Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ 72415b2a

History | View | Annotate | Download (43.3 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavcodec/cook.c
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44

    
45
#include <math.h>
46
#include <stddef.h>
47
#include <stdio.h>
48

    
49
#include "libavutil/lfg.h"
50
#include "libavutil/random_seed.h"
51
#include "avcodec.h"
52
#include "get_bits.h"
53
#include "dsputil.h"
54
#include "bytestream.h"
55
#include "fft.h"
56

    
57
#include "cookdata.h"
58

    
59
/* the different Cook versions */
60
#define MONO            0x1000001
61
#define STEREO          0x1000002
62
#define JOINT_STEREO    0x1000003
63
#define MC_COOK         0x2000000   //multichannel Cook, not supported
64

    
65
#define SUBBAND_SIZE    20
66
#define MAX_SUBPACKETS   5
67
//#define COOKDEBUG
68

    
69
typedef struct {
70
    int *now;
71
    int *previous;
72
} cook_gains;
73

    
74
typedef struct {
75
    int                 ch_idx;
76
    int                 size;
77
    int                 num_channels;
78
    int                 cookversion;
79
    int                 samples_per_frame;
80
    int                 subbands;
81
    int                 js_subband_start;
82
    int                 js_vlc_bits;
83
    int                 samples_per_channel;
84
    int                 log2_numvector_size;
85
    unsigned int        channel_mask;
86
    VLC                 ccpl;                 ///< channel coupling
87
    int                 joint_stereo;
88
    int                 bits_per_subpacket;
89
    int                 bits_per_subpdiv;
90
    int                 total_subbands;
91
    int                 numvector_size;       ///< 1 << log2_numvector_size;
92

    
93
    float               mono_previous_buffer1[1024];
94
    float               mono_previous_buffer2[1024];
95
    /** gain buffers */
96
    cook_gains          gains1;
97
    cook_gains          gains2;
98
    int                 gain_1[9];
99
    int                 gain_2[9];
100
    int                 gain_3[9];
101
    int                 gain_4[9];
102
} COOKSubpacket;
103

    
104
typedef struct cook {
105
    /*
106
     * The following 5 functions provide the lowlevel arithmetic on
107
     * the internal audio buffers.
108
     */
109
    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
110
                            int* subband_coef_index, int* subband_coef_sign,
111
                            float* mlt_p);
112

    
113
    void (* decouple) (struct cook *q,
114
                       COOKSubpacket *p,
115
                       int subband,
116
                       float f1, float f2,
117
                       float *decode_buffer,
118
                       float *mlt_buffer1, float *mlt_buffer2);
119

    
120
    void (* imlt_window) (struct cook *q, float *buffer1,
121
                          cook_gains *gains_ptr, float *previous_buffer);
122

    
123
    void (* interpolate) (struct cook *q, float* buffer,
124
                          int gain_index, int gain_index_next);
125

    
126
    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
127

    
128
    AVCodecContext*     avctx;
129
    GetBitContext       gb;
130
    /* stream data */
131
    int                 nb_channels;
132
    int                 bit_rate;
133
    int                 sample_rate;
134
    int                 num_vectors;
135
    int                 samples_per_channel;
136
    /* states */
137
    AVLFG               random_state;
138

    
139
    /* transform data */
140
    FFTContext          mdct_ctx;
141
    float*              mlt_window;
142

    
143
    /* VLC data */
144
    VLC                 envelope_quant_index[13];
145
    VLC                 sqvh[7];          //scalar quantization
146

    
147
    /* generatable tables and related variables */
148
    int                 gain_size_factor;
149
    float               gain_table[23];
150

    
151
    /* data buffers */
152

    
153
    uint8_t*            decoded_bytes_buffer;
154
    DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
155
    float               decode_buffer_1[1024];
156
    float               decode_buffer_2[1024];
157
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
158

    
159
    const float         *cplscales[5];
160
    int                 num_subpackets;
161
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
162
} COOKContext;
163

    
164
static float     pow2tab[127];
165
static float rootpow2tab[127];
166

    
167
/* debug functions */
168

    
169
#ifdef COOKDEBUG
170
static void dump_float_table(float* table, int size, int delimiter) {
171
    int i=0;
172
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
173
    for (i=0 ; i<size ; i++) {
174
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
175
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
176
    }
177
}
178

    
179
static void dump_int_table(int* table, int size, int delimiter) {
180
    int i=0;
181
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
182
    for (i=0 ; i<size ; i++) {
183
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
184
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
185
    }
186
}
187

    
188
static void dump_short_table(short* table, int size, int delimiter) {
189
    int i=0;
190
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
191
    for (i=0 ; i<size ; i++) {
192
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
193
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
194
    }
195
}
196

