Statistics
| Branch: | Revision:

ffmpeg / libavcodec / jfdctint.c @ 73c42241

History | View | Annotate | Download (15.8 KB)

1
/*
2
 * jfdctint.c
3
 *
4
 * This file is part of the Independent JPEG Group's software.
5
 *
6
 * The authors make NO WARRANTY or representation, either express or implied,
7
 * with respect to this software, its quality, accuracy, merchantability, or
8
 * fitness for a particular purpose.  This software is provided "AS IS", and
9
 * you, its user, assume the entire risk as to its quality and accuracy.
10
 *
11
 * This software is copyright (C) 1991-1996, Thomas G. Lane.
12
 * All Rights Reserved except as specified below.
13
 *
14
 * Permission is hereby granted to use, copy, modify, and distribute this
15
 * software (or portions thereof) for any purpose, without fee, subject to
16
 * these conditions:
17
 * (1) If any part of the source code for this software is distributed, then
18
 * this README file must be included, with this copyright and no-warranty
19
 * notice unaltered; and any additions, deletions, or changes to the original
20
 * files must be clearly indicated in accompanying documentation.
21
 * (2) If only executable code is distributed, then the accompanying
22
 * documentation must state that "this software is based in part on the work
23
 * of the Independent JPEG Group".
24
 * (3) Permission for use of this software is granted only if the user accepts
25
 * full responsibility for any undesirable consequences; the authors accept
26
 * NO LIABILITY for damages of any kind.
27
 *
28
 * These conditions apply to any software derived from or based on the IJG
29
 * code, not just to the unmodified library.  If you use our work, you ought
30
 * to acknowledge us.
31
 *
32
 * Permission is NOT granted for the use of any IJG author's name or company
33
 * name in advertising or publicity relating to this software or products
34
 * derived from it.  This software may be referred to only as "the Independent
35
 * JPEG Group's software".
36
 *
37
 * We specifically permit and encourage the use of this software as the basis
38
 * of commercial products, provided that all warranty or liability claims are
39
 * assumed by the product vendor.
40
 *
41
 * This file contains a slow-but-accurate integer implementation of the
42
 * forward DCT (Discrete Cosine Transform).
43
 *
44
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
45
 * on each column.  Direct algorithms are also available, but they are
46
 * much more complex and seem not to be any faster when reduced to code.
47
 *
48
 * This implementation is based on an algorithm described in
49
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
50
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
51
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
52
 * The primary algorithm described there uses 11 multiplies and 29 adds.
53
 * We use their alternate method with 12 multiplies and 32 adds.
54
 * The advantage of this method is that no data path contains more than one
55
 * multiplication; this allows a very simple and accurate implementation in
56
 * scaled fixed-point arithmetic, with a minimal number of shifts.
57
 */
58

    
59
/**
60
 * @file jfdctint.c
61
 * Independent JPEG Group's slow & accurate dct.
62
 */
63

    
64
#include <stdlib.h>
65
#include <stdio.h>
66
#include "common.h"
67
#include "dsputil.h"
68

    
69
#define SHIFT_TEMPS
70
#define DCTSIZE 8
71
#define BITS_IN_JSAMPLE 8
72
#define GLOBAL(x) x
73
#define RIGHT_SHIFT(x, n) ((x) >> (n))
74
#define MULTIPLY16C16(var,const) ((var)*(const))
75

    
76
#if 1 //def USE_ACCURATE_ROUNDING
77
#define DESCALE(x,n)  RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
78
#else
79
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
80
#endif
81

    
82

    
83
/*
84
 * This module is specialized to the case DCTSIZE = 8.
85
 */
86

    
87
#if DCTSIZE != 8
88
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
89
#endif
90

    
91

    
92
/*
93
 * The poop on this scaling stuff is as follows:
94
 *
95
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
96
 * larger than the true DCT outputs.  The final outputs are therefore
97
 * a factor of N larger than desired; since N=8 this can be cured by
98
 * a simple right shift at the end of the algorithm.  The advantage of
99
 * this arrangement is that we save two multiplications per 1-D DCT,
100
 * because the y0 and y4 outputs need not be divided by sqrt(N).
101
 * In the IJG code, this factor of 8 is removed by the quantization step
102
 * (in jcdctmgr.c), NOT in this module.
103
 *
104
 * We have to do addition and subtraction of the integer inputs, which
105
 * is no problem, and multiplication by fractional constants, which is
106
 * a problem to do in integer arithmetic.  We multiply all the constants
107
 * by CONST_SCALE and convert them to integer constants (thus retaining
108
 * CONST_BITS bits of precision in the constants).  After doing a
109
 * multiplication we have to divide the product by CONST_SCALE, with proper
110
 * rounding, to produce the correct output.  This division can be done
111
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
112
 * as long as possible so that partial sums can be added together with
113
 * full fractional precision.
114
 *
115
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
116
 * they are represented to better-than-integral precision.  These outputs
117
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
118
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
119
 * array is int32_t anyway.)
120
 *
121
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
122
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
123
 * shows that the values given below are the most effective.
124
 */
125

