Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vc1.c @ 755bfeab

History | View | Annotate | Download (144 KB)

1
/*
2
 * VC-1 and WMV3 decoder
3
 * Copyright (c) 2006-2007 Konstantin Shishkov
4
 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 *
22
 */
23

    
24
/**
25
 * @file vc1.c
26
 * VC-1 and WMV3 decoder
27
 *
28
 */
29
#include "dsputil.h"
30
#include "avcodec.h"
31
#include "mpegvideo.h"
32
#include "vc1.h"
33
#include "vc1data.h"
34
#include "vc1acdata.h"
35
#include "msmpeg4data.h"
36

    
37
#undef NDEBUG
38
#include <assert.h>
39

    
40
#define MB_INTRA_VLC_BITS 9
41
#define DC_VLC_BITS 9
42
#define AC_VLC_BITS 9
43
static const uint16_t table_mb_intra[64][2];
44

    
45

    
46
/**
47
 * Get unary code of limited length
48
 * @fixme FIXME Slow and ugly
49
 * @param gb GetBitContext
50
 * @param[in] stop The bitstop value (unary code of 1's or 0's)
51
 * @param[in] len Maximum length
52
 * @return Unary length/index
53
 */
54
static int get_prefix(GetBitContext *gb, int stop, int len)
55
{
56
#if 1
57
    int i;
58

    
59
    for(i = 0; i < len && get_bits1(gb) != stop; i++);
60
    return i;
61
/*  int i = 0, tmp = !stop;
62

63
  while (i != len && tmp != stop)
64
  {
65
    tmp = get_bits(gb, 1);
66
    i++;
67
  }
68
  if (i == len && tmp != stop) return len+1;
69
  return i;*/
70
#else
71
  unsigned int buf;
72
  int log;
73

    
74
  OPEN_READER(re, gb);
75
  UPDATE_CACHE(re, gb);
76
  buf=GET_CACHE(re, gb); //Still not sure
77
  if (stop) buf = ~buf;
78

    
79
  log= av_log2(-buf); //FIXME: -?
80
  if (log < limit){
81
    LAST_SKIP_BITS(re, gb, log+1);
82
    CLOSE_READER(re, gb);
83
    return log;
84
  }
85

    
86
  LAST_SKIP_BITS(re, gb, limit);
87
  CLOSE_READER(re, gb);
88
  return limit;
89
#endif
90
}
91

    
92
static inline int decode210(GetBitContext *gb){
93
    int n;
94
    n = get_bits1(gb);
95
    if (n == 1)
96
        return 0;
97
    else
98
        return 2 - get_bits1(gb);
99
}
100

    
101
/**
102
 * Init VC-1 specific tables and VC1Context members
103
 * @param v The VC1Context to initialize
104
 * @return Status
105
 */
106
static int vc1_init_common(VC1Context *v)
107
{
108
    static int done = 0;
109
    int i = 0;
110

    
111
    v->hrd_rate = v->hrd_buffer = NULL;
112

    
113
    /* VLC tables */
114
    if(!done)
115
    {
116
        done = 1;
117
        init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
118
                 ff_vc1_bfraction_bits, 1, 1,
119
                 ff_vc1_bfraction_codes, 1, 1, 1);
120
        init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
121
                 ff_vc1_norm2_bits, 1, 1,
122
                 ff_vc1_norm2_codes, 1, 1, 1);
123
        init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
124
                 ff_vc1_norm6_bits, 1, 1,
125
                 ff_vc1_norm6_codes, 2, 2, 1);
126
        init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
127
                 ff_vc1_imode_bits, 1, 1,
128
                 ff_vc1_imode_codes, 1, 1, 1);
129
        for (i=0; i<3; i++)
130
        {
131
            init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
132
                     ff_vc1_ttmb_bits[i], 1, 1,
133
                     ff_vc1_ttmb_codes[i], 2, 2, 1);
134
            init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
135
                     ff_vc1_ttblk_bits[i], 1, 1,
136
                     ff_vc1_ttblk_codes[i], 1, 1, 1);
137
            init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
138
                     ff_vc1_subblkpat_bits[i], 1, 1,
139
                     ff_vc1_subblkpat_codes[i], 1, 1, 1);
140
        }
141
        for(i=0; i<4; i++)
142
        {
143
            init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
144
                     ff_vc1_4mv_block_pattern_bits[i], 1, 1,
145
                     ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
146
            init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
147
                     ff_vc1_cbpcy_p_bits[i], 1, 1,
148
                     ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
149
            init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
150
                     ff_vc1_mv_diff_bits[i], 1, 1,
151
                     ff_vc1_mv_diff_codes[i], 2, 2, 1);
152
        }
153
        for(i=0; i<8; i++)
154
            init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
155
                     &vc1_ac_tables[i][0][1], 8, 4,
156
                     &vc1_ac_tables[i][0][0], 8, 4, 1);
157
        init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
158
                 &ff_msmp4_mb_i_table[0][1], 4, 2,
159
                 &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
160
    }
161

    
162
    /* Other defaults */
163
    v->pq = -1;
164
    v->mvrange = 0; /* 7.1.1.18, p80 */
165

    
166
    return 0;
167
}
168

    
169
/***********************************************************************/
170
/**
171
 * @defgroup bitplane VC9 Bitplane decoding
172
 * @see 8.7, p56
173
 * @{
174
 */
175

    
176
/** @addtogroup bitplane
177
 * Imode types
178
 * @{
179
 */
180
enum Imode {
181
    IMODE_RAW,
182
    IMODE_NORM2,
183
    IMODE_DIFF2,
184
    IMODE_NORM6,
185
    IMODE_DIFF6,
186
    IMODE_ROWSKIP,
187
    IMODE_COLSKIP
188
};
189
/** @} */ //imode defines
190

    
191
/** Decode rows by checking if they are skipped
192
 * @param plane Buffer to store decoded bits
193
 * @param[in] width Width of this buffer
194
 * @param[in] height Height of this buffer
195
 * @param[in] stride of this buffer
196
 */
197
static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
198
    int x, y;
199

    
200
    for (y=0; y<height; y++){
201
        if (!get_bits(gb, 1)) //rowskip
202
            memset(plane, 0, width);
203
        else
204
            for (x=0; x<width; x++)
205
                plane[x] = get_bits(gb, 1);
206
        plane += stride;
207
    }
208
}
209

    
210
/** Decode columns by checking if they are skipped
211
 * @param plane Buffer to store decoded bits
212
 * @param[in] width Width of this buffer
213
 * @param[in] height Height of this buffer
214
 * @param[in] stride of this buffer
215
 * @fixme FIXME: Optimize
216
 */
217
static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
218
    int x, y;
219

    
220
    for (x=0; x<width; x++){
221
        if (!get_bits(gb, 1)) //colskip
222
            for (y=0; y<height; y++)
223
                plane[y*stride] = 0;
224
        else
225
            for (y=0; y<height; y++)
226
                plane[y*stride] = get_bits(gb, 1);
227
        plane ++;
228
    }
229
}
230

    
231
/** Decode a bitplane's bits
232
 * @param bp Bitplane where to store the decode bits
233
 * @param v VC-1 context for bit reading and logging
234
 * @return Status
235
 * @fixme FIXME: Optimize
236
 */
237
static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
238
{
239
    GetBitContext *gb = &v->s.gb;
240

    
241
    int imode, x, y, code, offset;
242
    uint8_t invert, *planep = data;
243
    int width, height, stride;
244

    
245
    width = v->s.mb_width;
246
    height = v->s.mb_height;
247
    stride = v->s.mb_stride;
248
    invert = get_bits(gb, 1);
249
    imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
250

    
251
    *raw_flag = 0;
252
    switch (imode)
253
    {
254
    case IMODE_RAW:
255
        //Data is actually read in the MB layer (same for all tests == "raw")
256
        *raw_flag = 1; //invert ignored
257
        return invert;
258
    case IMODE_DIFF2:
259
    case IMODE_NORM2:
260
        if ((height * width) & 1)
261
        {
262
            *planep++ = get_bits(gb, 1);
263
            offset = 1;
264
        }
265
        else offset = 0;
266
        // decode bitplane as one long line
267
        for (y = offset; y < height * width; y += 2) {
268
            code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
269
            *planep++ = code & 1;
270
            offset++;
271
            if(offset == width) {
272
                offset = 0;
273
                planep += stride - width;
274
            }
275
            *planep++ = code >> 1;
276
            offset++;
277
            if(offset == width) {
278
                offset = 0;
279
                planep += stride - width;
280
            }
281
        }
282
        break;
283
    case IMODE_DIFF6:
284
    case IMODE_NORM6:
285
        if(!(height % 3) && (width % 3)) { // use 2x3 decoding
286
            for(y = 0; y < height; y+= 3) {
287
                for(x = width & 1; x < width; x += 2) {
288
                    code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
289
                    if(code < 0){
290
                        av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
291
                        return -1;
292
                    }
293
                    planep[x + 0] = (code >> 0) & 1;
294
                    planep[x + 1] = (code >> 1) & 1;
295
                    planep[x + 0 + stride] = (code >> 2) & 1;
296
                    planep[x + 1 + stride] = (code >> 3) & 1;
297
                    planep[x + 0 + stride * 2] = (code >> 4) & 1;
298
                    planep[x + 1 + stride * 2] = (code >> 5) & 1;
299
                }
300
                planep += stride * 3;
301
            }
302
            if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
303
        } else { // 3x2
304
            planep += (height & 1) * stride;
305
            for(y = height & 1; y < height; y += 2) {
306
                for(x = width % 3; x < width; x += 3) {
307
                    code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
308
                    if(code < 0){
309
                        av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
310
                        return -1;
311
                    }
312
                    planep[x + 0] = (code >> 0) & 1;
313
                    planep[x + 1] = (code >> 1) & 1;
314
                    planep[x + 2] = (code >> 2) & 1;
315
                    planep[x + 0 + stride] = (code >> 3) & 1;
316
                    planep[x + 1 + stride] = (code >> 4) & 1;
317
                    planep[x + 2 + stride] = (code >> 5) & 1;
318
                }
319
                planep += stride * 2;
320
            }
321
            x = width % 3;
322
            if(x) decode_colskip(data  ,             x, height    , stride, &v->s.gb);
323
            if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
324
        }
325
        break;
326
    case IMODE_ROWSKIP:
327
        decode_rowskip(data, width, height, stride, &v->s.gb);
328
        break;
329
    case IMODE_COLSKIP:
330
        decode_colskip(data, width, height, stride, &v->s.gb);
331
        break;
332
    default: break;
333
    }
334

    
335
    /* Applying diff operator */
336
    if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
337
    {
338
        planep = data;
339
        planep[0] ^= invert;
340
        for (x=1; x<width; x++)
341
            planep[x] ^= planep[x-1];
342
        for (y=1; y<height; y++)
343
        {
344
            planep += stride;
345
            planep[0] ^= planep[-stride];
346
            for (x=1; x<width; x++)
347
            {
348
                if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
349
                else                                 planep[x] ^= planep[x-1];
350
            }
351
        }
352
    }
353
    else if (invert)
354
    {
355
        planep = data;
356
        for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
357
    }
358
    return (imode<<1) + invert;
359
}
360

    
361
/** @} */ //Bitplane group
362

    
363
/***********************************************************************/
364
/** VOP Dquant decoding
365
 * @param v VC-1 Context
366
 */
367
static int vop_dquant_decoding(VC1Context *v)
368
{
369
    GetBitContext *gb = &v->s.gb;
370
    int pqdiff;
371

    
372
    //variable size
373
    if (v->dquant == 2)
374
    {
375
        pqdiff = get_bits(gb, 3);
376
        if (pqdiff == 7) v->altpq = get_bits(gb, 5);
377
        else v->altpq = v->pq + pqdiff + 1;
378
    }
379
    else
380
    {
381
        v->dquantfrm = get_bits(gb, 1);
382
        if ( v->dquantfrm )
383
        {
384
            v->dqprofile = get_bits(gb, 2);
385
            switch (v->dqprofile)
386
            {
387
            case DQPROFILE_SINGLE_EDGE:
388
            case DQPROFILE_DOUBLE_EDGES:
389
                v->dqsbedge = get_bits(gb, 2);
390
                break;
391
            case DQPROFILE_ALL_MBS:
392
                v->dqbilevel = get_bits(gb, 1);
393
            default: break; //Forbidden ?
394
            }
395
            if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
396
            {
397
                pqdiff = get_bits(gb, 3);
398
                if (pqdiff == 7) v->altpq = get_bits(gb, 5);
399
                else v->altpq = v->pq + pqdiff + 1;
400
            }
401
        }
402
    }
403
    return 0;
404
}
405

    
406
/** Put block onto picture
407
 */
408
static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
409
{
410
    uint8_t *Y;
411
    int ys, us, vs;
412
    DSPContext *dsp = &v->s.dsp;
413

    
414
    if(v->rangeredfrm) {
415
        int i, j, k;
416
        for(k = 0; k < 6; k++)
417
            for(j = 0; j < 8; j++)
418
                for(i = 0; i < 8; i++)
419
                    block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
420

    
421
    }
422
    ys = v->s.current_picture.linesize[0];
423
    us = v->s.current_picture.linesize[1];
424
    vs = v->s.current_picture.linesize[2];
425
    Y = v->s.dest[0];
426

    
427
    dsp->put_pixels_clamped(block[0], Y, ys);
428
    dsp->put_pixels_clamped(block[1], Y + 8, ys);
429
    Y += ys * 8;
430
    dsp->put_pixels_clamped(block[2], Y, ys);
431
    dsp->put_pixels_clamped(block[3], Y + 8, ys);
432

    
433
    if(!(v->s.flags & CODEC_FLAG_GRAY)) {
434
        dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
435
        dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
436
    }
437
}
438

    
439
/** Do motion compensation over 1 macroblock
440
 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
441
 */
442
static void vc1_mc_1mv(VC1Context *v, int dir)
443
{
444
    MpegEncContext *s = &v->s;
445
    DSPContext *dsp = &v->s.dsp;
446
    uint8_t *srcY, *srcU, *srcV;
447
    int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
448

    
449
    if(!v->s.last_picture.data[0])return;
450

    
451
    mx = s->mv[dir][0][0];
452
    my = s->mv[dir][0][1];
453

    
454
    // store motion vectors for further use in B frames
455
    if(s->pict_type == P_TYPE) {
456
        s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
457
        s->current_picture.motion_val[1][s->block_index[0]][1] = my;
458
    }
459
    uvmx = (mx + ((mx & 3) == 3)) >> 1;
460
    uvmy = (my + ((my & 3) == 3)) >> 1;
461
    if(v->fastuvmc) {
462
        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
463
        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
464
    }
465
    if(!dir) {
466
        srcY = s->last_picture.data[0];
467
        srcU = s->last_picture.data[1];
468
        srcV = s->last_picture.data[2];
469
    } else {
470
        srcY = s->next_picture.data[0];
471
        srcU = s->next_picture.data[1];
472
        srcV = s->next_picture.data[2];
473
    }
474

    
475
    src_x = s->mb_x * 16 + (mx >> 2);
476
    src_y = s->mb_y * 16 + (my >> 2);
477
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
478
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
479

    
480
    if(v->profile != PROFILE_ADVANCED){
481
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
482
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
483
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
484
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
485
    }else{
486
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
487
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
488
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
489
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
490
    }
491

    
492
    srcY += src_y * s->linesize + src_x;
493
    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
494
    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
495

    
496
    /* for grayscale we should not try to read from unknown area */
497
    if(s->flags & CODEC_FLAG_GRAY) {
498
        srcU = s->edge_emu_buffer + 18 * s->linesize;
499
        srcV = s->edge_emu_buffer + 18 * s->linesize;
500
    }
501

    
502
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
503
       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
504
       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
505
        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
506

    
507
        srcY -= s->mspel * (1 + s->linesize);
508
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
509
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
510
        srcY = s->edge_emu_buffer;
511
        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
512
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
513
        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
514
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
515
        srcU = uvbuf;
516
        srcV = uvbuf + 16;
517
        /* if we deal with range reduction we need to scale source blocks */
518
        if(v->rangeredfrm) {
519
            int i, j;
520
            uint8_t *src, *src2;
521

    
522
            src = srcY;
523
            for(j = 0; j < 17 + s->mspel*2; j++) {
524
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
525
                src += s->linesize;
526
            }
527
            src = srcU; src2 = srcV;
528
            for(j = 0; j < 9; j++) {
529
                for(i = 0; i < 9; i++) {
530
                    src[i] = ((src[i] - 128) >> 1) + 128;
531
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
532
                }
533
                src += s->uvlinesize;
534
                src2 += s->uvlinesize;
535
            }
536
        }
537
        /* if we deal with intensity compensation we need to scale source blocks */
538
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
539
            int i, j;
540
            uint8_t *src, *src2;
541

    
542
            src = srcY;
543
            for(j = 0; j < 17 + s->mspel*2; j++) {
544
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
545
                src += s->linesize;
546
            }
547
            src = srcU; src2 = srcV;
548
            for(j = 0; j < 9; j++) {
549
                for(i = 0; i < 9; i++) {
550
                    src[i] = v->lutuv[src[i]];
551
                    src2[i] = v->lutuv[src2[i]];
552
                }
553
                src += s->uvlinesize;
554
                src2 += s->uvlinesize;
555
            }
556
        }
557
        srcY += s->mspel * (1 + s->linesize);
558
    }
559

