ffmpeg / libavcodec / h264.c @ 766324fc
History | View | Annotate | Download (308 KB)
1 |
/*
|
---|---|
2 |
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
|
3 |
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file h264.c
|
24 |
* H.264 / AVC / MPEG4 part10 codec.
|
25 |
* @author Michael Niedermayer <michaelni@gmx.at>
|
26 |
*/
|
27 |
|
28 |
#include "dsputil.h" |
29 |
#include "avcodec.h" |
30 |
#include "mpegvideo.h" |
31 |
#include "h264.h" |
32 |
#include "h264data.h" |
33 |
#include "h264_parser.h" |
34 |
#include "golomb.h" |
35 |
#include "rectangle.h" |
36 |
|
37 |
#include "cabac.h" |
38 |
|
39 |
//#undef NDEBUG
|
40 |
#include <assert.h> |
41 |
|
42 |
/**
|
43 |
* Value of Picture.reference when Picture is not a reference picture, but
|
44 |
* is held for delayed output.
|
45 |
*/
|
46 |
#define DELAYED_PIC_REF 4 |
47 |
|
48 |
static VLC coeff_token_vlc[4]; |
49 |
static VLC chroma_dc_coeff_token_vlc;
|
50 |
|
51 |
static VLC total_zeros_vlc[15]; |
52 |
static VLC chroma_dc_total_zeros_vlc[3]; |
53 |
|
54 |
static VLC run_vlc[6]; |
55 |
static VLC run7_vlc;
|
56 |
|
57 |
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp); |
58 |
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc); |
59 |
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
60 |
static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
61 |
|
62 |
static av_always_inline uint32_t pack16to32(int a, int b){ |
63 |
#ifdef WORDS_BIGENDIAN
|
64 |
return (b&0xFFFF) + (a<<16); |
65 |
#else
|
66 |
return (a&0xFFFF) + (b<<16); |
67 |
#endif
|
68 |
} |
69 |
|
70 |
const uint8_t ff_rem6[52]={ |
71 |
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, |
72 |
}; |
73 |
|
74 |
const uint8_t ff_div6[52]={ |
75 |
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, |
76 |
}; |
77 |
|
78 |
|
79 |
static void fill_caches(H264Context *h, int mb_type, int for_deblock){ |
80 |
MpegEncContext * const s = &h->s;
|
81 |
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; |
82 |
int topleft_xy, top_xy, topright_xy, left_xy[2]; |
83 |
int topleft_type, top_type, topright_type, left_type[2]; |
84 |
int left_block[8]; |
85 |
int i;
|
86 |
|
87 |
top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE); |
88 |
|
89 |
//FIXME deblocking could skip the intra and nnz parts.
|
90 |
if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF) |
91 |
return;
|
92 |
|
93 |
//wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
|
94 |
|
95 |
topleft_xy = top_xy - 1;
|
96 |
topright_xy= top_xy + 1;
|
97 |
left_xy[1] = left_xy[0] = mb_xy-1; |
98 |
left_block[0]= 0; |
99 |
left_block[1]= 1; |
100 |
left_block[2]= 2; |
101 |
left_block[3]= 3; |
102 |
left_block[4]= 7; |
103 |
left_block[5]= 10; |
104 |
left_block[6]= 8; |
105 |
left_block[7]= 11; |
106 |
if(FRAME_MBAFF){
|
107 |
const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride; |
108 |
const int top_pair_xy = pair_xy - s->mb_stride; |
109 |
const int topleft_pair_xy = top_pair_xy - 1; |
110 |
const int topright_pair_xy = top_pair_xy + 1; |
111 |
const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]); |
112 |
const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]); |
113 |
const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]); |
114 |
const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]); |
115 |
const int curr_mb_frame_flag = !IS_INTERLACED(mb_type); |
116 |
const int bottom = (s->mb_y & 1); |
117 |
tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
|
118 |
if (bottom
|
119 |
? !curr_mb_frame_flag // bottom macroblock
|
120 |
: (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
|
121 |
) { |
122 |
top_xy -= s->mb_stride; |
123 |
} |
124 |
if (bottom
|
125 |
? !curr_mb_frame_flag // bottom macroblock
|
126 |
: (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
|
127 |
) { |
128 |
topleft_xy -= s->mb_stride; |
129 |
} |
130 |
if (bottom
|
131 |
? !curr_mb_frame_flag // bottom macroblock
|
132 |
: (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
|
133 |
) { |
134 |
topright_xy -= s->mb_stride; |
135 |
} |
136 |
if (left_mb_frame_flag != curr_mb_frame_flag) {
|
137 |
left_xy[1] = left_xy[0] = pair_xy - 1; |
138 |
if (curr_mb_frame_flag) {
|
139 |
if (bottom) {
|
140 |
left_block[0]= 2; |
141 |
left_block[1]= 2; |
142 |
left_block[2]= 3; |
143 |
left_block[3]= 3; |
144 |
left_block[4]= 8; |
145 |
left_block[5]= 11; |
146 |
left_block[6]= 8; |
147 |
left_block[7]= 11; |
148 |
} else {
|
149 |
left_block[0]= 0; |
150 |
left_block[1]= 0; |
151 |
left_block[2]= 1; |
152 |
left_block[3]= 1; |
153 |
left_block[4]= 7; |
154 |
left_block[5]= 10; |
155 |
left_block[6]= 7; |
156 |
left_block[7]= 10; |
157 |
} |
158 |
} else {
|
159 |
left_xy[1] += s->mb_stride;
|
160 |
//left_block[0]= 0;
|
161 |
left_block[1]= 2; |
162 |
left_block[2]= 0; |
163 |
left_block[3]= 2; |
164 |
//left_block[4]= 7;
|
165 |
left_block[5]= 10; |
166 |
left_block[6]= 7; |
167 |
left_block[7]= 10; |
168 |
} |
169 |
} |
170 |
} |
171 |
|
172 |
h->top_mb_xy = top_xy; |
173 |
h->left_mb_xy[0] = left_xy[0]; |
174 |
h->left_mb_xy[1] = left_xy[1]; |
175 |
if(for_deblock){
|
176 |
topleft_type = 0;
|
177 |
topright_type = 0;
|
178 |
top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0; |
179 |
left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0; |
180 |
left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0; |
181 |
|
182 |
if(FRAME_MBAFF && !IS_INTRA(mb_type)){
|
183 |
int list;
|
184 |
int v = *(uint16_t*)&h->non_zero_count[mb_xy][14]; |
185 |
for(i=0; i<16; i++) |
186 |
h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
|
187 |
for(list=0; list<h->list_count; list++){ |
188 |
if(USES_LIST(mb_type,list)){
|
189 |
uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]]; |
190 |
uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
|
191 |
int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]]; |
192 |
for(i=0; i<4; i++, dst+=8, src+=h->b_stride){ |
193 |
dst[0] = src[0]; |
194 |
dst[1] = src[1]; |
195 |
dst[2] = src[2]; |
196 |
dst[3] = src[3]; |
197 |
} |
198 |
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
|
199 |
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101; |
200 |
ref += h->b8_stride; |
201 |
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
|
202 |
*(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101; |
203 |
}else{
|
204 |
fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4); |
205 |
fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); |
206 |
} |
207 |
} |
208 |
} |
209 |
}else{
|
210 |
topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
|
211 |
top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
|
212 |
topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
|
213 |
left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0; |
214 |
left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0; |
215 |
} |
216 |
|
217 |
if(IS_INTRA(mb_type)){
|
218 |
h->topleft_samples_available= |
219 |
h->top_samples_available= |
220 |
h->left_samples_available= 0xFFFF;
|
221 |
h->topright_samples_available= 0xEEEA;
|
222 |
|
223 |
if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){ |
224 |
h->topleft_samples_available= 0xB3FF;
|
225 |
h->top_samples_available= 0x33FF;
|
226 |
h->topright_samples_available= 0x26EA;
|
227 |
} |
228 |
for(i=0; i<2; i++){ |
229 |
if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){ |
230 |
h->topleft_samples_available&= 0xDF5F;
|
231 |
h->left_samples_available&= 0x5F5F;
|
232 |
} |
233 |
} |
234 |
|
235 |
if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred)) |
236 |
h->topleft_samples_available&= 0x7FFF;
|
237 |
|
238 |
if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred)) |
239 |
h->topright_samples_available&= 0xFBFF;
|
240 |
|
241 |
if(IS_INTRA4x4(mb_type)){
|
242 |
if(IS_INTRA4x4(top_type)){
|
243 |
h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4]; |
244 |
h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5]; |
245 |
h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6]; |
246 |
h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3]; |
247 |
}else{
|
248 |
int pred;
|
249 |
if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
|
250 |
pred= -1;
|
251 |
else{
|
252 |
pred= 2;
|
253 |
} |
254 |
h->intra4x4_pred_mode_cache[4+8*0]= |
255 |
h->intra4x4_pred_mode_cache[5+8*0]= |
256 |
h->intra4x4_pred_mode_cache[6+8*0]= |
257 |
h->intra4x4_pred_mode_cache[7+8*0]= pred; |
258 |
} |
259 |
for(i=0; i<2; i++){ |
260 |
if(IS_INTRA4x4(left_type[i])){
|
261 |
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]]; |
262 |
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]]; |
263 |
}else{
|
264 |
int pred;
|
265 |
if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
|
266 |
pred= -1;
|
267 |
else{
|
268 |
pred= 2;
|
269 |
} |
270 |
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= |
271 |
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred; |
272 |
} |
273 |
} |
274 |
} |
275 |
} |
276 |
|
277 |
|
278 |
/*
|
279 |
0 . T T. T T T T
|
280 |
1 L . .L . . . .
|
281 |
2 L . .L . . . .
|
282 |
3 . T TL . . . .
|
283 |
4 L . .L . . . .
|
284 |
5 L . .. . . . .
|
285 |
*/
|
286 |
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
|
287 |
if(top_type){
|
288 |
h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4]; |
289 |
h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5]; |
290 |
h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6]; |
291 |
h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3]; |
292 |
|
293 |
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9]; |
294 |
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8]; |
295 |
|
296 |
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12]; |
297 |
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11]; |
298 |
|
299 |
}else{
|
300 |
h->non_zero_count_cache[4+8*0]= |
301 |
h->non_zero_count_cache[5+8*0]= |
302 |
h->non_zero_count_cache[6+8*0]= |
303 |
h->non_zero_count_cache[7+8*0]= |
304 |
|
305 |
h->non_zero_count_cache[1+8*0]= |
306 |
h->non_zero_count_cache[2+8*0]= |
307 |
|
308 |
h->non_zero_count_cache[1+8*3]= |
309 |
h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64; |
310 |
|
311 |
} |
312 |
|
313 |
for (i=0; i<2; i++) { |
314 |
if(left_type[i]){
|
315 |
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]]; |
316 |
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]]; |
317 |
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]]; |
318 |
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]]; |
319 |
}else{
|
320 |
h->non_zero_count_cache[3+8*1 + 2*8*i]= |
321 |
h->non_zero_count_cache[3+8*2 + 2*8*i]= |
322 |
h->non_zero_count_cache[0+8*1 + 8*i]= |
323 |
h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64; |
324 |
} |
325 |
} |
326 |
|
327 |
if( h->pps.cabac ) {
|
328 |
// top_cbp
|
329 |
if(top_type) {
|
330 |
h->top_cbp = h->cbp_table[top_xy]; |
331 |
} else if(IS_INTRA(mb_type)) { |
332 |
h->top_cbp = 0x1C0;
|
333 |
} else {
|
334 |
h->top_cbp = 0;
|
335 |
} |
336 |
// left_cbp
|
337 |
if (left_type[0]) { |
338 |
h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0; |
339 |
} else if(IS_INTRA(mb_type)) { |
340 |
h->left_cbp = 0x1C0;
|
341 |
} else {
|
342 |
h->left_cbp = 0;
|
343 |
} |
344 |
if (left_type[0]) { |
345 |
h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1; |
346 |
} |
347 |
if (left_type[1]) { |
348 |
h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3; |
349 |
} |
350 |
} |
351 |
|
352 |
#if 1 |
353 |
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
|
354 |
int list;
|
355 |
for(list=0; list<h->list_count; list++){ |
356 |
if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
|
357 |
/*if(!h->mv_cache_clean[list]){
|
358 |
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
|
359 |
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
|
360 |
h->mv_cache_clean[list]= 1;
|
361 |
}*/
|
362 |
continue;
|
363 |
} |
364 |
h->mv_cache_clean[list]= 0;
|
365 |
|
366 |
if(USES_LIST(top_type, list)){
|
367 |
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
368 |
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride; |
369 |
*(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0]; |
370 |
*(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1]; |
371 |
*(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2]; |
372 |
*(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3]; |
373 |
h->ref_cache[list][scan8[0] + 0 - 1*8]= |
374 |
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0]; |
375 |
h->ref_cache[list][scan8[0] + 2 - 1*8]= |
376 |
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1]; |
377 |
}else{
|
378 |
*(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= |
379 |
*(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= |
380 |
*(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= |
381 |
*(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0; |
382 |
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101; |
383 |
} |
384 |
|
385 |
for(i=0; i<2; i++){ |
386 |
int cache_idx = scan8[0] - 1 + i*2*8; |
387 |
if(USES_LIST(left_type[i], list)){
|
388 |
const int b_xy= h->mb2b_xy[left_xy[i]] + 3; |
389 |
const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1; |
390 |
*(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]; |
391 |
*(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]; |
392 |
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]; |
393 |
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]; |
394 |
}else{
|
395 |
*(uint32_t*)h->mv_cache [list][cache_idx ]= |
396 |
*(uint32_t*)h->mv_cache [list][cache_idx+8]= 0; |
397 |
h->ref_cache[list][cache_idx ]= |
398 |
h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
399 |
} |
400 |
} |
401 |
|
402 |
if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
|
403 |
continue;
|
404 |
|
405 |
if(USES_LIST(topleft_type, list)){
|
406 |
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride; |
407 |
const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride; |
408 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; |
409 |
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy]; |
410 |
}else{
|
411 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0; |
412 |
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
413 |
} |
414 |
|
415 |
if(USES_LIST(topright_type, list)){
|
416 |
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride; |
417 |
const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride; |
418 |
*(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; |
419 |
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy]; |
420 |
}else{
|
421 |
*(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0; |
422 |
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
423 |
} |
424 |
|
425 |
if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
|
426 |
continue;
|
427 |
|
428 |
h->ref_cache[list][scan8[5 ]+1] = |
429 |
h->ref_cache[list][scan8[7 ]+1] = |
430 |
h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else) |
431 |
h->ref_cache[list][scan8[4 ]] =
|
432 |
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
|
433 |
*(uint32_t*)h->mv_cache [list][scan8[5 ]+1]= |
434 |
*(uint32_t*)h->mv_cache [list][scan8[7 ]+1]= |
435 |
*(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) |
436 |
*(uint32_t*)h->mv_cache [list][scan8[4 ]]=
|
437 |
*(uint32_t*)h->mv_cache [list][scan8[12]]= 0; |
438 |
|
439 |
if( h->pps.cabac ) {
|
440 |
/* XXX beurk, Load mvd */
|
441 |
if(USES_LIST(top_type, list)){
|
442 |
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
443 |
*(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0]; |
444 |
*(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1]; |
445 |
*(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2]; |
446 |
*(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3]; |
447 |
}else{
|
448 |
*(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]= |
449 |
*(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]= |
450 |
*(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]= |
451 |
*(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0; |
452 |
} |
453 |
if(USES_LIST(left_type[0], list)){ |
454 |
const int b_xy= h->mb2b_xy[left_xy[0]] + 3; |
455 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]]; |
456 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]]; |
457 |
}else{
|
458 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]= |
459 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0; |
460 |
} |
461 |
if(USES_LIST(left_type[1], list)){ |
462 |
const int b_xy= h->mb2b_xy[left_xy[1]] + 3; |
463 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]]; |
464 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]]; |
465 |
}else{
|
466 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]= |
467 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0; |
468 |
} |
469 |
*(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]= |
470 |
*(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]= |
471 |
*(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) |
472 |
*(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
|
473 |
*(uint32_t*)h->mvd_cache [list][scan8[12]]= 0; |
474 |
|
475 |
if(h->slice_type == B_TYPE){
|
476 |
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1); |
477 |
|
478 |
if(IS_DIRECT(top_type)){
|
479 |
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101; |
480 |
}else if(IS_8X8(top_type)){ |
481 |
int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
|
482 |
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy]; |
483 |
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1]; |
484 |
}else{
|
485 |
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0; |
486 |
} |
487 |
|
488 |
if(IS_DIRECT(left_type[0])) |
489 |
h->direct_cache[scan8[0] - 1 + 0*8]= 1; |
490 |
else if(IS_8X8(left_type[0])) |
491 |
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)]; |
492 |
else
|
493 |
h->direct_cache[scan8[0] - 1 + 0*8]= 0; |
494 |
|
495 |
if(IS_DIRECT(left_type[1])) |
496 |
h->direct_cache[scan8[0] - 1 + 2*8]= 1; |
497 |
else if(IS_8X8(left_type[1])) |
498 |
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)]; |
499 |
else
|
500 |
h->direct_cache[scan8[0] - 1 + 2*8]= 0; |
501 |
} |
502 |
} |
503 |
|
504 |
if(FRAME_MBAFF){
|
505 |
#define MAP_MVS\
|
506 |
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ |
507 |
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ |
508 |
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ |
509 |
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ |
510 |
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ |
511 |
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ |
512 |
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\ |
513 |
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\ |
514 |
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\ |
515 |
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1]) |
516 |
if(MB_FIELD){
|
517 |
#define MAP_F2F(idx, mb_type)\
|
518 |
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
519 |
h->ref_cache[list][idx] <<= 1;\
|
520 |
h->mv_cache[list][idx][1] /= 2;\ |
521 |
h->mvd_cache[list][idx][1] /= 2;\ |
522 |
} |
523 |
MAP_MVS |
524 |
#undef MAP_F2F
|
525 |
}else{
|
526 |
#define MAP_F2F(idx, mb_type)\
|
527 |
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
528 |
h->ref_cache[list][idx] >>= 1;\
|
529 |
h->mv_cache[list][idx][1] <<= 1;\ |
530 |
h->mvd_cache[list][idx][1] <<= 1;\ |
531 |
} |
532 |
MAP_MVS |
533 |
#undef MAP_F2F
|
534 |
} |
535 |
} |
536 |
} |
537 |
} |
538 |
#endif
|
539 |
|
540 |
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
|
541 |
} |
542 |
|
543 |
static inline void write_back_intra_pred_mode(H264Context *h){ |
544 |
MpegEncContext * const s = &h->s;
|
545 |
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; |
546 |
|
547 |
h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1]; |
548 |
h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2]; |
549 |
h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3]; |
550 |
h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4]; |
551 |
h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4]; |
552 |
h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4]; |
553 |
h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4]; |
554 |
} |
555 |
|
556 |
/**
|
557 |
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
558 |
*/
|
559 |
static inline int check_intra4x4_pred_mode(H264Context *h){ |
560 |
MpegEncContext * const s = &h->s;
|
561 |
static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0}; |
562 |
static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED}; |
563 |
int i;
|
564 |
|
565 |
if(!(h->top_samples_available&0x8000)){ |
566 |
for(i=0; i<4; i++){ |
567 |
int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ]; |
568 |
if(status<0){ |
569 |
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
|
570 |
return -1; |
571 |
} else if(status){ |
572 |
h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
|
573 |
} |
574 |
} |
575 |
} |
576 |
|
577 |
if(!(h->left_samples_available&0x8000)){ |
578 |
for(i=0; i<4; i++){ |
579 |
int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ]; |
580 |
if(status<0){ |
581 |
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
|
582 |
return -1; |
583 |
} else if(status){ |
584 |
h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status; |
585 |
} |
586 |
} |
587 |
} |
588 |
|
589 |
return 0; |
590 |
} //FIXME cleanup like next
|
591 |
|
592 |
/**
|
593 |
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
594 |
*/
|
595 |
static inline int check_intra_pred_mode(H264Context *h, int mode){ |
596 |
MpegEncContext * const s = &h->s;
|
597 |
static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1}; |
598 |
static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8}; |
599 |
|
600 |
if(mode > 6U) { |
601 |
av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
|
602 |
return -1; |
603 |
} |
604 |
|
605 |
if(!(h->top_samples_available&0x8000)){ |
606 |
mode= top[ mode ]; |
607 |
if(mode<0){ |
608 |
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
|
609 |
return -1; |
610 |
} |
611 |
} |
612 |
|
613 |
if(!(h->left_samples_available&0x8000)){ |
614 |
mode= left[ mode ]; |
615 |
if(mode<0){ |
616 |
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
|
617 |
return -1; |
618 |
} |
619 |
} |
620 |
|
621 |
return mode;
|
622 |
} |
623 |
|
624 |
/**
|
625 |
* gets the predicted intra4x4 prediction mode.
|
626 |
*/
|
627 |
static inline int pred_intra_mode(H264Context *h, int n){ |
628 |
const int index8= scan8[n]; |
629 |
const int left= h->intra4x4_pred_mode_cache[index8 - 1]; |
630 |
const int top = h->intra4x4_pred_mode_cache[index8 - 8]; |
631 |
const int min= FFMIN(left, top); |
632 |
|
633 |
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
|
634 |
|
635 |
if(min<0) return DC_PRED; |
636 |
else return min; |
637 |
} |
638 |
|
639 |
static inline void write_back_non_zero_count(H264Context *h){ |
640 |
MpegEncContext * const s = &h->s;
|
641 |
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; |
642 |
|
643 |
h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1]; |
644 |
h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2]; |
645 |
h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3]; |
646 |
h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4]; |
647 |
h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4]; |
648 |
h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4]; |
649 |
h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4]; |
650 |
|
651 |
h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2]; |
652 |
h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2]; |
653 |
h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1]; |
654 |
|
655 |
h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5]; |
656 |
h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5]; |
657 |
h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4]; |
658 |
|
659 |
if(FRAME_MBAFF){
|
660 |
// store all luma nnzs, for deblocking
|
661 |
int v = 0, i; |
662 |
for(i=0; i<16; i++) |
663 |
v += (!!h->non_zero_count_cache[scan8[i]]) << i; |
664 |
*(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
|
665 |
} |
666 |
} |
667 |
|
668 |
/**
|
669 |
* gets the predicted number of non zero coefficients.
