ffmpeg / libavcodec / flacenc.c @ 77a78e9b
History | View | Annotate | Download (40.4 KB)
1 |
/**
|
---|---|
2 |
* FLAC audio encoder
|
3 |
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
#include "libavutil/crc.h" |
23 |
#include "libavutil/md5.h" |
24 |
#include "avcodec.h" |
25 |
#include "get_bits.h" |
26 |
#include "golomb.h" |
27 |
#include "lpc.h" |
28 |
#include "flac.h" |
29 |
#include "flacdata.h" |
30 |
|
31 |
#define FLAC_SUBFRAME_CONSTANT 0 |
32 |
#define FLAC_SUBFRAME_VERBATIM 1 |
33 |
#define FLAC_SUBFRAME_FIXED 8 |
34 |
#define FLAC_SUBFRAME_LPC 32 |
35 |
|
36 |
#define MAX_FIXED_ORDER 4 |
37 |
#define MAX_PARTITION_ORDER 8 |
38 |
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER) |
39 |
#define MAX_LPC_PRECISION 15 |
40 |
#define MAX_LPC_SHIFT 15 |
41 |
#define MAX_RICE_PARAM 14 |
42 |
|
43 |
typedef struct CompressionOptions { |
44 |
int compression_level;
|
45 |
int block_time_ms;
|
46 |
enum AVLPCType lpc_type;
|
47 |
int lpc_passes;
|
48 |
int lpc_coeff_precision;
|
49 |
int min_prediction_order;
|
50 |
int max_prediction_order;
|
51 |
int prediction_order_method;
|
52 |
int min_partition_order;
|
53 |
int max_partition_order;
|
54 |
} CompressionOptions; |
55 |
|
56 |
typedef struct RiceContext { |
57 |
int porder;
|
58 |
int params[MAX_PARTITIONS];
|
59 |
} RiceContext; |
60 |
|
61 |
typedef struct FlacSubframe { |
62 |
int type;
|
63 |
int type_code;
|
64 |
int obits;
|
65 |
int order;
|
66 |
int32_t coefs[MAX_LPC_ORDER]; |
67 |
int shift;
|
68 |
RiceContext rc; |
69 |
int32_t samples[FLAC_MAX_BLOCKSIZE]; |
70 |
int32_t residual[FLAC_MAX_BLOCKSIZE+1];
|
71 |
} FlacSubframe; |
72 |
|
73 |
typedef struct FlacFrame { |
74 |
FlacSubframe subframes[FLAC_MAX_CHANNELS]; |
75 |
int blocksize;
|
76 |
int bs_code[2]; |
77 |
uint8_t crc8; |
78 |
int ch_mode;
|
79 |
int verbatim_only;
|
80 |
} FlacFrame; |
81 |
|
82 |
typedef struct FlacEncodeContext { |
83 |
PutBitContext pb; |
84 |
int channels;
|
85 |
int samplerate;
|
86 |
int sr_code[2]; |
87 |
int max_blocksize;
|
88 |
int min_framesize;
|
89 |
int max_framesize;
|
90 |
int max_encoded_framesize;
|
91 |
uint32_t frame_count; |
92 |
uint64_t sample_count; |
93 |
uint8_t md5sum[16];
|
94 |
FlacFrame frame; |
95 |
CompressionOptions options; |
96 |
AVCodecContext *avctx; |
97 |
LPCContext lpc_ctx; |
98 |
struct AVMD5 *md5ctx;
|
99 |
} FlacEncodeContext; |
100 |
|
101 |
|
102 |
/**
|
103 |
* Write streaminfo metadata block to byte array.
|
104 |
*/
|
105 |
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) |
106 |
{ |
107 |
PutBitContext pb; |
108 |
|
109 |
memset(header, 0, FLAC_STREAMINFO_SIZE);
|
110 |
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE); |
111 |
|
112 |
/* streaminfo metadata block */
|
113 |
put_bits(&pb, 16, s->max_blocksize);
|
114 |
put_bits(&pb, 16, s->max_blocksize);
|
115 |
put_bits(&pb, 24, s->min_framesize);
|
116 |
put_bits(&pb, 24, s->max_framesize);
|
117 |
put_bits(&pb, 20, s->samplerate);
|
118 |
put_bits(&pb, 3, s->channels-1); |
119 |
put_bits(&pb, 5, 15); /* bits per sample - 1 */ |
120 |
/* write 36-bit sample count in 2 put_bits() calls */
|
121 |
put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12); |
122 |
put_bits(&pb, 12, s->sample_count & 0x000000FFFLL); |
123 |
flush_put_bits(&pb); |
124 |
memcpy(&header[18], s->md5sum, 16); |
125 |
} |
126 |
|
127 |
|
128 |
/**
|
129 |
* Set blocksize based on samplerate.