    
560
    if(s->mspel) {
561
        dxy = ((my & 3) << 2) | (mx & 3);
562
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0]    , srcY    , s->linesize, v->rnd);
563
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
564
        srcY += s->linesize * 8;
565
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize    , srcY    , s->linesize, v->rnd);
566
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
567
    } else { // hpel mc - always used for luma
568
        dxy = (my & 2) | ((mx & 2) >> 1);
569

    
570
        if(!v->rnd)
571
            dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
572
        else
573
            dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
574
    }
575

    
576
    if(s->flags & CODEC_FLAG_GRAY) return;
577
    /* Chroma MC always uses qpel bilinear */
578
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
579
    uvmx = (uvmx&3)<<1;
580
    uvmy = (uvmy&3)<<1;
581
    if(!v->rnd){
582
        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
583
        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
584
    }else{
585
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
586
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
587
    }
588
}
589

    
590
/** Do motion compensation for 4-MV macroblock - luminance block
591
 */
592
static void vc1_mc_4mv_luma(VC1Context *v, int n)
593
{
594
    MpegEncContext *s = &v->s;
595
    DSPContext *dsp = &v->s.dsp;
596
    uint8_t *srcY;
597
    int dxy, mx, my, src_x, src_y;
598
    int off;
599

    
600
    if(!v->s.last_picture.data[0])return;
601
    mx = s->mv[0][n][0];
602
    my = s->mv[0][n][1];
603
    srcY = s->last_picture.data[0];
604

    
605
    off = s->linesize * 4 * (n&2) + (n&1) * 8;
606

    
607
    src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
608
    src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
609

    
610
    if(v->profile != PROFILE_ADVANCED){
611
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
612
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
613
    }else{
614
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
615
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
616
    }
617

    
618
    srcY += src_y * s->linesize + src_x;
619

    
620
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
621
       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
622
       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
623
        srcY -= s->mspel * (1 + s->linesize);
624
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
625
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
626
        srcY = s->edge_emu_buffer;
627
        /* if we deal with range reduction we need to scale source blocks */
628
        if(v->rangeredfrm) {
629
            int i, j;
630
            uint8_t *src;
631

    
632
            src = srcY;
633
            for(j = 0; j < 9 + s->mspel*2; j++) {
634
                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
635
                src += s->linesize;
636
            }
637
        }
638
        /* if we deal with intensity compensation we need to scale source blocks */
639
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
640
            int i, j;
641
            uint8_t *src;
642

    
643
            src = srcY;
644
            for(j = 0; j < 9 + s->mspel*2; j++) {
645
                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
646
                src += s->linesize;
647
            }
648
        }
649
        srcY += s->mspel * (1 + s->linesize);
650
    }
651

    
652
    if(s->mspel) {
653
        dxy = ((my & 3) << 2) | (mx & 3);
654
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
655
    } else { // hpel mc - always used for luma
656
        dxy = (my & 2) | ((mx & 2) >> 1);
657
        if(!v->rnd)
658
            dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
659
        else
660
            dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
661
    }
662
}
663

    
664
static inline int median4(int a, int b, int c, int d)
665
{
666
    if(a < b) {
667
        if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
668
        else      return (FFMIN(b, c) + FFMAX(a, d)) / 2;
669
    } else {
670
        if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
671
        else      return (FFMIN(a, c) + FFMAX(b, d)) / 2;
672
    }
673
}
674

    
675

    
676
/** Do motion compensation for 4-MV macroblock - both chroma blocks
677
 */
678
static void vc1_mc_4mv_chroma(VC1Context *v)
679
{
680
    MpegEncContext *s = &v->s;
681
    DSPContext *dsp = &v->s.dsp;
682
    uint8_t *srcU, *srcV;
683
    int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
684
    int i, idx, tx = 0, ty = 0;
685
    int mvx[4], mvy[4], intra[4];
686
    static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
687

    
688
    if(!v->s.last_picture.data[0])return;
689
    if(s->flags & CODEC_FLAG_GRAY) return;
690

    
691
    for(i = 0; i < 4; i++) {
692
        mvx[i] = s->mv[0][i][0];
693
        mvy[i] = s->mv[0][i][1];
694
        intra[i] = v->mb_type[0][s->block_index[i]];
695
    }
696

    
697
    /* calculate chroma MV vector from four luma MVs */
698
    idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
699
    if(!idx) { // all blocks are inter
700
        tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
701
        ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
702
    } else if(count[idx] == 1) { // 3 inter blocks
703
        switch(idx) {
704
        case 0x1:
705
            tx = mid_pred(mvx[1], mvx[2], mvx[3]);
706
            ty = mid_pred(mvy[1], mvy[2], mvy[3]);
707
            break;
708
        case 0x2:
709
            tx = mid_pred(mvx[0], mvx[2], mvx[3]);
710
            ty = mid_pred(mvy[0], mvy[2], mvy[3]);
711
            break;
712
        case 0x4:
713
            tx = mid_pred(mvx[0], mvx[1], mvx[3]);
714
            ty = mid_pred(mvy[0], mvy[1], mvy[3]);
715
            break;
716
        case 0x8:
717
            tx = mid_pred(mvx[0], mvx[1], mvx[2]);
718
            ty = mid_pred(mvy[0], mvy[1], mvy[2]);
719
            break;
720
        }
721
    } else if(count[idx] == 2) {
722
        int t1 = 0, t2 = 0;
723
        for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
724
        for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
725
        tx = (mvx[t1] + mvx[t2]) / 2;
726
        ty = (mvy[t1] + mvy[t2]) / 2;
727
    } else {
728
        s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
729
        s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
730
        return; //no need to do MC for inter blocks
731
    }
732

    
733
    s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
734
    s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
735
    uvmx = (tx + ((tx&3) == 3)) >> 1;
736
    uvmy = (ty + ((ty&3) == 3)) >> 1;
737
    if(v->fastuvmc) {
738
        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
739
        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
740
    }
741

    
742
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
743
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
744

    
745
    if(v->profile != PROFILE_ADVANCED){
746
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
747
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
748
    }else{
749
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
750
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
751
    }
752

    
753
    srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
754
    srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
755
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
756
       || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
757
       || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
758
        ff_emulated_edge_mc(s->edge_emu_buffer     , srcU, s->uvlinesize, 8+1, 8+1,
759
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
760
        ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
761
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
762
        srcU = s->edge_emu_buffer;
763
        srcV = s->edge_emu_buffer + 16;
764

    
765
        /* if we deal with range reduction we need to scale source blocks */
766
        if(v->rangeredfrm) {
767
            int i, j;
768
            uint8_t *src, *src2;
769

    
770
            src = srcU; src2 = srcV;
771
            for(j = 0; j < 9; j++) {
772
                for(i = 0; i < 9; i++) {
773
                    src[i] = ((src[i] - 128) >> 1) + 128;
774
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
775
                }
776
                src += s->uvlinesize;
777
                src2 += s->uvlinesize;
778
            }
779
        }
780
        /* if we deal with intensity compensation we need to scale source blocks */
781
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
782
            int i, j;
783
            uint8_t *src, *src2;
784

    
785
            src = srcU; src2 = srcV;
786
            for(j = 0; j < 9; j++) {
787
                for(i = 0; i < 9; i++) {
788
                    src[i] = v->lutuv[src[i]];
789
                    src2[i] = v->lutuv[src2[i]];
790
                }
791
                src += s->uvlinesize;
792
                src2 += s->uvlinesize;
793
            }
794
        }
795
    }
796

    
797
    /* Chroma MC always uses qpel bilinear */
798
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
799
    uvmx = (uvmx&3)<<1;
800
    uvmy = (uvmy&3)<<1;
801
    if(!v->rnd){
802
        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
803
        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
804
    }else{
805
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
806
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
807
    }
808
}
809

    
810
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
811

    
812
/**
813
 * Decode Simple/Main Profiles sequence header
814
 * @see Figure 7-8, p16-17
815
 * @param avctx Codec context
816
 * @param gb GetBit context initialized from Codec context extra_data
817
 * @return Status
818
 */
819
static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
820
{
821
    VC1Context *v = avctx->priv_data;
822

    
823
    av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
824
    v->profile = get_bits(gb, 2);
825
    if (v->profile == PROFILE_COMPLEX)
826
    {
827
        av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
828
    }
829

    
830
    if (v->profile == PROFILE_ADVANCED)
831
    {
832
        return decode_sequence_header_adv(v, gb);
833
    }
834
    else
835
    {
836
        v->res_sm = get_bits(gb, 2); //reserved
837
        if (v->res_sm)
838
        {
839
            av_log(avctx, AV_LOG_ERROR,
840
                   "Reserved RES_SM=%i is forbidden\n", v->res_sm);
841
            return -1;
842
        }
843
    }
844

    
845
    // (fps-2)/4 (->30)
846
    v->frmrtq_postproc = get_bits(gb, 3); //common
847
    // (bitrate-32kbps)/64kbps
848
    v->bitrtq_postproc = get_bits(gb, 5); //common
849
    v->s.loop_filter = get_bits(gb, 1); //common
850
    if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
851
    {
852
        av_log(avctx, AV_LOG_ERROR,
853
               "LOOPFILTER shell not be enabled in simple profile\n");
854
    }
855

    
856
    v->res_x8 = get_bits(gb, 1); //reserved
857
    if (v->res_x8)
858
    {
859
        av_log(avctx, AV_LOG_ERROR,
860
               "1 for reserved RES_X8 is forbidden\n");
861
        //return -1;
862
    }
863
    v->multires = get_bits(gb, 1);
864
    v->res_fasttx = get_bits(gb, 1);
865
    if (!v->res_fasttx)
866
    {
867
        av_log(avctx, AV_LOG_ERROR,
868
               "0 for reserved RES_FASTTX is forbidden\n");
869
        //return -1;
870
    }
871

    
872
    v->fastuvmc =  get_bits(gb, 1); //common
873
    if (!v->profile && !v->fastuvmc)
874
    {
875
        av_log(avctx, AV_LOG_ERROR,
876
               "FASTUVMC unavailable in Simple Profile\n");
877
        return -1;
878
    }
879
    v->extended_mv =  get_bits(gb, 1); //common
880
    if (!v->profile && v->extended_mv)
881
    {
882
        av_log(avctx, AV_LOG_ERROR,
883
               "Extended MVs unavailable in Simple Profile\n");
884
        return -1;
885
    }
886
    v->dquant =  get_bits(gb, 2); //common
887
    v->vstransform =  get_bits(gb, 1); //common
888

    
889
    v->res_transtab = get_bits(gb, 1);
890
    if (v->res_transtab)
891
    {
892
        av_log(avctx, AV_LOG_ERROR,
893
               "1 for reserved RES_TRANSTAB is forbidden\n");
894
        return -1;
895
    }
896

    
897
    v->overlap = get_bits(gb, 1); //common
898

    
899
    v->s.resync_marker = get_bits(gb, 1);
900
    v->rangered = get_bits(gb, 1);
901
    if (v->rangered && v->profile == PROFILE_SIMPLE)
902
    {
903
        av_log(avctx, AV_LOG_INFO,
904
               "RANGERED should be set to 0 in simple profile\n");
905
    }
906

    
907
    v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
908
    v->quantizer_mode = get_bits(gb, 2); //common
909

    
910
    v->finterpflag = get_bits(gb, 1); //common
911
    v->res_rtm_flag = get_bits(gb, 1); //reserved
912
    if (!v->res_rtm_flag)
913
    {
914
//            av_log(avctx, AV_LOG_ERROR,
915
//                   "0 for reserved RES_RTM_FLAG is forbidden\n");
916
        av_log(avctx, AV_LOG_ERROR,
917
               "Old WMV3 version detected, only I-frames will be decoded\n");
918
        //return -1;
919
    }
920
    //TODO: figure out what they mean (always 0x402F)
921
    if(!v->res_fasttx) skip_bits(gb, 16);
922
    av_log(avctx, AV_LOG_DEBUG,
923
               "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
924
               "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
925
               "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
926
               "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
927
               v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
928
               v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
929
               v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
930
               v->dquant, v->quantizer_mode, avctx->max_b_frames
931
               );
932
    return 0;
933
}
934

    
935
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
936
{
937
    v->res_rtm_flag = 1;
938
    v->level = get_bits(gb, 3);
939
    if(v->level >= 5)
940
    {
941
        av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
942
    }
943
    v->chromaformat = get_bits(gb, 2);
944
    if (v->chromaformat != 1)
945
    {
946
        av_log(v->s.avctx, AV_LOG_ERROR,
947
               "Only 4:2:0 chroma format supported\n");
948
        return -1;
949
    }
950

    
951
    // (fps-2)/4 (->30)
952
    v->frmrtq_postproc = get_bits(gb, 3); //common
953
    // (bitrate-32kbps)/64kbps
954
    v->bitrtq_postproc = get_bits(gb, 5); //common
955
    v->postprocflag = get_bits(gb, 1); //common
956

    
957
    v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
958
    v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
959
    v->s.avctx->width = v->s.avctx->coded_width;
960
    v->s.avctx->height = v->s.avctx->coded_height;
961
    v->broadcast = get_bits1(gb);
962
    v->interlace = get_bits1(gb);
963
    v->tfcntrflag = get_bits1(gb);
964
    v->finterpflag = get_bits1(gb);
965
    get_bits1(gb); // reserved
966

    
967
    v->s.h_edge_pos = v->s.avctx->coded_width;
968
    v->s.v_edge_pos = v->s.avctx->coded_height;
969

    
970
    av_log(v->s.avctx, AV_LOG_DEBUG,
971
               "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
972
               "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
973
               "TFCTRflag=%i, FINTERPflag=%i\n",
974
               v->level, v->frmrtq_postproc, v->bitrtq_postproc,
975
               v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
976
               v->tfcntrflag, v->finterpflag
977
               );
978

    
979
    v->psf = get_bits1(gb);
980
    if(v->psf) { //PsF, 6.1.13
981
        av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
982
        return -1;
983
    }
984
    v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
985
    if(get_bits1(gb)) { //Display Info - decoding is not affected by it
986
        int w, h, ar = 0;
987
        av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
988
        v->s.avctx->width  = v->s.width  = w = get_bits(gb, 14) + 1;
989
        v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
990
        av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
991
        if(get_bits1(gb))
992
            ar = get_bits(gb, 4);
993
        if(ar && ar < 14){
994
            v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
995
        }else if(ar == 15){
996
            w = get_bits(gb, 8);
997
            h = get_bits(gb, 8);
998
            v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
999
        }
1000

    
1001
        if(get_bits1(gb)){ //framerate stuff
1002
            if(get_bits1(gb)) {
1003
                v->s.avctx->time_base.num = 32;
1004
                v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
1005
            } else {
1006
                int nr, dr;
1007
                nr = get_bits(gb, 8);
1008
                dr = get_bits(gb, 4);
1009
                if(nr && nr < 8 && dr && dr < 3){
1010
                    v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
1011
                    v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
1012
                }
1013
            }
1014
        }
1015

    
1016
        if(get_bits1(gb)){
1017
            v->color_prim = get_bits(gb, 8);
1018
            v->transfer_char = get_bits(gb, 8);
1019
            v->matrix_coef = get_bits(gb, 8);
1020
        }
1021
    }
1022

    
1023
    v->hrd_param_flag = get_bits1(gb);
1024
    if(v->hrd_param_flag) {
1025
        int i;
1026
        v->hrd_num_leaky_buckets = get_bits(gb, 5);
1027
        get_bits(gb, 4); //bitrate exponent
1028
        get_bits(gb, 4); //buffer size exponent
1029
        for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1030
            get_bits(gb, 16); //hrd_rate[n]
1031
            get_bits(gb, 16); //hrd_buffer[n]
1032
        }
1033
    }
1034
    return 0;
1035
}
1036

    
1037
static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
1038
{
1039
    VC1Context *v = avctx->priv_data;
1040
    int i, blink, clentry, refdist;
1041

    
1042
    av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
1043
    blink = get_bits1(gb); // broken link
1044
    clentry = get_bits1(gb); // closed entry
1045
    v->panscanflag = get_bits1(gb);
1046
    refdist = get_bits1(gb); // refdist flag
1047
    v->s.loop_filter = get_bits1(gb);
1048
    v->fastuvmc = get_bits1(gb);
1049
    v->extended_mv = get_bits1(gb);
1050
    v->dquant = get_bits(gb, 2);
1051
    v->vstransform = get_bits1(gb);
1052
    v->overlap = get_bits1(gb);
1053
    v->quantizer_mode = get_bits(gb, 2);
1054

    
1055
    if(v->hrd_param_flag){
1056
        for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1057
            get_bits(gb, 8); //hrd_full[n]
1058
        }
1059
    }
1060