    
126
#if BITS_IN_JSAMPLE == 8
127
#define CONST_BITS  13
128
#define PASS1_BITS  4   /* set this to 2 if 16x16 multiplies are faster */
129
#else
130
#define CONST_BITS  13
131
#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
132
#endif
133

    
134
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
135
 * causing a lot of useless floating-point operations at run time.
136
 * To get around this we use the following pre-calculated constants.
137
 * If you change CONST_BITS you may want to add appropriate values.
138
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
139
 */
140

    
141
#if CONST_BITS == 13
142
#define FIX_0_298631336  ((int32_t)  2446)      /* FIX(0.298631336) */
143
#define FIX_0_390180644  ((int32_t)  3196)      /* FIX(0.390180644) */
144
#define FIX_0_541196100  ((int32_t)  4433)      /* FIX(0.541196100) */
145
#define FIX_0_765366865  ((int32_t)  6270)      /* FIX(0.765366865) */
146
#define FIX_0_899976223  ((int32_t)  7373)      /* FIX(0.899976223) */
147
#define FIX_1_175875602  ((int32_t)  9633)      /* FIX(1.175875602) */
148
#define FIX_1_501321110  ((int32_t)  12299)     /* FIX(1.501321110) */
149
#define FIX_1_847759065  ((int32_t)  15137)     /* FIX(1.847759065) */
150
#define FIX_1_961570560  ((int32_t)  16069)     /* FIX(1.961570560) */
151
#define FIX_2_053119869  ((int32_t)  16819)     /* FIX(2.053119869) */
152
#define FIX_2_562915447  ((int32_t)  20995)     /* FIX(2.562915447) */
153
#define FIX_3_072711026  ((int32_t)  25172)     /* FIX(3.072711026) */
154
#else
155
#define FIX_0_298631336  FIX(0.298631336)
156
#define FIX_0_390180644  FIX(0.390180644)
157
#define FIX_0_541196100  FIX(0.541196100)
158
#define FIX_0_765366865  FIX(0.765366865)
159
#define FIX_0_899976223  FIX(0.899976223)
160
#define FIX_1_175875602  FIX(1.175875602)
161
#define FIX_1_501321110  FIX(1.501321110)
162
#define FIX_1_847759065  FIX(1.847759065)
163
#define FIX_1_961570560  FIX(1.961570560)
164
#define FIX_2_053119869  FIX(2.053119869)
165
#define FIX_2_562915447  FIX(2.562915447)
166
#define FIX_3_072711026  FIX(3.072711026)
167
#endif
168

    
169

    
170
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
171
 * For 8-bit samples with the recommended scaling, all the variable
172
 * and constant values involved are no more than 16 bits wide, so a
173
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
174
 * For 12-bit samples, a full 32-bit multiplication will be needed.
175
 */
176

    
177
#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
178
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
179
#else
180
#define MULTIPLY(var,const)  ((var) * (const))
181
#endif
182

    
183

    
184
static always_inline void row_fdct(DCTELEM * data){
185
  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
186
  int_fast32_t tmp10, tmp11, tmp12, tmp13;
187
  int_fast32_t z1, z2, z3, z4, z5;
188
  DCTELEM *dataptr;
189
  int ctr;
190
  SHIFT_TEMPS
191

    
192
  /* Pass 1: process rows. */
193
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
194
  /* furthermore, we scale the results by 2**PASS1_BITS. */
195

    
196
  dataptr = data;
197
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
198
    tmp0 = dataptr[0] + dataptr[7];
199
    tmp7 = dataptr[0] - dataptr[7];
200
    tmp1 = dataptr[1] + dataptr[6];
201
    tmp6 = dataptr[1] - dataptr[6];
202
    tmp2 = dataptr[2] + dataptr[5];
203
    tmp5 = dataptr[2] - dataptr[5];
204
    tmp3 = dataptr[3] + dataptr[4];
205
    tmp4 = dataptr[3] - dataptr[4];
206

    
207
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
208
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
209
     */
210

    
211
    tmp10 = tmp0 + tmp3;
212
    tmp13 = tmp0 - tmp3;
213
    tmp11 = tmp1 + tmp2;
214
    tmp12 = tmp1 - tmp2;
215

    
216
    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
217
    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
218