|
130 |
* Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
|
131 |
*/
|
132 |
static int select_blocksize(int samplerate, int block_time_ms) |
133 |
{ |
134 |
int i;
|
135 |
int target;
|
136 |
int blocksize;
|
137 |
|
138 |
assert(samplerate > 0);
|
139 |
blocksize = ff_flac_blocksize_table[1];
|
140 |
target = (samplerate * block_time_ms) / 1000;
|
141 |
for (i = 0; i < 16; i++) { |
142 |
if (target >= ff_flac_blocksize_table[i] &&
|
143 |
ff_flac_blocksize_table[i] > blocksize) { |
144 |
blocksize = ff_flac_blocksize_table[i]; |
145 |
} |
146 |
} |
147 |
return blocksize;
|
148 |
} |
149 |
|
150 |
|
151 |
static av_cold void dprint_compression_options(FlacEncodeContext *s) |
152 |
{ |
153 |
AVCodecContext *avctx = s->avctx; |
154 |
CompressionOptions *opt = &s->options; |
155 |
|
156 |
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
|
157 |
|
158 |
switch (opt->lpc_type) {
|
159 |
case AV_LPC_TYPE_NONE:
|
160 |
av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
|
161 |
break;
|
162 |
case AV_LPC_TYPE_FIXED:
|
163 |
av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
|
164 |
break;
|
165 |
case AV_LPC_TYPE_LEVINSON:
|
166 |
av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
|
167 |
break;
|
168 |
case AV_LPC_TYPE_CHOLESKY:
|
169 |
av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
|
170 |
opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es"); |
171 |
break;
|
172 |
} |
173 |
|
174 |
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
|
175 |
opt->min_prediction_order, opt->max_prediction_order); |
176 |
|
177 |
switch (opt->prediction_order_method) {
|
178 |
case ORDER_METHOD_EST:
|
179 |
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate"); |
180 |
break;
|
181 |
case ORDER_METHOD_2LEVEL:
|
182 |
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level"); |
183 |
break;
|
184 |
case ORDER_METHOD_4LEVEL:
|
185 |
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level"); |
186 |
break;
|
187 |
case ORDER_METHOD_8LEVEL:
|
188 |
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level"); |
189 |
break;
|
190 |
case ORDER_METHOD_SEARCH:
|
191 |
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search"); |
192 |
break;
|
193 |
case ORDER_METHOD_LOG:
|
194 |
av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search"); |
195 |
break;
|
196 |
} |
197 |
|
198 |
|
199 |
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
|
200 |
opt->min_partition_order, opt->max_partition_order); |
201 |
|
202 |
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
|
203 |
|
204 |
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
|
205 |
opt->lpc_coeff_precision); |
206 |
} |
207 |
|
208 |
|
209 |
static av_cold int flac_encode_init(AVCodecContext *avctx) |
210 |
{ |
211 |
int freq = avctx->sample_rate;
|
212 |
int channels = avctx->channels;
|
213 |
FlacEncodeContext *s = avctx->priv_data; |
214 |
int i, level, ret;
|
215 |
uint8_t *streaminfo; |
216 |
|
217 |
s->avctx = avctx; |
218 |
|
219 |
if (avctx->sample_fmt != AV_SAMPLE_FMT_S16)
|
220 |
return -1; |
221 |
|
222 |
if (channels < 1 || channels > FLAC_MAX_CHANNELS) |
223 |
return -1; |
224 |
s->channels = channels; |
225 |
|
226 |
/* find samplerate in table */
|
227 |
if (freq < 1) |
228 |
return -1; |
229 |
for (i = 4; i < 12; i++) { |
230 |
if (freq == ff_flac_sample_rate_table[i]) {
|
231 |
s->samplerate = ff_flac_sample_rate_table[i]; |
232 |
s->sr_code[0] = i;
|
233 |
s->sr_code[1] = 0; |
234 |
break;
|
235 |
} |
236 |
} |
237 |
/* if not in table, samplerate is non-standard */
|
238 |
if (i == 12) { |
239 |
if (freq % 1000 == 0 && freq < 255000) { |
240 |
s->sr_code[0] = 12; |
241 |
s->sr_code[1] = freq / 1000; |
242 |
} else if (freq % 10 == 0 && freq < 655350) { |
243 |
s->sr_code[0] = 14; |
244 |
s->sr_code[1] = freq / 10; |
245 |
} else if (freq < 65535) { |
246 |
s->sr_code[0] = 13; |
247 |
s->sr_code[1] = freq;
|
248 |
} else {
|
249 |
return -1; |
250 |
} |
251 |
s->samplerate = freq; |
252 |
} |
253 |
|
254 |
/* set compression option defaults based on avctx->compression_level */
|
255 |
if (avctx->compression_level < 0) |
256 |
s->options.compression_level = 5;
|
257 |
else
|
258 |
s->options.compression_level = avctx->compression_level; |
259 |
|
260 |
level = s->options.compression_level; |
261 |
if (level > 12) { |
262 |
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
|
263 |
s->options.compression_level); |
264 |
return -1; |
265 |
} |
266 |
|
267 |
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level]; |
268 |
|
269 |
s->options.lpc_type = ((int[]){ AV_LPC_TYPE_FIXED, AV_LPC_TYPE_FIXED, AV_LPC_TYPE_FIXED,
|
270 |
AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, |
271 |
AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, |
272 |
AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, AV_LPC_TYPE_LEVINSON, |
273 |
AV_LPC_TYPE_LEVINSON})[level]; |
274 |
|
275 |
s->options.min_prediction_order = ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; |
276 |
s->options.max_prediction_order = ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level]; |
277 |
|
278 |
s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST,
|
279 |
ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, |
280 |
ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL, |
281 |
ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG, |
282 |
ORDER_METHOD_SEARCH})[level]; |
283 |
|
284 |
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level]; |
285 |
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level]; |
286 |
|
287 |
/* set compression option overrides from AVCodecContext */
|
288 |
#if FF_API_USE_LPC
|
289 |
/* for compatibility with deprecated AVCodecContext.use_lpc */
|
290 |
if (avctx->use_lpc == 0) { |
291 |
s->options.lpc_type = AV_LPC_TYPE_FIXED; |
292 |
} else if (avctx->use_lpc == 1) { |
293 |
s->options.lpc_type = AV_LPC_TYPE_LEVINSON; |
294 |
} else if (avctx->use_lpc > 1) { |
295 |
s->options.lpc_type = AV_LPC_TYPE_CHOLESKY; |
296 |
s->options.lpc_passes = avctx->use_lpc - 1;
|
297 |
} |
298 |
#endif
|
299 |
if (avctx->lpc_type > AV_LPC_TYPE_DEFAULT) {
|
300 |
if (avctx->lpc_type > AV_LPC_TYPE_CHOLESKY) {
|
301 |
av_log(avctx, AV_LOG_ERROR, "unknown lpc type: %d\n", avctx->lpc_type);
|
302 |
return -1; |
303 |
} |
304 |