    
1061
    if(get_bits1(gb)){
1062
        avctx->coded_width = (get_bits(gb, 12)+1)<<1;
1063
        avctx->coded_height = (get_bits(gb, 12)+1)<<1;
1064
    }
1065
    if(v->extended_mv)
1066
        v->extended_dmv = get_bits1(gb);
1067
    if(get_bits1(gb)) {
1068
        av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
1069
        skip_bits(gb, 3); // Y range, ignored for now
1070
    }
1071
    if(get_bits1(gb)) {
1072
        av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
1073
        skip_bits(gb, 3); // UV range, ignored for now
1074
    }
1075

    
1076
    av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
1077
        "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
1078
        "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
1079
        "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
1080
        blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
1081
        v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
1082

    
1083
    return 0;
1084
}
1085

    
1086
static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
1087
{
1088
    int pqindex, lowquant, status;
1089

    
1090
    if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
1091
    skip_bits(gb, 2); //framecnt unused
1092
    v->rangeredfrm = 0;
1093
    if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
1094
    v->s.pict_type = get_bits(gb, 1);
1095
    if (v->s.avctx->max_b_frames) {
1096
        if (!v->s.pict_type) {
1097
            if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
1098
            else v->s.pict_type = B_TYPE;
1099
        } else v->s.pict_type = P_TYPE;
1100
    } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
1101

    
1102
    v->bi_type = 0;
1103
    if(v->s.pict_type == B_TYPE) {
1104
        v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1105
        v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1106
        if(v->bfraction == 0) {
1107
            v->s.pict_type = BI_TYPE;
1108
        }
1109
    }
1110
    if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1111
        get_bits(gb, 7); // skip buffer fullness
1112

    
1113
    /* calculate RND */
1114
    if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1115
        v->rnd = 1;
1116
    if(v->s.pict_type == P_TYPE)
1117
        v->rnd ^= 1;
1118

    
1119
    /* Quantizer stuff */
1120
    pqindex = get_bits(gb, 5);
1121
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1122
        v->pq = ff_vc1_pquant_table[0][pqindex];
1123
    else
1124
        v->pq = ff_vc1_pquant_table[1][pqindex];
1125

    
1126
    v->pquantizer = 1;
1127
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1128
        v->pquantizer = pqindex < 9;
1129
    if (v->quantizer_mode == QUANT_NON_UNIFORM)
1130
        v->pquantizer = 0;
1131
    v->pqindex = pqindex;
1132
    if (pqindex < 9) v->halfpq = get_bits(gb, 1);
1133
    else v->halfpq = 0;
1134
    if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1135
        v->pquantizer = get_bits(gb, 1);
1136
    v->dquantfrm = 0;
1137
    if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
1138
    v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1139
    v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1140
    v->range_x = 1 << (v->k_x - 1);
1141
    v->range_y = 1 << (v->k_y - 1);
1142
    if (v->profile == PROFILE_ADVANCED)
1143
    {
1144
        if (v->postprocflag) v->postproc = get_bits(gb, 1);
1145
    }
1146
    else
1147
        if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
1148

    
1149
    if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
1150
        if(get_bits1(gb))return -1;
1151
    }
1152
//av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
1153
//        (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
1154

    
1155
    if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
1156

    
1157
    switch(v->s.pict_type) {
1158
    case P_TYPE:
1159
        if (v->pq < 5) v->tt_index = 0;
1160
        else if(v->pq < 13) v->tt_index = 1;
1161
        else v->tt_index = 2;
1162

    
1163
        lowquant = (v->pq > 12) ? 0 : 1;
1164
        v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
1165
        if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1166
        {
1167
            int scale, shift, i;
1168
            v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
1169
            v->lumscale = get_bits(gb, 6);
1170
            v->lumshift = get_bits(gb, 6);
1171
            v->use_ic = 1;
1172
            /* fill lookup tables for intensity compensation */
1173
            if(!v->lumscale) {
1174
                scale = -64;
1175
                shift = (255 - v->lumshift * 2) << 6;
1176
                if(v->lumshift > 31)
1177
                    shift += 128 << 6;
1178
            } else {
1179
                scale = v->lumscale + 32;
1180
                if(v->lumshift > 31)
1181
                    shift = (v->lumshift - 64) << 6;
1182
                else
1183
                    shift = v->lumshift << 6;
1184
            }
1185
            for(i = 0; i < 256; i++) {
1186
                v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1187
                v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1188
            }
1189
        }
1190
        if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1191
            v->s.quarter_sample = 0;
1192
        else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1193
            if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1194
                v->s.quarter_sample = 0;
1195
            else
1196
                v->s.quarter_sample = 1;
1197
        } else
1198
            v->s.quarter_sample = 1;
1199
        v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1200

    
1201
        if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1202
                 v->mv_mode2 == MV_PMODE_MIXED_MV)
1203
                || v->mv_mode == MV_PMODE_MIXED_MV)
1204
        {
1205
            status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1206
            if (status < 0) return -1;
1207
            av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1208
                   "Imode: %i, Invert: %i\n", status>>1, status&1);
1209
        } else {
1210
            v->mv_type_is_raw = 0;
1211
            memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1212
        }
1213
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1214
        if (status < 0) return -1;
1215
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1216
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1217

    
1218
        /* Hopefully this is correct for P frames */
1219
        v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1220
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1221

    
1222
        if (v->dquant)
1223
        {
1224
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1225
            vop_dquant_decoding(v);
1226
        }
1227

    
1228
        v->ttfrm = 0; //FIXME Is that so ?
1229
        if (v->vstransform)
1230
        {
1231
            v->ttmbf = get_bits(gb, 1);
1232
            if (v->ttmbf)
1233
            {
1234
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1235
            }
1236
        } else {
1237
            v->ttmbf = 1;
1238
            v->ttfrm = TT_8X8;
1239
        }
1240
        break;
1241
    case B_TYPE:
1242
        if (v->pq < 5) v->tt_index = 0;
1243
        else if(v->pq < 13) v->tt_index = 1;
1244
        else v->tt_index = 2;
1245

    
1246
        lowquant = (v->pq > 12) ? 0 : 1;
1247
        v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1248
        v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1249
        v->s.mspel = v->s.quarter_sample;
1250

    
1251
        status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1252
        if (status < 0) return -1;
1253
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1254
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1255
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1256
        if (status < 0) return -1;
1257
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1258
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1259

    
1260
        v->s.mv_table_index = get_bits(gb, 2);
1261
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1262

    
1263
        if (v->dquant)
1264
        {
1265
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1266
            vop_dquant_decoding(v);
1267
        }
1268

    
1269
        v->ttfrm = 0;
1270
        if (v->vstransform)
1271
        {
1272
            v->ttmbf = get_bits(gb, 1);
1273
            if (v->ttmbf)
1274
            {
1275
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1276
            }
1277
        } else {
1278
            v->ttmbf = 1;
1279
            v->ttfrm = TT_8X8;
1280
        }
1281
        break;
1282
    }
1283

    
1284
    /* AC Syntax */
1285
    v->c_ac_table_index = decode012(gb);
1286
    if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1287
    {
1288
        v->y_ac_table_index = decode012(gb);
1289
    }
1290
    /* DC Syntax */
1291
    v->s.dc_table_index = get_bits(gb, 1);
1292

    
1293
    if(v->s.pict_type == BI_TYPE) {
1294
        v->s.pict_type = B_TYPE;
1295
        v->bi_type = 1;
1296
    }
1297
    return 0;
1298
}
1299

    
1300
static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
1301
{
1302
    int pqindex, lowquant;
1303
    int status;
1304

    
1305
    v->p_frame_skipped = 0;
1306

    
1307
    if(v->interlace){
1308
        v->fcm = decode012(gb);
1309
        if(v->fcm) return -1; // interlaced frames/fields are not implemented
1310
    }
1311
    switch(get_prefix(gb, 0, 4)) {
1312
    case 0:
1313
        v->s.pict_type = P_TYPE;
1314
        break;
1315
    case 1:
1316
        v->s.pict_type = B_TYPE;
1317
        break;
1318
    case 2:
1319
        v->s.pict_type = I_TYPE;
1320
        break;
1321
    case 3:
1322
        v->s.pict_type = BI_TYPE;
1323
        break;
1324
    case 4:
1325
        v->s.pict_type = P_TYPE; // skipped pic
1326
        v->p_frame_skipped = 1;
1327
        return 0;
1328
    }
1329
    if(v->tfcntrflag)
1330
        get_bits(gb, 8);
1331
    if(v->broadcast) {
1332
        if(!v->interlace || v->psf) {
1333
            v->rptfrm = get_bits(gb, 2);
1334
        } else {
1335
            v->tff = get_bits1(gb);
1336
            v->rptfrm = get_bits1(gb);
1337
        }
1338
    }
1339
    if(v->panscanflag) {
1340
        //...
1341
    }
1342
    v->rnd = get_bits1(gb);
1343
    if(v->interlace)
1344
        v->uvsamp = get_bits1(gb);
1345
    if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
1346
    if(v->s.pict_type == B_TYPE) {
1347
        v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1348
        v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1349
        if(v->bfraction == 0) {
1350
            v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
1351
        }
1352
    }
1353
    pqindex = get_bits(gb, 5);
1354
    v->pqindex = pqindex;
1355
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1356
        v->pq = ff_vc1_pquant_table[0][pqindex];
1357
    else
1358
        v->pq = ff_vc1_pquant_table[1][pqindex];
1359

    
1360
    v->pquantizer = 1;
1361
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1362
        v->pquantizer = pqindex < 9;
1363
    if (v->quantizer_mode == QUANT_NON_UNIFORM)
1364
        v->pquantizer = 0;
1365
    v->pqindex = pqindex;
1366
    if (pqindex < 9) v->halfpq = get_bits(gb, 1);
1367
    else v->halfpq = 0;
1368
    if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1369
        v->pquantizer = get_bits(gb, 1);
1370

    
1371
    if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
1372

    
1373
    switch(v->s.pict_type) {
1374
    case I_TYPE:
1375
    case BI_TYPE:
1376
        status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
1377
        if (status < 0) return -1;
1378
        av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
1379
                "Imode: %i, Invert: %i\n", status>>1, status&1);
1380
        v->condover = CONDOVER_NONE;
1381
        if(v->overlap && v->pq <= 8) {
1382
            v->condover = decode012(gb);
1383
            if(v->condover == CONDOVER_SELECT) {
1384
                status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
1385
                if (status < 0) return -1;
1386
                av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
1387
                        "Imode: %i, Invert: %i\n", status>>1, status&1);
1388
            }
1389
        }
1390
        break;
1391
    case P_TYPE:
1392
        if(v->postprocflag)
1393
            v->postproc = get_bits1(gb);
1394
        if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
1395
        else v->mvrange = 0;
1396
        v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1397
        v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1398
        v->range_x = 1 << (v->k_x - 1);
1399
        v->range_y = 1 << (v->k_y - 1);
1400

    
1401
        if (v->pq < 5) v->tt_index = 0;
1402
        else if(v->pq < 13) v->tt_index = 1;
1403
        else v->tt_index = 2;
1404

    
1405
        lowquant = (v->pq > 12) ? 0 : 1;
1406
        v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
1407
        if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1408
        {
1409
            int scale, shift, i;
1410
            v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
1411
            v->lumscale = get_bits(gb, 6);
1412
            v->lumshift = get_bits(gb, 6);
1413
            /* fill lookup tables for intensity compensation */
1414
            if(!v->lumscale) {
1415
                scale = -64;
1416
                shift = (255 - v->lumshift * 2) << 6;
1417
                if(v->lumshift > 31)
1418
                    shift += 128 << 6;
1419
            } else {
1420
                scale = v->lumscale + 32;
1421
                if(v->lumshift > 31)
1422
                    shift = (v->lumshift - 64) << 6;
1423
                else
1424
                    shift = v->lumshift << 6;
1425
            }
1426
            for(i = 0; i < 256; i++) {
1427
                v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1428
                v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1429
            }
1430
            v->use_ic = 1;
1431
        }
1432
        if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1433
            v->s.quarter_sample = 0;
1434
        else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1435
            if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1436
                v->s.quarter_sample = 0;
1437
            else
1438
                v->s.quarter_sample = 1;
1439
        } else
1440
            v->s.quarter_sample = 1;
1441
        v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1442

    
1443
        if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1444
                 v->mv_mode2 == MV_PMODE_MIXED_MV)
1445
                || v->mv_mode == MV_PMODE_MIXED_MV)
1446
        {
1447
            status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1448
            if (status < 0) return -1;
1449
            av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1450
                   "Imode: %i, Invert: %i\n", status>>1, status&1);
1451
        } else {
1452
            v->mv_type_is_raw = 0;
1453
            memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1454
        }
1455
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1456
        if (status < 0) return -1;
1457
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1458
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1459

    
1460
        /* Hopefully this is correct for P frames */
1461
        v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1462
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1463
        if (v->dquant)
1464
        {
1465
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1466
            vop_dquant_decoding(v);
1467
        }
1468

    
1469
        v->ttfrm = 0; //FIXME Is that so ?
1470
        if (v->vstransform)
1471
        {
1472
            v->ttmbf = get_bits(gb, 1);
1473
            if (v->ttmbf)
1474
            {
1475
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1476
            }
1477
        } else {
1478
            v->ttmbf = 1;
1479
            v->ttfrm = TT_8X8;
1480
        }
1481
        break;
1482
    case B_TYPE:
1483
        if(v->postprocflag)
1484
            v->postproc = get_bits1(gb);
1485
        if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
1486
        else v->mvrange = 0;
1487
        v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1488
        v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1489
        v->range_x = 1 << (v->k_x - 1);
1490
        v->range_y = 1 << (v->k_y - 1);
1491

    
1492
        if (v->pq < 5) v->tt_index = 0;
1493
        else if(v->pq < 13) v->tt_index = 1;
1494
        else v->tt_index = 2;
1495

    
1496
        lowquant = (v->pq > 12) ? 0 : 1;
1497
        v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1498
        v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1499
        v->s.mspel = v->s.quarter_sample;
1500

    
1501
        status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1502
        if (status < 0) return -1;
1503
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1504
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1505
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1506
        if (status < 0) return -1;
1507
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1508
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1509

    
1510
        v->s.mv_table_index = get_bits(gb, 2);
1511
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1512

    
1513
        if (v->dquant)
1514
        {
1515
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1516
            vop_dquant_decoding(v);
1517
        }
1518

    
1519
        v->ttfrm = 0;
1520
        if (v->vstransform)
1521
        {
1522
            v->ttmbf = get_bits(gb, 1);
1523
            if (v->ttmbf)
1524
            {
1525
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1526
            }
1527
        } else {
1528
            v->ttmbf = 1;
1529
            v->ttfrm = TT_8X8;
1530
        }
1531
        break;
1532
    }
1533

    
1534
    /* AC Syntax */
1535
    v->c_ac_table_index = decode012(gb);
1536
    if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1537
    {
1538
        v->y_ac_table_index = decode012(gb);
1539
    }
1540
    /* DC Syntax */
1541
    v->s.dc_table_index = get_bits(gb, 1);
1542
    if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
1543
        av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1544
        vop_dquant_decoding(v);
1545
    }
1546

    
1547
    v->bi_type = 0;
1548
    if(v->s.pict_type == BI_TYPE) {
1549
        v->s.pict_type = B_TYPE;
1550
        v->bi_type = 1;
1551
    }
1552
    return 0;
1553
}
1554

    
1555
/***********************************************************************/
1556
/**
1557
 * @defgroup block VC-1 Block-level functions
1558
 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1559
 * @{
1560
 */
1561

    
1562
/**
1563
 * @def GET_MQUANT
1564
 * @brief Get macroblock-level quantizer scale
1565
 */
1566
#define GET_MQUANT()                                           \
1567
  if (v->dquantfrm)                                            \
1568
  {                                                            \
1569
    int edges = 0;                                             \
1570
    if (v->dqprofile == DQPROFILE_ALL_MBS)                     \
1571
    {                                                          \
1572
      if (v->dqbilevel)                                        \
1573
      {                                                        \
1574
        mquant = (get_bits(gb, 1)) ? v->altpq : v->pq;         \
1575
      }                                                        \
1576
      else                                                     \
1577
      {                                                        \
1578
        mqdiff = get_bits(gb, 3);                              \
1579
        if (mqdiff != 7) mquant = v->pq + mqdiff;              \
1580
        else mquant = get_bits(gb, 5);                         \
1581
      }                                                        \
1582
    }                                                          \
1583
    if(v->dqprofile == DQPROFILE_SINGLE_EDGE)                  \
1584
        edges = 1 << v->dqsbedge;                              \
1585
    else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES)            \
1586
        edges = (3 << v->dqsbedge) % 15;                       \
1587
    else if(v->dqprofile == DQPROFILE_FOUR_EDGES)              \
1588
        edges = 15;                                            \
1589
    if((edges&1) && !s->mb_x)                                  \
1590
        mquant = v->altpq;                                     \
1591
    if((edges&2) && s->first_slice_line)                       \
1592
        mquant = v->altpq;                                     \
1593
    if((edges&4) && s->mb_x == (s->mb_width - 1))              \
1594
        mquant = v->altpq;                                     \
1595
    if((edges&8) && s->mb_y == (s->mb_height - 1))             \
1596
        mquant = v->altpq;                                     \
1597
  }
1598

