Statistics
| Branch: | Revision:

ffmpeg / libavcodec / ra144.c @ 72415b2a

History | View | Annotate | Download (9.86 KB)

1
/*
2
 * Real Audio 1.0 (14.4K)
3
 *
4
 * Copyright (c) 2008 Vitor Sessak
5
 * Copyright (c) 2003 Nick Kurshev
6
 *     Based on public domain decoder at http://www.honeypot.net/audio
7
 *
8
 * This file is part of FFmpeg.
9
 *
10
 * FFmpeg is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU Lesser General Public
12
 * License as published by the Free Software Foundation; either
13
 * version 2.1 of the License, or (at your option) any later version.
14
 *
15
 * FFmpeg is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
 * Lesser General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU Lesser General Public
21
 * License along with FFmpeg; if not, write to the Free Software
22
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23
 */
24

    
25
#include "libavutil/intmath.h"
26
#include "avcodec.h"
27
#include "get_bits.h"
28
#include "ra144.h"
29
#include "celp_filters.h"
30

    
31
#define NBLOCKS         4       ///< number of subblocks within a block
32
#define BLOCKSIZE       40      ///< subblock size in 16-bit words
33
#define BUFFERSIZE      146     ///< the size of the adaptive codebook
34

    
35

    
36
typedef struct {
37
    AVCodecContext *avctx;
38

    
39
    unsigned int     old_energy;        ///< previous frame energy
40

    
41
    unsigned int     lpc_tables[2][10];
42

    
43
    /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
44
     *  and lpc_coef[1] of the previous one. */
45
    unsigned int    *lpc_coef[2];
46

    
47
    unsigned int     lpc_refl_rms[2];
48

    
49
    /** The current subblock padded by the last 10 values of the previous one. */
50
    int16_t curr_sblock[50];
51

    
52
    /** Adaptive codebook, its size is two units bigger to avoid a
53
     *  buffer overflow. */
54
    uint16_t adapt_cb[146+2];
55
} RA144Context;
56

    
57
static av_cold int ra144_decode_init(AVCodecContext * avctx)
58
{
59
    RA144Context *ractx = avctx->priv_data;
60

    
61
    ractx->avctx = avctx;
62

    
63
    ractx->lpc_coef[0] = ractx->lpc_tables[0];
64
    ractx->lpc_coef[1] = ractx->lpc_tables[1];
65

    
66
    avctx->sample_fmt = SAMPLE_FMT_S16;
67
    return 0;
68
}
69

    
70
/**
71
 * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
72
 * odd way to make the output identical to the binary decoder.
73
 */
74
static int t_sqrt(unsigned int x)
75
{
76
    int s = 2;
77
    while (x > 0xfff) {
78
        s++;
79
        x >>= 2;
80
    }
81

    
82
    return ff_sqrt(x << 20) << s;
83
}
84

    
85
/**
86
 * Evaluate the LPC filter coefficients from the reflection coefficients.
87
 * Does the inverse of the eval_refl() function.
88
 */
89
static void eval_coefs(int *coefs, const int *refl)
90
{
91
    int buffer[10];
92
    int *b1 = buffer;
93
    int *b2 = coefs;
94
    int i, j;
95

    
96
    for (i=0; i < 10; i++) {
97
        b1[i] = refl[i] << 4;
98

    
99
        for (j=0; j < i; j++)
100
            b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j];
101

    
102
        FFSWAP(int *, b1, b2);
103
    }
104

    
105
    for (i=0; i < 10; i++)
106
        coefs[i] >>= 4;
107
}
108

    
109
/**
110
 * Copy the last offset values of *source to *target. If those values are not
111
 * enough to fill the target buffer, fill it with another copy of those values.
112
 */
113
static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
114
{
115
    source += BUFFERSIZE - offset;
116

    
117
    memcpy(target, source, FFMIN(BLOCKSIZE, offset)*sizeof(*target));
118
    if (offset < BLOCKSIZE)
119
        memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
120
}
121