    
197
#endif
198

    
199
/*************** init functions ***************/
200

    
201
/* table generator */
202
static av_cold void init_pow2table(void){
203
    int i;
204
    for (i=-63 ; i<64 ; i++){
205
            pow2tab[63+i]=     pow(2, i);
206
        rootpow2tab[63+i]=sqrt(pow(2, i));
207
    }
208
}
209

    
210
/* table generator */
211
static av_cold void init_gain_table(COOKContext *q) {
212
    int i;
213
    q->gain_size_factor = q->samples_per_channel/8;
214
    for (i=0 ; i<23 ; i++) {
215
        q->gain_table[i] = pow(pow2tab[i+52] ,
216
                               (1.0/(double)q->gain_size_factor));
217
    }
218
}
219

    
220

    
221
static av_cold int init_cook_vlc_tables(COOKContext *q) {
222
    int i, result;
223

    
224
    result = 0;
225
    for (i=0 ; i<13 ; i++) {
226
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
227
            envelope_quant_index_huffbits[i], 1, 1,
228
            envelope_quant_index_huffcodes[i], 2, 2, 0);
229
    }
230
    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
231
    for (i=0 ; i<7 ; i++) {
232
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
233
            cvh_huffbits[i], 1, 1,
234
            cvh_huffcodes[i], 2, 2, 0);
235
    }
236

    
237
    for(i=0;i<q->num_subpackets;i++){
238
        if (q->subpacket[i].joint_stereo==1){
239
            result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
240
                ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
241
                ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
242
            av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
243
        }
244
    }
245

    
246
    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
247
    return result;
248
}
249

    
250
static av_cold int init_cook_mlt(COOKContext *q) {
251
    int j;
252
    int mlt_size = q->samples_per_channel;
253

    
254
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
255
      return -1;
256

    
257
    /* Initialize the MLT window: simple sine window. */
258
    ff_sine_window_init(q->mlt_window, mlt_size);
259
    for(j=0 ; j<mlt_size ; j++)
260
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
261

    
262
    /* Initialize the MDCT. */
263
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
264
      av_free(q->mlt_window);
265
      return -1;
266
    }
267
    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
268
           av_log2(mlt_size)+1);
269

    
270
    return 0;
271
}
272

    
273
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
274
{
275
    if (1)
276
        return ptr;
277
}
278

    
279
static av_cold void init_cplscales_table (COOKContext *q) {
280
    int i;
281
    for (i=0;i<5;i++)
282
        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
283
}
284

    
285
/*************** init functions end ***********/
286

    
287
/**
288
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
289
 * Why? No idea, some checksum/error detection method maybe.
290
 *
291
 * Out buffer size: extra bytes are needed to cope with
292
 * padding/misalignment.
293
 * Subpackets passed to the decoder can contain two, consecutive
294
 * half-subpackets, of identical but arbitrary size.
295
 *          1234 1234 1234 1234  extraA extraB
296
 * Case 1:  AAAA BBBB              0      0
297
 * Case 2:  AAAA ABBB BB--         3      3
298
 * Case 3:  AAAA AABB BBBB         2      2
299
 * Case 4:  AAAA AAAB BBBB BB--    1      5
300
 *
301
 * Nice way to waste CPU cycles.
302
 *
303
 * @param inbuffer  pointer to byte array of indata
304
 * @param out       pointer to byte array of outdata
305
 * @param bytes     number of bytes
306
 */
307
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
308
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
309

    
310
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
311
    int i, off;
312
    uint32_t c;
313
    const uint32_t* buf;
314
    uint32_t* obuf = (uint32_t*) out;
315
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
316
     * I'm too lazy though, should be something like
317
     * for(i=0 ; i<bitamount/64 ; i++)
318
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
319
     * Buffer alignment needs to be checked. */
320

    
321
    off = (intptr_t)inbuffer & 3;
322
    buf = (const uint32_t*) (inbuffer - off);
323
    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
324
    bytes += 3 + off;
325
    for (i = 0; i < bytes/4; i++)
326
        obuf[i] = c ^ buf[i];
327

    
328
    return off;
329
}
330

    
331
/**
332
 * Cook uninit
333
 */
334

    
335
static av_cold int cook_decode_close(AVCodecContext *avctx)
336
{
337
    int i;
338
    COOKContext *q = avctx->priv_data;
339
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
340

    
341
    /* Free allocated memory buffers. */
342
    av_free(q->mlt_window);
343
    av_free(q->decoded_bytes_buffer);
344

    
345
    /* Free the transform. */
346
    ff_mdct_end(&q->mdct_ctx);
347

    
348
    /* Free the VLC tables. */
349
    for (i=0 ; i<13 ; i++) {
350
        free_vlc(&q->envelope_quant_index[i]);
351
    }
352
    for (i=0 ; i<7 ; i++) {
353
        free_vlc(&q->sqvh[i]);
354
    }
355
    for (i=0 ; i<q->num_subpackets ; i++) {
356
        free_vlc(&q->subpacket[i].ccpl);
357
    }
358