    
1599
/**
1600
 * @def GET_MVDATA(_dmv_x, _dmv_y)
1601
 * @brief Get MV differentials
1602
 * @see MVDATA decoding from 8.3.5.2, p(1)20
1603
 * @param _dmv_x Horizontal differential for decoded MV
1604
 * @param _dmv_y Vertical differential for decoded MV
1605
 */
1606
#define GET_MVDATA(_dmv_x, _dmv_y)                                  \
1607
  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
1608
                       VC1_MV_DIFF_VLC_BITS, 2);                    \
1609
  if (index > 36)                                                   \
1610
  {                                                                 \
1611
    mb_has_coeffs = 1;                                              \
1612
    index -= 37;                                                    \
1613
  }                                                                 \
1614
  else mb_has_coeffs = 0;                                           \
1615
  s->mb_intra = 0;                                                  \
1616
  if (!index) { _dmv_x = _dmv_y = 0; }                              \
1617
  else if (index == 35)                                             \
1618
  {                                                                 \
1619
    _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample);          \
1620
    _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample);          \
1621
  }                                                                 \
1622
  else if (index == 36)                                             \
1623
  {                                                                 \
1624
    _dmv_x = 0;                                                     \
1625
    _dmv_y = 0;                                                     \
1626
    s->mb_intra = 1;                                                \
1627
  }                                                                 \
1628
  else                                                              \
1629
  {                                                                 \
1630
    index1 = index%6;                                               \
1631
    if (!s->quarter_sample && index1 == 5) val = 1;                 \
1632
    else                                   val = 0;                 \
1633
    if(size_table[index1] - val > 0)                                \
1634
        val = get_bits(gb, size_table[index1] - val);               \
1635
    else                                   val = 0;                 \
1636
    sign = 0 - (val&1);                                             \
1637
    _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
1638
                                                                    \
1639
    index1 = index/6;                                               \
1640
    if (!s->quarter_sample && index1 == 5) val = 1;                 \
1641
    else                                   val = 0;                 \
1642
    if(size_table[index1] - val > 0)                                \
1643
        val = get_bits(gb, size_table[index1] - val);               \
1644
    else                                   val = 0;                 \
1645
    sign = 0 - (val&1);                                             \
1646
    _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
1647
  }
1648

    
1649
/** Predict and set motion vector
1650
 */
1651
static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
1652
{
1653
    int xy, wrap, off = 0;
1654
    int16_t *A, *B, *C;
1655
    int px, py;
1656
    int sum;
1657

    
1658
    /* scale MV difference to be quad-pel */
1659
    dmv_x <<= 1 - s->quarter_sample;
1660
    dmv_y <<= 1 - s->quarter_sample;
1661

    
1662
    wrap = s->b8_stride;
1663
    xy = s->block_index[n];
1664

    
1665
    if(s->mb_intra){
1666
        s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
1667
        s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
1668
        s->current_picture.motion_val[1][xy][0] = 0;
1669
        s->current_picture.motion_val[1][xy][1] = 0;
1670
        if(mv1) { /* duplicate motion data for 1-MV block */
1671
            s->current_picture.motion_val[0][xy + 1][0] = 0;
1672
            s->current_picture.motion_val[0][xy + 1][1] = 0;
1673
            s->current_picture.motion_val[0][xy + wrap][0] = 0;
1674
            s->current_picture.motion_val[0][xy + wrap][1] = 0;
1675
            s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
1676
            s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
1677
            s->current_picture.motion_val[1][xy + 1][0] = 0;
1678
            s->current_picture.motion_val[1][xy + 1][1] = 0;
1679
            s->current_picture.motion_val[1][xy + wrap][0] = 0;
1680
            s->current_picture.motion_val[1][xy + wrap][1] = 0;
1681
            s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
1682
            s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
1683
        }
1684
        return;
1685
    }
1686

    
1687
    C = s->current_picture.motion_val[0][xy - 1];
1688
    A = s->current_picture.motion_val[0][xy - wrap];
1689
    if(mv1)
1690
        off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1691
    else {
1692
        //in 4-MV mode different blocks have different B predictor position
1693
        switch(n){
1694
        case 0:
1695
            off = (s->mb_x > 0) ? -1 : 1;
1696
            break;
1697
        case 1:
1698
            off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1699
            break;
1700
        case 2:
1701
            off = 1;
1702
            break;
1703
        case 3:
1704
            off = -1;
1705
        }
1706
    }
1707
    B = s->current_picture.motion_val[0][xy - wrap + off];
1708

    
1709
    if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
1710
        if(s->mb_width == 1) {
1711
            px = A[0];
1712
            py = A[1];
1713
        } else {
1714
            px = mid_pred(A[0], B[0], C[0]);
1715
            py = mid_pred(A[1], B[1], C[1]);
1716
        }
1717
    } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
1718
        px = C[0];
1719
        py = C[1];
1720
    } else {
1721
        px = py = 0;
1722
    }
1723
    /* Pullback MV as specified in 8.3.5.3.4 */
1724
    {
1725
        int qx, qy, X, Y;
1726
        qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
1727
        qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
1728
        X = (s->mb_width << 6) - 4;
1729
        Y = (s->mb_height << 6) - 4;
1730
        if(mv1) {
1731
            if(qx + px < -60) px = -60 - qx;
1732
            if(qy + py < -60) py = -60 - qy;
1733
        } else {
1734
            if(qx + px < -28) px = -28 - qx;
1735
            if(qy + py < -28) py = -28 - qy;
1736
        }
1737
        if(qx + px > X) px = X - qx;
1738
        if(qy + py > Y) py = Y - qy;
1739
    }
1740
    /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1741
    if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
1742
        if(is_intra[xy - wrap])
1743
            sum = FFABS(px) + FFABS(py);
1744
        else
1745
            sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1746
        if(sum > 32) {
1747
            if(get_bits1(&s->gb)) {
1748
                px = A[0];
1749
                py = A[1];
1750
            } else {
1751
                px = C[0];
1752
                py = C[1];
1753
            }
1754
        } else {
1755
            if(is_intra[xy - 1])
1756
                sum = FFABS(px) + FFABS(py);
1757
            else
1758
                sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1759
            if(sum > 32) {
1760
                if(get_bits1(&s->gb)) {
1761
                    px = A[0];
1762
                    py = A[1];
1763
                } else {
1764
                    px = C[0];
1765
                    py = C[1];
1766
                }
1767
            }
1768
        }
1769
    }
1770
    /* store MV using signed modulus of MV range defined in 4.11 */
1771
    s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1772
    s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1773
    if(mv1) { /* duplicate motion data for 1-MV block */
1774
        s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
1775
        s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
1776
        s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
1777
        s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
1778
        s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
1779
        s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
1780
    }
1781
}
1782

    
1783
/** Motion compensation for direct or interpolated blocks in B-frames
1784
 */
1785
static void vc1_interp_mc(VC1Context *v)
1786
{
1787
    MpegEncContext *s = &v->s;
1788
    DSPContext *dsp = &v->s.dsp;
1789
    uint8_t *srcY, *srcU, *srcV;
1790
    int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1791

    
1792
    if(!v->s.next_picture.data[0])return;
1793

    
1794
    mx = s->mv[1][0][0];
1795
    my = s->mv[1][0][1];
1796
    uvmx = (mx + ((mx & 3) == 3)) >> 1;
1797
    uvmy = (my + ((my & 3) == 3)) >> 1;
1798
    if(v->fastuvmc) {
1799
        uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
1800
        uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
1801
    }
1802
    srcY = s->next_picture.data[0];
1803
    srcU = s->next_picture.data[1];
1804
    srcV = s->next_picture.data[2];
1805

    
1806
    src_x = s->mb_x * 16 + (mx >> 2);
1807
    src_y = s->mb_y * 16 + (my >> 2);
1808
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1809
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1810

    
1811
    if(v->profile != PROFILE_ADVANCED){
1812
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
1813
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
1814
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
1815
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
1816
    }else{
1817
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
1818
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
1819
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
1820
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
1821
    }
1822

    
1823
    srcY += src_y * s->linesize + src_x;
1824
    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1825
    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1826

    
1827
    /* for grayscale we should not try to read from unknown area */
1828
    if(s->flags & CODEC_FLAG_GRAY) {
1829
        srcU = s->edge_emu_buffer + 18 * s->linesize;
1830
        srcV = s->edge_emu_buffer + 18 * s->linesize;
1831
    }
1832

    
1833
    if(v->rangeredfrm
1834
       || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
1835
       || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
1836
        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
1837

    
1838
        srcY -= s->mspel * (1 + s->linesize);
1839
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
1840
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
1841
        srcY = s->edge_emu_buffer;
1842
        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
1843
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1844
        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
1845
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1846
        srcU = uvbuf;
1847
        srcV = uvbuf + 16;
1848
        /* if we deal with range reduction we need to scale source blocks */
1849
        if(v->rangeredfrm) {
1850
            int i, j;
1851
            uint8_t *src, *src2;
1852

    
1853
            src = srcY;
1854
            for(j = 0; j < 17 + s->mspel*2; j++) {
1855
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
1856
                src += s->linesize;
1857
            }
1858
            src = srcU; src2 = srcV;
1859
            for(j = 0; j < 9; j++) {
1860
                for(i = 0; i < 9; i++) {
1861
                    src[i] = ((src[i] - 128) >> 1) + 128;
1862
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
1863
                }
1864
                src += s->uvlinesize;
1865
                src2 += s->uvlinesize;
1866
            }
1867
        }
1868
        srcY += s->mspel * (1 + s->linesize);
1869
    }
1870

    
1871
    mx >>= 1;
1872
    my >>= 1;
1873
    dxy = ((my & 1) << 1) | (mx & 1);
1874

    
1875
    dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
1876

    
1877
    if(s->flags & CODEC_FLAG_GRAY) return;
1878
    /* Chroma MC always uses qpel blilinear */
1879
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
1880
    uvmx = (uvmx&3)<<1;
1881
    uvmy = (uvmy&3)<<1;
1882
    dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
1883
    dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
1884
}
1885

    
1886
static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1887
{
1888
    int n = bfrac;
1889

    
1890
#if B_FRACTION_DEN==256
1891
    if(inv)
1892
        n -= 256;
1893
    if(!qs)
1894
        return 2 * ((value * n + 255) >> 9);
1895
    return (value * n + 128) >> 8;
1896
#else
1897
    if(inv)
1898
        n -= B_FRACTION_DEN;
1899
    if(!qs)
1900
        return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
1901
    return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
1902
#endif
1903
}
1904

    
1905
/** Reconstruct motion vector for B-frame and do motion compensation
1906
 */
1907
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
1908
{
1909
    if(v->use_ic) {
1910
        v->mv_mode2 = v->mv_mode;
1911
        v->mv_mode = MV_PMODE_INTENSITY_COMP;
1912
    }
1913
    if(direct) {
1914
        vc1_mc_1mv(v, 0);
1915
        vc1_interp_mc(v);
1916
        if(v->use_ic) v->mv_mode = v->mv_mode2;
1917
        return;
1918
    }
1919
    if(mode == BMV_TYPE_INTERPOLATED) {
1920
        vc1_mc_1mv(v, 0);
1921
        vc1_interp_mc(v);
1922
        if(v->use_ic) v->mv_mode = v->mv_mode2;
1923
        return;
1924
    }
1925

    
1926
    if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
1927
    vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
1928
    if(v->use_ic) v->mv_mode = v->mv_mode2;
1929
}
1930

    
1931
static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
1932
{
1933
    MpegEncContext *s = &v->s;
1934
    int xy, wrap, off = 0;
1935
    int16_t *A, *B, *C;
1936
    int px, py;
1937
    int sum;
1938
    int r_x, r_y;
1939
    const uint8_t *is_intra = v->mb_type[0];
1940

    
1941
    r_x = v->range_x;
1942
    r_y = v->range_y;
1943
    /* scale MV difference to be quad-pel */
1944
    dmv_x[0] <<= 1 - s->quarter_sample;
1945
    dmv_y[0] <<= 1 - s->quarter_sample;
1946
    dmv_x[1] <<= 1 - s->quarter_sample;
1947
    dmv_y[1] <<= 1 - s->quarter_sample;
1948

    
1949
    wrap = s->b8_stride;
1950
    xy = s->block_index[0];
1951

    
1952
    if(s->mb_intra) {
1953
        s->current_picture.motion_val[0][xy][0] =
1954
        s->current_picture.motion_val[0][xy][1] =
1955
        s->current_picture.motion_val[1][xy][0] =
1956
        s->current_picture.motion_val[1][xy][1] = 0;
1957
        return;
1958
    }
1959
    s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
1960
    s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1961
    s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1962
    s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
1963

    
1964
    /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1965
    s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1966
    s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1967
    s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1968
    s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1969
    if(direct) {
1970
        s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1971
        s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1972
        s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1973
        s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1974
        return;
1975
    }
1976

    
1977
    if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1978
        C = s->current_picture.motion_val[0][xy - 2];
1979
        A = s->current_picture.motion_val[0][xy - wrap*2];
1980
        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1981
        B = s->current_picture.motion_val[0][xy - wrap*2 + off];
1982

    
1983
        if(!s->mb_x) C[0] = C[1] = 0;
1984
        if(!s->first_slice_line) { // predictor A is not out of bounds
1985
            if(s->mb_width == 1) {
1986
                px = A[0];
1987
                py = A[1];
1988
            } else {
1989
                px = mid_pred(A[0], B[0], C[0]);
1990
                py = mid_pred(A[1], B[1], C[1]);
1991
            }
1992
        } else if(s->mb_x) { // predictor C is not out of bounds
1993
            px = C[0];
1994
            py = C[1];
1995
        } else {
1996
            px = py = 0;
1997
        }
1998
        /* Pullback MV as specified in 8.3.5.3.4 */
1999
        {
2000
            int qx, qy, X, Y;
2001
            if(v->profile < PROFILE_ADVANCED) {
2002
                qx = (s->mb_x << 5);
2003
                qy = (s->mb_y << 5);
2004
                X = (s->mb_width << 5) - 4;
2005
                Y = (s->mb_height << 5) - 4;
2006
                if(qx + px < -28) px = -28 - qx;
2007
                if(qy + py < -28) py = -28 - qy;
2008
                if(qx + px > X) px = X - qx;
2009
                if(qy + py > Y) py = Y - qy;
2010
            } else {
2011
                qx = (s->mb_x << 6);
2012
                qy = (s->mb_y << 6);
2013
                X = (s->mb_width << 6) - 4;
2014
                Y = (s->mb_height << 6) - 4;
2015
                if(qx + px < -60) px = -60 - qx;
2016
                if(qy + py < -60) py = -60 - qy;
2017
                if(qx + px > X) px = X - qx;
2018
                if(qy + py > Y) py = Y - qy;
2019
            }
2020
        }
2021
        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2022
        if(0 && !s->first_slice_line && s->mb_x) {
2023
            if(is_intra[xy - wrap])
2024
                sum = FFABS(px) + FFABS(py);
2025
            else
2026
                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2027
            if(sum > 32) {
2028
                if(get_bits1(&s->gb)) {
2029
                    px = A[0];
2030
                    py = A[1];
2031
                } else {
2032
                    px = C[0];
2033
                    py = C[1];
2034
                }
2035
            } else {
2036
                if(is_intra[xy - 2])
2037
                    sum = FFABS(px) + FFABS(py);
2038
                else
2039
                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2040
                if(sum > 32) {
2041
                    if(get_bits1(&s->gb)) {
2042
                        px = A[0];
2043
                        py = A[1];
2044
                    } else {
2045
                        px = C[0];
2046
                        py = C[1];
2047
                    }
2048
                }
2049
            }
2050
        }
2051
        /* store MV using signed modulus of MV range defined in 4.11 */
2052
        s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2053
        s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2054
    }
2055
    if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2056
        C = s->current_picture.motion_val[1][xy - 2];
2057
        A = s->current_picture.motion_val[1][xy - wrap*2];
2058
        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2059
        B = s->current_picture.motion_val[1][xy - wrap*2 + off];
2060