    
122
/** inverse root mean square */
123
static int irms(const int16_t *data)
124
{
125
    unsigned int i, sum = 0;
126

    
127
    for (i=0; i < BLOCKSIZE; i++)
128
        sum += data[i] * data[i];
129

    
130
    if (sum == 0)
131
        return 0; /* OOPS - division by zero */
132

    
133
    return 0x20000000 / (t_sqrt(sum) >> 8);
134
}
135

    
136
static void add_wav(int16_t *dest, int n, int skip_first, int *m,
137
                    const int16_t *s1, const int8_t *s2, const int8_t *s3)
138
{
139
    int i;
140
    int v[3];
141

    
142
    v[0] = 0;
143
    for (i=!skip_first; i<3; i++)
144
        v[i] = (gain_val_tab[n][i] * m[i]) >> gain_exp_tab[n];
145

    
146
    if (v[0]) {
147
        for (i=0; i < BLOCKSIZE; i++)
148
            dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
149
    } else {
150
        for (i=0; i < BLOCKSIZE; i++)
151
            dest[i] = (             s2[i]*v[1] + s3[i]*v[2]) >> 12;
152
    }
153
}
154

    
155
static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
156
{
157
    return (rms * energy) >> 10;
158
}
159

    
160
static unsigned int rms(const int *data)
161
{
162
    int i;
163
    unsigned int res = 0x10000;
164
    int b = 10;
165

    
166
    for (i=0; i < 10; i++) {
167
        res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12;
168

    
169
        if (res == 0)
170
            return 0;
171

    
172
        while (res <= 0x3fff) {
173
            b++;
174
            res <<= 2;
175
        }
176
    }
177

    
178
    return t_sqrt(res) >> b;
179
}
180

    
181
static void do_output_subblock(RA144Context *ractx, const uint16_t  *lpc_coefs,
182
                               int gval, GetBitContext *gb)
183
{
184
    uint16_t buffer_a[40];
185
    uint16_t *block;
186
    int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
187
    int gain    = get_bits(gb, 8);
188
    int cb1_idx = get_bits(gb, 7);
189
    int cb2_idx = get_bits(gb, 7);
190
    int m[3];
191

    
192
    if (cba_idx) {
193
        cba_idx += BLOCKSIZE/2 - 1;
194
        copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
195
        m[0] = (irms(buffer_a) * gval) >> 12;
196
    } else {
197
        m[0] = 0;
198
    }
199

    
200
    m[1] = (cb1_base[cb1_idx] * gval) >> 8;
201
    m[2] = (cb2_base[cb2_idx] * gval) >> 8;
202

    
203
    memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
204
            (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
205

    
206
    block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
207

    
208
    add_wav(block, gain, cba_idx, m, cba_idx? buffer_a: NULL,
209
            cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
210

    
211
    memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
212
           10*sizeof(*ractx->curr_sblock));
213

    
214
    if (ff_celp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs,
215
                                    block, BLOCKSIZE, 10, 1, 0xfff))
216
        memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
217
}
218

    
219
static void int_to_int16(int16_t *out, const int *inp)
220
{
221
    int i;
222

    
223
    for (i=0; i < 10; i++)
224
        *out++ = *inp++;
225
}
226

    
227
/**
228
 * Evaluate the reflection coefficients from the filter coefficients.
229
 * Does the inverse of the eval_coefs() function.
230
 *
231
 * @return 1 if one of the reflection coefficients is greater than
232
 *         4095, 0 if not.
233
 */
234
static int eval_refl(int *refl, const int16_t *coefs, AVCodecContext *avctx)
235
{
236
    int b, i, j;
237
    int buffer1[10];
238
    int buffer2[10];
239
    int *bp1 = buffer1;
240
    int *bp2 = buffer2;
241

