Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ 7a095ea6

History | View | Annotate | Download (77 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file libavcodec/vp3.c
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35

    
36
#include "avcodec.h"
37
#include "dsputil.h"
38
#include "get_bits.h"
39

    
40
#include "vp3data.h"
41
#include "xiph.h"
42

    
43
#define FRAGMENT_PIXELS 8
44

    
45
static av_cold int vp3_decode_end(AVCodecContext *avctx);
46

    
47
typedef struct Coeff {
48
    struct Coeff *next;
49
    DCTELEM coeff;
50
    uint8_t index;
51
} Coeff;
52

    
53
//FIXME split things out into their own arrays
54
typedef struct Vp3Fragment {
55
    Coeff *next_coeff;
56
    uint8_t coding_method;
57
    int8_t motion_x;
58
    int8_t motion_y;
59
    uint8_t qpi;
60
} Vp3Fragment;
61

    
62
#define SB_NOT_CODED        0
63
#define SB_PARTIALLY_CODED  1
64
#define SB_FULLY_CODED      2
65

    
66
// This is the maximum length of a single long bit run that can be encoded
67
// for superblock coding or block qps. Theora special-cases this to read a
68
// bit instead of flipping the current bit to allow for runs longer than 4129.
69
#define MAXIMUM_LONG_BIT_RUN 4129
70

    
71
#define MODE_INTER_NO_MV      0
72
#define MODE_INTRA            1
73
#define MODE_INTER_PLUS_MV    2
74
#define MODE_INTER_LAST_MV    3
75
#define MODE_INTER_PRIOR_LAST 4
76
#define MODE_USING_GOLDEN     5
77
#define MODE_GOLDEN_MV        6
78
#define MODE_INTER_FOURMV     7
79
#define CODING_MODE_COUNT     8
80

    
81
/* special internal mode */
82
#define MODE_COPY             8
83

    
84
/* There are 6 preset schemes, plus a free-form scheme */
85
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
86
{
87
    /* scheme 1: Last motion vector dominates */
88
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
89
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
90
         MODE_INTRA,            MODE_USING_GOLDEN,
91
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
92

    
93
    /* scheme 2 */
94
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
95
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
96
         MODE_INTRA,            MODE_USING_GOLDEN,
97
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
98

    
99
    /* scheme 3 */
100
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
101
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
102
         MODE_INTRA,            MODE_USING_GOLDEN,
103
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
104

    
105
    /* scheme 4 */
106
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
107
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
108
         MODE_INTRA,            MODE_USING_GOLDEN,
109
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
110

    
111
    /* scheme 5: No motion vector dominates */
112
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
113
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
114
         MODE_INTRA,            MODE_USING_GOLDEN,
115
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
116

    
117
    /* scheme 6 */
118
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
119
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
120
         MODE_INTER_PLUS_MV,    MODE_INTRA,
121
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
122

    
123
};
124

    
125
static const uint8_t hilbert_offset[16][2] = {
126
    {0,0}, {1,0}, {1,1}, {0,1},
127
    {0,2}, {0,3}, {1,3}, {1,2},
128
    {2,2}, {2,3}, {3,3}, {3,2},
129
    {3,1}, {2,1}, {2,0}, {3,0}
130
};
131

    
132
#define MIN_DEQUANT_VAL 2
133

    
134
typedef struct Vp3DecodeContext {
135
    AVCodecContext *avctx;
136
    int theora, theora_tables;
137
    int version;
138
    int width, height;
139
    AVFrame golden_frame;
140
    AVFrame last_frame;
141
    AVFrame current_frame;
142
    int keyframe;
143
    DSPContext dsp;
144
    int flipped_image;
145
    int last_slice_end;
146

    
147
    int qps[3];
148
    int nqps;
149
    int last_qps[3];
150

    
151
    int superblock_count;
152
    int y_superblock_width;
153
    int y_superblock_height;
154
    int y_superblock_count;
155
    int c_superblock_width;
156
    int c_superblock_height;
157
    int c_superblock_count;
158
    int u_superblock_start;
159
    int v_superblock_start;
160
    unsigned char *superblock_coding;
161

    
162
    int macroblock_count;
163
    int macroblock_width;
164
    int macroblock_height;
165

    
166
    int fragment_count;
167
    int fragment_width;
168
    int fragment_height;
169