|
670 |
* @param n block index
|
671 |
*/
|
672 |
static inline int pred_non_zero_count(H264Context *h, int n){ |
673 |
const int index8= scan8[n]; |
674 |
const int left= h->non_zero_count_cache[index8 - 1]; |
675 |
const int top = h->non_zero_count_cache[index8 - 8]; |
676 |
int i= left + top;
|
677 |
|
678 |
if(i<64) i= (i+1)>>1; |
679 |
|
680 |
tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31); |
681 |
|
682 |
return i&31; |
683 |
} |
684 |
|
685 |
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){ |
686 |
const int topright_ref= h->ref_cache[list][ i - 8 + part_width ]; |
687 |
MpegEncContext *s = &h->s; |
688 |
|
689 |
/* there is no consistent mapping of mvs to neighboring locations that will
|
690 |
* make mbaff happy, so we can't move all this logic to fill_caches */
|
691 |
if(FRAME_MBAFF){
|
692 |
const uint32_t *mb_types = s->current_picture_ptr->mb_type;
|
693 |
const int16_t *mv;
|
694 |
*(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0; |
695 |
*C = h->mv_cache[list][scan8[0]-2]; |
696 |
|
697 |
if(!MB_FIELD
|
698 |
&& (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){ |
699 |
int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3); |
700 |
if(IS_INTERLACED(mb_types[topright_xy])){
|
701 |
#define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
|
702 |
const int x4 = X4, y4 = Y4;\ |
703 |
const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\ |
704 |
if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
|
705 |
return LIST_NOT_USED;\
|
706 |
mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\ |
707 |
h->mv_cache[list][scan8[0]-2][0] = mv[0];\ |
708 |
h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\ |
709 |
return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP; |
710 |
|
711 |
SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1); |
712 |
} |
713 |
} |
714 |
if(topright_ref == PART_NOT_AVAILABLE
|
715 |
&& ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4 |
716 |
&& h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){ |
717 |
if(!MB_FIELD
|
718 |
&& IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
|
719 |
SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1); |
720 |
} |
721 |
if(MB_FIELD
|
722 |
&& !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
|
723 |
&& i >= scan8[0]+8){ |
724 |
// leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
|
725 |
SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2); |
726 |
} |
727 |
} |
728 |
#undef SET_DIAG_MV
|
729 |
} |
730 |
|
731 |
if(topright_ref != PART_NOT_AVAILABLE){
|
732 |
*C= h->mv_cache[list][ i - 8 + part_width ];
|
733 |
return topright_ref;
|
734 |
}else{
|
735 |
tprintf(s->avctx, "topright MV not available\n");
|
736 |
|
737 |
*C= h->mv_cache[list][ i - 8 - 1 ]; |
738 |
return h->ref_cache[list][ i - 8 - 1 ]; |
739 |
} |
740 |
} |
741 |
|
742 |
/**
|
743 |
* gets the predicted MV.
|
744 |
* @param n the block index
|
745 |
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
|
746 |
* @param mx the x component of the predicted motion vector
|
747 |
* @param my the y component of the predicted motion vector
|
748 |
*/
|
749 |
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){ |
750 |
const int index8= scan8[n]; |
751 |
const int top_ref= h->ref_cache[list][ index8 - 8 ]; |
752 |
const int left_ref= h->ref_cache[list][ index8 - 1 ]; |
753 |
const int16_t * const A= h->mv_cache[list][ index8 - 1 ]; |
754 |
const int16_t * const B= h->mv_cache[list][ index8 - 8 ]; |
755 |
const int16_t * C;
|
756 |
int diagonal_ref, match_count;
|
757 |
|
758 |
assert(part_width==1 || part_width==2 || part_width==4); |
759 |
|
760 |
/* mv_cache
|
761 |
B . . A T T T T
|
762 |
U . . L . . , .
|
763 |
U . . L . . . .
|
764 |
U . . L . . , .
|
765 |
. . . L . . . .
|
766 |
*/
|
767 |
|
768 |
diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width); |
769 |
match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref); |
770 |
tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
|
771 |
if(match_count > 1){ //most common |
772 |
*mx= mid_pred(A[0], B[0], C[0]); |
773 |
*my= mid_pred(A[1], B[1], C[1]); |
774 |
}else if(match_count==1){ |
775 |
if(left_ref==ref){
|
776 |
*mx= A[0];
|
777 |
*my= A[1];
|
778 |
}else if(top_ref==ref){ |
779 |
*mx= B[0];
|
780 |
*my= B[1];
|
781 |
}else{
|
782 |
*mx= C[0];
|
783 |
*my= C[1];
|
784 |
} |
785 |
}else{
|
786 |
if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
|
787 |
*mx= A[0];
|
788 |
*my= A[1];
|
789 |
}else{
|
790 |
*mx= mid_pred(A[0], B[0], C[0]); |
791 |
*my= mid_pred(A[1], B[1], C[1]); |
792 |
} |
793 |
} |
794 |
|
795 |
tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list); |
796 |
} |
797 |
|
798 |
/**
|
799 |
* gets the directionally predicted 16x8 MV.
|
800 |
* @param n the block index
|
801 |
* @param mx the x component of the predicted motion vector
|
802 |
* @param my the y component of the predicted motion vector
|
803 |
*/
|
804 |
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ |
805 |
if(n==0){ |
806 |
const int top_ref= h->ref_cache[list][ scan8[0] - 8 ]; |
807 |
const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ]; |
808 |
|
809 |
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list); |
810 |
|
811 |
if(top_ref == ref){
|
812 |
*mx= B[0];
|
813 |
*my= B[1];
|
814 |
return;
|
815 |
} |
816 |
}else{
|
817 |
const int left_ref= h->ref_cache[list][ scan8[8] - 1 ]; |
818 |
const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ]; |
819 |
|
820 |
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); |
821 |
|
822 |
if(left_ref == ref){
|
823 |
*mx= A[0];
|
824 |
*my= A[1];
|
825 |
return;
|
826 |
} |
827 |
} |
828 |
|
829 |
//RARE
|
830 |
pred_motion(h, n, 4, list, ref, mx, my);
|
831 |
} |
832 |
|
833 |
/**
|
834 |
* gets the directionally predicted 8x16 MV.
|
835 |
* @param n the block index
|
836 |
* @param mx the x component of the predicted motion vector
|
837 |
* @param my the y component of the predicted motion vector
|
838 |
*/
|
839 |
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ |
840 |
if(n==0){ |
841 |
const int left_ref= h->ref_cache[list][ scan8[0] - 1 ]; |
842 |
const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ]; |
843 |
|
844 |
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); |
845 |
|
846 |
if(left_ref == ref){
|
847 |
*mx= A[0];
|
848 |
*my= A[1];
|
849 |
return;
|
850 |
} |
851 |
}else{
|
852 |
const int16_t * C;
|
853 |
int diagonal_ref;
|
854 |
|
855 |
diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2); |
856 |
|
857 |
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list); |
858 |
|
859 |
if(diagonal_ref == ref){
|
860 |
*mx= C[0];
|
861 |
*my= C[1];
|
862 |
return;
|
863 |
} |
864 |
} |
865 |
|
866 |
//RARE
|
867 |
pred_motion(h, n, 2, list, ref, mx, my);
|
868 |
} |
869 |
|
870 |
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){ |
871 |
const int top_ref = h->ref_cache[0][ scan8[0] - 8 ]; |
872 |
const int left_ref= h->ref_cache[0][ scan8[0] - 1 ]; |
873 |
|
874 |
tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
|
875 |
|
876 |
if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
|
877 |
|| (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0) |
878 |
|| (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){ |
879 |
|
880 |
*mx = *my = 0;
|
881 |
return;
|
882 |
} |
883 |
|
884 |
pred_motion(h, 0, 4, 0, 0, mx, my); |
885 |
|
886 |
return;
|
887 |
} |
888 |
|
889 |
static inline void direct_dist_scale_factor(H264Context * const h){ |
890 |
const int poc = h->s.current_picture_ptr->poc; |
891 |
const int poc1 = h->ref_list[1][0].poc; |
892 |
int i;
|
893 |
for(i=0; i<h->ref_count[0]; i++){ |
894 |
int poc0 = h->ref_list[0][i].poc; |
895 |
int td = av_clip(poc1 - poc0, -128, 127); |
896 |
if(td == 0 /* FIXME || pic0 is a long-term ref */){ |
897 |
h->dist_scale_factor[i] = 256;
|
898 |
}else{
|
899 |
int tb = av_clip(poc - poc0, -128, 127); |
900 |
int tx = (16384 + (FFABS(td) >> 1)) / td; |
901 |
h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023); |
902 |
} |
903 |
} |
904 |
if(FRAME_MBAFF){
|
905 |
for(i=0; i<h->ref_count[0]; i++){ |
906 |
h->dist_scale_factor_field[2*i] =
|
907 |
h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i]; |
908 |
} |
909 |
} |
910 |
} |
911 |
static inline void direct_ref_list_init(H264Context * const h){ |
912 |
MpegEncContext * const s = &h->s;
|
913 |
Picture * const ref1 = &h->ref_list[1][0]; |
914 |
Picture * const cur = s->current_picture_ptr;
|
915 |
int list, i, j;
|
916 |
if(cur->pict_type == I_TYPE)
|
917 |
cur->ref_count[0] = 0; |
918 |
if(cur->pict_type != B_TYPE)
|
919 |
cur->ref_count[1] = 0; |
920 |
for(list=0; list<2; list++){ |
921 |
cur->ref_count[list] = h->ref_count[list]; |
922 |
for(j=0; j<h->ref_count[list]; j++) |
923 |
cur->ref_poc[list][j] = h->ref_list[list][j].poc; |
924 |
} |
925 |
if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
|
926 |
return;
|
927 |
for(list=0; list<2; list++){ |
928 |
for(i=0; i<ref1->ref_count[list]; i++){ |
929 |
const int poc = ref1->ref_poc[list][i]; |
930 |
h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */ |
931 |
for(j=0; j<h->ref_count[list]; j++) |
932 |
if(h->ref_list[list][j].poc == poc){
|
933 |
h->map_col_to_list0[list][i] = j; |
934 |
break;
|
935 |
} |
936 |
} |
937 |
} |
938 |
if(FRAME_MBAFF){
|
939 |
for(list=0; list<2; list++){ |
940 |
for(i=0; i<ref1->ref_count[list]; i++){ |
941 |
j = h->map_col_to_list0[list][i]; |
942 |
h->map_col_to_list0_field[list][2*i] = 2*j; |
943 |
h->map_col_to_list0_field[list][2*i+1] = 2*j+1; |
944 |
} |
945 |
} |
946 |
} |
947 |
} |
948 |
|
949 |
static inline void pred_direct_motion(H264Context * const h, int *mb_type){ |
950 |
MpegEncContext * const s = &h->s;
|
951 |
const int mb_xy = s->mb_x + s->mb_y*s->mb_stride; |
952 |
const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride; |
953 |
const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; |
954 |
const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy]; |
955 |
const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy]; |
956 |
const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy]; |
957 |
const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy]; |
958 |
const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy]; |
959 |
const int is_b8x8 = IS_8X8(*mb_type); |
960 |
unsigned int sub_mb_type; |
961 |
int i8, i4;
|
962 |
|
963 |
#define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
|
964 |
if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
|
965 |
/* FIXME save sub mb types from previous frames (or derive from MVs)
|
966 |
* so we know exactly what block size to use */
|
967 |
sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
|
968 |
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1; |
969 |
}else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){ |
970 |
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
971 |
*mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
|
972 |
}else{
|
973 |
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
974 |
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1; |
975 |
} |
976 |
if(!is_b8x8)
|
977 |
*mb_type |= MB_TYPE_DIRECT2; |
978 |
if(MB_FIELD)
|
979 |
*mb_type |= MB_TYPE_INTERLACED; |
980 |
|
981 |
tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
|
982 |
|
983 |
if(h->direct_spatial_mv_pred){
|
984 |
int ref[2]; |
985 |
int mv[2][2]; |
986 |
int list;
|
987 |
|
988 |
/* FIXME interlacing + spatial direct uses wrong colocated block positions */
|
989 |
|
990 |
/* ref = min(neighbors) */
|
991 |
for(list=0; list<2; list++){ |
992 |
int refa = h->ref_cache[list][scan8[0] - 1]; |
993 |
int refb = h->ref_cache[list][scan8[0] - 8]; |
994 |
int refc = h->ref_cache[list][scan8[0] - 8 + 4]; |
995 |
if(refc == -2) |
996 |
refc = h->ref_cache[list][scan8[0] - 8 - 1]; |
997 |
ref[list] = refa; |
998 |
if(ref[list] < 0 || (refb < ref[list] && refb >= 0)) |
999 |
ref[list] = refb; |
1000 |
if(ref[list] < 0 || (refc < ref[list] && refc >= 0)) |
1001 |
ref[list] = refc; |
1002 |
if(ref[list] < 0) |
1003 |
ref[list] = -1;
|
1004 |
} |
1005 |
|
1006 |
if(ref[0] < 0 && ref[1] < 0){ |
1007 |
ref[0] = ref[1] = 0; |
1008 |
mv[0][0] = mv[0][1] = |
1009 |
mv[1][0] = mv[1][1] = 0; |
1010 |
}else{
|
1011 |
for(list=0; list<2; list++){ |
1012 |
if(ref[list] >= 0) |
1013 |
pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]); |
1014 |
else
|
1015 |
mv[list][0] = mv[list][1] = 0; |
1016 |
} |
1017 |
} |
1018 |
|
1019 |
if(ref[1] < 0){ |
1020 |
*mb_type &= ~MB_TYPE_P0L1; |
1021 |
sub_mb_type &= ~MB_TYPE_P0L1; |
1022 |
}else if(ref[0] < 0){ |
1023 |
*mb_type &= ~MB_TYPE_P0L0; |
1024 |
sub_mb_type &= ~MB_TYPE_P0L0; |
1025 |
} |
1026 |
|
1027 |
if(IS_16X16(*mb_type)){
|
1028 |
int a=0, b=0; |
1029 |
|
1030 |
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1); |
1031 |
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1); |
1032 |
if(!IS_INTRA(mb_type_col)
|
1033 |
&& ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1) |
1034 |
|| (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1 |
1035 |
&& (h->x264_build>33 || !h->x264_build)))){
|
1036 |
if(ref[0] > 0) |
1037 |
a= pack16to32(mv[0][0],mv[0][1]); |
1038 |
if(ref[1] > 0) |
1039 |
b= pack16to32(mv[1][0],mv[1][1]); |
1040 |
}else{
|
1041 |
a= pack16to32(mv[0][0],mv[0][1]); |
1042 |
b= pack16to32(mv[1][0],mv[1][1]); |
1043 |
} |
1044 |
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4); |
1045 |
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4); |
1046 |
}else{
|
1047 |
for(i8=0; i8<4; i8++){ |
1048 |
const int x8 = i8&1; |
1049 |
const int y8 = i8>>1; |
1050 |
|
1051 |
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
1052 |
continue;
|
1053 |
h->sub_mb_type[i8] = sub_mb_type; |
1054 |
|
1055 |
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4); |
1056 |
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4); |
1057 |
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1); |
1058 |
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1); |
1059 |
|
1060 |
/* col_zero_flag */
|
1061 |
if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0 |
1062 |
|| (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0 |
1063 |
&& (h->x264_build>33 || !h->x264_build)))){
|
1064 |
const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1; |
1065 |
if(IS_SUB_8X8(sub_mb_type)){
|
1066 |
const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride]; |
1067 |
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){ |
1068 |
if(ref[0] == 0) |
1069 |
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4); |
1070 |
if(ref[1] == 0) |
1071 |
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4); |
1072 |
} |
1073 |
}else
|
1074 |
for(i4=0; i4<4; i4++){ |
1075 |
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride]; |
1076 |
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){ |
1077 |
if(ref[0] == 0) |
1078 |
*(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0; |
1079 |
if(ref[1] == 0) |
1080 |
*(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0; |
1081 |
} |
1082 |
} |
1083 |
} |
1084 |
} |
1085 |
} |
1086 |
}else{ /* direct temporal mv pred */ |
1087 |
const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]}; |
1088 |
const int *dist_scale_factor = h->dist_scale_factor; |
1089 |
|
1090 |
if(FRAME_MBAFF){
|
1091 |
if(IS_INTERLACED(*mb_type)){
|
1092 |
map_col_to_list0[0] = h->map_col_to_list0_field[0]; |
1093 |
map_col_to_list0[1] = h->map_col_to_list0_field[1]; |
1094 |
dist_scale_factor = h->dist_scale_factor_field; |
1095 |
} |
1096 |
if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
|
1097 |
/* FIXME assumes direct_8x8_inference == 1 */
|
1098 |
const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride; |
1099 |
int mb_types_col[2]; |
1100 |
int y_shift;
|
1101 |
|
1102 |
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1 |
1103 |
| (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
|
1104 |
| (*mb_type & MB_TYPE_INTERLACED); |
1105 |
sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16; |
1106 |
|
1107 |
if(IS_INTERLACED(*mb_type)){
|
1108 |
/* frame to field scaling */
|
1109 |
mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy]; |
1110 |
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride]; |
1111 |
if(s->mb_y&1){ |
1112 |
l1ref0 -= 2*h->b8_stride;
|
1113 |
l1ref1 -= 2*h->b8_stride;
|
1114 |
l1mv0 -= 4*h->b_stride;
|
1115 |
l1mv1 -= 4*h->b_stride;
|
1116 |
} |
1117 |
y_shift = 0;
|
1118 |
|
1119 |
if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA) |
1120 |
&& (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
|
1121 |
&& !is_b8x8) |
1122 |
*mb_type |= MB_TYPE_16x8; |
1123 |
else
|
1124 |
*mb_type |= MB_TYPE_8x8; |
1125 |
}else{
|
1126 |
/* field to frame scaling */
|
1127 |
/* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
|
1128 |
* but in MBAFF, top and bottom POC are equal */
|
1129 |
int dy = (s->mb_y&1) ? 1 : 2; |
1130 |
mb_types_col[0] =
|
1131 |
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride]; |
1132 |
l1ref0 += dy*h->b8_stride; |
1133 |
l1ref1 += dy*h->b8_stride; |
1134 |
l1mv0 += 2*dy*h->b_stride;
|
1135 |
l1mv1 += 2*dy*h->b_stride;
|
1136 |
y_shift = 2;
|
1137 |
|
1138 |
if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8)) |
1139 |
&& !is_b8x8) |
1140 |
*mb_type |= MB_TYPE_16x16; |
1141 |
else
|
1142 |
*mb_type |= MB_TYPE_8x8; |
1143 |
} |
1144 |
|
1145 |
for(i8=0; i8<4; i8++){ |
1146 |
const int x8 = i8&1; |
1147 |
const int y8 = i8>>1; |
1148 |
int ref0, scale;
|
1149 |
const int16_t (*l1mv)[2]= l1mv0; |
1150 |
|
1151 |
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
1152 |
continue;
|
1153 |
h->sub_mb_type[i8] = sub_mb_type; |
1154 |
|
1155 |
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1); |
1156 |
if(IS_INTRA(mb_types_col[y8])){
|
1157 |
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1); |
1158 |
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4); |
1159 |
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4); |
1160 |
continue;
|
1161 |
} |
1162 |
|
1163 |
ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
|
1164 |
if(ref0 >= 0) |
1165 |
ref0 = map_col_to_list0[0][ref0*2>>y_shift]; |
1166 |
else{
|
1167 |
ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift]; |
1168 |
l1mv= l1mv1; |
1169 |
} |
1170 |
scale = dist_scale_factor[ref0]; |
1171 |
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1); |
1172 |
|
1173 |
{ |
1174 |
const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride]; |
1175 |
int my_col = (mv_col[1]<<y_shift)/2; |
1176 |
int mx = (scale * mv_col[0] + 128) >> 8; |
1177 |
int my = (scale * my_col + 128) >> 8; |
1178 |
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4); |
1179 |
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4); |
1180 |
} |
1181 |
} |
1182 |
return;
|
1183 |
} |
1184 |
} |
1185 |
|
1186 |
/* one-to-one mv scaling */
|
1187 |
|
1188 |
if(IS_16X16(*mb_type)){
|
1189 |
int ref, mv0, mv1;
|
1190 |
|
1191 |
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1); |
1192 |
if(IS_INTRA(mb_type_col)){
|
1193 |
ref=mv0=mv1=0;
|
1194 |
}else{
|
1195 |
const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]] |
1196 |
: map_col_to_list0[1][l1ref1[0]]; |
1197 |
const int scale = dist_scale_factor[ref0]; |
1198 |
const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0]; |
1199 |
int mv_l0[2]; |
1200 |
mv_l0[0] = (scale * mv_col[0] + 128) >> 8; |
1201 |
mv_l0[1] = (scale * mv_col[1] + 128) >> 8; |
1202 |
ref= ref0; |
1203 |
mv0= pack16to32(mv_l0[0],mv_l0[1]); |
1204 |
mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]); |
1205 |
} |
1206 |
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); |
1207 |
fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4); |
1208 |
fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4); |
1209 |
}else{
|
1210 |
for(i8=0; i8<4; i8++){ |
1211 |
const int x8 = i8&1; |
1212 |
const int y8 = i8>>1; |
1213 |
int ref0, scale;
|
1214 |
const int16_t (*l1mv)[2]= l1mv0; |
1215 |
|
1216 |
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
1217 |
continue;
|
1218 |
h->sub_mb_type[i8] = sub_mb_type; |
1219 |
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1); |
1220 |
if(IS_INTRA(mb_type_col)){
|
1221 |
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1); |
1222 |
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4); |
1223 |
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4); |
1224 |
continue;
|
1225 |
} |
1226 |
|
1227 |
ref0 = l1ref0[x8 + y8*h->b8_stride]; |
1228 |
if(ref0 >= 0) |
1229 |
ref0 = map_col_to_list0[0][ref0];
|
1230 |
else{
|
1231 |
ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
|
1232 |
l1mv= l1mv1; |
1233 |
} |
1234 |
scale = dist_scale_factor[ref0]; |
1235 |
|
1236 |
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1); |
1237 |
if(IS_SUB_8X8(sub_mb_type)){
|
1238 |
const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride]; |
1239 |
int mx = (scale * mv_col[0] + 128) >> 8; |
1240 |
int my = (scale * mv_col[1] + 128) >> 8; |
1241 |
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4); |
1242 |
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4); |
1243 |
}else
|
1244 |
for(i4=0; i4<4; i4++){ |
1245 |
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride]; |
1246 |
int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]]; |
1247 |
mv_l0[0] = (scale * mv_col[0] + 128) >> 8; |
1248 |
mv_l0[1] = (scale * mv_col[1] + 128) >> 8; |
1249 |
*(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = |
1250 |
pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]); |
1251 |
} |
1252 |
} |
1253 |
} |
1254 |
} |
1255 |
} |
1256 |
|
1257 |
static inline void write_back_motion(H264Context *h, int mb_type){ |
1258 |
MpegEncContext * const s = &h->s;
|
1259 |
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; |
1260 |
const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride; |
1261 |
int list;
|
1262 |
|
1263 |
if(!USES_LIST(mb_type, 0)) |
1264 |
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1); |
1265 |
|
1266 |
for(list=0; list<h->list_count; list++){ |
1267 |
int y;
|
1268 |
if(!USES_LIST(mb_type, list))
|
1269 |
continue;
|
1270 |
|
1271 |
for(y=0; y<4; y++){ |
1272 |
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]; |
1273 |
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]; |
1274 |
} |
1275 |
if( h->pps.cabac ) {
|
1276 |
if(IS_SKIP(mb_type))
|
1277 |
fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4); |
1278 |
else
|
1279 |
for(y=0; y<4; y++){ |
1280 |
*(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y]; |
1281 |
*(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y]; |
1282 |
} |
1283 |
} |
1284 |
|
1285 |
{ |
1286 |
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy]; |
1287 |
ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]]; |
1288 |
ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]]; |
1289 |
ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]]; |
1290 |
ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]]; |
1291 |
} |
1292 |
} |
1293 |
|
1294 |
if(h->slice_type == B_TYPE && h->pps.cabac){
|
1295 |
if(IS_8X8(mb_type)){
|
1296 |
uint8_t *direct_table = &h->direct_table[b8_xy]; |
1297 |
direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0; |
1298 |
direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0; |
1299 |
direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0; |
1300 |
} |
1301 |
} |
1302 |
} |
1303 |
|
1304 |
/**
|
1305 |
* Decodes a network abstraction layer unit.