    
242
    for (i=0; i < 10; i++)
243
        buffer2[i] = coefs[i];
244

    
245
    refl[9] = bp2[9];
246

    
247
    if ((unsigned) bp2[9] + 0x1000 > 0x1fff) {
248
        av_log(avctx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
249
        return 1;
250
    }
251

    
252
    for (i=8; i >= 0; i--) {
253
        b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12);
254

    
255
        if (!b)
256
            b = -2;
257

    
258
        for (j=0; j <= i; j++)
259
            bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12;
260

    
261
        if ((unsigned) bp1[i] + 0x1000 > 0x1fff)
262
            return 1;
263

    
264
        refl[i] = bp1[i];
265

    
266
        FFSWAP(int *, bp1, bp2);
267
    }
268
    return 0;
269
}
270

    
271
static int interp(RA144Context *ractx, int16_t *out, int a,
272
                  int copyold, int energy)
273
{
274
    int work[10];
275
    int b = NBLOCKS - a;
276
    int i;
277

    
278
    // Interpolate block coefficients from the this frame's forth block and
279
    // last frame's forth block.
280
    for (i=0; i<10; i++)
281
        out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2;
282

    
283
    if (eval_refl(work, out, ractx->avctx)) {
284
        // The interpolated coefficients are unstable, copy either new or old
285
        // coefficients.
286
        int_to_int16(out, ractx->lpc_coef[copyold]);
287
        return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
288
    } else {
289
        return rescale_rms(rms(work), energy);
290
    }
291
}
292

    
293
/** Uncompress one block (20 bytes -> 160*2 bytes). */
294
static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
295
                              int *data_size, AVPacket *avpkt)
296
{
297
    const uint8_t *buf = avpkt->data;
298
    int buf_size = avpkt->size;
299
    static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
300
    unsigned int refl_rms[4];    // RMS of the reflection coefficients
301
    uint16_t block_coefs[4][10]; // LPC coefficients of each sub-block
302
    unsigned int lpc_refl[10];   // LPC reflection coefficients of the frame
303
    int i, j;
304
    int16_t *data = vdata;
305
    unsigned int energy;
306

    
307
    RA144Context *ractx = avctx->priv_data;
308
    GetBitContext gb;
309

    
310
    if (*data_size < 2*160)
311
        return -1;
312

    
313
    if(buf_size < 20) {
314
        av_log(avctx, AV_LOG_ERROR,
315
               "Frame too small (%d bytes). Truncated file?\n", buf_size);
316
        *data_size = 0;
317
        return buf_size;
318
    }
319
    init_get_bits(&gb, buf, 20 * 8);
320

    
321
    for (i=0; i<10; i++)
322
        lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
323

    
324
    eval_coefs(ractx->lpc_coef[0], lpc_refl);
325
    ractx->lpc_refl_rms[0] = rms(lpc_refl);
326

    
327
    energy = energy_tab[get_bits(&gb, 5)];
328

    
329
    refl_rms[0] = interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
330
    refl_rms[1] = interp(ractx, block_coefs[1], 2, energy <= ractx->old_energy,
331
                    t_sqrt(energy*ractx->old_energy) >> 12);
332
    refl_rms[2] = interp(ractx, block_coefs[2], 3, 0, energy);
333
    refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
334

    
335
    int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
336

    
337
    for (i=0; i < 4; i++) {
338
        do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb);
339

    
340
        for (j=0; j < BLOCKSIZE; j++)
341
            *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2);
342
    }
343

    
344
    ractx->old_energy = energy;
345
    ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
346

    
347
    FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
348

    
349
    *data_size = 2*160;
350
    return 20;
351
}
352

    
353
AVCodec ra_144_decoder =
354
{
355
    "real_144",
356
    AVMEDIA_TYPE_AUDIO,
357
    CODEC_ID_RA_144,
358
    sizeof(RA144Context),
359
    ra144_decode_init,
360
    NULL,
361
    NULL,
362
    ra144_decode_frame,
363
    .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
364
};