    
219
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
220
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
221
                                   CONST_BITS-PASS1_BITS);
222
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
223
                                   CONST_BITS-PASS1_BITS);
224

    
225
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
226
     * cK represents cos(K*pi/16).
227
     * i0..i3 in the paper are tmp4..tmp7 here.
228
     */
229

    
230
    z1 = tmp4 + tmp7;
231
    z2 = tmp5 + tmp6;
232
    z3 = tmp4 + tmp6;
233
    z4 = tmp5 + tmp7;
234
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
235

    
236
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
237
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
238
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
239
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
240
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
241
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
242
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
243
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
244

    
245
    z3 += z5;
246
    z4 += z5;
247

    
248
    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
249
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
250
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
251
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
252

    
253
    dataptr += DCTSIZE;         /* advance pointer to next row */
254
  }
255
}
256

    
257
/*
258
 * Perform the forward DCT on one block of samples.
259
 */
260

    
261
GLOBAL(void)
262
ff_jpeg_fdct_islow (DCTELEM * data)
263
{
264
  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
265
  int_fast32_t tmp10, tmp11, tmp12, tmp13;
266
  int_fast32_t z1, z2, z3, z4, z5;
267
  DCTELEM *dataptr;
268
  int ctr;
269
  SHIFT_TEMPS
270

    
271
  row_fdct(data);
272

    
273
  /* Pass 2: process columns.
274
   * We remove the PASS1_BITS scaling, but leave the results scaled up
275
   * by an overall factor of 8.
276
   */
277

    
278
  dataptr = data;
279
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
280
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
281
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
282
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
283
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
284
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
285
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
286
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
287
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
288

    
289
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
290
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
291
     */
292

    
293
    tmp10 = tmp0 + tmp3;
294
    tmp13 = tmp0 - tmp3;
295
    tmp11 = tmp1 + tmp2;
296
    tmp12 = tmp1 - tmp2;
297

    
298
    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
299
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
300

    
301
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
302
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
303
                                           CONST_BITS+PASS1_BITS);
304
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
305
                                           CONST_BITS+PASS1_BITS);
306

    
307
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
308
     * cK represents cos(K*pi/16).
309
     * i0..i3 in the paper are tmp4..tmp7 here.
310
     */
311

    
312
    z1 = tmp4 + tmp7;
313
    z2 = tmp5 + tmp6;
314
    z3 = tmp4 + tmp6;
315
    z4 = tmp5 + tmp7;
316
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
317

    
318
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
319
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
320
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
321
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
322
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
323
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
324
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
325
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
326

    
327
    z3 += z5;
328
    z4 += z5;
329

    
330
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
331
                                           CONST_BITS+PASS1_BITS);
332
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
333
                                           CONST_BITS+PASS1_BITS);
334
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
335
                                           CONST_BITS+PASS1_BITS);
336
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
337
                                           CONST_BITS+PASS1_BITS);
338

    
339
    dataptr++;                  /* advance pointer to next column */
340
  }
341
}
342

    
343
/*
344
 * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
345
 * on the rows and then, instead of doing even and odd, part on the colums
346
 * you do even part two times.
347
 */
348
GLOBAL(void)
349
ff_fdct248_islow (DCTELEM * data)
350
{
351
  int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
352
  int_fast32_t tmp10, tmp11, tmp12, tmp13;
353
  int_fast32_t z1;
354
  DCTELEM *dataptr;
355
  int ctr;
356
  SHIFT_TEMPS
357

    
358
  row_fdct(data);
359

    
360
  /* Pass 2: process columns.
361
   * We remove the PASS1_BITS scaling, but leave the results scaled up
362
   * by an overall factor of 8.
363
   */
364

    
365
  dataptr = data;
366
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
367
     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
368
     tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
369
     tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
370
     tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
371
     tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
372
     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
373
     tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
374
     tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
375

    
376
     tmp10 = tmp0 + tmp3;
377
     tmp11 = tmp1 + tmp2;
378
     tmp12 = tmp1 - tmp2;
379
     tmp13 = tmp0 - tmp3;
380

    
381
     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
382
     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
383

    
384
     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
385
     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
386
                                            CONST_BITS+PASS1_BITS);
387
     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
388
                                            CONST_BITS+PASS1_BITS);
389

    
390
     tmp10 = tmp4 + tmp7;
391
     tmp11 = tmp5 + tmp6;
392
     tmp12 = tmp5 - tmp6;
393
     tmp13 = tmp4 - tmp7;
394

    
395
     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
396
     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
397

    
398
     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
399
     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
400
                                            CONST_BITS+PASS1_BITS);
401
     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
402
                                            CONST_BITS+PASS1_BITS);
403

    
404
     dataptr++;                 /* advance pointer to next column */
405
  }
406
}