    
170
    Vp3Fragment *all_fragments;
171
    uint8_t *coeff_counts;
172
    Coeff *coeffs;
173
    Coeff *next_coeff;
174
    int fragment_start[3];
175
    int data_offset[3];
176

    
177
    ScanTable scantable;
178

    
179
    /* tables */
180
    uint16_t coded_dc_scale_factor[64];
181
    uint32_t coded_ac_scale_factor[64];
182
    uint8_t base_matrix[384][64];
183
    uint8_t qr_count[2][3];
184
    uint8_t qr_size [2][3][64];
185
    uint16_t qr_base[2][3][64];
186

    
187
    /* this is a list of indexes into the all_fragments array indicating
188
     * which of the fragments are coded */
189
    int *coded_fragment_list;
190
    int coded_fragment_list_index;
191

    
192
    /* track which fragments have already been decoded; called 'fast'
193
     * because this data structure avoids having to iterate through every
194
     * fragment in coded_fragment_list; once a fragment has been fully
195
     * decoded, it is removed from this list */
196
    int *fast_fragment_list;
197
    int fragment_list_y_head;
198
    int fragment_list_c_head;
199

    
200
    VLC dc_vlc[16];
201
    VLC ac_vlc_1[16];
202
    VLC ac_vlc_2[16];
203
    VLC ac_vlc_3[16];
204
    VLC ac_vlc_4[16];
205

    
206
    VLC superblock_run_length_vlc;
207
    VLC fragment_run_length_vlc;
208
    VLC mode_code_vlc;
209
    VLC motion_vector_vlc;
210

    
211
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
212
     * index into them */
213
    DECLARE_ALIGNED_16(int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
214

    
215
    /* This table contains superblock_count * 16 entries. Each set of 16
216
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
217
     * An entry will be -1 to indicate that no entry corresponds to that
218
     * index. */
219
    int *superblock_fragments;
220

    
221
    /* This is an array that indicates how a particular macroblock
222
     * is coded. */
223
    unsigned char *macroblock_coding;
224

    
225
    int first_coded_y_fragment;
226
    int first_coded_c_fragment;
227
    int last_coded_y_fragment;
228
    int last_coded_c_fragment;
229

    
230
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
231
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
232

    
233
    /* Huffman decode */
234
    int hti;
235
    unsigned int hbits;
236
    int entries;
237
    int huff_code_size;
238
    uint16_t huffman_table[80][32][2];
239

    
240
    uint8_t filter_limit_values[64];
241
    DECLARE_ALIGNED_8(int, bounding_values_array)[256+2];
242
} Vp3DecodeContext;
243

    
244
/************************************************************************
245
 * VP3 specific functions
246
 ************************************************************************/
247

    
248
/*
249
 * This function sets up all of the various blocks mappings:
250
 * superblocks <-> fragments, macroblocks <-> fragments,
251
 * superblocks <-> macroblocks
252
 *
253
 * Returns 0 is successful; returns 1 if *anything* went wrong.
254
 */
255
static int init_block_mapping(Vp3DecodeContext *s)
256
{
257
    int i, j;
258
    signed int hilbert_walk_mb[4];
259

    
260
    int current_fragment = 0;
261
    int current_width = 0;
262
    int current_height = 0;
263
    int right_edge = 0;
264
    int bottom_edge = 0;
265
    int superblock_row_inc = 0;
266
    int mapping_index = 0;
267

    
268
    static const signed char travel_width[16] = {
269
         1,  1,  0, -1,
270
         0,  0,  1,  0,
271
         1,  0,  1,  0,
272
         0, -1,  0,  1
273
    };
274

    
275
    static const signed char travel_height[16] = {
276
         0,  0,  1,  0,
277
         1,  1,  0, -1,
278
         0,  1,  0, -1,
279
        -1,  0, -1,  0
280
    };
281

    
282
    hilbert_walk_mb[0] = 1;
283
    hilbert_walk_mb[1] = s->macroblock_width;
284
    hilbert_walk_mb[2] = 1;
285
    hilbert_walk_mb[3] = -s->macroblock_width;
286

    
287
    /* iterate through each superblock (all planes) and map the fragments */
288
    for (i = 0; i < s->superblock_count; i++) {
289
        /* time to re-assign the limits? */
290
        if (i == 0) {
291

    
292
            /* start of Y superblocks */
293
            right_edge = s->fragment_width;
294
            bottom_edge = s->fragment_height;
295
            current_width = -1;
296
            current_height = 0;
297
            superblock_row_inc = 3 * s->fragment_width -
298
                (s->y_superblock_width * 4 - s->fragment_width);
299

