode_init(AVCodecContext *avctx) 
1083 
{ 
1084 
COOKContext *q = avctx>priv_data; 
1085 
const uint8_t *edata_ptr = avctx>extradata;

1086 
const uint8_t *edata_ptr_end = edata_ptr + avctx>extradata_size;

1087 
int extradata_size = avctx>extradata_size;

1088 
int s = 0; 
1089 
unsigned int channel_mask = 0; 
1090 
q>avctx = avctx; 
1091  
1092 
/* Take care of the codec specific extradata. */

1093 
if (extradata_size <= 0) { 
1094 
av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");

1095 
return 1; 
1096 
} 
1097 
av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx>extradata_size);

1098  
1099 
/* Take data from the AVCodecContext (RM container). */

1100 
q>sample_rate = avctx>sample_rate; 
1101 
q>nb_channels = avctx>channels; 
1102 
q>bit_rate = avctx>bit_rate; 
1103  
1104 
/* Initialize RNG. */

1105 
av_lfg_init(&q>random_state, 0);

1106  
1107 
while(edata_ptr < edata_ptr_end){

1108 
/* 8 for mono, 16 for stereo, ? for multichannel

1109 
Swap to right endianness so we don't need to care later on. */

1110 
if (extradata_size >= 8){ 
1111 
q>subpacket[s].cookversion = bytestream_get_be32(&edata_ptr); 
1112 
q>subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr); 
1113 
q>subpacket[s].subbands = bytestream_get_be16(&edata_ptr); 
1114 
extradata_size = 8;

1115 
} 
1116 
if (avctx>extradata_size >= 8){ 
1117 
bytestream_get_be32(&edata_ptr); //Unknown unused

1118 
q>subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr); 
1119 
q>subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr); 
1120 
extradata_size = 8;

1121 
} 
1122  
1123 
/* Initialize extradata related variables. */

1124 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame / q>nb_channels; 
1125 
q>subpacket[s].bits_per_subpacket = avctx>block_align * 8;

1126  
1127 
/* Initialize default data states. */

1128 
q>subpacket[s].log2_numvector_size = 5;

1129 
q>subpacket[s].total_subbands = q>subpacket[s].subbands; 
1130 
q>subpacket[s].num_channels = 1;

1131  
1132 
/* Initialize versiondependent variables */

1133  
1134 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q>subpacket[s].cookversion);

1135 
q>subpacket[s].joint_stereo = 0;

1136 
switch (q>subpacket[s].cookversion) {

1137 
case MONO:

1138 
if (q>nb_channels != 1) { 
1139 
av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");

1140 
return 1; 
1141 
} 
1142 
av_log(avctx,AV_LOG_DEBUG,"MONO\n");

1143 
break;

1144 
case STEREO:

1145 
if (q>nb_channels != 1) { 
1146 
q>subpacket[s].bits_per_subpdiv = 1;

1147 
q>subpacket[s].num_channels = 2;

1148 
} 
1149 
av_log(avctx,AV_LOG_DEBUG,"STEREO\n");

1150 
break;

1151 
case JOINT_STEREO:

1152 
if (q>nb_channels != 2) { 
1153 
av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");

1154 
return 1; 
1155 
} 
1156 
av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");

1157 
if (avctx>extradata_size >= 16){ 
1158 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1159 
q>subpacket[s].joint_stereo = 1;

1160 
q>subpacket[s].num_channels = 2;

1161 
} 
1162 
if (q>subpacket[s].samples_per_channel > 256) { 
1163 
q>subpacket[s].log2_numvector_size = 6;

1164 
} 
1165 
if (q>subpacket[s].samples_per_channel > 512) { 
1166 
q>subpacket[s].log2_numvector_size = 7;

1167 
} 
1168 
break;

1169 
case MC_COOK:

1170 
av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");

1171 
if(extradata_size >= 4) 
1172 
channel_mask = q>subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr); 
1173  
1174 
if(cook_count_channels(q>subpacket[s].channel_mask) > 1){ 
1175 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1176 
q>subpacket[s].joint_stereo = 1;

1177 
q>subpacket[s].num_channels = 2;

1178 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame >> 1;

1179  
1180 
if (q>subpacket[s].samples_per_channel > 256) { 
1181 
q>subpacket[s].log2_numvector_size = 6;