    
359
    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
360

    
361
    return 0;
362
}
363

    
364
/**
365
 * Fill the gain array for the timedomain quantization.
366
 *
367
 * @param q                 pointer to the COOKContext
368
 * @param gaininfo[9]       array of gain indexes
369
 */
370

    
371
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
372
{
373
    int i, n;
374

    
375
    while (get_bits1(gb)) {}
376
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
377

    
378
    i = 0;
379
    while (n--) {
380
        int index = get_bits(gb, 3);
381
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
382

    
383
        while (i <= index) gaininfo[i++] = gain;
384
    }
385
    while (i <= 8) gaininfo[i++] = 0;
386
}
387

    
388
/**
389
 * Create the quant index table needed for the envelope.
390
 *
391
 * @param q                 pointer to the COOKContext
392
 * @param quant_index_table pointer to the array
393
 */
394

    
395
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
396
    int i,j, vlc_index;
397

    
398
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
399

    
400
    for (i=1 ; i < p->total_subbands ; i++){
401
        vlc_index=i;
402
        if (i >= p->js_subband_start * 2) {
403
            vlc_index-=p->js_subband_start;
404
        } else {
405
            vlc_index/=2;
406
            if(vlc_index < 1) vlc_index = 1;
407
        }
408
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
409

    
410
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
411
                     q->envelope_quant_index[vlc_index-1].bits,2);
412
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
413
    }
414
}
415

    
416
/**
417
 * Calculate the category and category_index vector.
418
 *
419
 * @param q                     pointer to the COOKContext
420
 * @param quant_index_table     pointer to the array
421
 * @param category              pointer to the category array
422
 * @param category_index        pointer to the category_index array
423
 */
424

    
425
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
426
                       int* category, int* category_index){
427
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
428
    int exp_index2[102];
429
    int exp_index1[102];
430

    
431
    int tmp_categorize_array[128*2];
432
    int tmp_categorize_array1_idx=p->numvector_size;
433
    int tmp_categorize_array2_idx=p->numvector_size;
434

    
435
    bits_left =  p->bits_per_subpacket - get_bits_count(&q->gb);
436

    
437
    if(bits_left > q->samples_per_channel) {
438
        bits_left = q->samples_per_channel +
439
                    ((bits_left - q->samples_per_channel)*5)/8;
440
        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
441
    }
442

    
443
    memset(&exp_index1,0,102*sizeof(int));
444
    memset(&exp_index2,0,102*sizeof(int));
445
    memset(&tmp_categorize_array,0,128*2*sizeof(int));
446

    
447
    bias=-32;
448

    
449
    /* Estimate bias. */
450
    for (i=32 ; i>0 ; i=i/2){
451
        num_bits = 0;
452
        index = 0;
453
        for (j=p->total_subbands ; j>0 ; j--){
454
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
455
            index++;
456
            num_bits+=expbits_tab[exp_idx];
457
        }
458
        if(num_bits >= bits_left - 32){
459
            bias+=i;
460
        }
461
    }
462

    
463
    /* Calculate total number of bits. */
464
    num_bits=0;
465
    for (i=0 ; i<p->total_subbands ; i++) {
466
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
467
        num_bits += expbits_tab[exp_idx];
468
        exp_index1[i] = exp_idx;
469
        exp_index2[i] = exp_idx;
470
    }
471
    tmpbias1 = tmpbias2 = num_bits;
472

    
473
    for (j = 1 ; j < p->numvector_size ; j++) {
474
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
475
            int max = -999999;
476
            index=-1;
477
            for (i=0 ; i<p->total_subbands ; i++){
478
                if (exp_index1[i] < 7) {
479
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
480
                    if ( v >= max) {
481
                        max = v;
482
                        index = i;
483
                    }
484
                }
485
            }
486
            if(index==-1)break;
487
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
488
            tmpbias1 -= expbits_tab[exp_index1[index]] -
489
                        expbits_tab[exp_index1[index]+1];
490
            ++exp_index1[index];
491
        } else {  /* <--- */
492
            int min = 999999;
493
            index=-1;
494
            for (i=0 ; i<p->total_subbands ; i++){
495
                if(exp_index2[i] > 0){
496
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
497
                    if ( v < min) {
498
                        min = v;
499
                        index = i;
500
                    }
501
                }
502
            }
503
            if(index == -1)break;
504
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
505
            tmpbias2 -= expbits_tab[exp_index2[index]] -
506
                        expbits_tab[exp_index2[index]-1];
507
            --exp_index2[index];
508
        }
509
    }
510

    
511
    for(i=0 ; i<p->total_subbands ; i++)
512
        category[i] = exp_index2[i];
513

    
514
    for(i=0 ; i<p->numvector_size-1 ; i++)
515
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
516