    
300
            /* the first operation for this variable is to advance by 1 */
301
            current_fragment = -1;
302

    
303
        } else if (i == s->u_superblock_start) {
304

    
305
            /* start of U superblocks */
306
            right_edge = s->fragment_width / 2;
307
            bottom_edge = s->fragment_height / 2;
308
            current_width = -1;
309
            current_height = 0;
310
            superblock_row_inc = 3 * (s->fragment_width / 2) -
311
                (s->c_superblock_width * 4 - s->fragment_width / 2);
312

    
313
            /* the first operation for this variable is to advance by 1 */
314
            current_fragment = s->fragment_start[1] - 1;
315

    
316
        } else if (i == s->v_superblock_start) {
317

    
318
            /* start of V superblocks */
319
            right_edge = s->fragment_width / 2;
320
            bottom_edge = s->fragment_height / 2;
321
            current_width = -1;
322
            current_height = 0;
323
            superblock_row_inc = 3 * (s->fragment_width / 2) -
324
                (s->c_superblock_width * 4 - s->fragment_width / 2);
325

    
326
            /* the first operation for this variable is to advance by 1 */
327
            current_fragment = s->fragment_start[2] - 1;
328

    
329
        }
330

    
331
        if (current_width >= right_edge - 1) {
332
            /* reset width and move to next superblock row */
333
            current_width = -1;
334
            current_height += 4;
335

    
336
            /* fragment is now at the start of a new superblock row */
337
            current_fragment += superblock_row_inc;
338
        }
339

    
340
        /* iterate through all 16 fragments in a superblock */
341
        for (j = 0; j < 16; j++) {
342
            current_fragment += travel_width[j] + right_edge * travel_height[j];
343
            current_width += travel_width[j];
344
            current_height += travel_height[j];
345

    
346
            /* check if the fragment is in bounds */
347
            if ((current_width < right_edge) &&
348
                (current_height < bottom_edge)) {
349
                s->superblock_fragments[mapping_index] = current_fragment;
350
            } else {
351
                s->superblock_fragments[mapping_index] = -1;
352
            }
353

    
354
            mapping_index++;
355
        }
356
    }
357

    
358
    return 0;  /* successful path out */
359
}
360

    
361
/*
362
 * This function wipes out all of the fragment data.
363
 */
364
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
365
{
366
    int i;
367

    
368
    /* zero out all of the fragment information */
369
    s->coded_fragment_list_index = 0;
370
    for (i = 0; i < s->fragment_count; i++) {
371
        s->coeff_counts[i] = 0;
372
        s->all_fragments[i].motion_x = 127;
373
        s->all_fragments[i].motion_y = 127;
374
        s->all_fragments[i].next_coeff= NULL;
375
        s->all_fragments[i].qpi = 0;
376
        s->coeffs[i].index=
377
        s->coeffs[i].coeff=0;
378
        s->coeffs[i].next= NULL;
379
    }
380
}
381

    
382
/*
383
 * This function sets up the dequantization tables used for a particular
384
 * frame.
385
 */
386
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
387
{
388
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
389
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
390
    int i, plane, inter, qri, bmi, bmj, qistart;
391

    
392
    for(inter=0; inter<2; inter++){
393
        for(plane=0; plane<3; plane++){
394
            int sum=0;
395
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
396
                sum+= s->qr_size[inter][plane][qri];
397
                if(s->qps[qpi] <= sum)
398
                    break;
399
            }
400
            qistart= sum - s->qr_size[inter][plane][qri];
401
            bmi= s->qr_base[inter][plane][qri  ];
402
            bmj= s->qr_base[inter][plane][qri+1];
403
            for(i=0; i<64; i++){
404
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
405
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
406
                            + s->qr_size[inter][plane][qri])
407
                           / (2*s->qr_size[inter][plane][qri]);
408

    
409
                int qmin= 8<<(inter + !i);
410
                int qscale= i ? ac_scale_factor : dc_scale_factor;
411

    
412
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
413
            }
414
            // all DC coefficients use the same quant so as not to interfere with DC prediction
415
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
416
        }
417
    }
418

    
419
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
420
}
421

    
422
/*
423
 * This function initializes the loop filter boundary limits if the frame's
424
 * quality index is different from the previous frame's.
425
 *
426
 * The filter_limit_values may not be larger than 127.
427
 */
428
static void init_loop_filter(Vp3DecodeContext *s)
429
{
430
    int *bounding_values= s->bounding_values_array+127;
431
    int filter_limit;
432
    int x;
433
    int value;
434