|
1306 |
* @param consumed is the number of bytes used as input
|
1307 |
* @param length is the length of the array
|
1308 |
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
|
1309 |
* @returns decoded bytes, might be src+1 if no escapes
|
1310 |
*/
|
1311 |
static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){ |
1312 |
int i, si, di;
|
1313 |
uint8_t *dst; |
1314 |
int bufidx;
|
1315 |
|
1316 |
// src[0]&0x80; //forbidden bit
|
1317 |
h->nal_ref_idc= src[0]>>5; |
1318 |
h->nal_unit_type= src[0]&0x1F; |
1319 |
|
1320 |
src++; length--; |
1321 |
#if 0
|
1322 |
for(i=0; i<length; i++)
|
1323 |
printf("%2X ", src[i]);
|
1324 |
#endif
|
1325 |
for(i=0; i+1<length; i+=2){ |
1326 |
if(src[i]) continue; |
1327 |
if(i>0 && src[i-1]==0) i--; |
1328 |
if(i+2<length && src[i+1]==0 && src[i+2]<=3){ |
1329 |
if(src[i+2]!=3){ |
1330 |
/* startcode, so we must be past the end */
|
1331 |
length=i; |
1332 |
} |
1333 |
break;
|
1334 |
} |
1335 |
} |
1336 |
|
1337 |
if(i>=length-1){ //no escaped 0 |
1338 |
*dst_length= length; |
1339 |
*consumed= length+1; //+1 for the header |
1340 |
return src;
|
1341 |
} |
1342 |
|
1343 |
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data |
1344 |
h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length); |
1345 |
dst= h->rbsp_buffer[bufidx]; |
1346 |
|
1347 |
if (dst == NULL){ |
1348 |
return NULL; |
1349 |
} |
1350 |
|
1351 |
//printf("decoding esc\n");
|
1352 |
si=di=0;
|
1353 |
while(si<length){
|
1354 |
//remove escapes (very rare 1:2^22)
|
1355 |
if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){ |
1356 |
if(src[si+2]==3){ //escape |
1357 |
dst[di++]= 0;
|
1358 |
dst[di++]= 0;
|
1359 |
si+=3;
|
1360 |
continue;
|
1361 |
}else //next start code |
1362 |
break;
|
1363 |
} |
1364 |
|
1365 |
dst[di++]= src[si++]; |
1366 |
} |
1367 |
|
1368 |
*dst_length= di; |
1369 |
*consumed= si + 1;//+1 for the header |
1370 |
//FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
|
1371 |
return dst;
|
1372 |
} |
1373 |
|
1374 |
/**
|
1375 |
* identifies the exact end of the bitstream
|
1376 |
* @return the length of the trailing, or 0 if damaged
|
1377 |
*/
|
1378 |
static int decode_rbsp_trailing(H264Context *h, uint8_t *src){ |
1379 |
int v= *src;
|
1380 |
int r;
|
1381 |
|
1382 |
tprintf(h->s.avctx, "rbsp trailing %X\n", v);
|
1383 |
|
1384 |
for(r=1; r<9; r++){ |
1385 |
if(v&1) return r; |
1386 |
v>>=1;
|
1387 |
} |
1388 |
return 0; |
1389 |
} |
1390 |
|
1391 |
/**
|
1392 |
* idct tranforms the 16 dc values and dequantize them.
|
1393 |
* @param qp quantization parameter
|
1394 |
*/
|
1395 |
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){ |
1396 |
#define stride 16 |
1397 |
int i;
|
1398 |
int temp[16]; //FIXME check if this is a good idea |
1399 |
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; |
1400 |
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; |
1401 |
|
1402 |
//memset(block, 64, 2*256);
|
1403 |
//return;
|
1404 |
for(i=0; i<4; i++){ |
1405 |
const int offset= y_offset[i]; |
1406 |
const int z0= block[offset+stride*0] + block[offset+stride*4]; |
1407 |
const int z1= block[offset+stride*0] - block[offset+stride*4]; |
1408 |
const int z2= block[offset+stride*1] - block[offset+stride*5]; |
1409 |
const int z3= block[offset+stride*1] + block[offset+stride*5]; |
1410 |
|
1411 |
temp[4*i+0]= z0+z3; |
1412 |
temp[4*i+1]= z1+z2; |
1413 |
temp[4*i+2]= z1-z2; |
1414 |
temp[4*i+3]= z0-z3; |
1415 |
} |
1416 |
|
1417 |
for(i=0; i<4; i++){ |
1418 |
const int offset= x_offset[i]; |
1419 |
const int z0= temp[4*0+i] + temp[4*2+i]; |
1420 |
const int z1= temp[4*0+i] - temp[4*2+i]; |
1421 |
const int z2= temp[4*1+i] - temp[4*3+i]; |
1422 |
const int z3= temp[4*1+i] + temp[4*3+i]; |
1423 |
|
1424 |
block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual |
1425 |
block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8)); |
1426 |
block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8)); |
1427 |
block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8)); |
1428 |
} |
1429 |
} |
1430 |
|
1431 |
#if 0
|
1432 |
/**
|
1433 |
* dct tranforms the 16 dc values.
|
1434 |
* @param qp quantization parameter ??? FIXME
|
1435 |
*/
|
1436 |
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
|
1437 |
// const int qmul= dequant_coeff[qp][0];
|
1438 |
int i;
|
1439 |
int temp[16]; //FIXME check if this is a good idea
|
1440 |
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
|
1441 |
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
|
1442 |
|
1443 |
for(i=0; i<4; i++){
|
1444 |
const int offset= y_offset[i];
|
1445 |
const int z0= block[offset+stride*0] + block[offset+stride*4];
|
1446 |
const int z1= block[offset+stride*0] - block[offset+stride*4];
|
1447 |
const int z2= block[offset+stride*1] - block[offset+stride*5];
|
1448 |
const int z3= block[offset+stride*1] + block[offset+stride*5];
|
1449 |
|
1450 |
temp[4*i+0]= z0+z3;
|
1451 |
temp[4*i+1]= z1+z2;
|
1452 |
temp[4*i+2]= z1-z2;
|
1453 |
temp[4*i+3]= z0-z3;
|
1454 |
}
|
1455 |
|
1456 |
for(i=0; i<4; i++){
|
1457 |
const int offset= x_offset[i];
|
1458 |
const int z0= temp[4*0+i] + temp[4*2+i];
|
1459 |
const int z1= temp[4*0+i] - temp[4*2+i];
|
1460 |
const int z2= temp[4*1+i] - temp[4*3+i];
|
1461 |
const int z3= temp[4*1+i] + temp[4*3+i];
|
1462 |
|
1463 |
block[stride*0 +offset]= (z0 + z3)>>1;
|
1464 |
block[stride*2 +offset]= (z1 + z2)>>1;
|
1465 |
block[stride*8 +offset]= (z1 - z2)>>1;
|
1466 |
block[stride*10+offset]= (z0 - z3)>>1;
|
1467 |
}
|
1468 |
}
|
1469 |
#endif
|
1470 |
|
1471 |
#undef xStride
|
1472 |
#undef stride
|
1473 |
|
1474 |
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){ |
1475 |
const int stride= 16*2; |
1476 |
const int xStride= 16; |
1477 |
int a,b,c,d,e;
|
1478 |
|
1479 |
a= block[stride*0 + xStride*0]; |
1480 |
b= block[stride*0 + xStride*1]; |
1481 |
c= block[stride*1 + xStride*0]; |
1482 |
d= block[stride*1 + xStride*1]; |
1483 |
|
1484 |
e= a-b; |
1485 |
a= a+b; |
1486 |
b= c-d; |
1487 |
c= c+d; |
1488 |
|
1489 |
block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7; |
1490 |
block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7; |
1491 |
block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7; |
1492 |
block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7; |
1493 |
} |
1494 |
|
1495 |
#if 0
|
1496 |
static void chroma_dc_dct_c(DCTELEM *block){
|
1497 |
const int stride= 16*2;
|
1498 |
const int xStride= 16;
|
1499 |
int a,b,c,d,e;
|
1500 |
|
1501 |
a= block[stride*0 + xStride*0];
|
1502 |
b= block[stride*0 + xStride*1];
|
1503 |
c= block[stride*1 + xStride*0];
|
1504 |
d= block[stride*1 + xStride*1];
|
1505 |
|
1506 |
e= a-b;
|
1507 |
a= a+b;
|
1508 |
b= c-d;
|
1509 |
c= c+d;
|
1510 |
|
1511 |
block[stride*0 + xStride*0]= (a+c);
|
1512 |
block[stride*0 + xStride*1]= (e+b);
|
1513 |
block[stride*1 + xStride*0]= (a-c);
|
1514 |
block[stride*1 + xStride*1]= (e-b);
|
1515 |
}
|
1516 |
#endif
|
1517 |
|
1518 |
/**
|
1519 |
* gets the chroma qp.
|
1520 |
*/
|
1521 |
static inline int get_chroma_qp(H264Context *h, int t, int qscale){ |
1522 |
return h->pps.chroma_qp_table[t][qscale & 0xff]; |
1523 |
} |
1524 |
|
1525 |
//FIXME need to check that this does not overflow signed 32 bit for low qp, i am not sure, it's very close
|
1526 |
//FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
|
1527 |
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){ |
1528 |
int i;
|
1529 |
const int * const quant_table= quant_coeff[qscale]; |
1530 |
const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6; |
1531 |
const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1; |
1532 |
const unsigned int threshold2= (threshold1<<1); |
1533 |
int last_non_zero;
|
1534 |
|
1535 |
if(separate_dc){
|
1536 |
if(qscale<=18){ |
1537 |
//avoid overflows
|
1538 |
const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6; |
1539 |
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1; |
1540 |
const unsigned int dc_threshold2= (dc_threshold1<<1); |
1541 |
|
1542 |
int level= block[0]*quant_coeff[qscale+18][0]; |
1543 |
if(((unsigned)(level+dc_threshold1))>dc_threshold2){ |
1544 |
if(level>0){ |
1545 |
level= (dc_bias + level)>>(QUANT_SHIFT-2);
|
1546 |
block[0]= level;
|
1547 |
}else{
|
1548 |
level= (dc_bias - level)>>(QUANT_SHIFT-2);
|
1549 |
block[0]= -level;
|
1550 |
} |
1551 |
// last_non_zero = i;
|
1552 |
}else{
|
1553 |
block[0]=0; |
1554 |
} |
1555 |
}else{
|
1556 |
const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6; |
1557 |
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1; |
1558 |
const unsigned int dc_threshold2= (dc_threshold1<<1); |
1559 |
|
1560 |
int level= block[0]*quant_table[0]; |
1561 |
if(((unsigned)(level+dc_threshold1))>dc_threshold2){ |
1562 |
if(level>0){ |
1563 |
level= (dc_bias + level)>>(QUANT_SHIFT+1);
|
1564 |
block[0]= level;
|
1565 |
}else{
|
1566 |
level= (dc_bias - level)>>(QUANT_SHIFT+1);
|
1567 |
block[0]= -level;
|
1568 |
} |
1569 |
// last_non_zero = i;
|
1570 |
}else{
|
1571 |
block[0]=0; |
1572 |
} |
1573 |
} |
1574 |
last_non_zero= 0;
|
1575 |
i=1;
|
1576 |
}else{
|
1577 |
last_non_zero= -1;
|
1578 |
i=0;
|
1579 |
} |
1580 |
|
1581 |
for(; i<16; i++){ |
1582 |
const int j= scantable[i]; |
1583 |
int level= block[j]*quant_table[j];
|
1584 |
|
1585 |
// if( bias+level >= (1<<(QMAT_SHIFT - 3))
|
1586 |
// || bias-level >= (1<<(QMAT_SHIFT - 3))){
|
1587 |
if(((unsigned)(level+threshold1))>threshold2){ |
1588 |
if(level>0){ |
1589 |
level= (bias + level)>>QUANT_SHIFT; |
1590 |
block[j]= level; |
1591 |
}else{
|
1592 |
level= (bias - level)>>QUANT_SHIFT; |
1593 |
block[j]= -level; |
1594 |
} |
1595 |
last_non_zero = i; |
1596 |
}else{
|
1597 |
block[j]=0;
|
1598 |
} |
1599 |
} |
1600 |
|
1601 |
return last_non_zero;
|
1602 |
} |
1603 |
|
1604 |
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list, |
1605 |
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, |
1606 |
int src_x_offset, int src_y_offset, |
1607 |
qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){ |
1608 |
MpegEncContext * const s = &h->s;
|
1609 |
const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8; |
1610 |
int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8; |
1611 |
const int luma_xy= (mx&3) + ((my&3)<<2); |
1612 |
uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize; |
1613 |
uint8_t * src_cb, * src_cr; |
1614 |
int extra_width= h->emu_edge_width;
|
1615 |
int extra_height= h->emu_edge_height;
|
1616 |
int emu=0; |
1617 |
const int full_mx= mx>>2; |
1618 |
const int full_my= my>>2; |
1619 |
const int pic_width = 16*s->mb_width; |
1620 |
const int pic_height = 16*s->mb_height >> MB_FIELD; |
1621 |
|
1622 |
if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames |
1623 |
return;
|
1624 |
|
1625 |
if(mx&7) extra_width -= 3; |
1626 |
if(my&7) extra_height -= 3; |
1627 |
|
1628 |
if( full_mx < 0-extra_width |
1629 |
|| full_my < 0-extra_height
|
1630 |
|| full_mx + 16/*FIXME*/ > pic_width + extra_width |
1631 |
|| full_my + 16/*FIXME*/ > pic_height + extra_height){ |
1632 |
ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height); |
1633 |
src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize; |
1634 |
emu=1;
|
1635 |
} |
1636 |
|
1637 |
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
|
1638 |
if(!square){
|
1639 |
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize); |
1640 |
} |
1641 |
|
1642 |
if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return; |
1643 |
|
1644 |
if(MB_FIELD){
|
1645 |
// chroma offset when predicting from a field of opposite parity
|
1646 |
my += 2 * ((s->mb_y & 1) - (pic->reference - 1)); |
1647 |
emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1); |
1648 |
} |
1649 |
src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize; |
1650 |
src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize; |
1651 |
|
1652 |
if(emu){
|
1653 |
ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); |
1654 |
src_cb= s->edge_emu_buffer; |
1655 |
} |
1656 |
chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7); |
1657 |
|
1658 |
if(emu){
|
1659 |
ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); |
1660 |
src_cr= s->edge_emu_buffer; |
1661 |
} |
1662 |
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7); |
1663 |
} |
1664 |
|
1665 |
static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta, |
1666 |
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, |
1667 |
int x_offset, int y_offset, |
1668 |
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, |
1669 |
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, |
1670 |
int list0, int list1){ |
1671 |
MpegEncContext * const s = &h->s;
|
1672 |
qpel_mc_func *qpix_op= qpix_put; |
1673 |
h264_chroma_mc_func chroma_op= chroma_put; |
1674 |
|
1675 |
dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize; |
1676 |
dest_cb += x_offset + y_offset*h->mb_uvlinesize; |
1677 |
dest_cr += x_offset + y_offset*h->mb_uvlinesize; |
1678 |
x_offset += 8*s->mb_x;
|
1679 |
y_offset += 8*(s->mb_y >> MB_FIELD);
|
1680 |
|
1681 |
if(list0){
|
1682 |
Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ]; |
1683 |
mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
|
1684 |
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
1685 |
qpix_op, chroma_op); |
1686 |
|
1687 |
qpix_op= qpix_avg; |
1688 |
chroma_op= chroma_avg; |
1689 |
} |
1690 |
|
1691 |
if(list1){
|
1692 |
Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ]; |
1693 |
mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
|
1694 |
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
1695 |
qpix_op, chroma_op); |
1696 |
} |
1697 |
} |
1698 |
|
1699 |
static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta, |
1700 |
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, |
1701 |
int x_offset, int y_offset, |
1702 |
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, |
1703 |
h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op, |
1704 |
h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg, |
1705 |
int list0, int list1){ |
1706 |
MpegEncContext * const s = &h->s;
|
1707 |
|
1708 |
dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize; |
1709 |
dest_cb += x_offset + y_offset*h->mb_uvlinesize; |
1710 |
dest_cr += x_offset + y_offset*h->mb_uvlinesize; |
1711 |
x_offset += 8*s->mb_x;
|
1712 |
y_offset += 8*(s->mb_y >> MB_FIELD);
|
1713 |
|
1714 |
if(list0 && list1){
|
1715 |
/* don't optimize for luma-only case, since B-frames usually
|
1716 |
* use implicit weights => chroma too. */
|
1717 |
uint8_t *tmp_cb = s->obmc_scratchpad; |
1718 |
uint8_t *tmp_cr = s->obmc_scratchpad + 8;
|
1719 |
uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
|
1720 |
int refn0 = h->ref_cache[0][ scan8[n] ]; |
1721 |
int refn1 = h->ref_cache[1][ scan8[n] ]; |
1722 |
|
1723 |
mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0, |
1724 |
dest_y, dest_cb, dest_cr, |
1725 |
x_offset, y_offset, qpix_put, chroma_put); |
1726 |
mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1, |
1727 |
tmp_y, tmp_cb, tmp_cr, |
1728 |
x_offset, y_offset, qpix_put, chroma_put); |
1729 |
|
1730 |
if(h->use_weight == 2){ |
1731 |
int weight0 = h->implicit_weight[refn0][refn1];
|
1732 |
int weight1 = 64 - weight0; |
1733 |
luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0); |
1734 |
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0); |
1735 |
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0); |
1736 |
}else{
|
1737 |
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom, |
1738 |
h->luma_weight[0][refn0], h->luma_weight[1][refn1], |
1739 |
h->luma_offset[0][refn0] + h->luma_offset[1][refn1]); |
1740 |
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom, |
1741 |
h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0], |
1742 |
h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]); |
1743 |
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom, |
1744 |
h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1], |
1745 |
h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]); |
1746 |
} |
1747 |
}else{
|
1748 |
int list = list1 ? 1 : 0; |
1749 |
int refn = h->ref_cache[list][ scan8[n] ];
|
1750 |
Picture *ref= &h->ref_list[list][refn]; |
1751 |
mc_dir_part(h, ref, n, square, chroma_height, delta, list, |
1752 |
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
1753 |
qpix_put, chroma_put); |