    
517
}
518

    
519

    
520
/**
521
 * Expand the category vector.
522
 *
523
 * @param q                     pointer to the COOKContext
524
 * @param category              pointer to the category array
525
 * @param category_index        pointer to the category_index array
526
 */
527

    
528
static inline void expand_category(COOKContext *q, int* category,
529
                                   int* category_index){
530
    int i;
531
    for(i=0 ; i<q->num_vectors ; i++){
532
        ++category[category_index[i]];
533
    }
534
}
535

    
536
/**
537
 * The real requantization of the mltcoefs
538
 *
539
 * @param q                     pointer to the COOKContext
540
 * @param index                 index
541
 * @param quant_index           quantisation index
542
 * @param subband_coef_index    array of indexes to quant_centroid_tab
543
 * @param subband_coef_sign     signs of coefficients
544
 * @param mlt_p                 pointer into the mlt buffer
545
 */
546

    
547
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
548
                           int* subband_coef_index, int* subband_coef_sign,
549
                           float* mlt_p){
550
    int i;
551
    float f1;
552

    
553
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
554
        if (subband_coef_index[i]) {
555
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
556
            if (subband_coef_sign[i]) f1 = -f1;
557
        } else {
558
            /* noise coding if subband_coef_index[i] == 0 */
559
            f1 = dither_tab[index];
560
            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
561
        }
562
        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
563
    }
564
}
565
/**
566
 * Unpack the subband_coef_index and subband_coef_sign vectors.
567
 *
568
 * @param q                     pointer to the COOKContext
569
 * @param category              pointer to the category array
570
 * @param subband_coef_index    array of indexes to quant_centroid_tab
571
 * @param subband_coef_sign     signs of coefficients
572
 */
573

    
574
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
575
                       int* subband_coef_sign) {
576
    int i,j;
577
    int vlc, vd ,tmp, result;
578

    
579
    vd = vd_tab[category];
580
    result = 0;
581
    for(i=0 ; i<vpr_tab[category] ; i++){
582
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
583
        if (p->bits_per_subpacket < get_bits_count(&q->gb)){
584
            vlc = 0;
585
            result = 1;
586
        }
587
        for(j=vd-1 ; j>=0 ; j--){
588
            tmp = (vlc * invradix_tab[category])/0x100000;
589
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
590
            vlc = tmp;
591
        }
592
        for(j=0 ; j<vd ; j++){
593
            if (subband_coef_index[i*vd + j]) {
594
                if(get_bits_count(&q->gb) < p->bits_per_subpacket){
595
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
596
                } else {
597
                    result=1;
598
                    subband_coef_sign[i*vd+j]=0;
599
                }
600
            } else {
601
                subband_coef_sign[i*vd+j]=0;
602
            }
603
        }
604
    }
605
    return result;
606
}
607

    
608

    
609
/**
610
 * Fill the mlt_buffer with mlt coefficients.
611
 *
612
 * @param q                 pointer to the COOKContext
613
 * @param category          pointer to the category array
614
 * @param quant_index_table pointer to the array
615
 * @param mlt_buffer        pointer to mlt coefficients
616
 */
617

    
618

    
619
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
620
                           int *quant_index_table, float* mlt_buffer){
621
    /* A zero in this table means that the subband coefficient is
622
       random noise coded. */
623
    int subband_coef_index[SUBBAND_SIZE];
624
    /* A zero in this table means that the subband coefficient is a
625
       positive multiplicator. */
626
    int subband_coef_sign[SUBBAND_SIZE];
627
    int band, j;
628
    int index=0;
629

    
630
    for(band=0 ; band<p->total_subbands ; band++){
631
        index = category[band];
632
        if(category[band] < 7){
633
            if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
634
                index=7;
635
                for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
636
            }
637
        }
638
        if(index>=7) {
639
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
640
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
641
        }
642
        q->scalar_dequant(q, index, quant_index_table[band],
643
                          subband_coef_index, subband_coef_sign,
644
                          &mlt_buffer[band * SUBBAND_SIZE]);
645
    }
646

    
647
    if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
648
        return;
649
    } /* FIXME: should this be removed, or moved into loop above? */
650
}
651

    
652

    
653
/**
654
 * function for decoding mono data
655
 *
656
 * @param q                 pointer to the COOKContext
657
 * @param mlt_buffer        pointer to mlt coefficients
658
 */
659

    
660
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
661

    
662
    int category_index[128];
663
    int quant_index_table[102];
664
    int category[128];
665

    
666
    memset(&category, 0, 128*sizeof(int));
667
    memset(&category_index, 0, 128*sizeof(int));
668

    
669
    decode_envelope(q, p, quant_index_table);
670
    q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
671
    categorize(q, p, quant_index_table, category, category_index);
672
    expand_category(q, category, category_index);
673
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
674
}
675