s->options.lpc_type = avctx->lpc_type; |
305 |
if (s->options.lpc_type == AV_LPC_TYPE_CHOLESKY) {
|
306 |
if (avctx->lpc_passes < 0) { |
307 |
// default number of passes for Cholesky
|
308 |
s->options.lpc_passes = 2;
|
309 |
} else if (avctx->lpc_passes == 0) { |
310 |
av_log(avctx, AV_LOG_ERROR, "invalid number of lpc passes: %d\n",
|
311 |
avctx->lpc_passes); |
312 |
return -1; |
313 |
} else {
|
314 |
s->options.lpc_passes = avctx->lpc_passes; |
315 |
} |
316 |
} |
317 |
} |
318 |
|
319 |
if (s->options.lpc_type == AV_LPC_TYPE_NONE) {
|
320 |
s->options.min_prediction_order = 0;
|
321 |
} else if (avctx->min_prediction_order >= 0) { |
322 |
if (s->options.lpc_type == AV_LPC_TYPE_FIXED) {
|
323 |
if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
|
324 |
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
325 |
avctx->min_prediction_order); |
326 |
return -1; |
327 |
} |
328 |
} else if (avctx->min_prediction_order < MIN_LPC_ORDER || |
329 |
avctx->min_prediction_order > MAX_LPC_ORDER) { |
330 |
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
331 |
avctx->min_prediction_order); |
332 |
return -1; |
333 |
} |
334 |
s->options.min_prediction_order = avctx->min_prediction_order; |
335 |
} |
336 |
if (s->options.lpc_type == AV_LPC_TYPE_NONE) {
|
337 |
s->options.max_prediction_order = 0;
|
338 |
} else if (avctx->max_prediction_order >= 0) { |
339 |
if (s->options.lpc_type == AV_LPC_TYPE_FIXED) {
|
340 |
if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
|
341 |
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
342 |
avctx->max_prediction_order); |
343 |
return -1; |
344 |
} |
345 |
} else if (avctx->max_prediction_order < MIN_LPC_ORDER || |
346 |
avctx->max_prediction_order > MAX_LPC_ORDER) { |
347 |
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
348 |
avctx->max_prediction_order); |
349 |
return -1; |
350 |
} |
351 |
s->options.max_prediction_order = avctx->max_prediction_order; |
352 |
} |
353 |
if (s->options.max_prediction_order < s->options.min_prediction_order) {
|
354 |
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
|
355 |
s->options.min_prediction_order, s->options.max_prediction_order); |
356 |
return -1; |
357 |
} |
358 |
|
359 |
if (avctx->prediction_order_method >= 0) { |
360 |
if (avctx->prediction_order_method > ORDER_METHOD_LOG) {
|
361 |
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
|
362 |
avctx->prediction_order_method); |
363 |
return -1; |
364 |
} |
365 |
s->options.prediction_order_method = avctx->prediction_order_method; |
366 |
} |
367 |
|
368 |
if (avctx->min_partition_order >= 0) { |
369 |
if (avctx->min_partition_order > MAX_PARTITION_ORDER) {
|
370 |
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
|
371 |
avctx->min_partition_order); |
372 |
return -1; |
373 |
} |
374 |
s->options.min_partition_order = avctx->min_partition_order; |
375 |
} |
376 |
if (avctx->max_partition_order >= 0) { |
377 |
if (avctx->max_partition_order > MAX_PARTITION_ORDER) {
|
378 |
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
|
379 |
avctx->max_partition_order); |
380 |
return -1; |
381 |
} |
382 |
s->options.max_partition_order = avctx->max_partition_order; |
383 |
} |
384 |
if (s->options.max_partition_order < s->options.min_partition_order) {
|
385 |
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
|
386 |
s->options.min_partition_order, s->options.max_partition_order); |
387 |
return -1; |
388 |
} |
389 |
|
390 |
if (avctx->frame_size > 0) { |
391 |
if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
|
392 |
avctx->frame_size > FLAC_MAX_BLOCKSIZE) { |
393 |
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
|
394 |
avctx->frame_size); |
395 |
return -1; |
396 |
} |
397 |
} else {
|
398 |
s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms); |
399 |
} |
400 |
s->max_blocksize = s->avctx->frame_size; |
401 |
|
402 |
/* set LPC precision */
|
403 |
if (avctx->lpc_coeff_precision > 0) { |
404 |
if (avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
|
405 |
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
|
406 |
avctx->lpc_coeff_precision); |
407 |
return -1; |
408 |
} |
409 |
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision; |
410 |
} else {
|
411 |
/* default LPC precision */
|
412 |
s->options.lpc_coeff_precision = 15;
|
413 |
} |
414 |
|
415 |
/* set maximum encoded frame size in verbatim mode */
|
416 |
s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size, |
417 |
s->channels, 16);
|
418 |
|
419 |
/* initialize MD5 context */
|
420 |
s->md5ctx = av_malloc(av_md5_size); |
421 |
if (!s->md5ctx)
|
422 |
return AVERROR(ENOMEM);
|
423 |
av_md5_init(s->md5ctx); |
424 |
|
425 |
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE); |
426 |
if (!streaminfo)
|
427 |
return AVERROR(ENOMEM);
|
428 |
write_streaminfo(s, streaminfo); |
429 |
avctx->extradata = streaminfo; |
430 |
avctx->extradata_size = FLAC_STREAMINFO_SIZE; |
431 |
|
432 |
s->frame_count = 0;
|
433 |
s->min_framesize = s->max_framesize; |
434 |
|
435 |
avctx->coded_frame = avcodec_alloc_frame(); |
436 |
if (!avctx->coded_frame)
|
437 |
return AVERROR(ENOMEM);
|
438 |
|
439 |
ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, |
440 |
s->options.max_prediction_order, AV_LPC_TYPE_LEVINSON); |
441 |
|
442 |
dprint_compression_options(s); |
443 |
|
444 |
return ret;
|
445 |
} |
446 |
|
447 |
|
448 |
static void init_frame(FlacEncodeContext *s) |
449 |
{ |
450 |
int i, ch;
|
451 |
FlacFrame *frame; |
452 |
|
453 |
frame = &s->frame; |
454 |
|
455 |
for (i = 0; i < 16; i++) { |
456 |
if (s->avctx->frame_size == ff_flac_blocksize_table[i]) {
|
457 |
frame->blocksize = ff_flac_blocksize_table[i]; |
458 |
frame->bs_code[0] = i;
|
459 |
frame->bs_code[1] = 0; |
460 |
break;
|
461 |
} |
462 |
} |
463 |
if (i == 16) { |
464 |
frame->blocksize = s->avctx->frame_size; |
465 |
if (frame->blocksize <= 256) { |
466 |
frame->bs_code[0] = 6; |
467 |
frame->bs_code[1] = frame->blocksize-1; |
468 |
} else {
|
469 |
frame->bs_code[0] = 7; |
470 |
frame->bs_code[1] = frame->blocksize-1; |
471 |
} |
472 |
} |
473 |
|
474 |
for (ch = 0; ch < s->channels; ch++) |
475 |
frame->subframes[ch].obits = 16;
|
476 |
|
477 |
frame->verbatim_only = 0;
|
478 |
} |
479 |
|
480 |
|
481 |
/**
|
482 |
* Copy channel-interleaved input samples into separate subframes.