1754 |
|
1755 |
luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom, |
1756 |
h->luma_weight[list][refn], h->luma_offset[list][refn]); |
1757 |
if(h->use_weight_chroma){
|
1758 |
chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom, |
1759 |
h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]); |
1760 |
chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom, |
1761 |
h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]); |
1762 |
} |
1763 |
} |
1764 |
} |
1765 |
|
1766 |
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta, |
1767 |
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, |
1768 |
int x_offset, int y_offset, |
1769 |
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, |
1770 |
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, |
1771 |
h264_weight_func *weight_op, h264_biweight_func *weight_avg, |
1772 |
int list0, int list1){ |
1773 |
if((h->use_weight==2 && list0 && list1 |
1774 |
&& (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32)) |
1775 |
|| h->use_weight==1)
|
1776 |
mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr, |
1777 |
x_offset, y_offset, qpix_put, chroma_put, |
1778 |
weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1); |
1779 |
else
|
1780 |
mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr, |
1781 |
x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1); |
1782 |
} |
1783 |
|
1784 |
static inline void prefetch_motion(H264Context *h, int list){ |
1785 |
/* fetch pixels for estimated mv 4 macroblocks ahead
|
1786 |
* optimized for 64byte cache lines */
|
1787 |
MpegEncContext * const s = &h->s;
|
1788 |
const int refn = h->ref_cache[list][scan8[0]]; |
1789 |
if(refn >= 0){ |
1790 |
const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8; |
1791 |
const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y; |
1792 |
uint8_t **src= h->ref_list[list][refn].data; |
1793 |
int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64; |
1794 |
s->dsp.prefetch(src[0]+off, s->linesize, 4); |
1795 |
off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64; |
1796 |
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2); |
1797 |
} |
1798 |
} |
1799 |
|
1800 |
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, |
1801 |
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
|
1802 |
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
|
1803 |
h264_weight_func *weight_op, h264_biweight_func *weight_avg){ |
1804 |
MpegEncContext * const s = &h->s;
|
1805 |
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; |
1806 |
const int mb_type= s->current_picture.mb_type[mb_xy]; |
1807 |
|
1808 |
assert(IS_INTER(mb_type)); |
1809 |
|
1810 |
prefetch_motion(h, 0);
|
1811 |
|
1812 |
if(IS_16X16(mb_type)){
|
1813 |
mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0, |
1814 |
qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0], |
1815 |
&weight_op[0], &weight_avg[0], |
1816 |
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); |
1817 |
}else if(IS_16X8(mb_type)){ |
1818 |
mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0, |
1819 |
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], |
1820 |
&weight_op[1], &weight_avg[1], |
1821 |
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); |
1822 |
mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4, |
1823 |
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], |
1824 |
&weight_op[1], &weight_avg[1], |
1825 |
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); |
1826 |
}else if(IS_8X16(mb_type)){ |
1827 |
mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0, |
1828 |
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], |
1829 |
&weight_op[2], &weight_avg[2], |
1830 |
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); |
1831 |
mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0, |
1832 |
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], |
1833 |
&weight_op[2], &weight_avg[2], |
1834 |
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); |
1835 |
}else{
|
1836 |
int i;
|
1837 |
|
1838 |
assert(IS_8X8(mb_type)); |
1839 |
|
1840 |
for(i=0; i<4; i++){ |
1841 |
const int sub_mb_type= h->sub_mb_type[i]; |
1842 |
const int n= 4*i; |
1843 |
int x_offset= (i&1)<<2; |
1844 |
int y_offset= (i&2)<<1; |
1845 |
|
1846 |
if(IS_SUB_8X8(sub_mb_type)){
|
1847 |
mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, |
1848 |
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], |
1849 |
&weight_op[3], &weight_avg[3], |
1850 |
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); |
1851 |
}else if(IS_SUB_8X4(sub_mb_type)){ |
1852 |
mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset, |
1853 |
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], |
1854 |
&weight_op[4], &weight_avg[4], |
1855 |
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); |
1856 |
mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2, |
1857 |
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], |
1858 |
&weight_op[4], &weight_avg[4], |
1859 |
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); |
1860 |
}else if(IS_SUB_4X8(sub_mb_type)){ |
1861 |
mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset, |
1862 |
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], |
1863 |
&weight_op[5], &weight_avg[5], |
1864 |
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); |
1865 |
mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset, |
1866 |
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], |
1867 |
&weight_op[5], &weight_avg[5], |
1868 |
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); |
1869 |
}else{
|
1870 |
int j;
|
1871 |
assert(IS_SUB_4X4(sub_mb_type)); |
1872 |
for(j=0; j<4; j++){ |
1873 |
int sub_x_offset= x_offset + 2*(j&1); |
1874 |
int sub_y_offset= y_offset + (j&2); |
1875 |
mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset, |
1876 |
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], |
1877 |
&weight_op[6], &weight_avg[6], |
1878 |
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); |
1879 |
} |
1880 |
} |
1881 |
} |
1882 |
} |
1883 |
|
1884 |
prefetch_motion(h, 1);
|
1885 |
} |
1886 |
|
1887 |
static void decode_init_vlc(void){ |
1888 |
static int done = 0; |
1889 |
|
1890 |
if (!done) {
|
1891 |
int i;
|
1892 |
done = 1;
|
1893 |
|
1894 |
init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, |
1895 |
&chroma_dc_coeff_token_len [0], 1, 1, |
1896 |
&chroma_dc_coeff_token_bits[0], 1, 1, 1); |
1897 |
|
1898 |
for(i=0; i<4; i++){ |
1899 |
init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, |
1900 |
&coeff_token_len [i][0], 1, 1, |
1901 |
&coeff_token_bits[i][0], 1, 1, 1); |
1902 |
} |
1903 |
|
1904 |
for(i=0; i<3; i++){ |
1905 |
init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
|
1906 |
&chroma_dc_total_zeros_len [i][0], 1, 1, |
1907 |
&chroma_dc_total_zeros_bits[i][0], 1, 1, 1); |
1908 |
} |
1909 |
for(i=0; i<15; i++){ |
1910 |
init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
|
1911 |
&total_zeros_len [i][0], 1, 1, |
1912 |
&total_zeros_bits[i][0], 1, 1, 1); |
1913 |
} |
1914 |
|
1915 |
for(i=0; i<6; i++){ |
1916 |
init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
|
1917 |
&run_len [i][0], 1, 1, |
1918 |
&run_bits[i][0], 1, 1, 1); |
1919 |
} |
1920 |
init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
|
1921 |
&run_len [6][0], 1, 1, |
1922 |
&run_bits[6][0], 1, 1, 1); |
1923 |
} |
1924 |
} |
1925 |
|
1926 |
static void free_tables(H264Context *h){ |
1927 |
int i;
|
1928 |
H264Context *hx; |
1929 |
av_freep(&h->intra4x4_pred_mode); |
1930 |
av_freep(&h->chroma_pred_mode_table); |
1931 |
av_freep(&h->cbp_table); |
1932 |
av_freep(&h->mvd_table[0]);
|
1933 |
av_freep(&h->mvd_table[1]);
|
1934 |
av_freep(&h->direct_table); |
1935 |
av_freep(&h->non_zero_count); |
1936 |
av_freep(&h->slice_table_base); |
1937 |
h->slice_table= NULL;
|
1938 |
|
1939 |
av_freep(&h->mb2b_xy); |
1940 |
av_freep(&h->mb2b8_xy); |
1941 |
|
1942 |
for(i = 0; i < MAX_SPS_COUNT; i++) |
1943 |
av_freep(h->sps_buffers + i); |
1944 |
|
1945 |
for(i = 0; i < MAX_PPS_COUNT; i++) |
1946 |
av_freep(h->pps_buffers + i); |
1947 |
|
1948 |
for(i = 0; i < h->s.avctx->thread_count; i++) { |
1949 |
hx = h->thread_context[i]; |
1950 |
if(!hx) continue; |
1951 |
av_freep(&hx->top_borders[1]);
|
1952 |
av_freep(&hx->top_borders[0]);
|
1953 |
av_freep(&hx->s.obmc_scratchpad); |
1954 |
av_freep(&hx->s.allocated_edge_emu_buffer); |
1955 |
} |
1956 |
} |
1957 |
|
1958 |
static void init_dequant8_coeff_table(H264Context *h){ |
1959 |
int i,q,x;
|
1960 |
const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly |
1961 |
h->dequant8_coeff[0] = h->dequant8_buffer[0]; |
1962 |
h->dequant8_coeff[1] = h->dequant8_buffer[1]; |
1963 |
|
1964 |
for(i=0; i<2; i++ ){ |
1965 |
if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){ |
1966 |
h->dequant8_coeff[1] = h->dequant8_buffer[0]; |
1967 |
break;
|
1968 |
} |
1969 |
|
1970 |
for(q=0; q<52; q++){ |
1971 |
int shift = ff_div6[q];
|
1972 |
int idx = ff_rem6[q];
|
1973 |
for(x=0; x<64; x++) |
1974 |
h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] = |
1975 |
((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] * |
1976 |
h->pps.scaling_matrix8[i][x]) << shift; |
1977 |
} |
1978 |
} |
1979 |
} |
1980 |
|
1981 |
static void init_dequant4_coeff_table(H264Context *h){ |
1982 |
int i,j,q,x;
|
1983 |
const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly |
1984 |
for(i=0; i<6; i++ ){ |
1985 |
h->dequant4_coeff[i] = h->dequant4_buffer[i]; |
1986 |
for(j=0; j<i; j++){ |
1987 |
if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){ |
1988 |
h->dequant4_coeff[i] = h->dequant4_buffer[j]; |
1989 |
break;
|
1990 |
} |
1991 |
} |
1992 |
if(j<i)
|
1993 |
continue;
|
1994 |
|
1995 |
for(q=0; q<52; q++){ |
1996 |
int shift = ff_div6[q] + 2; |
1997 |
int idx = ff_rem6[q];
|
1998 |
for(x=0; x<16; x++) |
1999 |
h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] = |
2000 |
((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] * |
2001 |
h->pps.scaling_matrix4[i][x]) << shift; |
2002 |
} |
2003 |
} |
2004 |
} |
2005 |
|
2006 |
static void init_dequant_tables(H264Context *h){ |
2007 |
int i,x;
|
2008 |
init_dequant4_coeff_table(h); |
2009 |
if(h->pps.transform_8x8_mode)
|
2010 |
init_dequant8_coeff_table(h); |
2011 |
if(h->sps.transform_bypass){
|
2012 |
for(i=0; i<6; i++) |
2013 |
for(x=0; x<16; x++) |
2014 |
h->dequant4_coeff[i][0][x] = 1<<6; |
2015 |
if(h->pps.transform_8x8_mode)
|
2016 |
for(i=0; i<2; i++) |
2017 |
for(x=0; x<64; x++) |
2018 |
h->dequant8_coeff[i][0][x] = 1<<6; |
2019 |
} |
2020 |
} |
2021 |
|
2022 |
|
2023 |
/**
|
2024 |
* allocates tables.
|
2025 |
* needs width/height
|
2026 |
*/
|
2027 |
static int alloc_tables(H264Context *h){ |
2028 |
MpegEncContext * const s = &h->s;
|
2029 |
const int big_mb_num= s->mb_stride * (s->mb_height+1); |
2030 |
int x,y;
|
2031 |
|
2032 |
CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t)) |
2033 |
|
2034 |
CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t)) |
2035 |
CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
|
2036 |
CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
|
2037 |
|
2038 |
CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
|
2039 |
CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t)); |
2040 |
CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t)); |
2041 |
CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t)); |
2042 |
|
2043 |
memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t)); |
2044 |
h->slice_table= h->slice_table_base + s->mb_stride*2 + 1; |
2045 |
|
2046 |
CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
|
2047 |
CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
|
2048 |
for(y=0; y<s->mb_height; y++){ |
2049 |
for(x=0; x<s->mb_width; x++){ |
2050 |
const int mb_xy= x + y*s->mb_stride; |
2051 |
const int b_xy = 4*x + 4*y*h->b_stride; |
2052 |
const int b8_xy= 2*x + 2*y*h->b8_stride; |
2053 |
|
2054 |
h->mb2b_xy [mb_xy]= b_xy; |
2055 |
h->mb2b8_xy[mb_xy]= b8_xy; |
2056 |
} |
2057 |
} |
2058 |
|
2059 |
s->obmc_scratchpad = NULL;
|
2060 |
|
2061 |
if(!h->dequant4_coeff[0]) |
2062 |
init_dequant_tables(h); |
2063 |
|
2064 |
return 0; |
2065 |
fail:
|
2066 |
free_tables(h); |
2067 |
return -1; |
2068 |
} |
2069 |
|
2070 |
/**
|
2071 |
* Mimic alloc_tables(), but for every context thread.
|
2072 |
*/
|
2073 |
static void clone_tables(H264Context *dst, H264Context *src){ |
2074 |
dst->intra4x4_pred_mode = src->intra4x4_pred_mode; |
2075 |
dst->non_zero_count = src->non_zero_count; |
2076 |
dst->slice_table = src->slice_table; |
2077 |
dst->cbp_table = src->cbp_table; |
2078 |
dst->mb2b_xy = src->mb2b_xy; |
2079 |
dst->mb2b8_xy = src->mb2b8_xy; |
2080 |
dst->chroma_pred_mode_table = src->chroma_pred_mode_table; |
2081 |
dst->mvd_table[0] = src->mvd_table[0]; |
2082 |
dst->mvd_table[1] = src->mvd_table[1]; |
2083 |
dst->direct_table = src->direct_table; |
2084 |
|
2085 |
dst->s.obmc_scratchpad = NULL;
|
2086 |
ff_h264_pred_init(&dst->hpc, src->s.codec_id); |
2087 |
} |
2088 |
|
2089 |
/**
|
2090 |
* Init context
|
2091 |
* Allocate buffers which are not shared amongst multiple threads.
|
2092 |
*/
|
2093 |
static int context_init(H264Context *h){ |
2094 |
MpegEncContext * const s = &h->s;
|
2095 |
|
2096 |
CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t)) |
2097 |
CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t)) |
2098 |
|
2099 |
// edge emu needs blocksize + filter length - 1 (=17x17 for halfpel / 21x21 for h264)
|
2100 |
CHECKED_ALLOCZ(s->allocated_edge_emu_buffer, |
2101 |
(s->width+64)*2*21*2); //(width + edge + align)*interlaced*MBsize*tolerance |
2102 |
s->edge_emu_buffer= s->allocated_edge_emu_buffer + (s->width+64)*2*21; |
2103 |
return 0; |
2104 |
fail:
|
2105 |
return -1; // free_tables will clean up for us |
2106 |
} |
2107 |
|
2108 |
static void common_init(H264Context *h){ |
2109 |
MpegEncContext * const s = &h->s;
|
2110 |
|
2111 |
s->width = s->avctx->width; |
2112 |
s->height = s->avctx->height; |
2113 |
s->codec_id= s->avctx->codec->id; |
2114 |
|
2115 |
ff_h264_pred_init(&h->hpc, s->codec_id); |
2116 |
|
2117 |
h->dequant_coeff_pps= -1;
|
2118 |
s->unrestricted_mv=1;
|
2119 |
s->decode=1; //FIXME |
2120 |
|
2121 |
memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t)); |
2122 |
memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t)); |
2123 |
} |
2124 |
|
2125 |
static int decode_init(AVCodecContext *avctx){ |
2126 |
H264Context *h= avctx->priv_data; |
2127 |
MpegEncContext * const s = &h->s;
|
2128 |
|
2129 |
MPV_decode_defaults(s); |
2130 |
|
2131 |
s->avctx = avctx; |
2132 |
common_init(h); |
2133 |
|
2134 |
s->out_format = FMT_H264; |
2135 |
s->workaround_bugs= avctx->workaround_bugs; |
2136 |
|
2137 |
// set defaults
|
2138 |
// s->decode_mb= ff_h263_decode_mb;
|
2139 |
s->quarter_sample = 1;
|
2140 |
s->low_delay= 1;
|
2141 |
avctx->pix_fmt= PIX_FMT_YUV420P; |
2142 |
|
2143 |
decode_init_vlc(); |
2144 |
|
2145 |
if(avctx->extradata_size > 0 && avctx->extradata && |
2146 |
*(char *)avctx->extradata == 1){ |
2147 |
h->is_avc = 1;
|
2148 |
h->got_avcC = 0;
|
2149 |
} else {
|
2150 |
h->is_avc = 0;
|
2151 |
} |
2152 |
|
2153 |
h->thread_context[0] = h;
|
2154 |
return 0; |
2155 |
} |
2156 |
|
2157 |
static int frame_start(H264Context *h){ |
2158 |
MpegEncContext * const s = &h->s;
|
2159 |
int i;
|
2160 |
|
2161 |
if(MPV_frame_start(s, s->avctx) < 0) |
2162 |
return -1; |
2163 |
ff_er_frame_start(s); |
2164 |
/*
|
2165 |
* MPV_frame_start uses pict_type to derive key_frame.
|
2166 |
* This is incorrect for H.264; IDR markings must be used.
|
2167 |
* Zero here; IDR markings per slice in frame or fields are OR'd in later.
|
2168 |
* See decode_nal_units().
|
2169 |
*/
|
2170 |
s->current_picture_ptr->key_frame= 0;
|
2171 |
|
2172 |
assert(s->linesize && s->uvlinesize); |
2173 |
|
2174 |
for(i=0; i<16; i++){ |
2175 |
h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3); |
2176 |
h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3); |
2177 |
} |
2178 |
for(i=0; i<4; i++){ |
2179 |
h->block_offset[16+i]=
|
2180 |
h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3); |
2181 |
h->block_offset[24+16+i]= |
2182 |
h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3); |
2183 |
} |
2184 |
|
2185 |
/* can't be in alloc_tables because linesize isn't known there.