    
2061
        if(!s->mb_x) C[0] = C[1] = 0;
2062
        if(!s->first_slice_line) { // predictor A is not out of bounds
2063
            if(s->mb_width == 1) {
2064
                px = A[0];
2065
                py = A[1];
2066
            } else {
2067
                px = mid_pred(A[0], B[0], C[0]);
2068
                py = mid_pred(A[1], B[1], C[1]);
2069
            }
2070
        } else if(s->mb_x) { // predictor C is not out of bounds
2071
            px = C[0];
2072
            py = C[1];
2073
        } else {
2074
            px = py = 0;
2075
        }
2076
        /* Pullback MV as specified in 8.3.5.3.4 */
2077
        {
2078
            int qx, qy, X, Y;
2079
            if(v->profile < PROFILE_ADVANCED) {
2080
                qx = (s->mb_x << 5);
2081
                qy = (s->mb_y << 5);
2082
                X = (s->mb_width << 5) - 4;
2083
                Y = (s->mb_height << 5) - 4;
2084
                if(qx + px < -28) px = -28 - qx;
2085
                if(qy + py < -28) py = -28 - qy;
2086
                if(qx + px > X) px = X - qx;
2087
                if(qy + py > Y) py = Y - qy;
2088
            } else {
2089
                qx = (s->mb_x << 6);
2090
                qy = (s->mb_y << 6);
2091
                X = (s->mb_width << 6) - 4;
2092
                Y = (s->mb_height << 6) - 4;
2093
                if(qx + px < -60) px = -60 - qx;
2094
                if(qy + py < -60) py = -60 - qy;
2095
                if(qx + px > X) px = X - qx;
2096
                if(qy + py > Y) py = Y - qy;
2097
            }
2098
        }
2099
        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2100
        if(0 && !s->first_slice_line && s->mb_x) {
2101
            if(is_intra[xy - wrap])
2102
                sum = FFABS(px) + FFABS(py);
2103
            else
2104
                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2105
            if(sum > 32) {
2106
                if(get_bits1(&s->gb)) {
2107
                    px = A[0];
2108
                    py = A[1];
2109
                } else {
2110
                    px = C[0];
2111
                    py = C[1];
2112
                }
2113
            } else {
2114
                if(is_intra[xy - 2])
2115
                    sum = FFABS(px) + FFABS(py);
2116
                else
2117
                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2118
                if(sum > 32) {
2119
                    if(get_bits1(&s->gb)) {
2120
                        px = A[0];
2121
                        py = A[1];
2122
                    } else {
2123
                        px = C[0];
2124
                        py = C[1];
2125
                    }
2126
                }
2127
            }
2128
        }
2129
        /* store MV using signed modulus of MV range defined in 4.11 */
2130

    
2131
        s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2132
        s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2133
    }
2134
    s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2135
    s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2136
    s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2137
    s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2138
}
2139

    
2140
/** Get predicted DC value for I-frames only
2141
 * prediction dir: left=0, top=1
2142
 * @param s MpegEncContext
2143
 * @param[in] n block index in the current MB
2144
 * @param dc_val_ptr Pointer to DC predictor
2145
 * @param dir_ptr Prediction direction for use in AC prediction
2146
 */
2147
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2148
                              int16_t **dc_val_ptr, int *dir_ptr)
2149
{
2150
    int a, b, c, wrap, pred, scale;
2151
    int16_t *dc_val;
2152
    static const uint16_t dcpred[32] = {
2153
    -1, 1024,  512,  341,  256,  205,  171,  146,  128,
2154
         114,  102,   93,   85,   79,   73,   68,   64,
2155
          60,   57,   54,   51,   49,   47,   45,   43,
2156
          41,   39,   38,   37,   35,   34,   33
2157
    };
2158

    
2159
    /* find prediction - wmv3_dc_scale always used here in fact */
2160
    if (n < 4)     scale = s->y_dc_scale;
2161
    else           scale = s->c_dc_scale;
2162

    
2163
    wrap = s->block_wrap[n];
2164
    dc_val= s->dc_val[0] + s->block_index[n];
2165

    
2166
    /* B A
2167
     * C X
2168
     */
2169
    c = dc_val[ - 1];
2170
    b = dc_val[ - 1 - wrap];
2171
    a = dc_val[ - wrap];
2172

    
2173
    if (pq < 9 || !overlap)
2174
    {
2175
        /* Set outer values */
2176
        if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
2177
        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
2178
    }
2179
    else
2180
    {
2181
        /* Set outer values */
2182
        if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
2183
        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
2184
    }
2185

    
2186
    if (abs(a - b) <= abs(b - c)) {
2187
        pred = c;
2188
        *dir_ptr = 1;//left
2189
    } else {
2190
        pred = a;
2191
        *dir_ptr = 0;//top
2192
    }
2193

    
2194
    /* update predictor */
2195
    *dc_val_ptr = &dc_val[0];
2196
    return pred;
2197
}
2198

    
2199

    
2200
/** Get predicted DC value
2201
 * prediction dir: left=0, top=1
2202
 * @param s MpegEncContext
2203
 * @param[in] n block index in the current MB
2204
 * @param dc_val_ptr Pointer to DC predictor
2205
 * @param dir_ptr Prediction direction for use in AC prediction
2206
 */
2207
static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2208
                              int a_avail, int c_avail,
2209
                              int16_t **dc_val_ptr, int *dir_ptr)
2210
{
2211
    int a, b, c, wrap, pred, scale;
2212
    int16_t *dc_val;
2213
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2214
    int q1, q2 = 0;
2215

    
2216
    /* find prediction - wmv3_dc_scale always used here in fact */
2217
    if (n < 4)     scale = s->y_dc_scale;
2218
    else           scale = s->c_dc_scale;
2219

    
2220
    wrap = s->block_wrap[n];
2221
    dc_val= s->dc_val[0] + s->block_index[n];
2222

    
2223
    /* B A
2224
     * C X
2225
     */
2226
    c = dc_val[ - 1];
2227
    b = dc_val[ - 1 - wrap];
2228
    a = dc_val[ - wrap];
2229
    /* scale predictors if needed */
2230
    q1 = s->current_picture.qscale_table[mb_pos];
2231
    if(c_avail && (n!= 1 && n!=3)) {
2232
        q2 = s->current_picture.qscale_table[mb_pos - 1];
2233
        if(q2 && q2 != q1)
2234
            c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2235
    }
2236
    if(a_avail && (n!= 2 && n!=3)) {
2237
        q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2238
        if(q2 && q2 != q1)
2239
            a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2240
    }
2241
    if(a_avail && c_avail && (n!=3)) {
2242
        int off = mb_pos;
2243
        if(n != 1) off--;
2244
        if(n != 2) off -= s->mb_stride;
2245
        q2 = s->current_picture.qscale_table[off];
2246
        if(q2 && q2 != q1)
2247
            b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2248
    }
2249

    
2250
    if(a_avail && c_avail) {
2251
        if(abs(a - b) <= abs(b - c)) {
2252
            pred = c;
2253
            *dir_ptr = 1;//left
2254
        } else {
2255
            pred = a;
2256
            *dir_ptr = 0;//top
2257
        }
2258
    } else if(a_avail) {
2259
        pred = a;
2260
        *dir_ptr = 0;//top
2261
    } else if(c_avail) {
2262
        pred = c;
2263
        *dir_ptr = 1;//left
2264
    } else {
2265
        pred = 0;
2266
        *dir_ptr = 1;//left
2267
    }
2268

    
2269
    /* update predictor */
2270
    *dc_val_ptr = &dc_val[0];
2271
    return pred;
2272
}
2273

    
2274

    
2275
/**
2276
 * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
2277
 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2278
 * @{
2279
 */
2280

    
2281
static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
2282
{
2283
    int xy, wrap, pred, a, b, c;
2284

    
2285
    xy = s->block_index[n];
2286
    wrap = s->b8_stride;
2287

    
2288
    /* B C
2289
     * A X
2290
     */
2291
    a = s->coded_block[xy - 1       ];
2292
    b = s->coded_block[xy - 1 - wrap];
2293
    c = s->coded_block[xy     - wrap];
2294

    
2295
    if (b == c) {
2296
        pred = a;
2297
    } else {
2298
        pred = c;
2299
    }
2300

    
2301
    /* store value */
2302
    *coded_block_ptr = &s->coded_block[xy];
2303

    
2304
    return pred;
2305
}
2306

    
2307
/**
2308
 * Decode one AC coefficient
2309
 * @param v The VC1 context
2310
 * @param last Last coefficient
2311
 * @param skip How much zero coefficients to skip
2312
 * @param value Decoded AC coefficient value
2313
 * @see 8.1.3.4
2314
 */
2315
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
2316
{
2317
    GetBitContext *gb = &v->s.gb;
2318
    int index, escape, run = 0, level = 0, lst = 0;
2319

    
2320
    index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2321
    if (index != vc1_ac_sizes[codingset] - 1) {
2322
        run = vc1_index_decode_table[codingset][index][0];
2323
        level = vc1_index_decode_table[codingset][index][1];
2324
        lst = index >= vc1_last_decode_table[codingset];
2325
        if(get_bits(gb, 1))
2326
            level = -level;
2327
    } else {
2328
        escape = decode210(gb);
2329
        if (escape != 2) {
2330
            index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2331
            run = vc1_index_decode_table[codingset][index][0];
2332
            level = vc1_index_decode_table[codingset][index][1];
2333
            lst = index >= vc1_last_decode_table[codingset];
2334
            if(escape == 0) {
2335
                if(lst)
2336
                    level += vc1_last_delta_level_table[codingset][run];
2337
                else
2338
                    level += vc1_delta_level_table[codingset][run];
2339
            } else {
2340
                if(lst)
2341
                    run += vc1_last_delta_run_table[codingset][level] + 1;
2342
                else
2343
                    run += vc1_delta_run_table[codingset][level] + 1;
2344
            }
2345
            if(get_bits(gb, 1))
2346
                level = -level;
2347
        } else {
2348
            int sign;
2349
            lst = get_bits(gb, 1);
2350
            if(v->s.esc3_level_length == 0) {
2351
                if(v->pq < 8 || v->dquantfrm) { // table 59
2352
                    v->s.esc3_level_length = get_bits(gb, 3);
2353
                    if(!v->s.esc3_level_length)
2354
                        v->s.esc3_level_length = get_bits(gb, 2) + 8;
2355
                } else { //table 60
2356
                    v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
2357
                }
2358
                v->s.esc3_run_length = 3 + get_bits(gb, 2);
2359
            }
2360
            run = get_bits(gb, v->s.esc3_run_length);
2361
            sign = get_bits(gb, 1);
2362
            level = get_bits(gb, v->s.esc3_level_length);
2363
            if(sign)
2364
                level = -level;
2365
        }
2366
    }
2367

    
2368
    *last = lst;
2369
    *skip = run;
2370
    *value = level;
2371
}
2372

    
2373
/** Decode intra block in intra frames - should be faster than decode_intra_block
2374
 * @param v VC1Context
2375
 * @param block block to decode
2376
 * @param coded are AC coeffs present or not
2377
 * @param codingset set of VLC to decode data
2378
 */
2379
static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
2380
{
2381
    GetBitContext *gb = &v->s.gb;
2382
    MpegEncContext *s = &v->s;
2383
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2384
    int run_diff, i;
2385
    int16_t *dc_val;
2386
    int16_t *ac_val, *ac_val2;
2387
    int dcdiff;
2388

    
2389
    /* Get DC differential */
2390
    if (n < 4) {
2391
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2392
    } else {
2393
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2394
    }
2395
    if (dcdiff < 0){
2396
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2397
        return -1;
2398
    }
2399
    if (dcdiff)
2400
    {
2401
        if (dcdiff == 119 /* ESC index value */)
2402
        {
2403
            /* TODO: Optimize */
2404
            if (v->pq == 1) dcdiff = get_bits(gb, 10);
2405
            else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2406
            else dcdiff = get_bits(gb, 8);
2407
        }
2408
        else
2409
        {
2410
            if (v->pq == 1)
2411
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2412
            else if (v->pq == 2)
2413
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2414
        }
2415
        if (get_bits(gb, 1))
2416
            dcdiff = -dcdiff;
2417
    }
2418

    
2419
    /* Prediction */
2420
    dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2421
    *dc_val = dcdiff;
2422

    
2423
    /* Store the quantized DC coeff, used for prediction */
2424
    if (n < 4) {
2425
        block[0] = dcdiff * s->y_dc_scale;
2426
    } else {
2427
        block[0] = dcdiff * s->c_dc_scale;
2428
    }
2429
    /* Skip ? */
2430
    run_diff = 0;
2431
    i = 0;
2432
    if (!coded) {
2433
        goto not_coded;
2434
    }
2435

    
2436
    //AC Decoding
2437
    i = 1;
2438

    
2439
    {
2440
        int last = 0, skip, value;
2441
        const int8_t *zz_table;
2442
        int scale;
2443
        int k;
2444

    
2445
        scale = v->pq * 2 + v->halfpq;
2446

    
2447
        if(v->s.ac_pred) {
2448
            if(!dc_pred_dir)
2449
                zz_table = ff_vc1_horizontal_zz;
2450
            else
2451
                zz_table = ff_vc1_vertical_zz;
2452
        } else
2453
            zz_table = ff_vc1_normal_zz;
2454

    
2455
        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2456
        ac_val2 = ac_val;
2457
        if(dc_pred_dir) //left
2458
            ac_val -= 16;
2459
        else //top
2460
            ac_val -= 16 * s->block_wrap[n];
2461

    
2462
        while (!last) {
2463
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2464
            i += skip;
2465
            if(i > 63)
2466
                break;
2467
            block[zz_table[i++]] = value;
2468
        }
2469

    
2470
        /* apply AC prediction if needed */
2471
        if(s->ac_pred) {
2472
            if(dc_pred_dir) { //left
2473
                for(k = 1; k < 8; k++)
2474
                    block[k << 3] += ac_val[k];
2475
            } else { //top
2476
                for(k = 1; k < 8; k++)
2477
                    block[k] += ac_val[k + 8];
2478
            }
2479
        }
2480
        /* save AC coeffs for further prediction */
2481
        for(k = 1; k < 8; k++) {
2482
            ac_val2[k] = block[k << 3];
2483
            ac_val2[k + 8] = block[k];
2484
        }
2485

    
2486
        /* scale AC coeffs */
2487
        for(k = 1; k < 64; k++)
2488
            if(block[k]) {
2489
                block[k] *= scale;
2490
                if(!v->pquantizer)
2491
                    block[k] += (block[k] < 0) ? -v->pq : v->pq;
2492
            }
2493

    
2494
        if(s->ac_pred) i = 63;
2495
    }
2496

    
2497
not_coded:
2498
    if(!coded) {
2499
        int k, scale;
2500
        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2501
        ac_val2 = ac_val;
2502

    
2503
        scale = v->pq * 2 + v->halfpq;
2504
        memset(ac_val2, 0, 16 * 2);
2505
        if(dc_pred_dir) {//left
2506
            ac_val -= 16;
2507
            if(s->ac_pred)
2508
                memcpy(ac_val2, ac_val, 8 * 2);
2509
        } else {//top
2510
            ac_val -= 16 * s->block_wrap[n];
2511
            if(s->ac_pred)
2512
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2513
        }
2514

    
2515
        /* apply AC prediction if needed */
2516
        if(s->ac_pred) {
2517
            if(dc_pred_dir) { //left
2518
                for(k = 1; k < 8; k++) {
2519
                    block[k << 3] = ac_val[k] * scale;
2520
                    if(!v->pquantizer && block[k << 3])
2521
                        block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
2522
                }
2523
            } else { //top
2524
                for(k = 1; k < 8; k++) {
2525
                    block[k] = ac_val[k + 8] * scale;
2526
                    if(!v->pquantizer && block[k])
2527
                        block[k] += (block[k] < 0) ? -v->pq : v->pq;
2528
                }
2529
            }
2530
            i = 63;
2531
        }
2532
    }
2533
    s->block_last_index[n] = i;
2534

    
2535
    return 0;
2536
}
2537

    
2538
/** Decode intra block in intra frames - should be faster than decode_intra_block
2539
 * @param v VC1Context
2540
 * @param block block to decode
2541
 * @param coded are AC coeffs present or not
2542
 * @param codingset set of VLC to decode data
2543
 */
2544
static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
2545
{
2546
    GetBitContext *gb = &v->s.gb;
2547
    MpegEncContext *s = &v->s;
2548
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2549
    int run_diff, i;
2550
    int16_t *dc_val;
2551
    int16_t *ac_val, *ac_val2;
2552
    int dcdiff;
2553
    int a_avail = v->a_avail, c_avail = v->c_avail;
2554
    int use_pred = s->ac_pred;
2555
    int scale;
2556
    int q1, q2 = 0;
2557
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2558

    
2559
    /* Get DC differential */
2560
    if (n < 4) {
2561
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2562
    } else {
2563
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2564
    }
2565
    if (dcdiff < 0){
2566
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2567
        return -1;
2568
    }
2569
    if (dcdiff)
2570
    {
2571
        if (dcdiff == 119 /* ESC index value */)
2572
        {
2573
            /* TODO: Optimize */
2574
            if (mquant == 1) dcdiff = get_bits(gb, 10);
2575
            else if (mquant == 2) dcdiff = get_bits(gb, 9);
2576
            else dcdiff = get_bits(gb, 8);
2577
        }
2578
        else
2579
        {
2580
            if (mquant == 1)
2581
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2582
            else if (mquant == 2)
2583
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2584
        }
2585
        if (get_bits(gb, 1))
2586
            dcdiff = -dcdiff;
2587
    }
2588

    
2589
    /* Prediction */
2590
    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2591
    *dc_val = dcdiff;
2592

    
2593
    /* Store the quantized DC coeff, used for prediction */
2594
    if (n < 4) {
2595
        block[0] = dcdiff * s->y_dc_scale;
2596
    } else {
2597
        block[0] = dcdiff * s->c_dc_scale;
2598
    }
2599
    /* Skip ? */
2600
    run_diff = 0;
2601
    i = 0;
2602