|
483 |
*/
|
484 |
static void copy_samples(FlacEncodeContext *s, const int16_t *samples) |
485 |
{ |
486 |
int i, j, ch;
|
487 |
FlacFrame *frame; |
488 |
|
489 |
frame = &s->frame; |
490 |
for (i = 0, j = 0; i < frame->blocksize; i++) |
491 |
for (ch = 0; ch < s->channels; ch++, j++) |
492 |
frame->subframes[ch].samples[i] = samples[j]; |
493 |
} |
494 |
|
495 |
|
496 |
static int rice_count_exact(int32_t *res, int n, int k) |
497 |
{ |
498 |
int i;
|
499 |
int count = 0; |
500 |
|
501 |
for (i = 0; i < n; i++) { |
502 |
int32_t v = -2 * res[i] - 1; |
503 |
v ^= v >> 31;
|
504 |
count += (v >> k) + 1 + k;
|
505 |
} |
506 |
return count;
|
507 |
} |
508 |
|
509 |
|
510 |
static int subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, |
511 |
int pred_order)
|
512 |
{ |
513 |
int p, porder, psize;
|
514 |
int i, part_end;
|
515 |
int count = 0; |
516 |
|
517 |
/* subframe header */
|
518 |
count += 8;
|
519 |
|
520 |
/* subframe */
|
521 |
if (sub->type == FLAC_SUBFRAME_CONSTANT) {
|
522 |
count += sub->obits; |
523 |
} else if (sub->type == FLAC_SUBFRAME_VERBATIM) { |
524 |
count += s->frame.blocksize * sub->obits; |
525 |
} else {
|
526 |
/* warm-up samples */
|
527 |
count += pred_order * sub->obits; |
528 |
|
529 |
/* LPC coefficients */
|
530 |
if (sub->type == FLAC_SUBFRAME_LPC)
|
531 |
count += 4 + 5 + pred_order * s->options.lpc_coeff_precision; |
532 |
|
533 |
/* rice-encoded block */
|
534 |
count += 2;
|
535 |
|
536 |
/* partition order */
|
537 |
porder = sub->rc.porder; |
538 |
psize = s->frame.blocksize >> porder; |
539 |
count += 4;
|
540 |
|
541 |
/* residual */
|
542 |
i = pred_order; |
543 |
part_end = psize; |
544 |
for (p = 0; p < 1 << porder; p++) { |
545 |
int k = sub->rc.params[p];
|
546 |
count += 4;
|
547 |
count += rice_count_exact(&sub->residual[i], part_end - i, k); |
548 |
i = part_end; |
549 |
part_end = FFMIN(s->frame.blocksize, part_end + psize); |
550 |
} |
551 |
} |
552 |
|
553 |
return count;
|
554 |
} |
555 |
|
556 |
|
557 |
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) |
558 |
|
559 |
/**
|
560 |
* Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
|
561 |
*/
|
562 |
static int find_optimal_param(uint32_t sum, int n) |
563 |
{ |
564 |
int k;
|
565 |
uint32_t sum2; |
566 |
|
567 |
if (sum <= n >> 1) |
568 |
return 0; |
569 |
sum2 = sum - (n >> 1);
|
570 |
k = av_log2(n < 256 ? FASTDIV(sum2, n) : sum2 / n);
|
571 |
return FFMIN(k, MAX_RICE_PARAM);
|
572 |
} |
573 |
|
574 |
|
575 |
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder, |
576 |
uint32_t *sums, int n, int pred_order) |
577 |
{ |
578 |
int i;
|
579 |
int k, cnt, part;
|
580 |
uint32_t all_bits; |
581 |
|
582 |
part = (1 << porder);
|
583 |
all_bits = 4 * part;
|
584 |
|
585 |
cnt = (n >> porder) - pred_order; |
586 |
for (i = 0; i < part; i++) { |
587 |
k = find_optimal_param(sums[i], cnt); |
588 |
rc->params[i] = k; |
589 |
all_bits += rice_encode_count(sums[i], cnt, k); |
590 |
cnt = n >> porder; |
591 |
} |
592 |
|
593 |
rc->porder = porder; |
594 |
|
595 |
return all_bits;
|
596 |
} |
597 |
|
598 |
|
599 |
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order, |
600 |
uint32_t sums[][MAX_PARTITIONS]) |
601 |
{ |
602 |
int i, j;
|
603 |
int parts;
|
604 |
uint32_t *res, *res_end; |
605 |
|
606 |
/* sums for highest level */
|
607 |
parts = (1 << pmax);
|
608 |
res = &data[pred_order]; |
609 |
res_end = &data[n >> pmax]; |
610 |
for (i = 0; i < parts; i++) { |
611 |
uint32_t sum = 0;
|
612 |
while (res < res_end)
|
613 |
sum += *(res++); |
614 |
sums[pmax][i] = sum; |
615 |
res_end += n >> pmax; |
616 |
} |
617 |
/* sums for lower levels */
|
618 |
for (i = pmax - 1; i >= pmin; i--) { |
619 |
parts = (1 << i);
|
620 |
for (j = 0; j < parts; j++) |
621 |
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1]; |
622 |
} |
623 |
} |
624 |
|
625 |
|
626 |
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax, |
627 |
int32_t *data, int n, int pred_order) |
628 |
{ |
629 |
int i;
|
630 |
uint32_t bits[MAX_PARTITION_ORDER+1];
|
631 |
int opt_porder;
|
632 |
RiceContext tmp_rc; |
633 |
uint32_t *udata; |
634 |
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
|
635 |
|
636 |
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
|
637 |
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
|
638 |
assert(pmin <= pmax); |
639 |
|
640 |
udata = av_malloc(n * sizeof(uint32_t));
|
641 |
for (i = 0; i < n; i++) |
642 |
udata[i] = (2*data[i]) ^ (data[i]>>31); |
643 |
|
644 |
calc_sums(pmin, pmax, udata, n, pred_order, sums); |
645 |
|
646 |
opt_porder = pmin; |
647 |
bits[pmin] = UINT32_MAX; |
648 |
for (i = pmin; i <= pmax; i++) {
|
649 |
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order); |
650 |
if (bits[i] <= bits[opt_porder]) {
|
651 |
opt_porder = i; |
652 |
*rc = tmp_rc; |
653 |
} |
654 |
} |
655 |
|
656 |
av_freep(&udata); |
657 |
return bits[opt_porder];
|
658 |
} |
659 |
|
660 |
|
661 |
static int get_max_p_order(int max_porder, int n, int order) |
662 |
{ |
663 |
int porder = FFMIN(max_porder, av_log2(n^(n-1))); |
664 |
if (order > 0) |
665 |
porder = FFMIN(porder, av_log2(n/order)); |
666 |
return porder;
|
667 |
} |
668 |
|
669 |
|
670 |
static uint32_t find_subframe_rice_params(FlacEncodeContext *s,