|
2186 |
* FIXME: redo bipred weight to not require extra buffer? */
|
2187 |
for(i = 0; i < s->avctx->thread_count; i++) |
2188 |
if(!h->thread_context[i]->s.obmc_scratchpad)
|
2189 |
h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize); |
2190 |
|
2191 |
/* some macroblocks will be accessed before they're available */
|
2192 |
if(FRAME_MBAFF || s->avctx->thread_count > 1) |
2193 |
memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t)); |
2194 |
|
2195 |
// s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
|
2196 |
return 0; |
2197 |
} |
2198 |
|
2199 |
static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){ |
2200 |
MpegEncContext * const s = &h->s;
|
2201 |
int i;
|
2202 |
|
2203 |
src_y -= linesize; |
2204 |
src_cb -= uvlinesize; |
2205 |
src_cr -= uvlinesize; |
2206 |
|
2207 |
// There are two lines saved, the line above the the top macroblock of a pair,
|
2208 |
// and the line above the bottom macroblock
|
2209 |
h->left_border[0]= h->top_borders[0][s->mb_x][15]; |
2210 |
for(i=1; i<17; i++){ |
2211 |
h->left_border[i]= src_y[15+i* linesize];
|
2212 |
} |
2213 |
|
2214 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize); |
2215 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize); |
2216 |
|
2217 |
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
2218 |
h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7]; |
2219 |
h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7]; |
2220 |
for(i=1; i<9; i++){ |
2221 |
h->left_border[i+17 ]= src_cb[7+i*uvlinesize]; |
2222 |
h->left_border[i+17+9]= src_cr[7+i*uvlinesize]; |
2223 |
} |
2224 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize); |
2225 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize); |
2226 |
} |
2227 |
} |
2228 |
|
2229 |
static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){ |
2230 |
MpegEncContext * const s = &h->s;
|
2231 |
int temp8, i;
|
2232 |
uint64_t temp64; |
2233 |
int deblock_left;
|
2234 |
int deblock_top;
|
2235 |
int mb_xy;
|
2236 |
|
2237 |
if(h->deblocking_filter == 2) { |
2238 |
mb_xy = s->mb_x + s->mb_y*s->mb_stride; |
2239 |
deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
|
2240 |
deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy]; |
2241 |
} else {
|
2242 |
deblock_left = (s->mb_x > 0);
|
2243 |
deblock_top = (s->mb_y > 0);
|
2244 |
} |
2245 |
|
2246 |
src_y -= linesize + 1;
|
2247 |
src_cb -= uvlinesize + 1;
|
2248 |
src_cr -= uvlinesize + 1;
|
2249 |
|
2250 |
#define XCHG(a,b,t,xchg)\
|
2251 |
t= a;\ |
2252 |
if(xchg)\
|
2253 |
a= b;\ |
2254 |
b= t; |
2255 |
|
2256 |
if(deblock_left){
|
2257 |
for(i = !deblock_top; i<17; i++){ |
2258 |
XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg); |
2259 |
} |
2260 |
} |
2261 |
|
2262 |
if(deblock_top){
|
2263 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg); |
2264 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1); |
2265 |
if(s->mb_x+1 < s->mb_width){ |
2266 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1); |
2267 |
} |
2268 |
} |
2269 |
|
2270 |
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
2271 |
if(deblock_left){
|
2272 |
for(i = !deblock_top; i<9; i++){ |
2273 |
XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
|
2274 |
XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg); |
2275 |
} |
2276 |
} |
2277 |
if(deblock_top){
|
2278 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1); |
2279 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1); |
2280 |
} |
2281 |
} |
2282 |
} |
2283 |
|
2284 |
static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){ |
2285 |
MpegEncContext * const s = &h->s;
|
2286 |
int i;
|
2287 |
|
2288 |
src_y -= 2 * linesize;
|
2289 |
src_cb -= 2 * uvlinesize;
|
2290 |
src_cr -= 2 * uvlinesize;
|
2291 |
|
2292 |
// There are two lines saved, the line above the the top macroblock of a pair,
|
2293 |
// and the line above the bottom macroblock
|
2294 |
h->left_border[0]= h->top_borders[0][s->mb_x][15]; |
2295 |
h->left_border[1]= h->top_borders[1][s->mb_x][15]; |
2296 |
for(i=2; i<34; i++){ |
2297 |
h->left_border[i]= src_y[15+i* linesize];
|
2298 |
} |
2299 |
|
2300 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize); |
2301 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize); |
2302 |
*(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize); |
2303 |
*(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize); |
2304 |
|
2305 |
if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
2306 |
h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7]; |
2307 |
h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7]; |
2308 |
h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7]; |
2309 |
h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7]; |
2310 |
for(i=2; i<18; i++){ |
2311 |
h->left_border[i+34 ]= src_cb[7+i*uvlinesize]; |
2312 |
h->left_border[i+34+18]= src_cr[7+i*uvlinesize]; |
2313 |
} |
2314 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize); |
2315 |
*(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize); |
2316 |
*(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize); |
2317 |
*(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize); |
2318 |
} |
2319 |
} |
2320 |
|
2321 |
static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){ |
2322 |
MpegEncContext * const s = &h->s;
|
2323 |
int temp8, i;
|
2324 |
uint64_t temp64; |
2325 |
int deblock_left = (s->mb_x > 0); |
2326 |
int deblock_top = (s->mb_y > 1); |
2327 |
|
2328 |
tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
|
2329 |
|
2330 |
src_y -= 2 * linesize + 1; |
2331 |
src_cb -= 2 * uvlinesize + 1; |
2332 |
src_cr -= 2 * uvlinesize + 1; |
2333 |
|
2334 |
#define XCHG(a,b,t,xchg)\
|
2335 |
t= a;\ |
2336 |
if(xchg)\
|
2337 |
a= b;\ |
2338 |
b= t; |
2339 |
|
2340 |
if(deblock_left){
|
2341 |
for(i = (!deblock_top)<<1; i<34; i++){ |
2342 |
XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg); |
2343 |
} |
2344 |
} |
2345 |
|
2346 |
if(deblock_top){
|
2347 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg); |
2348 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1); |
2349 |
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg); |
2350 |
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1); |
2351 |
if(s->mb_x+1 < s->mb_width){ |
2352 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1); |
2353 |
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1); |
2354 |
} |
2355 |
} |
2356 |
|
2357 |
if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
2358 |
if(deblock_left){
|
2359 |
for(i = (!deblock_top) << 1; i<18; i++){ |
2360 |
XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
|
2361 |
XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg); |
2362 |
} |
2363 |
} |
2364 |
if(deblock_top){
|
2365 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1); |
2366 |
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1); |
2367 |
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1); |
2368 |
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1); |
2369 |
} |
2370 |
} |
2371 |
} |
2372 |
|
2373 |
static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){ |
2374 |
MpegEncContext * const s = &h->s;
|
2375 |
const int mb_x= s->mb_x; |
2376 |
const int mb_y= s->mb_y; |
2377 |
const int mb_xy= mb_x + mb_y*s->mb_stride; |
2378 |
const int mb_type= s->current_picture.mb_type[mb_xy]; |
2379 |
uint8_t *dest_y, *dest_cb, *dest_cr; |
2380 |
int linesize, uvlinesize /*dct_offset*/; |
2381 |
int i;
|
2382 |
int *block_offset = &h->block_offset[0]; |
2383 |
const unsigned int bottom = mb_y & 1; |
2384 |
const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264); |
2385 |
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride); |
2386 |
void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride); |
2387 |
|
2388 |
dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16; |
2389 |
dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; |
2390 |
dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; |
2391 |
|
2392 |
s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4); |
2393 |
s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2); |
2394 |
|
2395 |
if (!simple && MB_FIELD) {
|
2396 |
linesize = h->mb_linesize = s->linesize * 2;
|
2397 |
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
|
2398 |
block_offset = &h->block_offset[24];
|
2399 |
if(mb_y&1){ //FIXME move out of this func? |
2400 |
dest_y -= s->linesize*15;
|
2401 |
dest_cb-= s->uvlinesize*7;
|
2402 |
dest_cr-= s->uvlinesize*7;
|
2403 |
} |
2404 |
if(FRAME_MBAFF) {
|
2405 |
int list;
|
2406 |
for(list=0; list<h->list_count; list++){ |
2407 |
if(!USES_LIST(mb_type, list))
|
2408 |
continue;
|
2409 |
if(IS_16X16(mb_type)){
|
2410 |
int8_t *ref = &h->ref_cache[list][scan8[0]];
|
2411 |
fill_rectangle(ref, 4, 4, 8, 16+*ref^(s->mb_y&1), 1); |
2412 |
}else{
|
2413 |
for(i=0; i<16; i+=4){ |
2414 |
//FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
|
2415 |
int ref = h->ref_cache[list][scan8[i]];
|
2416 |
if(ref >= 0) |
2417 |
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, 16+ref^(s->mb_y&1), 1); |
2418 |
} |
2419 |
} |
2420 |
} |
2421 |
} |
2422 |
} else {
|
2423 |
linesize = h->mb_linesize = s->linesize; |
2424 |
uvlinesize = h->mb_uvlinesize = s->uvlinesize; |
2425 |
// dct_offset = s->linesize * 16;
|
2426 |
} |
2427 |
|
2428 |
if(transform_bypass){
|
2429 |
idct_dc_add = |
2430 |
idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4; |
2431 |
}else if(IS_8x8DCT(mb_type)){ |
2432 |
idct_dc_add = s->dsp.h264_idct8_dc_add; |
2433 |
idct_add = s->dsp.h264_idct8_add; |
2434 |
}else{
|
2435 |
idct_dc_add = s->dsp.h264_idct_dc_add; |
2436 |
idct_add = s->dsp.h264_idct_add; |
2437 |
} |
2438 |
|
2439 |
if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
|
2440 |
&& (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){ |
2441 |
int mbt_y = mb_y&~1; |
2442 |
uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16; |
2443 |
uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8; |
2444 |
uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8; |
2445 |
xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
|
2446 |
} |
2447 |
|
2448 |
if (!simple && IS_INTRA_PCM(mb_type)) {
|
2449 |
unsigned int x, y; |
2450 |
|
2451 |
// The pixels are stored in h->mb array in the same order as levels,
|
2452 |
// copy them in output in the correct order.
|
2453 |
for(i=0; i<16; i++) { |
2454 |
for (y=0; y<4; y++) { |
2455 |
for (x=0; x<4; x++) { |
2456 |
*(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x]; |
2457 |
} |
2458 |
} |
2459 |
} |
2460 |
for(i=16; i<16+4; i++) { |
2461 |
for (y=0; y<4; y++) { |
2462 |
for (x=0; x<4; x++) { |
2463 |
*(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x]; |
2464 |
} |
2465 |
} |
2466 |
} |
2467 |
for(i=20; i<20+4; i++) { |
2468 |
for (y=0; y<4; y++) { |
2469 |
for (x=0; x<4; x++) { |
2470 |
*(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x]; |
2471 |
} |
2472 |
} |
2473 |
} |
2474 |
} else {
|
2475 |
if(IS_INTRA(mb_type)){
|
2476 |
if(h->deblocking_filter && (simple || !FRAME_MBAFF))
|
2477 |
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
|
2478 |
|
2479 |
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
2480 |
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize); |
2481 |
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize); |
2482 |
} |
2483 |
|
2484 |
if(IS_INTRA4x4(mb_type)){
|
2485 |
if(simple || !s->encoding){
|
2486 |
if(IS_8x8DCT(mb_type)){
|
2487 |
for(i=0; i<16; i+=4){ |
2488 |
uint8_t * const ptr= dest_y + block_offset[i];
|
2489 |
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; |
2490 |
const int nnz = h->non_zero_count_cache[ scan8[i] ]; |
2491 |
h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
|
2492 |
(h->topright_samples_available<<i)&0x4000, linesize);
|
2493 |
if(nnz){
|
2494 |
if(nnz == 1 && h->mb[i*16]) |
2495 |
idct_dc_add(ptr, h->mb + i*16, linesize);
|
2496 |
else
|
2497 |
idct_add(ptr, h->mb + i*16, linesize);
|
2498 |
} |
2499 |
} |
2500 |
}else
|
2501 |
for(i=0; i<16; i++){ |
2502 |
uint8_t * const ptr= dest_y + block_offset[i];
|
2503 |
uint8_t *topright; |
2504 |
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; |
2505 |
int nnz, tr;
|
2506 |
|
2507 |
if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
|
2508 |
const int topright_avail= (h->topright_samples_available<<i)&0x8000; |
2509 |
assert(mb_y || linesize <= block_offset[i]); |
2510 |
if(!topright_avail){
|
2511 |
tr= ptr[3 - linesize]*0x01010101; |
2512 |
topright= (uint8_t*) &tr; |
2513 |
}else
|
2514 |
topright= ptr + 4 - linesize;
|
2515 |
}else
|
2516 |
topright= NULL;
|
2517 |
|
2518 |
h->hpc.pred4x4[ dir ](ptr, topright, linesize); |
2519 |
nnz = h->non_zero_count_cache[ scan8[i] ]; |
2520 |
if(nnz){
|
2521 |
if(is_h264){
|
2522 |
if(nnz == 1 && h->mb[i*16]) |
2523 |
idct_dc_add(ptr, h->mb + i*16, linesize);
|
2524 |
else
|
2525 |
idct_add(ptr, h->mb + i*16, linesize);
|
2526 |
}else
|
2527 |
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0); |
2528 |
} |
2529 |
} |
2530 |
} |
2531 |
}else{
|
2532 |
h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize); |
2533 |
if(is_h264){
|
2534 |
if(!transform_bypass)
|
2535 |
h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]); |
2536 |
}else
|
2537 |
svq3_luma_dc_dequant_idct_c(h->mb, s->qscale); |
2538 |
} |
2539 |
if(h->deblocking_filter && (simple || !FRAME_MBAFF))
|
2540 |
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
|
2541 |
}else if(is_h264){ |
2542 |
hl_motion(h, dest_y, dest_cb, dest_cr, |
2543 |
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab, |
2544 |
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab, |
2545 |
s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab); |
2546 |
} |
2547 |
|
2548 |
|
2549 |
if(!IS_INTRA4x4(mb_type)){
|
2550 |
if(is_h264){
|
2551 |
if(IS_INTRA16x16(mb_type)){
|
2552 |
for(i=0; i<16; i++){ |
2553 |
if(h->non_zero_count_cache[ scan8[i] ])
|
2554 |
idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
2555 |
else if(h->mb[i*16]) |
2556 |
idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
2557 |
} |
2558 |
}else{
|
2559 |
const int di = IS_8x8DCT(mb_type) ? 4 : 1; |
2560 |
for(i=0; i<16; i+=di){ |
2561 |
int nnz = h->non_zero_count_cache[ scan8[i] ];
|
2562 |
if(nnz){
|
2563 |
if(nnz==1 && h->mb[i*16]) |
2564 |
idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
2565 |
else
|
2566 |
idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
|
2567 |
} |
2568 |
} |
2569 |
} |
2570 |
}else{
|
2571 |
for(i=0; i<16; i++){ |
2572 |
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below |
2573 |
uint8_t * const ptr= dest_y + block_offset[i];
|
2574 |
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0); |
2575 |
} |
2576 |
} |
2577 |
} |
2578 |
} |
2579 |
|
2580 |
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
2581 |
uint8_t *dest[2] = {dest_cb, dest_cr};
|
2582 |
if(transform_bypass){
|
2583 |
idct_add = idct_dc_add = s->dsp.add_pixels4; |
2584 |
}else{
|
2585 |
idct_add = s->dsp.h264_idct_add; |
2586 |
idct_dc_add = s->dsp.h264_idct_dc_add; |
2587 |
chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]); |
2588 |
chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]); |
2589 |
} |
2590 |
if(is_h264){
|
2591 |
for(i=16; i<16+8; i++){ |
2592 |
if(h->non_zero_count_cache[ scan8[i] ])
|
2593 |
idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize); |
2594 |
else if(h->mb[i*16]) |
2595 |
idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize); |
2596 |
} |
2597 |
}else{
|
2598 |
for(i=16; i<16+8; i++){ |
2599 |
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ |
2600 |
uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i]; |
2601 |
svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2); |
2602 |
} |
2603 |
} |
2604 |
} |
2605 |
} |
2606 |
} |
2607 |
if(h->deblocking_filter) {
|
2608 |
if (!simple && FRAME_MBAFF) {
|
2609 |
//FIXME try deblocking one mb at a time?
|
2610 |
// the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
|
2611 |
const int mb_y = s->mb_y - 1; |
2612 |
uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr; |
2613 |
const int mb_xy= mb_x + mb_y*s->mb_stride; |
2614 |
const int mb_type_top = s->current_picture.mb_type[mb_xy]; |
2615 |
const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride]; |
2616 |
if (!bottom) return; |
2617 |
pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16; |
2618 |
pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; |
2619 |
pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; |
2620 |
|
2621 |
if(IS_INTRA(mb_type_top | mb_type_bottom))
|
2622 |
xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
|
2623 |
|
2624 |
backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize); |
2625 |
// deblock a pair
|
2626 |
// top
|
2627 |
s->mb_y--; |
2628 |
tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
|
2629 |
fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb |
2630 |
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]); |
2631 |
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]); |
2632 |
filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize); |
2633 |
// bottom
|
2634 |
s->mb_y++; |
2635 |
tprintf(h->s.avctx, "call mbaff filter_mb\n");
|
2636 |
fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb |
2637 |
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]); |
2638 |
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]); |
2639 |
filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
|
2640 |
} else {
|
2641 |
tprintf(h->s.avctx, "call filter_mb\n");
|
2642 |
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple); |
2643 |
fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb |
2644 |
filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); |
2645 |
} |
2646 |
} |
2647 |
} |
2648 |
|
2649 |
/**
|
2650 |
* Process a macroblock; this case avoids checks for expensive uncommon cases.
|
2651 |
*/
|
2652 |
static void hl_decode_mb_simple(H264Context *h){ |
2653 |
hl_decode_mb_internal(h, 1);
|
2654 |
} |
2655 |
|
2656 |
/**
|
2657 |
* Process a macroblock; this handles edge cases, such as interlacing.
|
2658 |
*/
|
2659 |
static void av_noinline hl_decode_mb_complex(H264Context *h){ |
2660 |
hl_decode_mb_internal(h, 0);
|
2661 |
} |
2662 |
|
2663 |
static void hl_decode_mb(H264Context *h){ |
2664 |
MpegEncContext * const s = &h->s;
|
2665 |
const int mb_x= s->mb_x; |
2666 |
const int mb_y= s->mb_y; |
2667 |
const int mb_xy= mb_x + mb_y*s->mb_stride; |
2668 |
const int mb_type= s->current_picture.mb_type[mb_xy]; |
2669 |
int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
|
2670 |
|
2671 |
if(!s->decode)
|
2672 |
return;
|
2673 |
|
2674 |
if (is_complex)
|
2675 |
hl_decode_mb_complex(h); |
2676 |
else hl_decode_mb_simple(h);
|
2677 |
} |
2678 |
|
2679 |
static void pic_as_field(Picture *pic, const int parity){ |
2680 |
int i;
|
2681 |
for (i = 0; i < 4; ++i) { |
2682 |
if (parity == PICT_BOTTOM_FIELD)
|
2683 |
pic->data[i] += pic->linesize[i]; |
2684 |
pic->reference = parity; |
2685 |
pic->linesize[i] *= 2;
|
2686 |
} |
2687 |
} |
2688 |
|
2689 |
static int split_field_copy(Picture *dest, Picture *src, |
2690 |
int parity, int id_add){ |
2691 |
int match = !!(src->reference & parity);
|
2692 |
|
2693 |
if (match) {
|
2694 |
*dest = *src; |
2695 |
pic_as_field(dest, parity); |
2696 |
dest->pic_id *= 2;
|
2697 |
dest->pic_id += id_add; |
2698 |
} |
2699 |
|
2700 |
return match;
|
2701 |
} |
2702 |
|
2703 |
/**
|
2704 |
* Split one reference list into field parts, interleaving by parity
|
2705 |
* as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
|
2706 |
* set to look at the actual start of data for that field.
|
2707 |
*
|
2708 |
* @param dest output list
|
2709 |
* @param dest_len maximum number of fields to put in dest
|
2710 |
* @param src the source reference list containing fields and/or field pairs
|
2711 |
* (aka short_ref/long_ref, or
|
2712 |
* refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
|
2713 |
* @param src_len number of Picture's in source (pairs and unmatched fields)
|
2714 |
* @param parity the parity of the picture being decoded/needing
|
2715 |
* these ref pics (PICT_{TOP,BOTTOM}_FIELD)
|
2716 |
* @return number of fields placed in dest
|
2717 |
*/
|
2718 |
static int split_field_half_ref_list(Picture *dest, int dest_len, |
2719 |
Picture *src, int src_len, int parity){ |
2720 |
int same_parity = 1; |
2721 |
int same_i = 0; |
2722 |
int opp_i = 0; |
2723 |
int out_i;
|
2724 |
int field_output;
|
2725 |
|
2726 |
for (out_i = 0; out_i < dest_len; out_i += field_output) { |
2727 |
if (same_parity && same_i < src_len) {
|
2728 |
field_output = split_field_copy(dest + out_i, src + same_i, |
2729 |
parity, 1);
|
2730 |
same_parity = !field_output; |
2731 |
same_i++; |
2732 |
|
2733 |
} else if (opp_i < src_len) { |
2734 |
field_output = split_field_copy(dest + out_i, src + opp_i, |
2735 |
PICT_FRAME - parity, 0);
|
2736 |
same_parity = field_output; |
2737 |
opp_i++; |
2738 |
|
2739 |
} else {
|
2740 |
break;
|
2741 |
} |
2742 |
} |
2743 |
|
2744 |
return out_i;
|
2745 |
} |
2746 |
|
2747 |
/**
|
2748 |
* Split the reference frame list into a reference field list.
|
2749 |
* This implements H.264 spec 8.2.4.2.5 for a combined input list.
|
2750 |
* The input list contains both reference field pairs and
|
2751 |
* unmatched reference fields; it is ordered as spec describes
|
2752 |
* RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
|
2753 |
* unmatched field pairs are also present. Conceptually this is equivalent
|
2754 |
* to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
|
2755 |
*
|
2756 |
* @param dest output reference list where ordered fields are to be placed
|
2757 |
* @param dest_len max number of fields to place at dest
|
2758 |
* @param src source reference list, as described above
|
2759 |
* @param src_len number of pictures (pairs and unmatched fields) in src
|
2760 |
* @param parity parity of field being currently decoded
|
2761 |
* (one of PICT_{TOP,BOTTOM}_FIELD)
|
2762 |
* @param long_i index into src array that holds first long reference picture,
|
2763 |
* or src_len if no long refs present.
|
2764 |
*/
|
2765 |
static int split_field_ref_list(Picture *dest, int dest_len, |
2766 |
Picture *src, int src_len,
|
2767 |
int parity, int long_i){ |
2768 |
|
2769 |
int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
|
2770 |
dest += i; |
2771 |
dest_len -= i; |
2772 |
|
2773 |
i += split_field_half_ref_list(dest, dest_len, src + long_i, |
2774 |
src_len - long_i, parity); |
2775 |
return i;
|
2776 |
} |
2777 |
|
2778 |
/**
|
2779 |
* fills the default_ref_list.
|
2780 |
*/
|
2781 |
static int fill_default_ref_list(H264Context *h){ |
2782 |
MpegEncContext * const s = &h->s;
|
2783 |
int i;
|
2784 |
int smallest_poc_greater_than_current = -1; |
2785 |
int structure_sel;
|
2786 |
Picture sorted_short_ref[32];
|
2787 |
Picture field_entry_list[2][32]; |
2788 |
Picture *frame_list[2];
|
2789 |
|
2790 |
if (FIELD_PICTURE) {
|
2791 |
structure_sel = PICT_FRAME; |
2792 |
frame_list[0] = field_entry_list[0]; |
2793 |
frame_list[1] = field_entry_list[1]; |
2794 |
} else {
|
2795 |
structure_sel = 0;
|
2796 |
frame_list[0] = h->default_ref_list[0]; |
2797 |
frame_list[1] = h->default_ref_list[1]; |
2798 |
} |
2799 |
|
2800 |
if(h->slice_type==B_TYPE){
|
2801 |
int list;
|
2802 |
int len[2]; |
2803 |
int short_len[2]; |
2804 |
int out_i;
|
2805 |
int limit= INT_MIN;
|
2806 |
|
2807 |
/* sort frame according to poc in B slice */
|
2808 |
for(out_i=0; out_i<h->short_ref_count; out_i++){ |
2809 |
int best_i=INT_MIN;
|
2810 |
int best_poc=INT_MAX;
|
2811 |
|
2812 |
for(i=0; i<h->short_ref_count; i++){ |
2813 |
const int poc= h->short_ref[i]->poc; |
2814 |
if(poc > limit && poc < best_poc){
|
2815 |
best_poc= poc; |
2816 |
best_i= i; |
2817 |
} |
2818 |
} |
2819 |
|
2820 |
assert(best_i != INT_MIN); |
2821 |
|
2822 |
limit= best_poc; |
2823 |
sorted_short_ref[out_i]= *h->short_ref[best_i]; |
2824 |
tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
|
2825 |
if (-1 == smallest_poc_greater_than_current) { |
2826 |
if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
|
2827 |
smallest_poc_greater_than_current = out_i; |
2828 |
} |
2829 |
} |
2830 |
} |
2831 |
|
2832 |
tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
|
2833 |
|
2834 |
// find the largest poc
|
2835 |
for(list=0; list<2; list++){ |
2836 |
int index = 0; |
2837 |
int j= -99; |
2838 |
int step= list ? -1 : 1; |
2839 |
|
2840 |
for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) { |
2841 |
int sel;
|
2842 |
while(j<0 || j>= h->short_ref_count){ |
2843 |
if(j != -99 && step == (list ? -1 : 1)) |
2844 |
return -1; |
2845 |
step = -step; |
2846 |
j= smallest_poc_greater_than_current + (step>>1);
|
2847 |
} |
2848 |
sel = sorted_short_ref[j].reference | structure_sel; |
2849 |
if(sel != PICT_FRAME) continue; |
2850 |
frame_list[list][index ]= sorted_short_ref[j]; |
2851 |
frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num; |
2852 |
} |
2853 |
short_len[list] = index; |
2854 |
|
2855 |
for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){ |
2856 |
int sel;
|
2857 |
if(h->long_ref[i] == NULL) continue; |
2858 |
sel = h->long_ref[i]->reference | structure_sel; |
2859 |
if(sel != PICT_FRAME) continue; |
2860 |
|
2861 |
frame_list[ list ][index ]= *h->long_ref[i]; |
2862 |
frame_list[ list ][index++].pic_id= i;; |
2863 |
} |
2864 |
len[list] = index; |
2865 |
|
2866 |
if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){ |
2867 |
// swap the two first elements of L1 when
|
2868 |
// L0 and L1 are identical
|
2869 |
Picture temp= frame_list[1][0]; |
2870 |
frame_list[1][0] = frame_list[1][1]; |
2871 |
frame_list[1][1] = temp; |
2872 |
} |
2873 |
|
2874 |
} |
2875 |
|
2876 |
for(list=0; list<2; list++){ |
2877 |
if (FIELD_PICTURE)
|
2878 |
len[list] = split_field_ref_list(h->default_ref_list[list], |
2879 |
h->ref_count[list], |
2880 |
frame_list[list], |
2881 |
len[list], |
2882 |
s->picture_structure, |
2883 |
short_len[list]); |
2884 |
|
2885 |
if(len[list] < h->ref_count[ list ])
|
2886 |
memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list])); |
2887 |
} |
2888 |
|
2889 |
|
2890 |
}else{
|
2891 |
int index=0; |
2892 |
int short_len;
|
2893 |
for(i=0; i<h->short_ref_count; i++){ |
2894 |
int sel;
|
2895 |
sel = h->short_ref[i]->reference | structure_sel; |
2896 |
if(sel != PICT_FRAME) continue; |
2897 |
frame_list[0][index ]= *h->short_ref[i];
|
2898 |
frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
|
2899 |
} |
2900 |
short_len = index; |
2901 |
for(i = 0; i < 16; i++){ |
2902 |
int sel;
|
2903 |
if(h->long_ref[i] == NULL) continue; |
2904 |
sel = h->long_ref[i]->reference | structure_sel; |
2905 |
if(sel != PICT_FRAME) continue; |
2906 |
frame_list[0][index ]= *h->long_ref[i];
|
2907 |
frame_list[0][index++].pic_id= i;;
|
2908 |
} |
2909 |
|
2910 |
if (FIELD_PICTURE)
|
2911 |
index = split_field_ref_list(h->default_ref_list[0],
|
2912 |
h->ref_count[0], frame_list[0], |
2913 |
index, s->picture_structure, |
2914 |
short_len); |
2915 |
|
2916 |
if(index < h->ref_count[0]) |
2917 |
memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index)); |
2918 |
} |
2919 |
#ifdef TRACE
|
2920 |
for (i=0; i<h->ref_count[0]; i++) { |
2921 |
tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]); |
2922 |
} |
2923 |
if(h->slice_type==B_TYPE){
|
2924 |
for (i=0; i<h->ref_count[1]; i++) { |
2925 |
tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]); |
2926 |
} |
2927 |
} |
2928 |
#endif
|
2929 |
return 0; |
2930 |
} |
2931 |
|
2932 |
static void print_short_term(H264Context *h); |
2933 |
static void print_long_term(H264Context *h); |
2934 |
|
2935 |
/**
|
2936 |
* Extract structure information about the picture described by pic_num in
|
2937 |
* the current decoding context (frame or field). Note that pic_num is
|
2938 |
* picture number without wrapping (so, 0<=pic_num<max_pic_num).