    
676

    
677
/**
678
 * the actual requantization of the timedomain samples
679
 *
680
 * @param q                 pointer to the COOKContext
681
 * @param buffer            pointer to the timedomain buffer
682
 * @param gain_index        index for the block multiplier
683
 * @param gain_index_next   index for the next block multiplier
684
 */
685

    
686
static void interpolate_float(COOKContext *q, float* buffer,
687
                        int gain_index, int gain_index_next){
688
    int i;
689
    float fc1, fc2;
690
    fc1 = pow2tab[gain_index+63];
691

    
692
    if(gain_index == gain_index_next){              //static gain
693
        for(i=0 ; i<q->gain_size_factor ; i++){
694
            buffer[i]*=fc1;
695
        }
696
        return;
697
    } else {                                        //smooth gain
698
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
699
        for(i=0 ; i<q->gain_size_factor ; i++){
700
            buffer[i]*=fc1;
701
            fc1*=fc2;
702
        }
703
        return;
704
    }
705
}
706

    
707
/**
708
 * Apply transform window, overlap buffers.
709
 *
710
 * @param q                 pointer to the COOKContext
711
 * @param inbuffer          pointer to the mltcoefficients
712
 * @param gains_ptr         current and previous gains
713
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
714
 */
715

    
716
static void imlt_window_float (COOKContext *q, float *buffer1,
717
                               cook_gains *gains_ptr, float *previous_buffer)
718
{
719
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
720
    int i;
721
    /* The weird thing here, is that the two halves of the time domain
722
     * buffer are swapped. Also, the newest data, that we save away for
723
     * next frame, has the wrong sign. Hence the subtraction below.
724
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
725
     */
726

    
727
    /* Apply window and overlap */
728
    for(i = 0; i < q->samples_per_channel; i++){
729
        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
730
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
731
    }
732
}
733

    
734
/**
735
 * The modulated lapped transform, this takes transform coefficients
736
 * and transforms them into timedomain samples.
737
 * Apply transform window, overlap buffers, apply gain profile
738
 * and buffer management.
739
 *
740
 * @param q                 pointer to the COOKContext
741
 * @param inbuffer          pointer to the mltcoefficients
742
 * @param gains_ptr         current and previous gains
743
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
744
 */
745

    
746
static void imlt_gain(COOKContext *q, float *inbuffer,
747
                      cook_gains *gains_ptr, float* previous_buffer)
748
{
749
    float *buffer0 = q->mono_mdct_output;
750
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
751
    int i;
752

    
753
    /* Inverse modified discrete cosine transform */
754
    ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
755

    
756
    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
757

    
758
    /* Apply gain profile */
759
    for (i = 0; i < 8; i++) {
760
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
761
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
762
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
763
    }
764

    
765
    /* Save away the current to be previous block. */
766
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
767
}
768

    
769

    
770
/**
771
 * function for getting the jointstereo coupling information
772
 *
773
 * @param q                 pointer to the COOKContext
774
 * @param decouple_tab      decoupling array
775
 *
776
 */
777

    
778
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
779
    int length, i;
780

    
781
    if(get_bits1(&q->gb)) {
782
        if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
783

    
784
        length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
785
        for (i=0 ; i<length ; i++) {
786
            decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
787
        }
788
        return;
789
    }
790

    
791
    if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
792

    
793
    length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
794
    for (i=0 ; i<length ; i++) {
795
       decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
796
    }
797
    return;
798
}
799

    
800
/*
801
 * function decouples a pair of signals from a single signal via multiplication.
802
 *
803
 * @param q                 pointer to the COOKContext
804
 * @param subband           index of the current subband
805
 * @param f1                multiplier for channel 1 extraction
806
 * @param f2                multiplier for channel 2 extraction
807
 * @param decode_buffer     input buffer
808
 * @param mlt_buffer1       pointer to left channel mlt coefficients
809
 * @param mlt_buffer2       pointer to right channel mlt coefficients
810
 */
811
static void decouple_float (COOKContext *q,
812
                            COOKSubpacket *p,
813
                            int subband,
814
                            float f1, float f2,
815
                            float *decode_buffer,
816
                            float *mlt_buffer1, float *mlt_buffer2)
817
{
818
    int j, tmp_idx;
819
    for (j=0 ; j<SUBBAND_SIZE ; j++) {
820
        tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
821
        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
822
        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
823
    }
824
}
825

    
826
/**
827
 * function for decoding joint stereo data
828
 *
829
 * @param q                 pointer to the COOKContext
830
 * @param mlt_buffer1       pointer to left channel mlt coefficients
831
 * @param mlt_buffer2       pointer to right channel mlt coefficients
832
 */
833

    
834
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
835
                         float* mlt_buffer2) {
836
    int i,j;
837
    int decouple_tab[SUBBAND_SIZE];
838
    float *decode_buffer = q->decode_buffer_0;
839
    int idx, cpl_tmp;
840
    float f1,f2;
841
    const float* cplscale;
842