|
671 |
FlacSubframe *sub, int pred_order)
|
672 |
{ |
673 |
int pmin = get_max_p_order(s->options.min_partition_order,
|
674 |
s->frame.blocksize, pred_order); |
675 |
int pmax = get_max_p_order(s->options.max_partition_order,
|
676 |
s->frame.blocksize, pred_order); |
677 |
|
678 |
uint32_t bits = 8 + pred_order * sub->obits + 2 + 4; |
679 |
if (sub->type == FLAC_SUBFRAME_LPC)
|
680 |
bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision; |
681 |
bits += calc_rice_params(&sub->rc, pmin, pmax, sub->residual, |
682 |
s->frame.blocksize, pred_order); |
683 |
return bits;
|
684 |
} |
685 |
|
686 |
|
687 |
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, |
688 |
int order)
|
689 |
{ |
690 |
int i;
|
691 |
|
692 |
for (i = 0; i < order; i++) |
693 |
res[i] = smp[i]; |
694 |
|
695 |
if (order == 0) { |
696 |
for (i = order; i < n; i++)
|
697 |
res[i] = smp[i]; |
698 |
} else if (order == 1) { |
699 |
for (i = order; i < n; i++)
|
700 |
res[i] = smp[i] - smp[i-1];
|
701 |
} else if (order == 2) { |
702 |
int a = smp[order-1] - smp[order-2]; |
703 |
for (i = order; i < n; i += 2) { |
704 |
int b = smp[i ] - smp[i-1]; |
705 |
res[i] = b - a; |
706 |
a = smp[i+1] - smp[i ];
|
707 |
res[i+1] = a - b;
|
708 |
} |
709 |
} else if (order == 3) { |
710 |
int a = smp[order-1] - smp[order-2]; |
711 |
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
712 |
for (i = order; i < n; i += 2) { |
713 |
int b = smp[i ] - smp[i-1]; |
714 |
int d = b - a;
|
715 |
res[i] = d - c; |
716 |
a = smp[i+1] - smp[i ];
|
717 |
c = a - b; |
718 |
res[i+1] = c - d;
|
719 |
} |
720 |
} else {
|
721 |
int a = smp[order-1] - smp[order-2]; |
722 |
int c = smp[order-1] - 2*smp[order-2] + smp[order-3]; |
723 |
int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4]; |
724 |
for (i = order; i < n; i += 2) { |
725 |
int b = smp[i ] - smp[i-1]; |
726 |
int d = b - a;
|
727 |
int f = d - c;
|
728 |
res[i ] = f - e; |
729 |
a = smp[i+1] - smp[i ];
|
730 |
c = a - b; |
731 |
e = c - d; |
732 |
res[i+1] = e - f;
|
733 |
} |
734 |
} |
735 |
} |
736 |
|
737 |
|
738 |
#define LPC1(x) {\
|
739 |
int c = coefs[(x)-1];\ |
740 |
p0 += c * s;\ |
741 |
s = smp[i-(x)+1];\
|
742 |
p1 += c * s;\ |
743 |
} |
744 |
|
745 |
static av_always_inline void encode_residual_lpc_unrolled(int32_t *res, |
746 |
const int32_t *smp, int n, int order, |
747 |
const int32_t *coefs, int shift, int big) |
748 |
{ |
749 |
int i;
|
750 |
for (i = order; i < n; i += 2) { |
751 |
int s = smp[i-order];
|
752 |
int p0 = 0, p1 = 0; |
753 |
if (big) {
|
754 |
switch (order) {
|
755 |
case 32: LPC1(32) |
756 |
case 31: LPC1(31) |
757 |
case 30: LPC1(30) |
758 |
case 29: LPC1(29) |
759 |
case 28: LPC1(28) |
760 |
case 27: LPC1(27) |
761 |
case 26: LPC1(26) |
762 |
case 25: LPC1(25) |
763 |
case 24: LPC1(24) |
764 |
case 23: LPC1(23) |
765 |
case 22: LPC1(22) |
766 |
case 21: LPC1(21) |
767 |
case 20: LPC1(20) |
768 |
case 19: LPC1(19) |
769 |
case 18: LPC1(18) |
770 |
case 17: LPC1(17) |
771 |
case 16: LPC1(16) |
772 |
case 15: LPC1(15) |
773 |
case 14: LPC1(14) |
774 |
case 13: LPC1(13) |
775 |
case 12: LPC1(12) |
776 |
case 11: LPC1(11) |
777 |
case 10: LPC1(10) |
778 |
case 9: LPC1( 9) |
779 |
LPC1( 8)
|
780 |
LPC1( 7)
|
781 |
LPC1( 6)
|
782 |
LPC1( 5)
|
783 |
LPC1( 4)
|
784 |
LPC1( 3)
|
785 |
LPC1( 2)
|
786 |
LPC1( 1)
|
787 |
} |
788 |
} else {
|
789 |
switch (order) {
|
790 |
case 8: LPC1( 8) |
791 |
case 7: LPC1( 7) |
792 |
case 6: LPC1( 6) |
793 |
case 5: LPC1( 5) |
794 |
case 4: LPC1( 4) |
795 |
case 3: LPC1( 3) |
796 |
case 2: LPC1( 2) |
797 |
case 1: LPC1( 1) |
798 |
} |
799 |
} |
800 |
res[i ] = smp[i ] - (p0 >> shift); |
801 |
res[i+1] = smp[i+1] - (p1 >> shift); |
802 |
} |
803 |
} |
804 |
|
805 |
|
806 |
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n, |
807 |
int order, const int32_t *coefs, int shift) |
808 |
{ |
809 |
int i;
|
810 |
for (i = 0; i < order; i++) |
811 |
res[i] = smp[i]; |
812 |
#if CONFIG_SMALL
|
813 |
for (i = order; i < n; i += 2) { |
814 |
int j;
|
815 |
int s = smp[i];
|
816 |
int p0 = 0, p1 = 0; |
817 |
for (j = 0; j < order; j++) { |
818 |
int c = coefs[j];
|
819 |
p1 += c * s; |
820 |
s = smp[i-j-1];
|
821 |
p0 += c * s; |
822 |
} |
823 |
res[i ] = smp[i ] - (p0 >> shift); |
824 |
res[i+1] = smp[i+1] - (p1 >> shift); |
825 |
} |
826 |
#else
|
827 |
switch (order) {
|
828 |
case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break; |
829 |
case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break; |
830 |
case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break; |
831 |
case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break; |
832 |
case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break; |
833 |
case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break; |
834 |
case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break; |
835 |
case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break; |
836 |
default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break; |
837 |
} |
838 |
#endif
|
839 |
} |
840 |
|
841 |
|
842 |
static int encode_residual_ch(FlacEncodeContext *s, int ch) |
843 |
{ |
844 |
int i, n;
|
845 |
int min_order, max_order, opt_order, omethod;
|
846 |
FlacFrame *frame; |
847 |
FlacSubframe *sub; |
848 |