|
2939 |
* @param pic_num picture number for which to extract structure information
|
2940 |
* @param structure one of PICT_XXX describing structure of picture
|
2941 |
* with pic_num
|
2942 |
* @return frame number (short term) or long term index of picture
|
2943 |
* described by pic_num
|
2944 |
*/
|
2945 |
static int pic_num_extract(H264Context *h, int pic_num, int *structure){ |
2946 |
MpegEncContext * const s = &h->s;
|
2947 |
|
2948 |
*structure = s->picture_structure; |
2949 |
if(FIELD_PICTURE){
|
2950 |
if (!(pic_num & 1)) |
2951 |
/* opposite field */
|
2952 |
*structure ^= PICT_FRAME; |
2953 |
pic_num >>= 1;
|
2954 |
} |
2955 |
|
2956 |
return pic_num;
|
2957 |
} |
2958 |
|
2959 |
static int decode_ref_pic_list_reordering(H264Context *h){ |
2960 |
MpegEncContext * const s = &h->s;
|
2961 |
int list, index, pic_structure;
|
2962 |
|
2963 |
print_short_term(h); |
2964 |
print_long_term(h); |
2965 |
if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func |
2966 |
|
2967 |
for(list=0; list<h->list_count; list++){ |
2968 |
memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
|
2969 |
|
2970 |
if(get_bits1(&s->gb)){
|
2971 |
int pred= h->curr_pic_num;
|
2972 |
|
2973 |
for(index=0; ; index++){ |
2974 |
unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb); |
2975 |
unsigned int pic_id; |
2976 |
int i;
|
2977 |
Picture *ref = NULL;
|
2978 |
|
2979 |
if(reordering_of_pic_nums_idc==3) |
2980 |
break;
|
2981 |
|
2982 |
if(index >= h->ref_count[list]){
|
2983 |
av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
|
2984 |
return -1; |
2985 |
} |
2986 |
|
2987 |
if(reordering_of_pic_nums_idc<3){ |
2988 |
if(reordering_of_pic_nums_idc<2){ |
2989 |
const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1; |
2990 |
int frame_num;
|
2991 |
|
2992 |
if(abs_diff_pic_num > h->max_pic_num){
|
2993 |
av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
|
2994 |
return -1; |
2995 |
} |
2996 |
|
2997 |
if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num; |
2998 |
else pred+= abs_diff_pic_num;
|
2999 |
pred &= h->max_pic_num - 1;
|
3000 |
|
3001 |
frame_num = pic_num_extract(h, pred, &pic_structure); |
3002 |
|
3003 |
for(i= h->short_ref_count-1; i>=0; i--){ |
3004 |
ref = h->short_ref[i]; |
3005 |
assert(ref->reference); |
3006 |
assert(!ref->long_ref); |
3007 |
if(ref->data[0] != NULL && |
3008 |
ref->frame_num == frame_num && |
3009 |
(ref->reference & pic_structure) && |
3010 |
ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer |
3011 |
break;
|
3012 |
} |
3013 |
if(i>=0) |
3014 |
ref->pic_id= pred; |
3015 |
}else{
|
3016 |
int long_idx;
|
3017 |
pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
|
3018 |
|
3019 |
long_idx= pic_num_extract(h, pic_id, &pic_structure); |
3020 |
|
3021 |
if(long_idx>31){ |
3022 |
av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
|
3023 |
return -1; |
3024 |
} |
3025 |
ref = h->long_ref[long_idx]; |
3026 |
assert(!(ref && !ref->reference)); |
3027 |
if(ref && (ref->reference & pic_structure)){
|
3028 |
ref->pic_id= pic_id; |
3029 |
assert(ref->long_ref); |
3030 |
i=0;
|
3031 |
}else{
|
3032 |
i=-1;
|
3033 |
} |
3034 |
} |
3035 |
|
3036 |
if (i < 0) { |
3037 |
av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
|
3038 |
memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME |
3039 |
} else {
|
3040 |
for(i=index; i+1<h->ref_count[list]; i++){ |
3041 |
if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
|
3042 |
break;
|
3043 |
} |
3044 |
for(; i > index; i--){
|
3045 |
h->ref_list[list][i]= h->ref_list[list][i-1];
|
3046 |
} |
3047 |
h->ref_list[list][index]= *ref; |
3048 |
if (FIELD_PICTURE){
|
3049 |
pic_as_field(&h->ref_list[list][index], pic_structure); |
3050 |
} |
3051 |
} |
3052 |
}else{
|
3053 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
|
3054 |
return -1; |
3055 |
} |
3056 |
} |
3057 |
} |
3058 |
} |
3059 |
for(list=0; list<h->list_count; list++){ |
3060 |
for(index= 0; index < h->ref_count[list]; index++){ |
3061 |
if(!h->ref_list[list][index].data[0]) |
3062 |
h->ref_list[list][index]= s->current_picture; |
3063 |
} |
3064 |
} |
3065 |
|
3066 |
if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
|
3067 |
direct_dist_scale_factor(h); |
3068 |
direct_ref_list_init(h); |
3069 |
return 0; |
3070 |
} |
3071 |
|
3072 |
static void fill_mbaff_ref_list(H264Context *h){ |
3073 |
int list, i, j;
|
3074 |
for(list=0; list<2; list++){ //FIXME try list_count |
3075 |
for(i=0; i<h->ref_count[list]; i++){ |
3076 |
Picture *frame = &h->ref_list[list][i]; |
3077 |
Picture *field = &h->ref_list[list][16+2*i]; |
3078 |
field[0] = *frame;
|
3079 |
for(j=0; j<3; j++) |
3080 |
field[0].linesize[j] <<= 1; |
3081 |
field[0].reference = PICT_TOP_FIELD;
|
3082 |
field[1] = field[0]; |
3083 |
for(j=0; j<3; j++) |
3084 |
field[1].data[j] += frame->linesize[j];
|
3085 |
field[1].reference = PICT_BOTTOM_FIELD;
|
3086 |
|
3087 |
h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i]; |
3088 |
h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i]; |
3089 |
for(j=0; j<2; j++){ |
3090 |
h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j]; |
3091 |
h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j]; |
3092 |
} |
3093 |
} |
3094 |
} |
3095 |
for(j=0; j<h->ref_count[1]; j++){ |
3096 |
for(i=0; i<h->ref_count[0]; i++) |
3097 |
h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i]; |
3098 |
memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight)); |
3099 |
memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight)); |
3100 |
} |
3101 |
} |
3102 |
|
3103 |
static int pred_weight_table(H264Context *h){ |
3104 |
MpegEncContext * const s = &h->s;
|
3105 |
int list, i;
|
3106 |
int luma_def, chroma_def;
|
3107 |
|
3108 |
h->use_weight= 0;
|
3109 |
h->use_weight_chroma= 0;
|
3110 |
h->luma_log2_weight_denom= get_ue_golomb(&s->gb); |
3111 |
h->chroma_log2_weight_denom= get_ue_golomb(&s->gb); |
3112 |
luma_def = 1<<h->luma_log2_weight_denom;
|
3113 |
chroma_def = 1<<h->chroma_log2_weight_denom;
|
3114 |
|
3115 |
for(list=0; list<2; list++){ |
3116 |
for(i=0; i<h->ref_count[list]; i++){ |
3117 |
int luma_weight_flag, chroma_weight_flag;
|
3118 |
|
3119 |
luma_weight_flag= get_bits1(&s->gb); |
3120 |
if(luma_weight_flag){
|
3121 |
h->luma_weight[list][i]= get_se_golomb(&s->gb); |
3122 |
h->luma_offset[list][i]= get_se_golomb(&s->gb); |
3123 |
if( h->luma_weight[list][i] != luma_def
|
3124 |
|| h->luma_offset[list][i] != 0)
|
3125 |
h->use_weight= 1;
|
3126 |
}else{
|
3127 |
h->luma_weight[list][i]= luma_def; |
3128 |
h->luma_offset[list][i]= 0;
|
3129 |
} |
3130 |
|
3131 |
chroma_weight_flag= get_bits1(&s->gb); |
3132 |
if(chroma_weight_flag){
|
3133 |
int j;
|
3134 |
for(j=0; j<2; j++){ |
3135 |
h->chroma_weight[list][i][j]= get_se_golomb(&s->gb); |
3136 |
h->chroma_offset[list][i][j]= get_se_golomb(&s->gb); |
3137 |
if( h->chroma_weight[list][i][j] != chroma_def
|
3138 |
|| h->chroma_offset[list][i][j] != 0)
|
3139 |
h->use_weight_chroma= 1;
|
3140 |
} |
3141 |
}else{
|
3142 |
int j;
|
3143 |
for(j=0; j<2; j++){ |
3144 |
h->chroma_weight[list][i][j]= chroma_def; |
3145 |
h->chroma_offset[list][i][j]= 0;
|
3146 |
} |
3147 |
} |
3148 |
} |
3149 |
if(h->slice_type != B_TYPE) break; |
3150 |
} |
3151 |
h->use_weight= h->use_weight || h->use_weight_chroma; |
3152 |
return 0; |
3153 |
} |
3154 |
|
3155 |
static void implicit_weight_table(H264Context *h){ |
3156 |
MpegEncContext * const s = &h->s;
|
3157 |
int ref0, ref1;
|
3158 |
int cur_poc = s->current_picture_ptr->poc;
|
3159 |
|
3160 |
if( h->ref_count[0] == 1 && h->ref_count[1] == 1 |
3161 |
&& h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){ |
3162 |
h->use_weight= 0;
|
3163 |
h->use_weight_chroma= 0;
|
3164 |
return;
|
3165 |
} |
3166 |
|
3167 |
h->use_weight= 2;
|
3168 |
h->use_weight_chroma= 2;
|
3169 |
h->luma_log2_weight_denom= 5;
|
3170 |
h->chroma_log2_weight_denom= 5;
|
3171 |
|
3172 |
for(ref0=0; ref0 < h->ref_count[0]; ref0++){ |
3173 |
int poc0 = h->ref_list[0][ref0].poc; |
3174 |
for(ref1=0; ref1 < h->ref_count[1]; ref1++){ |
3175 |
int poc1 = h->ref_list[1][ref1].poc; |
3176 |
int td = av_clip(poc1 - poc0, -128, 127); |
3177 |
if(td){
|
3178 |
int tb = av_clip(cur_poc - poc0, -128, 127); |
3179 |
int tx = (16384 + (FFABS(td) >> 1)) / td; |
3180 |
int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2; |
3181 |
if(dist_scale_factor < -64 || dist_scale_factor > 128) |
3182 |
h->implicit_weight[ref0][ref1] = 32;
|
3183 |
else
|
3184 |
h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
|
3185 |
}else
|
3186 |
h->implicit_weight[ref0][ref1] = 32;
|
3187 |
} |
3188 |
} |
3189 |
} |
3190 |
|
3191 |
/**
|
3192 |
* Mark a picture as no longer needed for reference. The refmask
|
3193 |
* argument allows unreferencing of individual fields or the whole frame.
|
3194 |
* If the picture becomes entirely unreferenced, but is being held for
|
3195 |
* display purposes, it is marked as such.
|
3196 |
* @param refmask mask of fields to unreference; the mask is bitwise
|
3197 |
* anded with the reference marking of pic
|
3198 |
* @return non-zero if pic becomes entirely unreferenced (except possibly
|
3199 |
* for display purposes) zero if one of the fields remains in
|
3200 |
* reference
|
3201 |
*/
|
3202 |
static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){ |
3203 |
int i;
|
3204 |
if (pic->reference &= refmask) {
|
3205 |
return 0; |
3206 |
} else {
|
3207 |
if(pic == h->delayed_output_pic)
|
3208 |
pic->reference=DELAYED_PIC_REF; |
3209 |
else{
|
3210 |
for(i = 0; h->delayed_pic[i]; i++) |
3211 |
if(pic == h->delayed_pic[i]){
|
3212 |
pic->reference=DELAYED_PIC_REF; |
3213 |
break;
|
3214 |
} |
3215 |
} |
3216 |
return 1; |
3217 |
} |
3218 |
} |
3219 |
|
3220 |
/**
|
3221 |
* instantaneous decoder refresh.
|
3222 |
*/
|
3223 |
static void idr(H264Context *h){ |
3224 |
int i;
|
3225 |
|
3226 |
for(i=0; i<16; i++){ |
3227 |
if (h->long_ref[i] != NULL) { |
3228 |
unreference_pic(h, h->long_ref[i], 0);
|
3229 |
h->long_ref[i]= NULL;
|
3230 |
} |
3231 |
} |
3232 |
h->long_ref_count=0;
|
3233 |
|
3234 |
for(i=0; i<h->short_ref_count; i++){ |
3235 |
unreference_pic(h, h->short_ref[i], 0);
|
3236 |
h->short_ref[i]= NULL;
|
3237 |
} |
3238 |
h->short_ref_count=0;
|
3239 |
} |
3240 |
|
3241 |
/* forget old pics after a seek */
|
3242 |
static void flush_dpb(AVCodecContext *avctx){ |
3243 |
H264Context *h= avctx->priv_data; |
3244 |
int i;
|
3245 |
for(i=0; i<16; i++) { |
3246 |
if(h->delayed_pic[i])
|
3247 |
h->delayed_pic[i]->reference= 0;
|
3248 |
h->delayed_pic[i]= NULL;
|
3249 |
} |
3250 |
if(h->delayed_output_pic)
|
3251 |
h->delayed_output_pic->reference= 0;
|
3252 |
h->delayed_output_pic= NULL;
|
3253 |
idr(h); |
3254 |
if(h->s.current_picture_ptr)
|
3255 |
h->s.current_picture_ptr->reference= 0;
|
3256 |
h->s.first_field= 0;
|
3257 |
ff_mpeg_flush(avctx); |
3258 |
} |
3259 |
|
3260 |
/**
|
3261 |
* Find a Picture in the short term reference list by frame number.
|
3262 |
* @param frame_num frame number to search for
|
3263 |
* @param idx the index into h->short_ref where returned picture is found
|
3264 |
* undefined if no picture found.
|
3265 |
* @return pointer to the found picture, or NULL if no pic with the provided
|
3266 |
* frame number is found
|
3267 |
*/
|
3268 |
static Picture * find_short(H264Context *h, int frame_num, int *idx){ |
3269 |
MpegEncContext * const s = &h->s;
|
3270 |
int i;
|
3271 |
|
3272 |
for(i=0; i<h->short_ref_count; i++){ |
3273 |
Picture *pic= h->short_ref[i]; |
3274 |
if(s->avctx->debug&FF_DEBUG_MMCO)
|
3275 |
av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
|
3276 |
if(pic->frame_num == frame_num) {
|
3277 |
*idx = i; |
3278 |
return pic;
|
3279 |
} |
3280 |
} |
3281 |
return NULL; |
3282 |
} |
3283 |
|
3284 |
/**
|
3285 |
* Remove a picture from the short term reference list by its index in
|
3286 |
* that list. This does no checking on the provided index; it is assumed
|
3287 |
* to be valid. Other list entries are shifted down.
|
3288 |
* @param i index into h->short_ref of picture to remove.
|
3289 |
*/
|
3290 |
static void remove_short_at_index(H264Context *h, int i){ |
3291 |
assert(i > 0 && i < h->short_ref_count);
|
3292 |
h->short_ref[i]= NULL;
|
3293 |
if (--h->short_ref_count)
|
3294 |
memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*)); |
3295 |
} |
3296 |
|
3297 |
/**
|
3298 |
*
|
3299 |
* @return the removed picture or NULL if an error occurs
|
3300 |
*/
|
3301 |
static Picture * remove_short(H264Context *h, int frame_num){ |
3302 |
MpegEncContext * const s = &h->s;
|
3303 |
Picture *pic; |
3304 |
int i;
|
3305 |
|
3306 |
if(s->avctx->debug&FF_DEBUG_MMCO)
|
3307 |
av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
|
3308 |
|
3309 |
pic = find_short(h, frame_num, &i); |
3310 |
if (pic)
|
3311 |
remove_short_at_index(h, i); |
3312 |
|
3313 |
return pic;
|
3314 |
} |
3315 |
|
3316 |
/**
|
3317 |
* Remove a picture from the long term reference list by its index in
|
3318 |
* that list. This does no checking on the provided index; it is assumed
|
3319 |
* to be valid. The removed entry is set to NULL. Other entries are unaffected.
|
3320 |
* @param i index into h->long_ref of picture to remove.
|
3321 |
*/
|
3322 |
static void remove_long_at_index(H264Context *h, int i){ |
3323 |
h->long_ref[i]= NULL;
|
3324 |
h->long_ref_count--; |
3325 |
} |
3326 |
|
3327 |
/**
|
3328 |
*
|
3329 |
* @return the removed picture or NULL if an error occurs
|
3330 |
*/
|
3331 |
static Picture * remove_long(H264Context *h, int i){ |
3332 |
Picture *pic; |
3333 |
|
3334 |
pic= h->long_ref[i]; |
3335 |
if (pic)
|
3336 |
remove_long_at_index(h, i); |
3337 |
|
3338 |
return pic;
|
3339 |
} |
3340 |
|
3341 |
/**
|
3342 |
* print short term list
|
3343 |
*/
|
3344 |
static void print_short_term(H264Context *h) { |
3345 |
uint32_t i; |
3346 |
if(h->s.avctx->debug&FF_DEBUG_MMCO) {
|
3347 |
av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
|
3348 |
for(i=0; i<h->short_ref_count; i++){ |
3349 |
Picture *pic= h->short_ref[i]; |
3350 |
av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]); |
3351 |
} |
3352 |
} |
3353 |
} |
3354 |
|
3355 |
/**
|
3356 |
* print long term list
|
3357 |
*/
|
3358 |
static void print_long_term(H264Context *h) { |
3359 |
uint32_t i; |
3360 |
if(h->s.avctx->debug&FF_DEBUG_MMCO) {
|
3361 |
av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
|
3362 |
for(i = 0; i < 16; i++){ |
3363 |
Picture *pic= h->long_ref[i]; |
3364 |
if (pic) {
|
3365 |
av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]); |
3366 |
} |
3367 |
} |
3368 |
} |
3369 |
} |
3370 |
|
3371 |
/**
|
3372 |
* Executes the reference picture marking (memory management control operations).