    
2603
    //AC Decoding
2604
    i = 1;
2605

    
2606
    /* check if AC is needed at all and adjust direction if needed */
2607
    if(!a_avail) dc_pred_dir = 1;
2608
    if(!c_avail) dc_pred_dir = 0;
2609
    if(!a_avail && !c_avail) use_pred = 0;
2610
    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2611
    ac_val2 = ac_val;
2612

    
2613
    scale = mquant * 2 + v->halfpq;
2614

    
2615
    if(dc_pred_dir) //left
2616
        ac_val -= 16;
2617
    else //top
2618
        ac_val -= 16 * s->block_wrap[n];
2619

    
2620
    q1 = s->current_picture.qscale_table[mb_pos];
2621
    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2622
    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2623
    if(dc_pred_dir && n==1) q2 = q1;
2624
    if(!dc_pred_dir && n==2) q2 = q1;
2625
    if(n==3) q2 = q1;
2626

    
2627
    if(coded) {
2628
        int last = 0, skip, value;
2629
        const int8_t *zz_table;
2630
        int k;
2631

    
2632
        if(v->s.ac_pred) {
2633
            if(!dc_pred_dir)
2634
                zz_table = ff_vc1_horizontal_zz;
2635
            else
2636
                zz_table = ff_vc1_vertical_zz;
2637
        } else
2638
            zz_table = ff_vc1_normal_zz;
2639

    
2640
        while (!last) {
2641
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2642
            i += skip;
2643
            if(i > 63)
2644
                break;
2645
            block[zz_table[i++]] = value;
2646
        }
2647

    
2648
        /* apply AC prediction if needed */
2649
        if(use_pred) {
2650
            /* scale predictors if needed*/
2651
            if(q2 && q1!=q2) {
2652
                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2653
                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2654

    
2655
                if(dc_pred_dir) { //left
2656
                    for(k = 1; k < 8; k++)
2657
                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2658
                } else { //top
2659
                    for(k = 1; k < 8; k++)
2660
                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2661
                }
2662
            } else {
2663
                if(dc_pred_dir) { //left
2664
                    for(k = 1; k < 8; k++)
2665
                        block[k << 3] += ac_val[k];
2666
                } else { //top
2667
                    for(k = 1; k < 8; k++)
2668
                        block[k] += ac_val[k + 8];
2669
                }
2670
            }
2671
        }
2672
        /* save AC coeffs for further prediction */
2673
        for(k = 1; k < 8; k++) {
2674
            ac_val2[k] = block[k << 3];
2675
            ac_val2[k + 8] = block[k];
2676
        }
2677

    
2678
        /* scale AC coeffs */
2679
        for(k = 1; k < 64; k++)
2680
            if(block[k]) {
2681
                block[k] *= scale;
2682
                if(!v->pquantizer)
2683
                    block[k] += (block[k] < 0) ? -mquant : mquant;
2684
            }
2685

    
2686
        if(use_pred) i = 63;
2687
    } else { // no AC coeffs
2688
        int k;
2689

    
2690
        memset(ac_val2, 0, 16 * 2);
2691
        if(dc_pred_dir) {//left
2692
            if(use_pred) {
2693
                memcpy(ac_val2, ac_val, 8 * 2);
2694
                if(q2 && q1!=q2) {
2695
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2696
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2697
                    for(k = 1; k < 8; k++)
2698
                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2699
                }
2700
            }
2701
        } else {//top
2702
            if(use_pred) {
2703
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2704
                if(q2 && q1!=q2) {
2705
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2706
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2707
                    for(k = 1; k < 8; k++)
2708
                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2709
                }
2710
            }
2711
        }
2712

    
2713
        /* apply AC prediction if needed */
2714
        if(use_pred) {
2715
            if(dc_pred_dir) { //left
2716
                for(k = 1; k < 8; k++) {
2717
                    block[k << 3] = ac_val2[k] * scale;
2718
                    if(!v->pquantizer && block[k << 3])
2719
                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2720
                }
2721
            } else { //top
2722
                for(k = 1; k < 8; k++) {
2723
                    block[k] = ac_val2[k + 8] * scale;
2724
                    if(!v->pquantizer && block[k])
2725
                        block[k] += (block[k] < 0) ? -mquant : mquant;
2726
                }
2727
            }
2728
            i = 63;
2729
        }
2730
    }
2731
    s->block_last_index[n] = i;
2732

    
2733
    return 0;
2734
}
2735

    
2736
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2737
 * @param v VC1Context
2738
 * @param block block to decode
2739
 * @param coded are AC coeffs present or not
2740
 * @param mquant block quantizer
2741
 * @param codingset set of VLC to decode data
2742
 */
2743
static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
2744
{
2745
    GetBitContext *gb = &v->s.gb;
2746
    MpegEncContext *s = &v->s;
2747
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2748
    int run_diff, i;
2749
    int16_t *dc_val;
2750
    int16_t *ac_val, *ac_val2;
2751
    int dcdiff;
2752
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2753
    int a_avail = v->a_avail, c_avail = v->c_avail;
2754
    int use_pred = s->ac_pred;
2755
    int scale;
2756
    int q1, q2 = 0;
2757

    
2758
    /* XXX: Guard against dumb values of mquant */
2759
    mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
2760

    
2761
    /* Set DC scale - y and c use the same */
2762
    s->y_dc_scale = s->y_dc_scale_table[mquant];
2763
    s->c_dc_scale = s->c_dc_scale_table[mquant];
2764

    
2765
    /* Get DC differential */
2766
    if (n < 4) {
2767
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2768
    } else {
2769
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2770
    }
2771
    if (dcdiff < 0){
2772
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2773
        return -1;
2774
    }
2775
    if (dcdiff)
2776
    {
2777
        if (dcdiff == 119 /* ESC index value */)
2778
        {
2779
            /* TODO: Optimize */
2780
            if (mquant == 1) dcdiff = get_bits(gb, 10);
2781
            else if (mquant == 2) dcdiff = get_bits(gb, 9);
2782
            else dcdiff = get_bits(gb, 8);
2783
        }
2784
        else
2785
        {
2786
            if (mquant == 1)
2787
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2788
            else if (mquant == 2)
2789
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2790
        }
2791
        if (get_bits(gb, 1))
2792
            dcdiff = -dcdiff;
2793
    }
2794

    
2795
    /* Prediction */
2796
    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2797
    *dc_val = dcdiff;
2798

    
2799
    /* Store the quantized DC coeff, used for prediction */
2800

    
2801
    if (n < 4) {
2802
        block[0] = dcdiff * s->y_dc_scale;
2803
    } else {
2804
        block[0] = dcdiff * s->c_dc_scale;
2805
    }
2806
    /* Skip ? */
2807
    run_diff = 0;
2808
    i = 0;
2809

    
2810
    //AC Decoding
2811
    i = 1;
2812

    
2813
    /* check if AC is needed at all and adjust direction if needed */
2814
    if(!a_avail) dc_pred_dir = 1;
2815
    if(!c_avail) dc_pred_dir = 0;
2816
    if(!a_avail && !c_avail) use_pred = 0;
2817
    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2818
    ac_val2 = ac_val;
2819

    
2820
    scale = mquant * 2 + v->halfpq;
2821

    
2822
    if(dc_pred_dir) //left
2823
        ac_val -= 16;
2824
    else //top
2825
        ac_val -= 16 * s->block_wrap[n];
2826

    
2827
    q1 = s->current_picture.qscale_table[mb_pos];
2828
    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2829
    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2830
    if(dc_pred_dir && n==1) q2 = q1;
2831
    if(!dc_pred_dir && n==2) q2 = q1;
2832
    if(n==3) q2 = q1;
2833

    
2834
    if(coded) {
2835
        int last = 0, skip, value;
2836
        const int8_t *zz_table;
2837
        int k;
2838

    
2839
        zz_table = ff_vc1_simple_progressive_8x8_zz;
2840

    
2841
        while (!last) {
2842
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2843
            i += skip;
2844
            if(i > 63)
2845
                break;
2846
            block[zz_table[i++]] = value;
2847
        }
2848

    
2849
        /* apply AC prediction if needed */
2850
        if(use_pred) {
2851
            /* scale predictors if needed*/
2852
            if(q2 && q1!=q2) {
2853
                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2854
                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2855

    
2856
                if(dc_pred_dir) { //left
2857
                    for(k = 1; k < 8; k++)
2858
                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2859
                } else { //top
2860
                    for(k = 1; k < 8; k++)
2861
                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2862
                }
2863
            } else {
2864
                if(dc_pred_dir) { //left
2865
                    for(k = 1; k < 8; k++)
2866
                        block[k << 3] += ac_val[k];
2867
                } else { //top
2868
                    for(k = 1; k < 8; k++)
2869
                        block[k] += ac_val[k + 8];
2870
                }
2871
            }
2872
        }
2873
        /* save AC coeffs for further prediction */
2874
        for(k = 1; k < 8; k++) {
2875
            ac_val2[k] = block[k << 3];
2876
            ac_val2[k + 8] = block[k];
2877
        }
2878

    
2879
        /* scale AC coeffs */
2880
        for(k = 1; k < 64; k++)
2881
            if(block[k]) {
2882
                block[k] *= scale;
2883
                if(!v->pquantizer)
2884
                    block[k] += (block[k] < 0) ? -mquant : mquant;
2885
            }
2886

    
2887
        if(use_pred) i = 63;
2888
    } else { // no AC coeffs
2889
        int k;
2890

    
2891
        memset(ac_val2, 0, 16 * 2);
2892
        if(dc_pred_dir) {//left
2893
            if(use_pred) {
2894
                memcpy(ac_val2, ac_val, 8 * 2);
2895
                if(q2 && q1!=q2) {
2896
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2897
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2898
                    for(k = 1; k < 8; k++)
2899
                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2900
                }
2901
            }
2902
        } else {//top
2903
            if(use_pred) {
2904
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2905
                if(q2 && q1!=q2) {
2906
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2907
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2908
                    for(k = 1; k < 8; k++)
2909
                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2910
                }
2911
            }
2912
        }
2913

    
2914
        /* apply AC prediction if needed */
2915
        if(use_pred) {
2916
            if(dc_pred_dir) { //left
2917
                for(k = 1; k < 8; k++) {
2918
                    block[k << 3] = ac_val2[k] * scale;
2919
                    if(!v->pquantizer && block[k << 3])
2920
                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2921
                }
2922
            } else { //top
2923
                for(k = 1; k < 8; k++) {
2924
                    block[k] = ac_val2[k + 8] * scale;
2925
                    if(!v->pquantizer && block[k])
2926
                        block[k] += (block[k] < 0) ? -mquant : mquant;
2927
                }
2928
            }
2929
            i = 63;
2930
        }
2931
    }
2932
    s->block_last_index[n] = i;
2933

    
2934
    return 0;
2935
}
2936

    
2937
/** Decode P block
2938
 */
2939
static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
2940
{
2941
    MpegEncContext *s = &v->s;
2942
    GetBitContext *gb = &s->gb;
2943
    int i, j;
2944
    int subblkpat = 0;
2945
    int scale, off, idx, last, skip, value;
2946
    int ttblk = ttmb & 7;
2947

    
2948
    if(ttmb == -1) {
2949
        ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
2950
    }
2951
    if(ttblk == TT_4X4) {
2952
        subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
2953
    }
2954
    if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
2955
        subblkpat = decode012(gb);
2956
        if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
2957
        if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
2958
        if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
2959
    }
2960
    scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
2961

    
2962
    // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2963
    if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
2964
        subblkpat = 2 - (ttblk == TT_8X4_TOP);
2965
        ttblk = TT_8X4;
2966
    }
2967
    if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
2968
        subblkpat = 2 - (ttblk == TT_4X8_LEFT);
2969
        ttblk = TT_4X8;
2970
    }
2971
    switch(ttblk) {
2972
    case TT_8X8:
2973
        i = 0;
2974
        last = 0;
2975
        while (!last) {
2976
            vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2977
            i += skip;
2978
            if(i > 63)
2979
                break;
2980
            idx = ff_vc1_simple_progressive_8x8_zz[i++];
2981
            block[idx] = value * scale;
2982
            if(!v->pquantizer)
2983
                block[idx] += (block[idx] < 0) ? -mquant : mquant;
2984
        }
2985
        s->dsp.vc1_inv_trans_8x8(block);
2986
        break;
2987
    case TT_4X4:
2988
        for(j = 0; j < 4; j++) {
2989
            last = subblkpat & (1 << (3 - j));
2990
            i = 0;
2991
            off = (j & 1) * 4 + (j & 2) * 16;
2992
            while (!last) {
2993
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2994
                i += skip;
2995
                if(i > 15)
2996
                    break;
2997
                idx = ff_vc1_simple_progressive_4x4_zz[i++];
2998
                block[idx + off] = value * scale;
2999
                if(!v->pquantizer)
3000
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3001
            }
3002
            if(!(subblkpat & (1 << (3 - j))))
3003
                s->dsp.vc1_inv_trans_4x4(block, j);
3004
        }
3005
        break;
3006
    case TT_8X4:
3007
        for(j = 0; j < 2; j++) {
3008
            last = subblkpat & (1 << (1 - j));
3009
            i = 0;
3010
            off = j * 32;
3011
            while (!last) {
3012
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3013
                i += skip;
3014
                if(i > 31)
3015
                    break;
3016
                if(v->profile < PROFILE_ADVANCED)
3017
                    idx = ff_vc1_simple_progressive_8x4_zz[i++];
3018
                else
3019
                    idx = ff_vc1_adv_progressive_8x4_zz[i++];
3020
                block[idx + off] = value * scale;
3021
                if(!v->pquantizer)
3022
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3023
            }
3024
            if(!(subblkpat & (1 << (1 - j))))
3025
                s->dsp.vc1_inv_trans_8x4(block, j);
3026
        }
3027
        break;
3028
    case TT_4X8:
3029
        for(j = 0; j < 2; j++) {
3030
            last = subblkpat & (1 << (1 - j));
3031
            i = 0;
3032
            off = j * 4;
3033
            while (!last) {
3034
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3035
                i += skip;
3036
                if(i > 31)
3037
                    break;
3038
                if(v->profile < PROFILE_ADVANCED)
3039
                    idx = ff_vc1_simple_progressive_4x8_zz[i++];
3040
                else
3041
                    idx = ff_vc1_adv_progressive_4x8_zz[i++];
3042
                block[idx + off] = value * scale;
3043
                if(!v->pquantizer)
3044
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3045
            }
3046
            if(!(subblkpat & (1 << (1 - j))))
3047
                s->dsp.vc1_inv_trans_4x8(block, j);
3048
        }
3049
        break;
3050
    }
3051
    return 0;
3052
}
3053

    
3054

    
3055
/** Decode one P-frame MB (in Simple/Main profile)
3056
 */
3057
static int vc1_decode_p_mb(VC1Context *v)
3058
{
3059
    MpegEncContext *s = &v->s;
3060
    GetBitContext *gb = &s->gb;
3061
    int i, j;
3062
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3063
    int cbp; /* cbp decoding stuff */
3064
    int mqdiff, mquant; /* MB quantization */
3065
    int ttmb = v->ttfrm; /* MB Transform type */
3066
    int status;
3067

    
3068
    static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3069
      offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3070
    int mb_has_coeffs = 1; /* last_flag */
3071
    int dmv_x, dmv_y; /* Differential MV components */
3072
    int index, index1; /* LUT indices */
3073
    int val, sign; /* temp values */
3074
    int first_block = 1;
3075
    int dst_idx, off;
3076
    int skipped, fourmv;
3077

    
3078
    mquant = v->pq; /* Loosy initialization */
3079

    
3080
    if (v->mv_type_is_raw)
3081
        fourmv = get_bits1(gb);
3082
    else
3083
        fourmv = v->mv_type_mb_plane[mb_pos];
3084
    if (v->skip_is_raw)
3085
        skipped = get_bits1(gb);
3086
    else
3087
        skipped = v->s.mbskip_table[mb_pos];
3088

    
3089
    s->dsp.clear_blocks(s->block[0]);
3090

    
3091
    if (!fourmv) /* 1MV mode */
3092
    {
3093
        if (!skipped)
3094
        {
3095
            GET_MVDATA(dmv_x, dmv_y);
3096

    
3097
            if (s->mb_intra) {
3098
                s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3099
                s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3100
            }
3101
            s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
3102
            vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3103

    
3104
            /* FIXME Set DC val for inter block ? */
3105
            if (s->mb_intra && !mb_has_coeffs)
3106
            {
3107
                GET_MQUANT();
3108
                s->ac_pred = get_bits(gb, 1);
3109
                cbp = 0;
3110
            }
3111
            else if (mb_has_coeffs)
3112
            {
3113
                if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
3114
                cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3115
                GET_MQUANT();
3116
            }
3117
            else
3118
            {
3119
                mquant = v->pq;
3120
                cbp = 0;
3121
            }
3122
            s->current_picture.qscale_table[mb_pos] = mquant;
3123