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
849 |
int shift[MAX_LPC_ORDER];
|
850 |
int32_t *res, *smp; |
851 |
|
852 |
frame = &s->frame; |
853 |
sub = &frame->subframes[ch]; |
854 |
res = sub->residual; |
855 |
smp = sub->samples; |
856 |
n = frame->blocksize; |
857 |
|
858 |
/* CONSTANT */
|
859 |
for (i = 1; i < n; i++) |
860 |
if(smp[i] != smp[0]) |
861 |
break;
|
862 |
if (i == n) {
|
863 |
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
864 |
res[0] = smp[0]; |
865 |
return subframe_count_exact(s, sub, 0); |
866 |
} |
867 |
|
868 |
/* VERBATIM */
|
869 |
if (frame->verbatim_only || n < 5) { |
870 |
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; |
871 |
memcpy(res, smp, n * sizeof(int32_t));
|
872 |
return subframe_count_exact(s, sub, 0); |
873 |
} |
874 |
|
875 |
min_order = s->options.min_prediction_order; |
876 |
max_order = s->options.max_prediction_order; |
877 |
omethod = s->options.prediction_order_method; |
878 |
|
879 |
/* FIXED */
|
880 |
sub->type = FLAC_SUBFRAME_FIXED; |
881 |
if (s->options.lpc_type == AV_LPC_TYPE_NONE ||
|
882 |
s->options.lpc_type == AV_LPC_TYPE_FIXED || n <= max_order) { |
883 |
uint32_t bits[MAX_FIXED_ORDER+1];
|
884 |
if (max_order > MAX_FIXED_ORDER)
|
885 |
max_order = MAX_FIXED_ORDER; |
886 |
opt_order = 0;
|
887 |
bits[0] = UINT32_MAX;
|
888 |
for (i = min_order; i <= max_order; i++) {
|
889 |
encode_residual_fixed(res, smp, n, i); |
890 |
bits[i] = find_subframe_rice_params(s, sub, i); |
891 |
if (bits[i] < bits[opt_order])
|
892 |
opt_order = i; |
893 |
} |
894 |
sub->order = opt_order; |
895 |
sub->type_code = sub->type | sub->order; |
896 |
if (sub->order != max_order) {
|
897 |
encode_residual_fixed(res, smp, n, sub->order); |
898 |
find_subframe_rice_params(s, sub, sub->order); |
899 |
} |
900 |
return subframe_count_exact(s, sub, sub->order);
|
901 |
} |
902 |
|
903 |
/* LPC */
|
904 |
sub->type = FLAC_SUBFRAME_LPC; |
905 |
opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order, |
906 |
s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type, |
907 |
s->options.lpc_passes, omethod, |
908 |
MAX_LPC_SHIFT, 0);
|
909 |
|
910 |
if (omethod == ORDER_METHOD_2LEVEL ||
|
911 |
omethod == ORDER_METHOD_4LEVEL || |
912 |
omethod == ORDER_METHOD_8LEVEL) { |
913 |
int levels = 1 << omethod; |
914 |
uint32_t bits[1 << ORDER_METHOD_8LEVEL];
|
915 |
int order;
|
916 |
int opt_index = levels-1; |
917 |
opt_order = max_order-1;
|
918 |
bits[opt_index] = UINT32_MAX; |
919 |
for (i = levels-1; i >= 0; i--) { |
920 |
order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1; |
921 |
if (order < 0) |
922 |
order = 0;
|
923 |
encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
|
924 |
bits[i] = find_subframe_rice_params(s, sub, order+1);
|
925 |
if (bits[i] < bits[opt_index]) {
|
926 |
opt_index = i; |
927 |
opt_order = order; |
928 |
} |
929 |
} |
930 |
opt_order++; |
931 |
} else if (omethod == ORDER_METHOD_SEARCH) { |
932 |
// brute-force optimal order search
|
933 |
uint32_t bits[MAX_LPC_ORDER]; |
934 |
opt_order = 0;
|
935 |
bits[0] = UINT32_MAX;
|
936 |
for (i = min_order-1; i < max_order; i++) { |
937 |
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
|
938 |
bits[i] = find_subframe_rice_params(s, sub, i+1);
|
939 |
if (bits[i] < bits[opt_order])
|
940 |
opt_order = i; |
941 |
} |
942 |
opt_order++; |
943 |
} else if (omethod == ORDER_METHOD_LOG) { |
944 |
uint32_t bits[MAX_LPC_ORDER]; |
945 |
int step;
|
946 |
|
947 |
opt_order = min_order - 1 + (max_order-min_order)/3; |
948 |
memset(bits, -1, sizeof(bits)); |
949 |
|
950 |
for (step = 16; step; step >>= 1) { |
951 |
int last = opt_order;
|
952 |
for (i = last-step; i <= last+step; i += step) {
|
953 |
if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX) |
954 |
continue;
|
955 |
encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
|
956 |
bits[i] = find_subframe_rice_params(s, sub, i+1);
|
957 |
if (bits[i] < bits[opt_order])
|
958 |
opt_order = i; |
959 |
} |
960 |
} |
961 |
opt_order++; |
962 |
} |
963 |
|
964 |
sub->order = opt_order; |
965 |
sub->type_code = sub->type | (sub->order-1);
|
966 |
sub->shift = shift[sub->order-1];
|
967 |
for (i = 0; i < sub->order; i++) |
968 |
sub->coefs[i] = coefs[sub->order-1][i];
|
969 |
|
970 |
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift); |
971 |
|
972 |
find_subframe_rice_params(s, sub, sub->order); |
973 |
|
974 |
return subframe_count_exact(s, sub, sub->order);
|
975 |
} |
976 |
|
977 |
|
978 |
static int count_frame_header(FlacEncodeContext *s) |
979 |
{ |
980 |
uint8_t tmp; |
981 |
int count;
|
982 |
|
983 |
/*
|
984 |
<14> Sync code
|
985 |
<1> Reserved
|
986 |
<1> Blocking strategy
|
987 |
<4> Block size in inter-channel samples
|
988 |
<4> Sample rate
|
989 |
<4> Channel assignment
|
990 |
<3> Sample size in bits
|
991 |
<1> Reserved
|
992 |
*/
|
993 |
count = 32;
|
994 |
|
995 |
/* coded frame number */
|
996 |
PUT_UTF8(s->frame_count, tmp, count += 8;)
|
997 |
|
998 |
/* explicit block size */
|
999 |
if (s->frame.bs_code[0] == 6) |
1000 |
count += 8;
|
1001 |
else if (s->frame.bs_code[0] == 7) |
1002 |
count += 16;
|
1003 |
|
1004 |
/* explicit sample rate */
|
1005 |
count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12)) * 8; |