    
843
    memset(decouple_tab, 0, sizeof(decouple_tab));
844
    memset(decode_buffer, 0, sizeof(decode_buffer));
845

    
846
    /* Make sure the buffers are zeroed out. */
847
    memset(mlt_buffer1,0, 1024*sizeof(float));
848
    memset(mlt_buffer2,0, 1024*sizeof(float));
849
    decouple_info(q, p, decouple_tab);
850
    mono_decode(q, p, decode_buffer);
851

    
852
    /* The two channels are stored interleaved in decode_buffer. */
853
    for (i=0 ; i<p->js_subband_start ; i++) {
854
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
855
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
856
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
857
        }
858
    }
859

    
860
    /* When we reach js_subband_start (the higher frequencies)
861
       the coefficients are stored in a coupling scheme. */
862
    idx = (1 << p->js_vlc_bits) - 1;
863
    for (i=p->js_subband_start ; i<p->subbands ; i++) {
864
        cpl_tmp = cplband[i];
865
        idx -=decouple_tab[cpl_tmp];
866
        cplscale = q->cplscales[p->js_vlc_bits-2];  //choose decoupler table
867
        f1 = cplscale[decouple_tab[cpl_tmp]];
868
        f2 = cplscale[idx-1];
869
        q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
870
        idx = (1 << p->js_vlc_bits) - 1;
871
    }
872
}
873

    
874
/**
875
 * First part of subpacket decoding:
876
 *  decode raw stream bytes and read gain info.
877
 *
878
 * @param q                 pointer to the COOKContext
879
 * @param inbuffer          pointer to raw stream data
880
 * @param gain_ptr          array of current/prev gain pointers
881
 */
882

    
883
static inline void
884
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
885
                      cook_gains *gains_ptr)
886
{
887
    int offset;
888

    
889
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
890
                          p->bits_per_subpacket/8);
891
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
892
                  p->bits_per_subpacket);
893
    decode_gain_info(&q->gb, gains_ptr->now);
894

    
895
    /* Swap current and previous gains */
896
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
897
}
898

    
899
 /**
900
 * Saturate the output signal to signed 16bit integers.
901
 *
902
 * @param q                 pointer to the COOKContext
903
 * @param chan              channel to saturate
904
 * @param out               pointer to the output vector
905
 */
906
static void
907
saturate_output_float (COOKContext *q, int chan, int16_t *out)
908
{
909
    int j;
910
    float *output = q->mono_mdct_output + q->samples_per_channel;
911
    /* Clip and convert floats to 16 bits.
912
     */
913
    for (j = 0; j < q->samples_per_channel; j++) {
914
        out[chan + q->nb_channels * j] =
915
          av_clip_int16(lrintf(output[j]));
916
    }
917
}
918

    
919
/**
920
 * Final part of subpacket decoding:
921
 *  Apply modulated lapped transform, gain compensation,
922
 *  clip and convert to integer.
923
 *
924
 * @param q                 pointer to the COOKContext
925
 * @param decode_buffer     pointer to the mlt coefficients
926
 * @param gain_ptr          array of current/prev gain pointers
927
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
928
 * @param out               pointer to the output buffer
929
 * @param chan              0: left or single channel, 1: right channel
930
 */
931

    
932
static inline void
933
mlt_compensate_output(COOKContext *q, float *decode_buffer,
934
                      cook_gains *gains, float *previous_buffer,
935
                      int16_t *out, int chan)
936
{
937
    imlt_gain(q, decode_buffer, gains, previous_buffer);
938
    q->saturate_output (q, chan, out);
939
}
940

    
941

    
942
/**
943
 * Cook subpacket decoding. This function returns one decoded subpacket,
944
 * usually 1024 samples per channel.
945
 *
946
 * @param q                 pointer to the COOKContext
947
 * @param inbuffer          pointer to the inbuffer
948
 * @param sub_packet_size   subpacket size
949
 * @param outbuffer         pointer to the outbuffer
950
 */
951

    
952

    
953
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
954
    int sub_packet_size = p->size;
955
    /* packet dump */
956
//    for (i=0 ; i<sub_packet_size ; i++) {
957
//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
958
//    }
959
//    av_log(q->avctx, AV_LOG_ERROR, "\n");
960
    memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
961
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
962

    
963
    if (p->joint_stereo) {
964
        joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
965
    } else {
966
        mono_decode(q, p, q->decode_buffer_1);
967

    
968
        if (p->num_channels == 2) {
969
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
970
            mono_decode(q, p, q->decode_buffer_2);
971
        }
972
    }
973

    
974
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
975
                          p->mono_previous_buffer1, outbuffer, p->ch_idx);
976

    
977
    if (p->num_channels == 2) {
978
        if (p->joint_stereo) {
979
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
980
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
981
         } else {
982
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
983
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
984
         }
985
     }
986