    
3124
            if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3125
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3126
                                VC1_TTMB_VLC_BITS, 2);
3127
            if(!s->mb_intra) vc1_mc_1mv(v, 0);
3128
            dst_idx = 0;
3129
            for (i=0; i<6; i++)
3130
            {
3131
                s->dc_val[0][s->block_index[i]] = 0;
3132
                dst_idx += i >> 2;
3133
                val = ((cbp >> (5 - i)) & 1);
3134
                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3135
                v->mb_type[0][s->block_index[i]] = s->mb_intra;
3136
                if(s->mb_intra) {
3137
                    /* check if prediction blocks A and C are available */
3138
                    v->a_avail = v->c_avail = 0;
3139
                    if(i == 2 || i == 3 || !s->first_slice_line)
3140
                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3141
                    if(i == 1 || i == 3 || s->mb_x)
3142
                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3143

    
3144
                    vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3145
                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3146
                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
3147
                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3148
                    for(j = 0; j < 64; j++) s->block[i][j] += 128;
3149
                    if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
3150
                    s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3151
                    if(v->pq >= 9 && v->overlap) {
3152
                        if(v->c_avail)
3153
                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3154
                        if(v->a_avail)
3155
                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3156
                    }
3157
                } else if(val) {
3158
                    vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3159
                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
3160
                    first_block = 0;
3161
                    if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3162
                        s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3163
                }
3164
            }
3165
        }
3166
        else //Skipped
3167
        {
3168
            s->mb_intra = 0;
3169
            for(i = 0; i < 6; i++) {
3170
                v->mb_type[0][s->block_index[i]] = 0;
3171
                s->dc_val[0][s->block_index[i]] = 0;
3172
            }
3173
            s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3174
            s->current_picture.qscale_table[mb_pos] = 0;
3175
            vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3176
            vc1_mc_1mv(v, 0);
3177
            return 0;
3178
        }
3179
    } //1MV mode
3180
    else //4MV mode
3181
    {
3182
        if (!skipped /* unskipped MB */)
3183
        {
3184
            int intra_count = 0, coded_inter = 0;
3185
            int is_intra[6], is_coded[6];
3186
            /* Get CBPCY */
3187
            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3188
            for (i=0; i<6; i++)
3189
            {
3190
                val = ((cbp >> (5 - i)) & 1);
3191
                s->dc_val[0][s->block_index[i]] = 0;
3192
                s->mb_intra = 0;
3193
                if(i < 4) {
3194
                    dmv_x = dmv_y = 0;
3195
                    s->mb_intra = 0;
3196
                    mb_has_coeffs = 0;
3197
                    if(val) {
3198
                        GET_MVDATA(dmv_x, dmv_y);
3199
                    }
3200
                    vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3201
                    if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
3202
                    intra_count += s->mb_intra;
3203
                    is_intra[i] = s->mb_intra;
3204
                    is_coded[i] = mb_has_coeffs;
3205
                }
3206
                if(i&4){
3207
                    is_intra[i] = (intra_count >= 3);
3208
                    is_coded[i] = val;
3209
                }
3210
                if(i == 4) vc1_mc_4mv_chroma(v);
3211
                v->mb_type[0][s->block_index[i]] = is_intra[i];
3212
                if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
3213
            }
3214
            // if there are no coded blocks then don't do anything more
3215
            if(!intra_count && !coded_inter) return 0;
3216
            dst_idx = 0;
3217
            GET_MQUANT();
3218
            s->current_picture.qscale_table[mb_pos] = mquant;
3219
            /* test if block is intra and has pred */
3220
            {
3221
                int intrapred = 0;
3222
                for(i=0; i<6; i++)
3223
                    if(is_intra[i]) {
3224
                        if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3225
                            || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
3226
                            intrapred = 1;
3227
                            break;
3228
                        }
3229
                    }
3230
                if(intrapred)s->ac_pred = get_bits(gb, 1);
3231
                else s->ac_pred = 0;
3232
            }
3233
            if (!v->ttmbf && coded_inter)
3234
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3235
            for (i=0; i<6; i++)
3236
            {
3237
                dst_idx += i >> 2;
3238
                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3239
                s->mb_intra = is_intra[i];
3240
                if (is_intra[i]) {
3241
                    /* check if prediction blocks A and C are available */
3242
                    v->a_avail = v->c_avail = 0;
3243
                    if(i == 2 || i == 3 || !s->first_slice_line)
3244
                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3245
                    if(i == 1 || i == 3 || s->mb_x)
3246
                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3247

    
3248
                    vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
3249
                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3250
                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
3251
                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3252
                    for(j = 0; j < 64; j++) s->block[i][j] += 128;
3253
                    if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
3254
                    s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3255
                    if(v->pq >= 9 && v->overlap) {
3256
                        if(v->c_avail)
3257
                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3258
                        if(v->a_avail)
3259
                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3260
                    }
3261
                } else if(is_coded[i]) {
3262
                    status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3263
                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
3264
                    first_block = 0;
3265
                    if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3266
                        s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3267
                }
3268
            }
3269
            return status;
3270
        }
3271
        else //Skipped MB
3272
        {
3273
            s->mb_intra = 0;
3274
            s->current_picture.qscale_table[mb_pos] = 0;
3275
            for (i=0; i<6; i++) {
3276
                v->mb_type[0][s->block_index[i]] = 0;
3277
                s->dc_val[0][s->block_index[i]] = 0;
3278
            }
3279
            for (i=0; i<4; i++)
3280
            {
3281
                vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
3282
                vc1_mc_4mv_luma(v, i);
3283
            }
3284
            vc1_mc_4mv_chroma(v);
3285
            s->current_picture.qscale_table[mb_pos] = 0;
3286
            return 0;
3287
        }
3288
    }
3289

    
3290
    /* Should never happen */
3291
    return -1;
3292
}
3293

    
3294
/** Decode one B-frame MB (in Main profile)
3295
 */
3296
static void vc1_decode_b_mb(VC1Context *v)
3297
{
3298
    MpegEncContext *s = &v->s;
3299
    GetBitContext *gb = &s->gb;
3300
    int i, j;
3301
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3302
    int cbp = 0; /* cbp decoding stuff */
3303
    int mqdiff, mquant; /* MB quantization */
3304
    int ttmb = v->ttfrm; /* MB Transform type */
3305

    
3306
    static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3307
      offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3308
    int mb_has_coeffs = 0; /* last_flag */
3309
    int index, index1; /* LUT indices */
3310
    int val, sign; /* temp values */
3311
    int first_block = 1;
3312
    int dst_idx, off;
3313
    int skipped, direct;
3314
    int dmv_x[2], dmv_y[2];
3315
    int bmvtype = BMV_TYPE_BACKWARD;
3316

    
3317
    mquant = v->pq; /* Loosy initialization */
3318
    s->mb_intra = 0;
3319

    
3320
    if (v->dmb_is_raw)
3321
        direct = get_bits1(gb);
3322
    else
3323
        direct = v->direct_mb_plane[mb_pos];
3324
    if (v->skip_is_raw)
3325
        skipped = get_bits1(gb);
3326
    else
3327
        skipped = v->s.mbskip_table[mb_pos];
3328

    
3329
    s->dsp.clear_blocks(s->block[0]);
3330
    dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
3331
    for(i = 0; i < 6; i++) {
3332
        v->mb_type[0][s->block_index[i]] = 0;
3333
        s->dc_val[0][s->block_index[i]] = 0;
3334
    }
3335
    s->current_picture.qscale_table[mb_pos] = 0;
3336

    
3337
    if (!direct) {
3338
        if (!skipped) {
3339
            GET_MVDATA(dmv_x[0], dmv_y[0]);
3340
            dmv_x[1] = dmv_x[0];
3341
            dmv_y[1] = dmv_y[0];
3342
        }
3343
        if(skipped || !s->mb_intra) {
3344
            bmvtype = decode012(gb);
3345
            switch(bmvtype) {
3346
            case 0:
3347
                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
3348
                break;
3349
            case 1:
3350
                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
3351
                break;
3352
            case 2:
3353
                bmvtype = BMV_TYPE_INTERPOLATED;
3354
                dmv_x[0] = dmv_y[0] = 0;
3355
            }
3356
        }
3357
    }
3358
    for(i = 0; i < 6; i++)
3359
        v->mb_type[0][s->block_index[i]] = s->mb_intra;
3360

    
3361
    if (skipped) {
3362
        if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
3363
        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3364
        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3365
        return;
3366
    }
3367
    if (direct) {
3368
        cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3369
        GET_MQUANT();
3370
        s->mb_intra = 0;
3371
        mb_has_coeffs = 0;
3372
        s->current_picture.qscale_table[mb_pos] = mquant;
3373
        if(!v->ttmbf)
3374
            ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3375
        dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
3376
        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3377
        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3378
    } else {
3379
        if(!mb_has_coeffs && !s->mb_intra) {
3380
            /* no coded blocks - effectively skipped */
3381
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3382
            vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3383
            return;
3384
        }
3385
        if(s->mb_intra && !mb_has_coeffs) {
3386
            GET_MQUANT();
3387
            s->current_picture.qscale_table[mb_pos] = mquant;
3388
            s->ac_pred = get_bits1(gb);
3389
            cbp = 0;
3390
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3391
        } else {
3392
            if(bmvtype == BMV_TYPE_INTERPOLATED) {
3393
                GET_MVDATA(dmv_x[0], dmv_y[0]);
3394
                if(!mb_has_coeffs) {
3395
                    /* interpolated skipped block */
3396
                    vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3397
                    vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3398
                    return;
3399
                }
3400
            }
3401
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3402
            if(!s->mb_intra) {
3403
                vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3404
            }
3405
            if(s->mb_intra)
3406
                s->ac_pred = get_bits1(gb);
3407
            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3408
            GET_MQUANT();
3409
            s->current_picture.qscale_table[mb_pos] = mquant;
3410
            if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3411
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3412
        }
3413
    }
3414
    dst_idx = 0;
3415
    for (i=0; i<6; i++)
3416
    {
3417
        s->dc_val[0][s->block_index[i]] = 0;
3418
        dst_idx += i >> 2;
3419
        val = ((cbp >> (5 - i)) & 1);
3420
        off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3421
        v->mb_type[0][s->block_index[i]] = s->mb_intra;
3422
        if(s->mb_intra) {
3423
            /* check if prediction blocks A and C are available */
3424
            v->a_avail = v->c_avail = 0;
3425
            if(i == 2 || i == 3 || !s->first_slice_line)
3426
                v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3427
            if(i == 1 || i == 3 || s->mb_x)
3428
                v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3429

    
3430
            vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3431
            if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3432
            s->dsp.vc1_inv_trans_8x8(s->block[i]);
3433
            if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3434
            for(j = 0; j < 64; j++) s->block[i][j] += 128;
3435
            s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3436
        } else if(val) {
3437
            vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3438
            if(!v->ttmbf && ttmb < 8) ttmb = -1;
3439
            first_block = 0;
3440
            if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3441
                s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3442
        }
3443
    }
3444
}
3445

    
3446
/** Decode blocks of I-frame
3447
 */
3448
static void vc1_decode_i_blocks(VC1Context *v)
3449
{
3450
    int k, j;
3451
    MpegEncContext *s = &v->s;
3452
    int cbp, val;
3453
    uint8_t *coded_val;
3454
    int mb_pos;
3455

    
3456
    /* select codingmode used for VLC tables selection */
3457
    switch(v->y_ac_table_index){
3458
    case 0:
3459
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3460
        break;
3461
    case 1:
3462
        v->codingset = CS_HIGH_MOT_INTRA;
3463
        break;
3464
    case 2:
3465
        v->codingset = CS_MID_RATE_INTRA;
3466
        break;
3467
    }
3468

    
3469
    switch(v->c_ac_table_index){
3470
    case 0:
3471
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3472
        break;
3473
    case 1:
3474
        v->codingset2 = CS_HIGH_MOT_INTER;
3475
        break;
3476
    case 2:
3477
        v->codingset2 = CS_MID_RATE_INTER;
3478
        break;
3479
    }
3480

    
3481
    /* Set DC scale - y and c use the same */
3482
    s->y_dc_scale = s->y_dc_scale_table[v->pq];
3483
    s->c_dc_scale = s->c_dc_scale_table[v->pq];
3484

    
3485
    //do frame decode
3486
    s->mb_x = s->mb_y = 0;
3487
    s->mb_intra = 1;
3488
    s->first_slice_line = 1;
3489
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3490
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3491
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3492
            ff_init_block_index(s);
3493
            ff_update_block_index(s);
3494
            s->dsp.clear_blocks(s->block[0]);
3495
            mb_pos = s->mb_x + s->mb_y * s->mb_width;
3496
            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3497
            s->current_picture.qscale_table[mb_pos] = v->pq;
3498
            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3499
            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3500

    
3501
            // do actual MB decoding and displaying
3502
            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3503
            v->s.ac_pred = get_bits(&v->s.gb, 1);
3504

    
3505
            for(k = 0; k < 6; k++) {
3506
                val = ((cbp >> (5 - k)) & 1);
3507

    
3508
                if (k < 4) {
3509
                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3510
                    val = val ^ pred;
3511
                    *coded_val = val;
3512
                }
3513
                cbp |= val << (5 - k);
3514

    
3515
                vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
3516

    
3517
                s->dsp.vc1_inv_trans_8x8(s->block[k]);
3518
                if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
3519
                if(v->pq >= 9 && v->overlap) {
3520
                    for(j = 0; j < 64; j++) s->block[k][j] += 128;
3521
                }
3522
            }
3523

    
3524
            vc1_put_block(v, s->block);
3525
            if(v->pq >= 9 && v->overlap) {
3526
                if(s->mb_x) {
3527
                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3528
                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3529
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3530
                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3531
                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3532
                    }
3533
                }
3534
                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3535
                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3536
                if(!s->first_slice_line) {
3537
                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3538
                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3539
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3540
                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3541
                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3542
                    }
3543
                }
3544
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3545
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3546
            }
3547

    
3548
            if(get_bits_count(&s->gb) > v->bits) {
3549
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3550
                return;
3551
            }
3552
        }
3553
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3554
        s->first_slice_line = 0;
3555
    }
3556
}
3557

    
3558
/** Decode blocks of I-frame for advanced profile
3559
 */
3560
static void vc1_decode_i_blocks_adv(VC1Context *v)
3561
{
3562
    int k, j;
3563
    MpegEncContext *s = &v->s;
3564
    int cbp, val;
3565
    uint8_t *coded_val;
3566
    int mb_pos;
3567
    int mquant = v->pq;
3568
    int mqdiff;
3569
    int overlap;
3570
    GetBitContext *gb = &s->gb;
3571

    
3572
    /* select codingmode used for VLC tables selection */
3573
    switch(v->y_ac_table_index){
3574
    case 0:
3575
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3576
        break;
3577
    case 1:
3578
        v->codingset = CS_HIGH_MOT_INTRA;
3579
        break;
3580
    case 2:
3581
        v->codingset = CS_MID_RATE_INTRA;
3582
        break;
3583
    }
3584

    
3585
    switch(v->c_ac_table_index){
3586
    case 0:
3587
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3588
        break;
3589
    case 1:
3590
        v->codingset2 = CS_HIGH_MOT_INTER;
3591
        break;
3592
    case 2:
3593
        v->codingset2 = CS_MID_RATE_INTER;
3594
        break;
3595
    }
3596

    
3597
    //do frame decode
3598
    s->mb_x = s->mb_y = 0;
3599
    s->mb_intra = 1;
3600
    s->first_slice_line = 1;
3601
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3602
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3603
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3604
            ff_init_block_index(s);
3605
            ff_update_block_index(s);
3606
            s->dsp.clear_blocks(s->block[0]);
3607
            mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3608
            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3609
            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3610
            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3611

    
3612
            // do actual MB decoding and displaying
3613
            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3614
            if(v->acpred_is_raw)
3615
                v->s.ac_pred = get_bits(&v->s.gb, 1);
3616
            else
3617
                v->s.ac_pred = v->acpred_plane[mb_pos];
3618

    
3619
            if(v->condover == CONDOVER_SELECT) {
3620
                if(v->overflg_is_raw)
3621
                    overlap = get_bits(&v->s.gb, 1);
3622
                else
3623
                    overlap = v->over_flags_plane[mb_pos];
3624
            } else
3625
                overlap = (v->condover == CONDOVER_ALL);
3626

    
3627
            GET_MQUANT();
3628

    
3629
            s->current_picture.qscale_table[mb_pos] = mquant;
3630
            /* Set DC scale - y and c use the same */
3631
            s->y_dc_scale = s->y_dc_scale_table[mquant];
3632
            s->c_dc_scale = s->c_dc_scale_table[mquant];
3633

    
3634
            for(k = 0; k < 6; k++) {
3635
                val = ((cbp >> (5 - k)) & 1);
3636

    
3637
                if (k < 4) {
3638
                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3639
                    val = val ^ pred;
3640
                    *coded_val = val;
3641
                }
3642
                cbp |= val << (5 - k);
3643

    
3644
                v->a_avail = !s->first_slice_line || (k==2 || k==3);
3645
                v->c_avail = !!s->mb_x || (k==1 || k==3);
3646