1006 |
|
1007 |
/* frame header CRC-8 */
|
1008 |
count += 8;
|
1009 |
|
1010 |
return count;
|
1011 |
} |
1012 |
|
1013 |
|
1014 |
static int encode_frame(FlacEncodeContext *s) |
1015 |
{ |
1016 |
int ch, count;
|
1017 |
|
1018 |
count = count_frame_header(s); |
1019 |
|
1020 |
for (ch = 0; ch < s->channels; ch++) |
1021 |
count += encode_residual_ch(s, ch); |
1022 |
|
1023 |
count += (8 - (count & 7)) & 7; // byte alignment |
1024 |
count += 16; // CRC-16 |
1025 |
|
1026 |
return count >> 3; |
1027 |
} |
1028 |
|
1029 |
|
1030 |
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) |
1031 |
{ |
1032 |
int i, best;
|
1033 |
int32_t lt, rt; |
1034 |
uint64_t sum[4];
|
1035 |
uint64_t score[4];
|
1036 |
int k;
|
1037 |
|
1038 |
/* calculate sum of 2nd order residual for each channel */
|
1039 |
sum[0] = sum[1] = sum[2] = sum[3] = 0; |
1040 |
for (i = 2; i < n; i++) { |
1041 |
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2]; |
1042 |
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2]; |
1043 |
sum[2] += FFABS((lt + rt) >> 1); |
1044 |
sum[3] += FFABS(lt - rt);
|
1045 |
sum[0] += FFABS(lt);
|
1046 |
sum[1] += FFABS(rt);
|
1047 |
} |
1048 |
/* estimate bit counts */
|
1049 |
for (i = 0; i < 4; i++) { |
1050 |
k = find_optimal_param(2 * sum[i], n);
|
1051 |
sum[i] = rice_encode_count( 2 * sum[i], n, k);
|
1052 |
} |
1053 |
|
1054 |
/* calculate score for each mode */
|
1055 |
score[0] = sum[0] + sum[1]; |
1056 |
score[1] = sum[0] + sum[3]; |
1057 |
score[2] = sum[1] + sum[3]; |
1058 |
score[3] = sum[2] + sum[3]; |
1059 |
|
1060 |
/* return mode with lowest score */
|
1061 |
best = 0;
|
1062 |
for (i = 1; i < 4; i++) |
1063 |
if (score[i] < score[best])
|
1064 |
best = i; |
1065 |
if (best == 0) { |
1066 |
return FLAC_CHMODE_INDEPENDENT;
|
1067 |
} else if (best == 1) { |
1068 |
return FLAC_CHMODE_LEFT_SIDE;
|
1069 |
} else if (best == 2) { |
1070 |
return FLAC_CHMODE_RIGHT_SIDE;
|
1071 |
} else {
|
1072 |
return FLAC_CHMODE_MID_SIDE;
|
1073 |
} |
1074 |
} |
1075 |
|
1076 |
|
1077 |
/**
|
1078 |
* Perform stereo channel decorrelation.
|
1079 |
*/
|
1080 |
static void channel_decorrelation(FlacEncodeContext *s) |
1081 |
{ |
1082 |
FlacFrame *frame; |
1083 |
int32_t *left, *right; |
1084 |
int i, n;
|
1085 |
|
1086 |
frame = &s->frame; |
1087 |
n = frame->blocksize; |
1088 |
left = frame->subframes[0].samples;
|
1089 |
right = frame->subframes[1].samples;
|
1090 |
|
1091 |
if (s->channels != 2) { |
1092 |
frame->ch_mode = FLAC_CHMODE_INDEPENDENT; |
1093 |
return;
|
1094 |
} |
1095 |
|
1096 |
frame->ch_mode = estimate_stereo_mode(left, right, n); |
1097 |
|
1098 |
/* perform decorrelation and adjust bits-per-sample */
|
1099 |
if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
|
1100 |
return;
|
1101 |
if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
|
1102 |
int32_t tmp; |
1103 |
for (i = 0; i < n; i++) { |
1104 |
tmp = left[i]; |
1105 |
left[i] = (tmp + right[i]) >> 1;
|
1106 |
right[i] = tmp - right[i]; |
1107 |
} |
1108 |
frame->subframes[1].obits++;
|
1109 |
} else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { |
1110 |
for (i = 0; i < n; i++) |
1111 |
right[i] = left[i] - right[i]; |
1112 |
frame->subframes[1].obits++;
|
1113 |
} else {
|
1114 |
for (i = 0; i < n; i++) |
1115 |
left[i] -= right[i]; |
1116 |
frame->subframes[0].obits++;
|
1117 |
} |
1118 |
} |
1119 |
|
1120 |
|
1121 |
static void write_utf8(PutBitContext *pb, uint32_t val) |
1122 |
{ |
1123 |
uint8_t tmp; |
1124 |
PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
|
1125 |
} |
1126 |
|
1127 |
|
1128 |
static void write_frame_header(FlacEncodeContext *s) |
1129 |
{ |
1130 |
FlacFrame *frame; |
1131 |
int crc;
|
1132 |
|
1133 |
frame = &s->frame; |
1134 |
|
1135 |
put_bits(&s->pb, 16, 0xFFF8); |
1136 |
put_bits(&s->pb, 4, frame->bs_code[0]); |
1137 |
put_bits(&s->pb, 4, s->sr_code[0]); |
1138 |
|
1139 |
if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
|
1140 |
put_bits(&s->pb, 4, s->channels-1); |
1141 |
else
|
1142 |
put_bits(&s->pb, 4, frame->ch_mode);
|
1143 |
|
1144 |
put_bits(&s->pb, 3, 4); /* bits-per-sample code */ |
1145 |
put_bits(&s->pb, 1, 0); |
1146 |
write_utf8(&s->pb, s->frame_count); |
1147 |
|
1148 |
if (frame->bs_code[0] == 6) |
1149 |
put_bits(&s->pb, 8, frame->bs_code[1]); |
1150 |
else if (frame->bs_code[0] == 7) |
1151 |
put_bits(&s->pb, 16, frame->bs_code[1]); |
1152 |
|
1153 |
if (s->sr_code[0] == 12) |
1154 |
put_bits(&s->pb, 8, s->sr_code[1]); |
1155 |
else if (s->sr_code[0] > 12) |
1156 |
put_bits(&s->pb, 16, s->sr_code[1]); |
1157 |
|
1158 |
flush_put_bits(&s->pb); |
1159 |
crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
|
1160 |
put_bits_count(&s->pb) >> 3);
|
1161 |
put_bits(&s->pb, 8, crc);
|
1162 |
} |
1163 |
|
1164 |
|
1165 |
static void write_subframes(FlacEncodeContext *s) |
1166 |
{ |
1167 |
int ch;
|
1168 |
|
1169 |
for (ch = 0; ch < s->channels; ch++) { |
1170 |
FlacSubframe *sub = &s->frame.subframes[ch]; |
1171 |
int i, p, porder, psize;
|
1172 |
int32_t *part_end; |
1173 |
int32_t *res = sub->residual; |
1174 |
int32_t *frame_end = &sub->residual[s->frame.blocksize]; |
1175 |
|
1176 |
/* subframe header */
|
1177 |
put_bits(&s->pb, 1, 0); |
1178 |
put_bits(&s->pb, 6, sub->type_code);
|