1182 
} 
1183 
if (q>subpacket[s].samples_per_channel > 512) { 
1184 
q>subpacket[s].log2_numvector_size = 7;

1185 
} 
1186 
}else

1187 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame; 
1188  
1189 
break;

1190 
default:

1191 
av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");

1192 
return 1; 
1193 
break;

1194 
} 
1195  
1196 
if(s > 1 && q>subpacket[s].samples_per_channel != q>samples_per_channel) { 
1197 
av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");

1198 
return 1; 
1199 
} else

1200 
q>samples_per_channel = q>subpacket[0].samples_per_channel;

1201  
1202  
1203 
/* Initialize variable relations */

1204 
q>subpacket[s].numvector_size = (1 << q>subpacket[s].log2_numvector_size);

1205  
1206 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1207 
if (q>subpacket[s].total_subbands > 53) { 
1208 
av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");

1209 
return 1; 
1210 
} 
1211  
1212 
if ((q>subpacket[s].js_vlc_bits > 6)  (q>subpacket[s].js_vlc_bits < 0)) { 
1213 
av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q>subpacket[s].js_vlc_bits);

1214 
return 1; 
1215 
} 
1216  
1217 
if (q>subpacket[s].subbands > 50) { 
1218 
av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");

1219 
return 1; 
1220 
} 
1221 
q>subpacket[s].gains1.now = q>subpacket[s].gain_1; 
1222 
q>subpacket[s].gains1.previous = q>subpacket[s].gain_2; 
1223 
q>subpacket[s].gains2.now = q>subpacket[s].gain_3; 
1224 
q>subpacket[s].gains2.previous = q>subpacket[s].gain_4; 
1225  
1226 
q>num_subpackets++; 
1227 
s++; 
1228 
if (s > MAX_SUBPACKETS) {

1229 
av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");

1230 
return 1; 
1231 
} 
1232 
} 
1233 
/* Generate tables */

1234 
init_pow2table(); 
1235 
init_gain_table(q); 
1236 
init_cplscales_table(q); 
1237  
1238 
if (init_cook_vlc_tables(q) != 0) 
1239 
return 1; 
1240  
1241  
1242 
if(avctx>block_align >= UINT_MAX/2) 
1243 
return 1; 
1244  
1245 
/* Pad the databuffer with:

1246 
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),

1247 
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */

1248 
q>decoded_bytes_buffer = 
1249 
av_mallocz(avctx>block_align 
1250 
+ DECODE_BYTES_PAD1(avctx>block_align) 
1251 
+ FF_INPUT_BUFFER_PADDING_SIZE); 
1252 
if (q>decoded_bytes_buffer == NULL) 
1253 
return 1; 
1254  
1255 
/* Initialize transform. */

1256 
if ( init_cook_mlt(q) != 0 ) 
1257 
return 1; 
1258  
1259 
/* Initialize COOK signal arithmetic handling */

1260 
if (1) { 
1261 
q>scalar_dequant = scalar_dequant_float; 
1262 
q>decouple = decouple_float; 
1263 
q>imlt_window = imlt_window_float; 
1264 
q>interpolate = interpolate_float; 
1265 
q>saturate_output = saturate_output_float; 
1266 
} 
1267  
1268 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1269 
if ((q>samples_per_channel == 256)  (q>samples_per_channel == 512)  (q>samples_per_channel == 1024)) { 
1270 
} else {

1271 
av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q>samples_per_channel);

1272 
return 1; 
1273 
} 
1274  
1275 
avctx>sample_fmt = SAMPLE_FMT_S16; 
1276 
if (channel_mask)

1277 
avctx>channel_layout = channel_mask; 
1278 
else

1279 
avctx>channel_layout = (avctx>channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;

1280  
1281 
#ifdef COOKDEBUG

1282 
dump_cook_context(q); 
1283 
#endif

1284 
return 0; 
1285 
} 
1286  
1287  
1288 
AVCodec cook_decoder = 
1289 
{ 
1290 
.name = "cook",

1291 
.type = AVMEDIA_TYPE_AUDIO, 
1292 
.id = CODEC_ID_COOK, 
1293 
.priv_data_size = sizeof(COOKContext),

1294 
.init = cook_decode_init, 
1295 
.close = cook_decode_close, 
1296 
.decode = cook_decode_frame, 
1297 
.long_name = NULL_IF_CONFIG_SMALL("COOK"),

1298 
}; 