    
3647
                vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
3648

    
3649
                s->dsp.vc1_inv_trans_8x8(s->block[k]);
3650
                for(j = 0; j < 64; j++) s->block[k][j] += 128;
3651
            }
3652

    
3653
            vc1_put_block(v, s->block);
3654
            if(overlap) {
3655
                if(s->mb_x) {
3656
                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3657
                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3658
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3659
                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3660
                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3661
                    }
3662
                }
3663
                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3664
                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3665
                if(!s->first_slice_line) {
3666
                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3667
                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3668
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3669
                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3670
                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3671
                    }
3672
                }
3673
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3674
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3675
            }
3676

    
3677
            if(get_bits_count(&s->gb) > v->bits) {
3678
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3679
                return;
3680
            }
3681
        }
3682
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3683
        s->first_slice_line = 0;
3684
    }
3685
}
3686

    
3687
static void vc1_decode_p_blocks(VC1Context *v)
3688
{
3689
    MpegEncContext *s = &v->s;
3690

    
3691
    /* select codingmode used for VLC tables selection */
3692
    switch(v->c_ac_table_index){
3693
    case 0:
3694
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3695
        break;
3696
    case 1:
3697
        v->codingset = CS_HIGH_MOT_INTRA;
3698
        break;
3699
    case 2:
3700
        v->codingset = CS_MID_RATE_INTRA;
3701
        break;
3702
    }
3703

    
3704
    switch(v->c_ac_table_index){
3705
    case 0:
3706
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3707
        break;
3708
    case 1:
3709
        v->codingset2 = CS_HIGH_MOT_INTER;
3710
        break;
3711
    case 2:
3712
        v->codingset2 = CS_MID_RATE_INTER;
3713
        break;
3714
    }
3715

    
3716
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3717
    s->first_slice_line = 1;
3718
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3719
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3720
            ff_init_block_index(s);
3721
            ff_update_block_index(s);
3722
            s->dsp.clear_blocks(s->block[0]);
3723

    
3724
            vc1_decode_p_mb(v);
3725
            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3726
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3727
                return;
3728
            }
3729
        }
3730
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3731
        s->first_slice_line = 0;
3732
    }
3733
}
3734

    
3735
static void vc1_decode_b_blocks(VC1Context *v)
3736
{
3737
    MpegEncContext *s = &v->s;
3738

    
3739
    /* select codingmode used for VLC tables selection */
3740
    switch(v->c_ac_table_index){
3741
    case 0:
3742
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3743
        break;
3744
    case 1:
3745
        v->codingset = CS_HIGH_MOT_INTRA;
3746
        break;
3747
    case 2:
3748
        v->codingset = CS_MID_RATE_INTRA;
3749
        break;
3750
    }
3751

    
3752
    switch(v->c_ac_table_index){
3753
    case 0:
3754
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3755
        break;
3756
    case 1:
3757
        v->codingset2 = CS_HIGH_MOT_INTER;
3758
        break;
3759
    case 2:
3760
        v->codingset2 = CS_MID_RATE_INTER;
3761
        break;
3762
    }
3763

    
3764
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3765
    s->first_slice_line = 1;
3766
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3767
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3768
            ff_init_block_index(s);
3769
            ff_update_block_index(s);
3770
            s->dsp.clear_blocks(s->block[0]);
3771

    
3772
            vc1_decode_b_mb(v);
3773
            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3774
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3775
                return;
3776
            }
3777
        }
3778
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3779
        s->first_slice_line = 0;
3780
    }
3781
}
3782

    
3783
static void vc1_decode_skip_blocks(VC1Context *v)
3784
{
3785
    MpegEncContext *s = &v->s;
3786

    
3787
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3788
    s->first_slice_line = 1;
3789
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3790
        s->mb_x = 0;
3791
        ff_init_block_index(s);
3792
        ff_update_block_index(s);
3793
        memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
3794
        memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3795
        memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3796
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3797
        s->first_slice_line = 0;
3798
    }
3799
    s->pict_type = P_TYPE;
3800
}
3801

    
3802
static void vc1_decode_blocks(VC1Context *v)
3803
{
3804

    
3805
    v->s.esc3_level_length = 0;
3806

    
3807
    switch(v->s.pict_type) {
3808
    case I_TYPE:
3809
        if(v->profile == PROFILE_ADVANCED)
3810
            vc1_decode_i_blocks_adv(v);
3811
        else
3812
            vc1_decode_i_blocks(v);
3813
        break;
3814
    case P_TYPE:
3815
        if(v->p_frame_skipped)
3816
            vc1_decode_skip_blocks(v);
3817
        else
3818
            vc1_decode_p_blocks(v);
3819
        break;
3820
    case B_TYPE:
3821
        if(v->bi_type){
3822
            if(v->profile == PROFILE_ADVANCED)
3823
                vc1_decode_i_blocks_adv(v);
3824
            else
3825
                vc1_decode_i_blocks(v);
3826
        }else
3827
            vc1_decode_b_blocks(v);
3828
        break;
3829
    }
3830
}
3831

    
3832
/** Find VC-1 marker in buffer
3833
 * @return position where next marker starts or end of buffer if no marker found
3834
 */
3835
static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
3836
{
3837
    uint32_t mrk = 0xFFFFFFFF;
3838

    
3839
    if(end-src < 4) return end;
3840
    while(src < end){
3841
        mrk = (mrk << 8) | *src++;
3842
        if(IS_MARKER(mrk))
3843
            return src-4;
3844
    }
3845
    return end;
3846
}
3847

    
3848
static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
3849
{
3850
    int dsize = 0, i;
3851

    
3852
    if(size < 4){
3853
        for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
3854
        return size;
3855
    }
3856
    for(i = 0; i < size; i++, src++) {
3857
        if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
3858
            dst[dsize++] = src[1];
3859
            src++;
3860
            i++;
3861
        } else
3862
            dst[dsize++] = *src;
3863
    }
3864
    return dsize;
3865
}
3866

    
3867
/** Initialize a VC1/WMV3 decoder
3868
 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3869
 * @todo TODO: Decypher remaining bits in extra_data
3870
 */
3871
static int vc1_decode_init(AVCodecContext *avctx)
3872
{
3873
    VC1Context *v = avctx->priv_data;
3874
    MpegEncContext *s = &v->s;
3875
    GetBitContext gb;
3876

    
3877
    if (!avctx->extradata_size || !avctx->extradata) return -1;
3878
    if (!(avctx->flags & CODEC_FLAG_GRAY))
3879
        avctx->pix_fmt = PIX_FMT_YUV420P;
3880
    else
3881
        avctx->pix_fmt = PIX_FMT_GRAY8;
3882
    v->s.avctx = avctx;
3883
    avctx->flags |= CODEC_FLAG_EMU_EDGE;
3884
    v->s.flags |= CODEC_FLAG_EMU_EDGE;
3885

    
3886
    if(ff_h263_decode_init(avctx) < 0)
3887
        return -1;
3888
    if (vc1_init_common(v) < 0) return -1;
3889

    
3890
    avctx->coded_width = avctx->width;
3891
    avctx->coded_height = avctx->height;
3892
    if (avctx->codec_id == CODEC_ID_WMV3)
3893
    {
3894
        int count = 0;
3895

    
3896
        // looks like WMV3 has a sequence header stored in the extradata
3897
        // advanced sequence header may be before the first frame
3898
        // the last byte of the extradata is a version number, 1 for the
3899
        // samples we can decode
3900

    
3901
        init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
3902

    
3903
        if (decode_sequence_header(avctx, &gb) < 0)
3904
          return -1;
3905

    
3906
        count = avctx->extradata_size*8 - get_bits_count(&gb);
3907
        if (count>0)
3908
        {
3909
            av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
3910
                   count, get_bits(&gb, count));
3911
        }
3912
        else if (count < 0)
3913
        {
3914
            av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
3915
        }
3916
    } else { // VC1/WVC1
3917
        uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
3918
        uint8_t *next; int size, buf2_size;
3919
        uint8_t *buf2 = NULL;
3920
        int seq_inited = 0, ep_inited = 0;
3921

    
3922
        if(avctx->extradata_size < 16) {
3923
            av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
3924
            return -1;
3925
        }
3926

    
3927
        buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
3928
        if(start[0]) start++; // in WVC1 extradata first byte is its size
3929
        next = start;
3930
        for(; next < end; start = next){
3931
            next = find_next_marker(start + 4, end);
3932
            size = next - start - 4;
3933
            if(size <= 0) continue;
3934
            buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
3935
            init_get_bits(&gb, buf2, buf2_size * 8);
3936
            switch(AV_RB32(start)){
3937
            case VC1_CODE_SEQHDR:
3938
                if(decode_sequence_header(avctx, &gb) < 0){
3939
                    av_free(buf2);
3940
                    return -1;
3941
                }
3942
                seq_inited = 1;
3943
                break;
3944
            case VC1_CODE_ENTRYPOINT:
3945
                if(decode_entry_point(avctx, &gb) < 0){
3946
                    av_free(buf2);
3947
                    return -1;
3948
                }
3949
                ep_inited = 1;
3950
                break;
3951
            }
3952
        }
3953
        av_free(buf2);
3954
        if(!seq_inited || !ep_inited){
3955
            av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
3956
            return -1;
3957
        }
3958
    }
3959
    avctx->has_b_frames= !!(avctx->max_b_frames);
3960
    s->low_delay = !avctx->has_b_frames;
3961

    
3962
    s->mb_width = (avctx->coded_width+15)>>4;
3963
    s->mb_height = (avctx->coded_height+15)>>4;
3964

    
3965
    /* Allocate mb bitplanes */
3966
    v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3967
    v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3968
    v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
3969
    v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
3970

    
3971
    /* allocate block type info in that way so it could be used with s->block_index[] */
3972
    v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
3973
    v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
3974
    v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
3975
    v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
3976

    
3977
    /* Init coded blocks info */
3978
    if (v->profile == PROFILE_ADVANCED)
3979
    {
3980
//        if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
3981
//            return -1;
3982
//        if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
3983
//            return -1;
3984
    }
3985

    
3986
    return 0;
3987
}
3988

    
3989

    
3990
/** Decode a VC1/WMV3 frame
3991
 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3992
 */
3993
static int vc1_decode_frame(AVCodecContext *avctx,
3994
                            void *data, int *data_size,
3995
                            uint8_t *buf, int buf_size)
3996
{
3997
    VC1Context *v = avctx->priv_data;
3998
    MpegEncContext *s = &v->s;
3999
    AVFrame *pict = data;
4000
    uint8_t *buf2 = NULL;
4001

    
4002
    /* no supplementary picture */
4003
    if (buf_size == 0) {
4004
        /* special case for last picture */
4005
        if (s->low_delay==0 && s->next_picture_ptr) {
4006
            *pict= *(AVFrame*)s->next_picture_ptr;
4007
            s->next_picture_ptr= NULL;
4008

    
4009
            *data_size = sizeof(AVFrame);
4010
        }
4011

    
4012
        return 0;
4013
    }
4014

    
4015
    /* We need to set current_picture_ptr before reading the header,
4016
     * otherwise we cannot store anyting in there. */
4017
    if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
4018
        int i= ff_find_unused_picture(s, 0);
4019
        s->current_picture_ptr= &s->picture[i];
4020
    }
4021

    
4022
    //for advanced profile we may need to parse and unescape data
4023
    if (avctx->codec_id == CODEC_ID_VC1) {
4024
        int buf_size2 = 0;
4025
        buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
4026

    
4027
        if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
4028
            uint8_t *start, *end, *next;
4029
            int size;
4030

    
4031
            next = buf;
4032
            for(start = buf, end = buf + buf_size; next < end; start = next){
4033
                next = find_next_marker(start + 4, end);
4034
                size = next - start - 4;
4035
                if(size <= 0) continue;
4036
                switch(AV_RB32(start)){
4037
                case VC1_CODE_FRAME:
4038
                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4039
                    break;
4040
                case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
4041
                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4042
                    init_get_bits(&s->gb, buf2, buf_size2*8);
4043
                    decode_entry_point(avctx, &s->gb);
4044
                    break;
4045
                case VC1_CODE_SLICE:
4046
                    av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
4047
                    av_free(buf2);
4048
                    return -1;
4049
                }
4050
            }
4051
        }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
4052
            uint8_t *divider;
4053

    
4054
            divider = find_next_marker(buf, buf + buf_size);
4055
            if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
4056
                av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
4057
                return -1;
4058
            }
4059

    
4060
            buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
4061
            // TODO
4062
            av_free(buf2);return -1;
4063
        }else{
4064
            buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
4065
        }
4066
        init_get_bits(&s->gb, buf2, buf_size2*8);
4067
    } else
4068
        init_get_bits(&s->gb, buf, buf_size*8);
4069
    // do parse frame header
4070
    if(v->profile < PROFILE_ADVANCED) {
4071
        if(vc1_parse_frame_header(v, &s->gb) == -1) {
4072
            av_free(buf2);
4073
            return -1;
4074
        }
4075
    } else {
4076
        if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
4077
            av_free(buf2);
4078
            return -1;
4079
        }
4080
    }
4081

    
4082
    if(s->pict_type != I_TYPE && !v->res_rtm_flag){
4083
        av_free(buf2);
4084
        return -1;
4085
    }
4086

    
4087
    // for hurry_up==5
4088
    s->current_picture.pict_type= s->pict_type;
4089
    s->current_picture.key_frame= s->pict_type == I_TYPE;
4090

    
4091
    /* skip B-frames if we don't have reference frames */
4092
    if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
4093
        av_free(buf2);
4094
        return -1;//buf_size;
4095
    }
4096
    /* skip b frames if we are in a hurry */
4097
    if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
4098
    if(   (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
4099
       || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
4100
       ||  avctx->skip_frame >= AVDISCARD_ALL) {
4101
        av_free(buf2);
4102
        return buf_size;
4103
    }
4104
    /* skip everything if we are in a hurry>=5 */
4105
    if(avctx->hurry_up>=5) {
4106
        av_free(buf2);
4107
        return -1;//buf_size;
4108
    }
4109

    
4110
    if(s->next_p_frame_damaged){
4111
        if(s->pict_type==B_TYPE)
4112
            return buf_size;
4113
        else
4114
            s->next_p_frame_damaged=0;
4115
    }
4116

    
4117
    if(MPV_frame_start(s, avctx) < 0) {
4118
        av_free(buf2);
4119
        return -1;
4120
    }
4121

    
4122
    ff_er_frame_start(s);
4123

    
4124
    v->bits = buf_size * 8;
4125
    vc1_decode_blocks(v);
4126
//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
4127
//  if(get_bits_count(&s->gb) > buf_size * 8)
4128
//      return -1;
4129
    ff_er_frame_end(s);
4130

    
4131
    MPV_frame_end(s);
4132

    
4133
assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
4134
assert(s->current_picture.pict_type == s->pict_type);
4135
    if (s->pict_type == B_TYPE || s->low_delay) {
4136
        *pict= *(AVFrame*)s->current_picture_ptr;
4137
    } else if (s->last_picture_ptr != NULL) {
4138
        *pict= *(AVFrame*)s->last_picture_ptr;
4139
    }
4140

    
4141
    if(s->last_picture_ptr || s->low_delay){
4142
        *data_size = sizeof(AVFrame);
4143
        ff_print_debug_info(s, pict);
4144
    }
4145

    
4146
    /* Return the Picture timestamp as the frame number */
4147
    /* we substract 1 because it is added on utils.c    */
4148
    avctx->frame_number = s->picture_number - 1;
4149

    
4150
    av_free(buf2);
4151
    return buf_size;
4152
}
4153

    
4154

    
4155
/** Close a VC1/WMV3 decoder
4156
 * @warning Initial try at using MpegEncContext stuff
4157
 */
4158
static int vc1_decode_end(AVCodecContext *avctx)
4159
{
4160
    VC1Context *v = avctx->priv_data;
4161

    
4162
    av_freep(&v->hrd_rate);
4163
    av_freep(&v->hrd_buffer);
4164
    MPV_common_end(&v->s);
4165
    av_freep(&v->mv_type_mb_plane);
4166
    av_freep(&v->direct_mb_plane);
4167
    av_freep(&v->acpred_plane);
4168
    av_freep(&v->over_flags_plane);
4169
    av_freep(&v->mb_type_base);
4170
    return 0;
4171
}
4172

    
4173

    
4174
AVCodec vc1_decoder = {
4175
    "vc1",
4176
    CODEC_TYPE_VIDEO,
4177
    CODEC_ID_VC1,
4178
    sizeof(VC1Context),
4179
    vc1_decode_init,
4180
    NULL,
4181
    vc1_decode_end,
4182
    vc1_decode_frame,
4183
    CODEC_CAP_DELAY,
4184
    NULL
4185
};
4186

    
4187
AVCodec wmv3_decoder = {
4188
    "wmv3",
4189
    CODEC_TYPE_VIDEO,
4190
    CODEC_ID_WMV3,
4191
    sizeof(VC1Context),
4192
    vc1_decode_init,
4193
    NULL,
4194
    vc1_decode_end,
4195
    vc1_decode_frame,
4196
    CODEC_CAP_DELAY,
4197
    NULL
4198
};