|
3373 |
*/
|
3374 |
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){ |
3375 |
MpegEncContext * const s = &h->s;
|
3376 |
int i, j;
|
3377 |
int current_ref_assigned=0; |
3378 |
Picture *pic; |
3379 |
|
3380 |
if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0) |
3381 |
av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
|
3382 |
|
3383 |
for(i=0; i<mmco_count; i++){ |
3384 |
int structure, frame_num, unref_pic;
|
3385 |
if(s->avctx->debug&FF_DEBUG_MMCO)
|
3386 |
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
|
3387 |
|
3388 |
switch(mmco[i].opcode){
|
3389 |
case MMCO_SHORT2UNUSED:
|
3390 |
if(s->avctx->debug&FF_DEBUG_MMCO)
|
3391 |
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
|
3392 |
frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure); |
3393 |
pic = find_short(h, frame_num, &j); |
3394 |
if (pic) {
|
3395 |
if (unreference_pic(h, pic, structure ^ PICT_FRAME))
|
3396 |
remove_short_at_index(h, j); |
3397 |
} else if(s->avctx->debug&FF_DEBUG_MMCO) |
3398 |
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short failure\n");
|
3399 |
break;
|
3400 |
case MMCO_SHORT2LONG:
|
3401 |
if (FIELD_PICTURE && mmco[i].long_arg < h->long_ref_count &&
|
3402 |
h->long_ref[mmco[i].long_arg]->frame_num == |
3403 |
mmco[i].short_pic_num / 2) {
|
3404 |
/* do nothing, we've already moved this field pair. */
|
3405 |
} else {
|
3406 |
int frame_num = mmco[i].short_pic_num >> FIELD_PICTURE;
|
3407 |
|
3408 |
pic= remove_long(h, mmco[i].long_arg); |
3409 |
if(pic) unreference_pic(h, pic, 0); |
3410 |
|
3411 |
h->long_ref[ mmco[i].long_arg ]= remove_short(h, frame_num); |
3412 |
if (h->long_ref[ mmco[i].long_arg ]){
|
3413 |
h->long_ref[ mmco[i].long_arg ]->long_ref=1;
|
3414 |
h->long_ref_count++; |
3415 |
} |
3416 |
} |
3417 |
break;
|
3418 |
case MMCO_LONG2UNUSED:
|
3419 |
j = pic_num_extract(h, mmco[i].long_arg, &structure); |
3420 |
pic = h->long_ref[j]; |
3421 |
if (pic) {
|
3422 |
if (unreference_pic(h, pic, structure ^ PICT_FRAME))
|
3423 |
remove_long_at_index(h, j); |
3424 |
} else if(s->avctx->debug&FF_DEBUG_MMCO) |
3425 |
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
|
3426 |
break;
|
3427 |
case MMCO_LONG:
|
3428 |
unref_pic = 1;
|
3429 |
if (FIELD_PICTURE && !s->first_field) {
|
3430 |
if (h->long_ref[mmco[i].long_arg] == s->current_picture_ptr) {
|
3431 |
/* Just mark second field as referenced */
|
3432 |
unref_pic = 0;
|
3433 |
} else if (s->current_picture_ptr->reference) { |
3434 |
/* First field in pair is in short term list or
|
3435 |
* at a different long term index.
|
3436 |
* This is not allowed; see 7.4.3, notes 2 and 3.
|
3437 |
* Report the problem and keep the pair where it is,
|
3438 |
* and mark this field valid.
|
3439 |
*/
|
3440 |
av_log(h->s.avctx, AV_LOG_ERROR, |
3441 |
"illegal long term reference assignment for second "
|
3442 |
"field in complementary field pair (first field is "
|
3443 |
"short term or has non-matching long index)\n");
|
3444 |
unref_pic = 0;
|
3445 |
} |
3446 |
} |
3447 |
|
3448 |
if (unref_pic) {
|
3449 |
pic= remove_long(h, mmco[i].long_arg); |
3450 |
if(pic) unreference_pic(h, pic, 0); |
3451 |
|
3452 |
h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr; |
3453 |
h->long_ref[ mmco[i].long_arg ]->long_ref=1;
|
3454 |
h->long_ref_count++; |
3455 |
} |
3456 |
|
3457 |
s->current_picture_ptr->reference |= s->picture_structure; |
3458 |
current_ref_assigned=1;
|
3459 |
break;
|
3460 |
case MMCO_SET_MAX_LONG:
|
3461 |
assert(mmco[i].long_arg <= 16);
|
3462 |
// just remove the long term which index is greater than new max
|
3463 |
for(j = mmco[i].long_arg; j<16; j++){ |
3464 |
pic = remove_long(h, j); |
3465 |
if (pic) unreference_pic(h, pic, 0); |
3466 |
} |
3467 |
break;
|
3468 |
case MMCO_RESET:
|
3469 |
while(h->short_ref_count){
|
3470 |
pic= remove_short(h, h->short_ref[0]->frame_num);
|
3471 |
if(pic) unreference_pic(h, pic, 0); |
3472 |
} |
3473 |
for(j = 0; j < 16; j++) { |
3474 |
pic= remove_long(h, j); |
3475 |
if(pic) unreference_pic(h, pic, 0); |
3476 |
} |
3477 |
break;
|
3478 |
default: assert(0); |
3479 |
} |
3480 |
} |
3481 |
|
3482 |
if (!current_ref_assigned && FIELD_PICTURE &&
|
3483 |
!s->first_field && s->current_picture_ptr->reference) { |
3484 |
|
3485 |
/* Second field of complementary field pair; the first field of
|
3486 |
* which is already referenced. If short referenced, it
|
3487 |
* should be first entry in short_ref. If not, it must exist
|
3488 |
* in long_ref; trying to put it on the short list here is an
|
3489 |
* error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
|
3490 |
*/
|
3491 |
if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) { |
3492 |
/* Just mark the second field valid */
|
3493 |
s->current_picture_ptr->reference = PICT_FRAME; |
3494 |
} else if (s->current_picture_ptr->long_ref) { |
3495 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
|
3496 |
"assignment for second field "
|
3497 |
"in complementary field pair "
|
3498 |
"(first field is long term)\n");
|
3499 |
} else {
|
3500 |
/*
|
3501 |
* First field in reference, but not in any sensible place on our
|
3502 |
* reference lists. This shouldn't happen unless reference
|
3503 |
* handling somewhere else is wrong.
|
3504 |
*/
|
3505 |
assert(0);
|
3506 |
} |
3507 |
current_ref_assigned = 1;
|
3508 |
} |
3509 |
|
3510 |
if(!current_ref_assigned){
|
3511 |
pic= remove_short(h, s->current_picture_ptr->frame_num); |
3512 |
if(pic){
|
3513 |
unreference_pic(h, pic, 0);
|
3514 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
|
3515 |
} |
3516 |
|
3517 |
if(h->short_ref_count)
|
3518 |
memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*)); |
3519 |
|
3520 |
h->short_ref[0]= s->current_picture_ptr;
|
3521 |
h->short_ref[0]->long_ref=0; |
3522 |
h->short_ref_count++; |
3523 |
s->current_picture_ptr->reference |= s->picture_structure; |
3524 |
} |
3525 |
|
3526 |
if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
|
3527 |
|
3528 |
/* We have too many reference frames, probably due to corrupted
|
3529 |
* stream. Need to discard one frame. Prevents overrun of the
|
3530 |
* short_ref and long_ref buffers.
|
3531 |
*/
|
3532 |
av_log(h->s.avctx, AV_LOG_ERROR, |
3533 |
"number of reference frames exceeds max (probably "
|
3534 |
"corrupt input), discarding one\n");
|
3535 |
|
3536 |
if (h->long_ref_count) {
|
3537 |
for (i = 0; i < 16; ++i) |
3538 |
if (h->long_ref[i])
|
3539 |
break;
|
3540 |
|
3541 |
assert(i < 16);
|
3542 |
pic = h->long_ref[i]; |
3543 |
remove_long_at_index(h, i); |
3544 |
} else {
|
3545 |
pic = h->short_ref[h->short_ref_count - 1];
|
3546 |
remove_short_at_index(h, h->short_ref_count - 1);
|
3547 |
} |
3548 |
unreference_pic(h, pic, 0);
|
3549 |
} |
3550 |
|
3551 |
print_short_term(h); |
3552 |
print_long_term(h); |
3553 |
return 0; |
3554 |
} |
3555 |
|
3556 |
static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){ |
3557 |
MpegEncContext * const s = &h->s;
|
3558 |
int i;
|
3559 |
|
3560 |
if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields |
3561 |
s->broken_link= get_bits1(gb) -1;
|
3562 |
h->mmco[0].long_arg= get_bits1(gb) - 1; // current_long_term_idx |
3563 |
if(h->mmco[0].long_arg == -1) |
3564 |
h->mmco_index= 0;
|
3565 |
else{
|
3566 |
h->mmco[0].opcode= MMCO_LONG;
|
3567 |
h->mmco_index= 1;
|
3568 |
} |
3569 |
}else{
|
3570 |
if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag |
3571 |
for(i= 0; i<MAX_MMCO_COUNT; i++) { |
3572 |
MMCOOpcode opcode= get_ue_golomb(gb); |
3573 |
|
3574 |
h->mmco[i].opcode= opcode; |
3575 |
if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
|
3576 |
h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1); |
3577 |
/* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
|
3578 |
av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
|
3579 |
return -1;
|
3580 |
}*/
|
3581 |
} |
3582 |
if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
|
3583 |
unsigned int long_arg= get_ue_golomb(gb); |
3584 |
if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){ |
3585 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
|
3586 |
return -1; |
3587 |
} |
3588 |
h->mmco[i].long_arg= long_arg; |
3589 |
} |
3590 |
|
3591 |
if(opcode > (unsigned)MMCO_LONG){ |
3592 |
av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
|
3593 |
return -1; |
3594 |
} |
3595 |
if(opcode == MMCO_END)
|
3596 |
break;
|
3597 |
} |
3598 |
h->mmco_index= i; |
3599 |
}else{
|
3600 |
assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count); |
3601 |
|
3602 |
if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
|
3603 |
!(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) { |
3604 |
h->mmco[0].opcode= MMCO_SHORT2UNUSED;
|
3605 |
h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num; |
3606 |
h->mmco_index= 1;
|
3607 |
if (FIELD_PICTURE) {
|
3608 |
h->mmco[0].short_pic_num *= 2; |
3609 |
h->mmco[1].opcode= MMCO_SHORT2UNUSED;
|
3610 |
h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1; |
3611 |
h->mmco_index= 2;
|
3612 |
} |
3613 |
}else
|
3614 |
h->mmco_index= 0;
|
3615 |
} |
3616 |
} |
3617 |
|
3618 |
return 0; |
3619 |
} |
3620 |
|
3621 |
static int init_poc(H264Context *h){ |
3622 |
MpegEncContext * const s = &h->s;
|
3623 |
const int max_frame_num= 1<<h->sps.log2_max_frame_num; |
3624 |
int field_poc[2]; |
3625 |
|
3626 |
if(h->nal_unit_type == NAL_IDR_SLICE){
|
3627 |
h->frame_num_offset= 0;
|
3628 |
}else{
|
3629 |
if(h->frame_num < h->prev_frame_num)
|
3630 |
h->frame_num_offset= h->prev_frame_num_offset + max_frame_num; |
3631 |
else
|
3632 |
h->frame_num_offset= h->prev_frame_num_offset; |
3633 |
} |
3634 |
|
3635 |
if(h->sps.poc_type==0){ |
3636 |
const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb; |
3637 |
|
3638 |
if(h->nal_unit_type == NAL_IDR_SLICE){
|
3639 |
h->prev_poc_msb= |
3640 |
h->prev_poc_lsb= 0;
|
3641 |
} |
3642 |
|
3643 |
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2) |
3644 |
h->poc_msb = h->prev_poc_msb + max_poc_lsb; |
3645 |
else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2) |
3646 |
h->poc_msb = h->prev_poc_msb - max_poc_lsb; |
3647 |
else
|
3648 |
h->poc_msb = h->prev_poc_msb; |
3649 |
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
|
3650 |
field_poc[0] =
|
3651 |
field_poc[1] = h->poc_msb + h->poc_lsb;
|
3652 |
if(s->picture_structure == PICT_FRAME)
|
3653 |
field_poc[1] += h->delta_poc_bottom;
|
3654 |
}else if(h->sps.poc_type==1){ |
3655 |
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
|
3656 |
int i;
|
3657 |
|
3658 |
if(h->sps.poc_cycle_length != 0) |
3659 |
abs_frame_num = h->frame_num_offset + h->frame_num; |
3660 |
else
|
3661 |
abs_frame_num = 0;
|
3662 |
|
3663 |
if(h->nal_ref_idc==0 && abs_frame_num > 0) |
3664 |
abs_frame_num--; |
3665 |
|
3666 |
expected_delta_per_poc_cycle = 0;
|
3667 |
for(i=0; i < h->sps.poc_cycle_length; i++) |
3668 |
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
|
3669 |
|
3670 |
if(abs_frame_num > 0){ |
3671 |
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; |
3672 |
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; |
3673 |
|
3674 |
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; |
3675 |
for(i = 0; i <= frame_num_in_poc_cycle; i++) |
3676 |
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ]; |
3677 |
} else
|
3678 |
expectedpoc = 0;
|
3679 |
|
3680 |
if(h->nal_ref_idc == 0) |
3681 |
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; |
3682 |
|
3683 |
field_poc[0] = expectedpoc + h->delta_poc[0]; |
3684 |
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; |
3685 |
|
3686 |
if(s->picture_structure == PICT_FRAME)
|
3687 |
field_poc[1] += h->delta_poc[1]; |
3688 |
}else{
|
3689 |
int poc;
|
3690 |
if(h->nal_unit_type == NAL_IDR_SLICE){
|
3691 |
poc= 0;
|
3692 |
}else{
|
3693 |
if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num); |
3694 |
else poc= 2*(h->frame_num_offset + h->frame_num) - 1; |
3695 |
} |
3696 |
field_poc[0]= poc;
|
3697 |
field_poc[1]= poc;
|
3698 |
} |
3699 |
|
3700 |
if(s->picture_structure != PICT_BOTTOM_FIELD) {
|
3701 |
s->current_picture_ptr->field_poc[0]= field_poc[0]; |
3702 |
s->current_picture_ptr->poc = field_poc[0];
|
3703 |
} |
3704 |
if(s->picture_structure != PICT_TOP_FIELD) {
|
3705 |
s->current_picture_ptr->field_poc[1]= field_poc[1]; |
3706 |
s->current_picture_ptr->poc = field_poc[1];
|
3707 |
} |
3708 |
if(!FIELD_PICTURE || !s->first_field) {
|
3709 |
Picture *cur = s->current_picture_ptr; |
3710 |
cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]); |
3711 |
} |
3712 |
|
3713 |
return 0; |
3714 |
} |
3715 |
|
3716 |
|
3717 |
/**
|
3718 |
* initialize scan tables
|
3719 |
*/
|
3720 |
static void init_scan_tables(H264Context *h){ |
3721 |
MpegEncContext * const s = &h->s;
|
3722 |
int i;
|
3723 |
if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly |
3724 |
memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t)); |
3725 |
memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t)); |
3726 |
}else{
|
3727 |
for(i=0; i<16; i++){ |
3728 |
#define T(x) (x>>2) | ((x<<2) & 0xF) |
3729 |
h->zigzag_scan[i] = T(zigzag_scan[i]); |
3730 |
h-> field_scan[i] = T( field_scan[i]); |
3731 |
#undef T
|
3732 |
} |
3733 |
} |
3734 |
if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
|
3735 |
memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t)); |
3736 |
memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t)); |
3737 |
memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t)); |
3738 |
memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t)); |
3739 |
}else{
|
3740 |
for(i=0; i<64; i++){ |
3741 |
#define T(x) (x>>3) | ((x&7)<<3) |
3742 |
h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]); |
3743 |
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]); |
3744 |
h->field_scan8x8[i] = T(field_scan8x8[i]); |
3745 |
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]); |
3746 |
#undef T
|
3747 |
} |
3748 |
} |
3749 |
if(h->sps.transform_bypass){ //FIXME same ugly |
3750 |
h->zigzag_scan_q0 = zigzag_scan; |
3751 |
h->zigzag_scan8x8_q0 = zigzag_scan8x8; |
3752 |
h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc; |
3753 |
h->field_scan_q0 = field_scan; |
3754 |
h->field_scan8x8_q0 = field_scan8x8; |
3755 |
h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc; |
3756 |
}else{
|
3757 |
h->zigzag_scan_q0 = h->zigzag_scan; |
3758 |
h->zigzag_scan8x8_q0 = h->zigzag_scan8x8; |
3759 |
h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc; |
3760 |
h->field_scan_q0 = h->field_scan; |
3761 |
h->field_scan8x8_q0 = h->field_scan8x8; |
3762 |
h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc; |
3763 |
} |
3764 |
} |
3765 |
|
3766 |
/**
|
3767 |
* Replicates H264 "master" context to thread contexts.
|
3768 |
*/
|
3769 |
static void clone_slice(H264Context *dst, H264Context *src) |
3770 |
{ |
3771 |
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
|
3772 |
dst->s.current_picture_ptr = src->s.current_picture_ptr; |
3773 |
dst->s.current_picture = src->s.current_picture; |
3774 |
dst->s.linesize = src->s.linesize; |
3775 |
dst->s.uvlinesize = src->s.uvlinesize; |
3776 |
dst->s.first_field = src->s.first_field; |
3777 |
|
3778 |
dst->prev_poc_msb = src->prev_poc_msb; |
3779 |
dst->prev_poc_lsb = src->prev_poc_lsb; |
3780 |
dst->prev_frame_num_offset = src->prev_frame_num_offset; |
3781 |
dst->prev_frame_num = src->prev_frame_num; |
3782 |
dst->short_ref_count = src->short_ref_count; |
3783 |
|
3784 |
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
|
3785 |
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
|
3786 |
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
|
3787 |
memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
|
3788 |
|
3789 |
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
|
3790 |
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
|
3791 |
} |
3792 |
|
3793 |
/**
|
3794 |
* decodes a slice header.
|
3795 |
* this will allso call MPV_common_init() and frame_start() as needed
|
3796 |
*
|
3797 |
* @param h h264context
|
3798 |
* @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
|
3799 |
*
|
3800 |
* @return 0 if okay, <0 if an error occured, 1 if decoding must not be multithreaded
|
3801 |
*/
|
3802 |
static int decode_slice_header(H264Context *h, H264Context *h0){ |
3803 |
MpegEncContext * const s = &h->s;
|
3804 |
MpegEncContext * const s0 = &h0->s;
|
3805 |
unsigned int first_mb_in_slice; |
3806 |
unsigned int pps_id; |
3807 |
int num_ref_idx_active_override_flag;
|
3808 |
static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE}; |
3809 |
unsigned int slice_type, tmp, i; |
3810 |
int default_ref_list_done = 0; |
3811 |
int last_pic_structure;
|
3812 |
|
3813 |
s->dropable= h->nal_ref_idc == 0;
|
3814 |
|
3815 |
if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
|
3816 |
s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab; |
3817 |
s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab; |
3818 |
}else{
|
3819 |
s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab; |
3820 |
s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab; |
3821 |
} |
3822 |
|
3823 |
first_mb_in_slice= get_ue_golomb(&s->gb); |
3824 |
|
3825 |
if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){ |
3826 |
h0->current_slice = 0;
|
3827 |
if (!s0->first_field)
|
3828 |
s->current_picture_ptr= NULL;
|
3829 |
} |
3830 |
|
3831 |
slice_type= get_ue_golomb(&s->gb); |
3832 |
if(slice_type > 9){ |
3833 |
av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
|
3834 |
return -1; |
3835 |
} |
3836 |
if(slice_type > 4){ |
3837 |
slice_type -= 5;
|
3838 |
h->slice_type_fixed=1;
|
3839 |
}else
|
3840 |
h->slice_type_fixed=0;
|
3841 |
|
3842 |
slice_type= slice_type_map[ slice_type ]; |
3843 |
if (slice_type == I_TYPE
|
3844 |
|| (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
|
3845 |
default_ref_list_done = 1;
|
3846 |
} |
3847 |
h->slice_type= slice_type; |
3848 |
|
3849 |
s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
|
3850 |
if (s->pict_type == B_TYPE && s0->last_picture_ptr == NULL) { |
3851 |
av_log(h->s.avctx, AV_LOG_ERROR, |
3852 |
"B picture before any references, skipping\n");
|
3853 |
return -1; |
3854 |
} |
3855 |
|
3856 |
pps_id= get_ue_golomb(&s->gb); |
3857 |
if(pps_id>=MAX_PPS_COUNT){
|
3858 |
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
|
3859 |
return -1; |
3860 |
} |
3861 |
if(!h0->pps_buffers[pps_id]) {
|
3862 |
av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
|
3863 |
return -1; |
3864 |
} |
3865 |
h->pps= *h0->pps_buffers[pps_id]; |
3866 |
|
3867 |
if(!h0->sps_buffers[h->pps.sps_id]) {
|
3868 |
av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
|
3869 |
return -1; |
3870 |
} |
3871 |
h->sps = *h0->sps_buffers[h->pps.sps_id]; |
3872 |
|
3873 |
if(h == h0 && h->dequant_coeff_pps != pps_id){
|
3874 |
h->dequant_coeff_pps = pps_id; |
3875 |
init_dequant_tables(h); |
3876 |
} |
3877 |
|
3878 |
s->mb_width= h->sps.mb_width; |
3879 |
s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
|
3880 |
|
3881 |
h->b_stride= s->mb_width*4;
|
3882 |
h->b8_stride= s->mb_width*2;
|
3883 |
|
3884 |
s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right ); |
3885 |
if(h->sps.frame_mbs_only_flag)
|
3886 |
s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom); |
3887 |
else
|
3888 |
s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck |
3889 |
|
3890 |
if (s->context_initialized
|
3891 |
&& ( s->width != s->avctx->width || s->height != s->avctx->height)) { |
3892 |
if(h != h0)
|
3893 |
return -1; // width / height changed during parallelized decoding |
3894 |
free_tables(h); |
3895 |
MPV_common_end(s); |
3896 |
} |
3897 |
if (!s->context_initialized) {
|
3898 |
if(h != h0)
|
3899 |
return -1; // we cant (re-)initialize context during parallel decoding |
3900 |
if (MPV_common_init(s) < 0) |
3901 |
return -1; |
3902 |
s->first_field = 0;
|
3903 |
|
3904 |
init_scan_tables(h); |
3905 |
alloc_tables(h); |
3906 |
|
3907 |
for(i = 1; i < s->avctx->thread_count; i++) { |
3908 |
H264Context *c; |
3909 |
c = h->thread_context[i] = av_malloc(sizeof(H264Context));
|
3910 |
memcpy(c, h, sizeof(MpegEncContext));
|
3911 |
memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext)); |
3912 |
c->sps = h->sps; |
3913 |
c->pps = h->pps; |
3914 |
init_scan_tables(c); |
3915 |
clone_tables(c, h); |
3916 |
} |
3917 |
|
3918 |
for(i = 0; i < s->avctx->thread_count; i++) |
3919 |
if(context_init(h->thread_context[i]) < 0) |
3920 |
return -1; |
3921 |
|
3922 |
s->avctx->width = s->width; |
3923 |
s->avctx->height = s->height; |
3924 |
s->avctx->sample_aspect_ratio= h->sps.sar; |
3925 |
if(!s->avctx->sample_aspect_ratio.den)
|
3926 |
s->avctx->sample_aspect_ratio.den = 1;
|
3927 |
|
3928 |
if(h->sps.timing_info_present_flag){
|
3929 |
s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
|
3930 |
if(h->x264_build > 0 && h->x264_build < 44) |
3931 |
s->avctx->time_base.den *= 2;
|
3932 |
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, |
3933 |
s->avctx->time_base.num, s->avctx->time_base.den, 1<<30); |
3934 |
} |
3935 |
} |
3936 |
|
3937 |
h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num); |
3938 |
|
3939 |
h->mb_mbaff = 0;
|
3940 |
h->mb_aff_frame = 0;
|
3941 |
last_pic_structure = s0->picture_structure; |
3942 |
if(h->sps.frame_mbs_only_flag){
|
3943 |
s->picture_structure= PICT_FRAME; |
3944 |
}else{
|
3945 |
if(get_bits1(&s->gb)) { //field_pic_flag |
3946 |
s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
|
3947 |
} else {
|
3948 |
s->picture_structure= PICT_FRAME; |
3949 |
h->mb_aff_frame = h->sps.mb_aff; |
3950 |
} |
3951 |
} |
3952 |
|
3953 |
if(h0->current_slice == 0){ |
3954 |
/* See if we have a decoded first field looking for a pair... */
|
3955 |
if (s0->first_field) {
|
3956 |
assert(s0->current_picture_ptr); |
3957 |
assert(s0->current_picture_ptr->data[0]);
|
3958 |
assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF); |
3959 |
|
3960 |
/* figure out if we have a complementary field pair */
|
3961 |
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
|
3962 |
/*
|
3963 |
* Previous field is unmatched. Don't display it, but let it
|
3964 |
* remain for reference if marked as such.