    
987
}
988

    
989

    
990
/**
991
 * Cook frame decoding
992
 *
993
 * @param avctx     pointer to the AVCodecContext
994
 */
995

    
996
static int cook_decode_frame(AVCodecContext *avctx,
997
            void *data, int *data_size,
998
            AVPacket *avpkt) {
999
    const uint8_t *buf = avpkt->data;
1000
    int buf_size = avpkt->size;
1001
    COOKContext *q = avctx->priv_data;
1002
    int i;
1003
    int offset = 0;
1004
    int chidx = 0;
1005

    
1006
    if (buf_size < avctx->block_align)
1007
        return buf_size;
1008

    
1009
    /* estimate subpacket sizes */
1010
    q->subpacket[0].size = avctx->block_align;
1011

    
1012
    for(i=1;i<q->num_subpackets;i++){
1013
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1014
        q->subpacket[0].size -= q->subpacket[i].size + 1;
1015
        if (q->subpacket[0].size < 0) {
1016
            av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1017
            return -1;
1018
        }
1019
    }
1020

    
1021
    /* decode supbackets */
1022
    *data_size = 0;
1023
    for(i=0;i<q->num_subpackets;i++){
1024
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1025
        q->subpacket[i].ch_idx = chidx;
1026
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1027
        decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1028
        offset += q->subpacket[i].size;
1029
        chidx += q->subpacket[i].num_channels;
1030
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1031
    }
1032
    *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1033

    
1034
    /* Discard the first two frames: no valid audio. */
1035
    if (avctx->frame_number < 2) *data_size = 0;
1036

    
1037
    return avctx->block_align;
1038
}
1039

    
1040
#ifdef COOKDEBUG
1041
static void dump_cook_context(COOKContext *q)
1042
{
1043
    //int i=0;
1044
#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1045
    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1046
    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1047
    if (q->subpacket[0].cookversion > STEREO) {
1048
        PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1049
        PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1050
    }
1051
    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1052
    PRINT("nb_channels",q->nb_channels);
1053
    PRINT("bit_rate",q->bit_rate);
1054
    PRINT("sample_rate",q->sample_rate);
1055
    PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1056
    PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1057
    PRINT("subbands",q->subpacket[0].subbands);
1058
    PRINT("random_state",q->random_state);
1059
    PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1060
    PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1061
    PRINT("numvector_size",q->subpacket[0].numvector_size);
1062
    PRINT("total_subbands",q->subpacket[0].total_subbands);
1063
}
1064
#endif
1065

    
1066
static av_cold int cook_count_channels(unsigned int mask){
1067
    int i;
1068
    int channels = 0;
1069
    for(i = 0;i<32;i++){
1070
        if(mask & (1<<i))
1071
            ++channels;
1072
    }
1073
    return channels;
1074
}
1075

    
1076
/**
1077
 * Cook initialization
1078
 *
1079
 * @param avctx     pointer to the AVCodecContext
1080
 */
1081

    
1082
static av_cold int cook_decode_init(AVCodecContext *avctx)
1083
{
1084
    COOKContext *q = avctx->priv_data;
1085
    const uint8_t *edata_ptr = avctx->extradata;
1086
    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1087
    int extradata_size = avctx->extradata_size;
1088
    int s = 0;
1089
    unsigned int channel_mask = 0;
1090
    q->avctx = avctx;
1091

    
1092
    /* Take care of the codec specific extradata. */
1093
    if (extradata_size <= 0) {
1094
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1095
        return -1;
1096
    }
1097
    av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1098

    
1099
    /* Take data from the AVCodecContext (RM container). */
1100
    q->sample_rate = avctx->sample_rate;
1101
    q->nb_channels = avctx->channels;
1102
    q->bit_rate = avctx->bit_rate;
1103

    
1104
    /* Initialize RNG. */
1105
    av_lfg_init(&q->random_state, 0);
1106

    
1107
    while(edata_ptr < edata_ptr_end){
1108
        /* 8 for mono, 16 for stereo, ? for multichannel
1109
           Swap to right endianness so we don't need to care later on. */
1110
        if (extradata_size >= 8){
1111
            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1112
            q->subpacket[s].samples_per_frame =  bytestream_get_be16(&edata_ptr);
1113
            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1114
            extradata_size -= 8;
1115
        }
1116
        if (avctx->extradata_size >= 8){
1117
            bytestream_get_be32(&edata_ptr);    //Unknown unused
1118
            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1119
            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1120
            extradata_size -= 8;
1121
        }
1122

    
1123
        /* Initialize extradata related variables. */
1124
        q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1125
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1126

    
1127
        /* Initialize default data states. */
1128
        q->subpacket[s].log2_numvector_size = 5;
1129
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1130
        q->subpacket[s].num_channels = 1;
1131