1179 |
put_bits(&s->pb, 1, 0); /* no wasted bits */ |
1180 |
|
1181 |
/* subframe */
|
1182 |
if (sub->type == FLAC_SUBFRAME_CONSTANT) {
|
1183 |
put_sbits(&s->pb, sub->obits, res[0]);
|
1184 |
} else if (sub->type == FLAC_SUBFRAME_VERBATIM) { |
1185 |
while (res < frame_end)
|
1186 |
put_sbits(&s->pb, sub->obits, *res++); |
1187 |
} else {
|
1188 |
/* warm-up samples */
|
1189 |
for (i = 0; i < sub->order; i++) |
1190 |
put_sbits(&s->pb, sub->obits, *res++); |
1191 |
|
1192 |
/* LPC coefficients */
|
1193 |
if (sub->type == FLAC_SUBFRAME_LPC) {
|
1194 |
int cbits = s->options.lpc_coeff_precision;
|
1195 |
put_bits( &s->pb, 4, cbits-1); |
1196 |
put_sbits(&s->pb, 5, sub->shift);
|
1197 |
for (i = 0; i < sub->order; i++) |
1198 |
put_sbits(&s->pb, cbits, sub->coefs[i]); |
1199 |
} |
1200 |
|
1201 |
/* rice-encoded block */
|
1202 |
put_bits(&s->pb, 2, 0); |
1203 |
|
1204 |
/* partition order */
|
1205 |
porder = sub->rc.porder; |
1206 |
psize = s->frame.blocksize >> porder; |
1207 |
put_bits(&s->pb, 4, porder);
|
1208 |
|
1209 |
/* residual */
|
1210 |
part_end = &sub->residual[psize]; |
1211 |
for (p = 0; p < 1 << porder; p++) { |
1212 |
int k = sub->rc.params[p];
|
1213 |
put_bits(&s->pb, 4, k);
|
1214 |
while (res < part_end)
|
1215 |
set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
|
1216 |
part_end = FFMIN(frame_end, part_end + psize); |
1217 |
} |
1218 |
} |
1219 |
} |
1220 |
} |
1221 |
|
1222 |
|
1223 |
static void write_frame_footer(FlacEncodeContext *s) |
1224 |
{ |
1225 |
int crc;
|
1226 |
flush_put_bits(&s->pb); |
1227 |
crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
|
1228 |
put_bits_count(&s->pb)>>3));
|
1229 |
put_bits(&s->pb, 16, crc);
|
1230 |
flush_put_bits(&s->pb); |
1231 |
} |
1232 |
|
1233 |
|
1234 |
static int write_frame(FlacEncodeContext *s, uint8_t *frame, int buf_size) |
1235 |
{ |
1236 |
init_put_bits(&s->pb, frame, buf_size); |
1237 |
write_frame_header(s); |
1238 |
write_subframes(s); |
1239 |
write_frame_footer(s); |
1240 |
return put_bits_count(&s->pb) >> 3; |
1241 |
} |
1242 |
|
1243 |
|
1244 |
static void update_md5_sum(FlacEncodeContext *s, const int16_t *samples) |
1245 |
{ |
1246 |
#if HAVE_BIGENDIAN
|
1247 |
int i;
|
1248 |
for (i = 0; i < s->frame.blocksize * s->channels; i++) { |
1249 |
int16_t smp = av_le2ne16(samples[i]); |
1250 |
av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
|
1251 |
} |
1252 |
#else
|
1253 |
av_md5_update(s->md5ctx, (const uint8_t *)samples, s->frame.blocksize*s->channels*2); |
1254 |
#endif
|
1255 |
} |
1256 |
|
1257 |
|
1258 |
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame, |
1259 |
int buf_size, void *data) |
1260 |
{ |
1261 |
FlacEncodeContext *s; |
1262 |
const int16_t *samples = data;
|
1263 |
int frame_bytes, out_bytes;
|
1264 |
|
1265 |
s = avctx->priv_data; |
1266 |
|
1267 |
/* when the last block is reached, update the header in extradata */
|
1268 |
if (!data) {
|
1269 |
s->max_framesize = s->max_encoded_framesize; |
1270 |
av_md5_final(s->md5ctx, s->md5sum); |
1271 |
write_streaminfo(s, avctx->extradata); |
1272 |
return 0; |
1273 |
} |
1274 |
|
1275 |
/* change max_framesize for small final frame */
|
1276 |
if (avctx->frame_size < s->frame.blocksize) {
|
1277 |
s->max_framesize = ff_flac_get_max_frame_size(avctx->frame_size, |
1278 |
s->channels, 16);
|
1279 |
} |
1280 |
|
1281 |
init_frame(s); |
1282 |
|
1283 |
copy_samples(s, samples); |
1284 |
|
1285 |
channel_decorrelation(s); |
1286 |
|
1287 |
frame_bytes = encode_frame(s); |
1288 |
|
1289 |
/* fallback to verbatim mode if the compressed frame is larger than it
|
1290 |
would be if encoded uncompressed. */
|
1291 |
if (frame_bytes > s->max_framesize) {
|
1292 |
s->frame.verbatim_only = 1;
|
1293 |
frame_bytes = encode_frame(s); |
1294 |
} |
1295 |
|
1296 |
if (buf_size < frame_bytes) {
|
1297 |
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
|
1298 |
return 0; |
1299 |
} |
1300 |
out_bytes = write_frame(s, frame, buf_size); |
1301 |
|
1302 |
s->frame_count++; |
1303 |
avctx->coded_frame->pts = s->sample_count; |
1304 |
s->sample_count += avctx->frame_size; |
1305 |
update_md5_sum(s, samples); |
1306 |
if (out_bytes > s->max_encoded_framesize)
|
1307 |
s->max_encoded_framesize = out_bytes; |
1308 |
if (out_bytes < s->min_framesize)
|
1309 |
s->min_framesize = out_bytes; |
1310 |
|
1311 |
return out_bytes;
|
1312 |
} |
1313 |
|
1314 |
|
1315 |
static av_cold int flac_encode_close(AVCodecContext *avctx) |
1316 |
{ |
1317 |
if (avctx->priv_data) {
|
1318 |
FlacEncodeContext *s = avctx->priv_data; |
1319 |
av_freep(&s->md5ctx); |
1320 |
ff_lpc_end(&s->lpc_ctx); |
1321 |
} |
1322 |
av_freep(&avctx->extradata); |
1323 |
avctx->extradata_size = 0;
|
1324 |
av_freep(&avctx->coded_frame); |
1325 |
return 0; |
1326 |
} |
1327 |
|
1328 |
|
1329 |
AVCodec flac_encoder = { |
1330 |
"flac",
|
1331 |
AVMEDIA_TYPE_AUDIO, |
1332 |
CODEC_ID_FLAC, |
1333 |
sizeof(FlacEncodeContext),
|
1334 |
flac_encode_init, |
1335 |
flac_encode_frame, |
1336 |
flac_encode_close, |
1337 |
NULL,
|
1338 |
.capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY, |
1339 |
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, |
1340 |
.long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
|
1341 |
}; |