|
3965 |
*/
|
3966 |
s0->current_picture_ptr = NULL;
|
3967 |
s0->first_field = FIELD_PICTURE; |
3968 |
|
3969 |
} else {
|
3970 |
if (h->nal_ref_idc &&
|
3971 |
s0->current_picture_ptr->reference && |
3972 |
s0->current_picture_ptr->frame_num != h->frame_num) { |
3973 |
/*
|
3974 |
* This and previous field were reference, but had
|
3975 |
* different frame_nums. Consider this field first in
|
3976 |
* pair. Throw away previous field except for reference
|
3977 |
* purposes.
|
3978 |
*/
|
3979 |
s0->first_field = 1;
|
3980 |
s0->current_picture_ptr = NULL;
|
3981 |
|
3982 |
} else {
|
3983 |
/* Second field in complementary pair */
|
3984 |
s0->first_field = 0;
|
3985 |
} |
3986 |
} |
3987 |
|
3988 |
} else {
|
3989 |
/* Frame or first field in a potentially complementary pair */
|
3990 |
assert(!s0->current_picture_ptr); |
3991 |
s0->first_field = FIELD_PICTURE; |
3992 |
} |
3993 |
|
3994 |
if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) { |
3995 |
s0->first_field = 0;
|
3996 |
return -1; |
3997 |
} |
3998 |
} |
3999 |
if(h != h0)
|
4000 |
clone_slice(h, h0); |
4001 |
|
4002 |
s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
|
4003 |
|
4004 |
assert(s->mb_num == s->mb_width * s->mb_height); |
4005 |
if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
|
4006 |
first_mb_in_slice >= s->mb_num){ |
4007 |
av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
|
4008 |
return -1; |
4009 |
} |
4010 |
s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width; |
4011 |
s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE; |
4012 |
if (s->picture_structure == PICT_BOTTOM_FIELD)
|
4013 |
s->resync_mb_y = s->mb_y = s->mb_y + 1;
|
4014 |
assert(s->mb_y < s->mb_height); |
4015 |
|
4016 |
if(s->picture_structure==PICT_FRAME){
|
4017 |
h->curr_pic_num= h->frame_num; |
4018 |
h->max_pic_num= 1<< h->sps.log2_max_frame_num;
|
4019 |
}else{
|
4020 |
h->curr_pic_num= 2*h->frame_num + 1; |
4021 |
h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1); |
4022 |
} |
4023 |
|
4024 |
if(h->nal_unit_type == NAL_IDR_SLICE){
|
4025 |
get_ue_golomb(&s->gb); /* idr_pic_id */
|
4026 |
} |
4027 |
|
4028 |
if(h->sps.poc_type==0){ |
4029 |
h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb); |
4030 |
|
4031 |
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){ |
4032 |
h->delta_poc_bottom= get_se_golomb(&s->gb); |
4033 |
} |
4034 |
} |
4035 |
|
4036 |
if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){ |
4037 |
h->delta_poc[0]= get_se_golomb(&s->gb);
|
4038 |
|
4039 |
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME) |
4040 |
h->delta_poc[1]= get_se_golomb(&s->gb);
|
4041 |
} |
4042 |
|
4043 |
init_poc(h); |
4044 |
|
4045 |
if(h->pps.redundant_pic_cnt_present){
|
4046 |
h->redundant_pic_count= get_ue_golomb(&s->gb); |
4047 |
} |
4048 |
|
4049 |
//set defaults, might be overriden a few line later
|
4050 |
h->ref_count[0]= h->pps.ref_count[0]; |
4051 |
h->ref_count[1]= h->pps.ref_count[1]; |
4052 |
|
4053 |
if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
|
4054 |
if(h->slice_type == B_TYPE){
|
4055 |
h->direct_spatial_mv_pred= get_bits1(&s->gb); |
4056 |
if(FIELD_OR_MBAFF_PICTURE && h->direct_spatial_mv_pred)
|
4057 |
av_log(h->s.avctx, AV_LOG_ERROR, "Interlaced pictures + spatial direct mode is not implemented\n");
|
4058 |
} |
4059 |
num_ref_idx_active_override_flag= get_bits1(&s->gb); |
4060 |
|
4061 |
if(num_ref_idx_active_override_flag){
|
4062 |
h->ref_count[0]= get_ue_golomb(&s->gb) + 1; |
4063 |
if(h->slice_type==B_TYPE)
|
4064 |
h->ref_count[1]= get_ue_golomb(&s->gb) + 1; |
4065 |
|
4066 |
if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){ |
4067 |
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
|
4068 |
h->ref_count[0]= h->ref_count[1]= 1; |
4069 |
return -1; |
4070 |
} |
4071 |
} |
4072 |
if(h->slice_type == B_TYPE)
|
4073 |
h->list_count= 2;
|
4074 |
else
|
4075 |
h->list_count= 1;
|
4076 |
}else
|
4077 |
h->list_count= 0;
|
4078 |
|
4079 |
if(!default_ref_list_done){
|
4080 |
fill_default_ref_list(h); |
4081 |
} |
4082 |
|
4083 |
if(decode_ref_pic_list_reordering(h) < 0) |
4084 |
return -1; |
4085 |
|
4086 |
if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
|
4087 |
|| (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
|
4088 |
pred_weight_table(h); |
4089 |
else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE) |
4090 |
implicit_weight_table(h); |
4091 |
else
|
4092 |
h->use_weight = 0;
|
4093 |
|
4094 |
if(h->nal_ref_idc)
|
4095 |
decode_ref_pic_marking(h0, &s->gb); |
4096 |
|
4097 |
if(FRAME_MBAFF)
|
4098 |
fill_mbaff_ref_list(h); |
4099 |
|
4100 |
if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac ){
|
4101 |
tmp = get_ue_golomb(&s->gb); |
4102 |
if(tmp > 2){ |
4103 |
av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
|
4104 |
return -1; |
4105 |
} |
4106 |
h->cabac_init_idc= tmp; |
4107 |
} |
4108 |
|
4109 |
h->last_qscale_diff = 0;
|
4110 |
tmp = h->pps.init_qp + get_se_golomb(&s->gb); |
4111 |
if(tmp>51){ |
4112 |
av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
|
4113 |
return -1; |
4114 |
} |
4115 |
s->qscale= tmp; |
4116 |
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale); |
4117 |
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale); |
4118 |
//FIXME qscale / qp ... stuff
|
4119 |
if(h->slice_type == SP_TYPE){
|
4120 |
get_bits1(&s->gb); /* sp_for_switch_flag */
|
4121 |
} |
4122 |
if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
|
4123 |
get_se_golomb(&s->gb); /* slice_qs_delta */
|
4124 |
} |
4125 |
|
4126 |
h->deblocking_filter = 1;
|
4127 |
h->slice_alpha_c0_offset = 0;
|
4128 |
h->slice_beta_offset = 0;
|
4129 |
if( h->pps.deblocking_filter_parameters_present ) {
|
4130 |
tmp= get_ue_golomb(&s->gb); |
4131 |
if(tmp > 2){ |
4132 |
av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
|
4133 |
return -1; |
4134 |
} |
4135 |
h->deblocking_filter= tmp; |
4136 |
if(h->deblocking_filter < 2) |
4137 |
h->deblocking_filter^= 1; // 1<->0 |
4138 |
|
4139 |
if( h->deblocking_filter ) {
|
4140 |
h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
|
4141 |
h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
|
4142 |
} |
4143 |
} |
4144 |
|
4145 |
if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
|
4146 |
||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != I_TYPE) |
4147 |
||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == B_TYPE) |
4148 |
||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
|
4149 |
h->deblocking_filter= 0;
|
4150 |
|
4151 |
if(h->deblocking_filter == 1 && h0->max_contexts > 1) { |
4152 |
if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
|
4153 |
/* Cheat slightly for speed:
|
4154 |
Do not bother to deblock across slices. */
|
4155 |
h->deblocking_filter = 2;
|
4156 |
} else {
|
4157 |
h0->max_contexts = 1;
|
4158 |
if(!h0->single_decode_warning) {
|
4159 |
av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
|
4160 |
h0->single_decode_warning = 1;
|
4161 |
} |
4162 |
if(h != h0)
|
4163 |
return 1; // deblocking switched inside frame |
4164 |
} |
4165 |
} |
4166 |
|
4167 |
#if 0 //FMO
|
4168 |
if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
|
4169 |
slice_group_change_cycle= get_bits(&s->gb, ?);
|
4170 |
#endif
|
4171 |
|
4172 |
h0->last_slice_type = slice_type; |
4173 |
h->slice_num = ++h0->current_slice; |
4174 |
|
4175 |
h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; |
4176 |
h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
|
4177 |
|
4178 |
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
|
4179 |
av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
|
4180 |
h->slice_num, |
4181 |
(s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"), |
4182 |
first_mb_in_slice, |
4183 |
av_get_pict_type_char(h->slice_type), |
4184 |
pps_id, h->frame_num, |
4185 |
s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1], |
4186 |
h->ref_count[0], h->ref_count[1], |
4187 |
s->qscale, |
4188 |
h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2, |
4189 |
h->use_weight, |
4190 |
h->use_weight==1 && h->use_weight_chroma ? "c" : "" |
4191 |
); |
4192 |
} |
4193 |
|
4194 |
return 0; |
4195 |
} |
4196 |
|
4197 |
/**
|
4198 |
*
|
4199 |
*/
|
4200 |
static inline int get_level_prefix(GetBitContext *gb){ |
4201 |
unsigned int buf; |
4202 |
int log;
|
4203 |
|
4204 |
OPEN_READER(re, gb); |
4205 |
UPDATE_CACHE(re, gb); |
4206 |
buf=GET_CACHE(re, gb); |
4207 |
|
4208 |
log= 32 - av_log2(buf);
|
4209 |
#ifdef TRACE
|
4210 |
print_bin(buf>>(32-log), log);
|
4211 |
av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__); |
4212 |
#endif
|
4213 |
|
4214 |
LAST_SKIP_BITS(re, gb, log); |
4215 |
CLOSE_READER(re, gb); |
4216 |
|
4217 |
return log-1; |
4218 |
} |
4219 |
|
4220 |
static inline int get_dct8x8_allowed(H264Context *h){ |
4221 |
int i;
|
4222 |
for(i=0; i<4; i++){ |
4223 |
if(!IS_SUB_8X8(h->sub_mb_type[i])
|
4224 |
|| (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i]))) |
4225 |
return 0; |
4226 |
} |
4227 |
return 1; |
4228 |
} |
4229 |
|
4230 |
/**
|
4231 |
* decodes a residual block.
|
4232 |
* @param n block index
|
4233 |
* @param scantable scantable
|
4234 |
* @param max_coeff number of coefficients in the block
|
4235 |
* @return <0 if an error occured
|
4236 |
*/
|
4237 |
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){ |
4238 |
MpegEncContext * const s = &h->s;
|
4239 |
static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3}; |
4240 |
int level[16]; |
4241 |
int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
|
4242 |
|
4243 |
//FIXME put trailing_onex into the context
|
4244 |
|
4245 |
if(n == CHROMA_DC_BLOCK_INDEX){
|
4246 |
coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
|
4247 |
total_coeff= coeff_token>>2;
|
4248 |
}else{
|
4249 |
if(n == LUMA_DC_BLOCK_INDEX){
|
4250 |
total_coeff= pred_non_zero_count(h, 0);
|
4251 |
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
|
4252 |
total_coeff= coeff_token>>2;
|
4253 |
}else{
|
4254 |
total_coeff= pred_non_zero_count(h, n); |
4255 |
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
|
4256 |
total_coeff= coeff_token>>2;
|
4257 |
h->non_zero_count_cache[ scan8[n] ]= total_coeff; |
4258 |
} |
4259 |
} |
4260 |
|
4261 |
//FIXME set last_non_zero?
|
4262 |
|
4263 |
if(total_coeff==0) |
4264 |
return 0; |
4265 |
if(total_coeff > (unsigned)max_coeff) { |
4266 |
av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
|
4267 |
return -1; |
4268 |
} |
4269 |
|
4270 |
trailing_ones= coeff_token&3;
|
4271 |
tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
|
4272 |
assert(total_coeff<=16);
|
4273 |
|
4274 |
for(i=0; i<trailing_ones; i++){ |
4275 |
level[i]= 1 - 2*get_bits1(gb); |
4276 |
} |
4277 |
|
4278 |
if(i<total_coeff) {
|
4279 |
int level_code, mask;
|
4280 |
int suffix_length = total_coeff > 10 && trailing_ones < 3; |
4281 |
int prefix= get_level_prefix(gb);
|
4282 |
|
4283 |
//first coefficient has suffix_length equal to 0 or 1
|
4284 |
if(prefix<14){ //FIXME try to build a large unified VLC table for all this |
4285 |
if(suffix_length)
|
4286 |
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
|
4287 |
else
|
4288 |
level_code= (prefix<<suffix_length); //part
|
4289 |
}else if(prefix==14){ |
4290 |
if(suffix_length)
|
4291 |
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
|
4292 |
else
|
4293 |
level_code= prefix + get_bits(gb, 4); //part |
4294 |
}else if(prefix==15){ |
4295 |
level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part |
4296 |
if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense |
4297 |
}else{
|
4298 |
av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
|
4299 |
return -1; |
4300 |
} |
4301 |
|
4302 |
if(trailing_ones < 3) level_code += 2; |
4303 |
|
4304 |
suffix_length = 1;
|
4305 |
if(level_code > 5) |
4306 |
suffix_length++; |
4307 |
mask= -(level_code&1);
|
4308 |
level[i]= (((2+level_code)>>1) ^ mask) - mask; |
4309 |
i++; |
4310 |
|
4311 |
//remaining coefficients have suffix_length > 0
|
4312 |
for(;i<total_coeff;i++) {
|
4313 |
static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX }; |
4314 |
prefix = get_level_prefix(gb); |
4315 |
if(prefix<15){ |
4316 |
level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length); |
4317 |
}else if(prefix==15){ |
4318 |
level_code = (prefix<<suffix_length) + get_bits(gb, 12);
|
4319 |
}else{
|
4320 |
av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
|
4321 |
return -1; |
4322 |
} |
4323 |
mask= -(level_code&1);
|
4324 |
level[i]= (((2+level_code)>>1) ^ mask) - mask; |
4325 |
if(level_code > suffix_limit[suffix_length])
|
4326 |
suffix_length++; |
4327 |
} |
4328 |
} |
4329 |
|
4330 |
if(total_coeff == max_coeff)
|
4331 |
zeros_left=0;
|
4332 |
else{
|
4333 |
if(n == CHROMA_DC_BLOCK_INDEX)
|
4334 |
zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1); |
4335 |
else
|
4336 |
zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1); |
4337 |
} |
4338 |
|
4339 |
coeff_num = zeros_left + total_coeff - 1;
|
4340 |
j = scantable[coeff_num]; |
4341 |
if(n > 24){ |
4342 |
block[j] = level[0];
|
4343 |
for(i=1;i<total_coeff;i++) { |
4344 |
if(zeros_left <= 0) |
4345 |
run_before = 0;
|
4346 |
else if(zeros_left < 7){ |
4347 |
run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1); |
4348 |
}else{
|
4349 |
run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
|
4350 |
} |
4351 |
zeros_left -= run_before; |
4352 |
coeff_num -= 1 + run_before;
|
4353 |
j= scantable[ coeff_num ]; |
4354 |
|
4355 |
block[j]= level[i]; |
4356 |
} |
4357 |
}else{
|
4358 |
block[j] = (level[0] * qmul[j] + 32)>>6; |
4359 |
for(i=1;i<total_coeff;i++) { |
4360 |
if(zeros_left <= 0) |
4361 |
run_before = 0;
|
4362 |
else if(zeros_left < 7){ |
4363 |
run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1); |
4364 |
}else{
|
4365 |
run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
|
4366 |
} |
4367 |
zeros_left -= run_before; |
4368 |
coeff_num -= 1 + run_before;
|
4369 |
j= scantable[ coeff_num ]; |
4370 |
|
4371 |
block[j]= (level[i] * qmul[j] + 32)>>6; |
4372 |
} |
4373 |
} |
4374 |
|
4375 |
if(zeros_left<0){ |
4376 |
av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
|
4377 |
return -1; |
4378 |
} |
4379 |
|
4380 |
return 0; |
4381 |
} |
4382 |
|
4383 |
static void predict_field_decoding_flag(H264Context *h){ |
4384 |
MpegEncContext * const s = &h->s;
|
4385 |
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; |
4386 |
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num) |
4387 |
? s->current_picture.mb_type[mb_xy-1]
|
4388 |
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num) |
4389 |
? s->current_picture.mb_type[mb_xy-s->mb_stride] |
4390 |
: 0;
|
4391 |
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; |
4392 |
} |
4393 |
|
4394 |
/**
|
4395 |
* decodes a P_SKIP or B_SKIP macroblock
|
4396 |
*/
|
4397 |
static void decode_mb_skip(H264Context *h){ |
4398 |
MpegEncContext * const s = &h->s;
|
4399 |
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; |
4400 |
int mb_type=0; |
4401 |
|
4402 |
memset(h->non_zero_count[mb_xy], 0, 16); |
4403 |
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui |
4404 |
|
4405 |
if(MB_FIELD)
|
4406 |
mb_type|= MB_TYPE_INTERLACED; |
4407 |
|
4408 |
if( h->slice_type == B_TYPE )
|
4409 |
{ |
4410 |
// just for fill_caches. pred_direct_motion will set the real mb_type
|
4411 |
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; |
4412 |
|
4413 |
fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ... |
4414 |
pred_direct_motion(h, &mb_type); |
4415 |
mb_type|= MB_TYPE_SKIP; |
4416 |
} |
4417 |
else
|
4418 |
{ |
4419 |
int mx, my;
|
4420 |
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; |
4421 |
|
4422 |
fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ... |
4423 |
pred_pskip_motion(h, &mx, &my); |
4424 |
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); |
4425 |
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); |
4426 |
} |
4427 |
|
4428 |
write_back_motion(h, mb_type); |
4429 |
s->current_picture.mb_type[mb_xy]= mb_type; |
4430 |
s->current_picture.qscale_table[mb_xy]= s->qscale; |
4431 |
h->slice_table[ mb_xy ]= h->slice_num; |
4432 |
h->prev_mb_skipped= 1;
|
4433 |
} |
4434 |
|
4435 |
/**
|
4436 |
* decodes a macroblock
|
4437 |
* @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
4438 |
*/
|
4439 |
static int decode_mb_cavlc(H264Context *h){ |
4440 |
MpegEncContext * const s = &h->s;
|
4441 |
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; |
4442 |
int partition_count;
|
4443 |
unsigned int mb_type, cbp; |
4444 |
int dct8x8_allowed= h->pps.transform_8x8_mode;
|
4445 |
|
4446 |
s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
|
4447 |
|
4448 |
tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
|
4449 |
cbp = 0; /* avoid warning. FIXME: find a solution without slowing |
4450 |
down the code */
|
4451 |
if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
|
4452 |
if(s->mb_skip_run==-1) |
4453 |
s->mb_skip_run= get_ue_golomb(&s->gb); |
4454 |
|
4455 |
if (s->mb_skip_run--) {
|
4456 |
if(FRAME_MBAFF && (s->mb_y&1) == 0){ |
4457 |
if(s->mb_skip_run==0) |
4458 |
h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb); |
4459 |
else
|
4460 |
predict_field_decoding_flag(h); |
4461 |
} |
4462 |
decode_mb_skip(h); |
4463 |
return 0; |
4464 |
} |
4465 |
} |
4466 |
if(FRAME_MBAFF){
|
4467 |
if( (s->mb_y&1) == 0 ) |
4468 |
h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb); |
4469 |