    
1132
        /* Initialize version-dependent variables */
1133

    
1134
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1135
        q->subpacket[s].joint_stereo = 0;
1136
        switch (q->subpacket[s].cookversion) {
1137
            case MONO:
1138
                if (q->nb_channels != 1) {
1139
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1140
                    return -1;
1141
                }
1142
                av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1143
                break;
1144
            case STEREO:
1145
                if (q->nb_channels != 1) {
1146
                    q->subpacket[s].bits_per_subpdiv = 1;
1147
                    q->subpacket[s].num_channels = 2;
1148
                }
1149
                av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1150
                break;
1151
            case JOINT_STEREO:
1152
                if (q->nb_channels != 2) {
1153
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1154
                    return -1;
1155
                }
1156
                av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1157
                if (avctx->extradata_size >= 16){
1158
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1159
                    q->subpacket[s].joint_stereo = 1;
1160
                    q->subpacket[s].num_channels = 2;
1161
                }
1162
                if (q->subpacket[s].samples_per_channel > 256) {
1163
                    q->subpacket[s].log2_numvector_size  = 6;
1164
                }
1165
                if (q->subpacket[s].samples_per_channel > 512) {
1166
                    q->subpacket[s].log2_numvector_size  = 7;
1167
                }
1168
                break;
1169
            case MC_COOK:
1170
                av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1171
                if(extradata_size >= 4)
1172
                    channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1173

    
1174
                if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1175
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1176
                    q->subpacket[s].joint_stereo = 1;
1177
                    q->subpacket[s].num_channels = 2;
1178
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1179

    
1180
                    if (q->subpacket[s].samples_per_channel > 256) {
1181
                        q->subpacket[s].log2_numvector_size  = 6;
1182
                    }
1183
                    if (q->subpacket[s].samples_per_channel > 512) {
1184
                        q->subpacket[s].log2_numvector_size  = 7;
1185
                    }
1186
                }else
1187
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1188

    
1189
                break;
1190
            default:
1191
                av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1192
                return -1;
1193
                break;
1194
        }
1195

    
1196
        if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1197
            av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1198
            return -1;
1199
        } else
1200
            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1201

    
1202

    
1203
        /* Initialize variable relations */
1204
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1205

    
1206
        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1207
        if (q->subpacket[s].total_subbands > 53) {
1208
            av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1209
            return -1;
1210
        }
1211

    
1212
        if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1213
            av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1214
            return -1;
1215
        }
1216

    
1217
        if (q->subpacket[s].subbands > 50) {
1218
            av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1219
            return -1;
1220
        }
1221
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1222
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1223
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1224
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1225

    
1226
        q->num_subpackets++;
1227
        s++;
1228
        if (s > MAX_SUBPACKETS) {
1229
            av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1230
            return -1;
1231
        }
1232
    }
1233
    /* Generate tables */
1234
    init_pow2table();
1235
    init_gain_table(q);
1236
    init_cplscales_table(q);
1237

    
1238
    if (init_cook_vlc_tables(q) != 0)
1239
        return -1;
1240

    
1241

    
1242
    if(avctx->block_align >= UINT_MAX/2)
1243
        return -1;
1244

    
1245
    /* Pad the databuffer with:
1246
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1247
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1248
        q->decoded_bytes_buffer =
1249
          av_mallocz(avctx->block_align
1250
                     + DECODE_BYTES_PAD1(avctx->block_align)
1251
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1252
    if (q->decoded_bytes_buffer == NULL)
1253
        return -1;
1254

    
1255
    /* Initialize transform. */
1256
    if ( init_cook_mlt(q) != 0 )
1257
        return -1;
1258

    
1259
    /* Initialize COOK signal arithmetic handling */
1260
    if (1) {
1261
        q->scalar_dequant  = scalar_dequant_float;
1262
        q->decouple        = decouple_float;
1263
        q->imlt_window     = imlt_window_float;
1264
        q->interpolate     = interpolate_float;
1265
        q->saturate_output = saturate_output_float;
1266
    }
1267

    
1268
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1269
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1270
    } else {
1271
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1272
        return -1;
1273
    }
1274

    
1275
    avctx->sample_fmt = SAMPLE_FMT_S16;
1276
    if (channel_mask)
1277
        avctx->channel_layout = channel_mask;
1278
    else
1279
        avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1280

    
1281
#ifdef COOKDEBUG
1282
    dump_cook_context(q);
1283
#endif
1284
    return 0;
1285
}
1286

    
1287

    
1288
AVCodec cook_decoder =
1289
{
1290
    .name = "cook",
1291
    .type = AVMEDIA_TYPE_AUDIO,
1292
    .id = CODEC_ID_COOK,
1293
    .priv_data_size = sizeof(COOKContext),
1294
    .init = cook_decode_init,
1295
    .close = cook_decode_close,
1296
    .decode = cook_decode_frame,
1297
    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1298
};