    
435
    filter_limit = s->filter_limit_values[s->qps[0]];
436

    
437
    /* set up the bounding values */
438
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
439
    for (x = 0; x < filter_limit; x++) {
440
        bounding_values[-x] = -x;
441
        bounding_values[x] = x;
442
    }
443
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
444
        bounding_values[ x] =  value;
445
        bounding_values[-x] = -value;
446
    }
447
    if (value)
448
        bounding_values[128] = value;
449
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
450
}
451

    
452
/*
453
 * This function unpacks all of the superblock/macroblock/fragment coding
454
 * information from the bitstream.
455
 */
456
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
457
{
458
    int bit = 0;
459
    int current_superblock = 0;
460
    int current_run = 0;
461
    int num_partial_superblocks = 0;
462
    int first_c_fragment_seen;
463

    
464
    int i, j;
465
    int current_fragment;
466
    int plane;
467

    
468
    if (s->keyframe) {
469
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
470

    
471
    } else {
472

    
473
        /* unpack the list of partially-coded superblocks */
474
        bit = get_bits1(gb);
475
        while (current_superblock < s->superblock_count) {
476
                current_run = get_vlc2(gb,
477
                    s->superblock_run_length_vlc.table, 6, 2) + 1;
478
                if (current_run == 34)
479
                    current_run += get_bits(gb, 12);
480

    
481
            if (current_superblock + current_run > s->superblock_count) {
482
                av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
483
                return -1;
484
            }
485

    
486
            memset(s->superblock_coding + current_superblock, bit, current_run);
487

    
488
            current_superblock += current_run;
489
            if (bit)
490
                num_partial_superblocks += current_run;
491

    
492
            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
493
                bit = get_bits1(gb);
494
            else
495
                bit ^= 1;
496
        }
497

    
498
        /* unpack the list of fully coded superblocks if any of the blocks were
499
         * not marked as partially coded in the previous step */
500
        if (num_partial_superblocks < s->superblock_count) {
501
            int superblocks_decoded = 0;
502

    
503
            current_superblock = 0;
504
            bit = get_bits1(gb);
505
            while (superblocks_decoded < s->superblock_count - num_partial_superblocks) {
506
                        current_run = get_vlc2(gb,
507
                            s->superblock_run_length_vlc.table, 6, 2) + 1;
508
                        if (current_run == 34)
509
                            current_run += get_bits(gb, 12);
510

    
511
                for (j = 0; j < current_run; current_superblock++) {
512
                    if (current_superblock >= s->superblock_count) {
513
                        av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
514
                        return -1;
515
                    }
516

    
517
                /* skip any superblocks already marked as partially coded */
518
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
519
                    s->superblock_coding[current_superblock] = 2*bit;
520
                    j++;
521
                }
522
                }
523
                superblocks_decoded += current_run;
524

    
525
                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
526
                    bit = get_bits1(gb);
527
                else
528
                    bit ^= 1;
529
            }
530
        }
531

    
532
        /* if there were partial blocks, initialize bitstream for
533
         * unpacking fragment codings */
534
        if (num_partial_superblocks) {
535

    
536
            current_run = 0;
537
            bit = get_bits1(gb);
538
            /* toggle the bit because as soon as the first run length is
539
             * fetched the bit will be toggled again */
540
            bit ^= 1;
541
        }
542
    }
543

    
544
    /* figure out which fragments are coded; iterate through each
545
     * superblock (all planes) */
546
    s->coded_fragment_list_index = 0;
547
    s->next_coeff= s->coeffs + s->fragment_count;
548
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
549
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
550
    first_c_fragment_seen = 0;
551
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
552

    
553
    for (plane = 0; plane < 3; plane++) {
554
        int sb_start = (int[]){ 0, s->u_superblock_start, s->v_superblock_start }[plane];
555
        int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
556

    
557
    for (i = sb_start; i < sb_end; i++) {
558

    
559
        /* iterate through all 16 fragments in a superblock */
560
        for (j = 0; j < 16; j++) {
561

    
562
            /* if the fragment is in bounds, check its coding status */
563
            current_fragment = s->superblock_fragments[i * 16 + j];
564
            if (current_fragment >= s->fragment_count) {
565
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
566
                    current_fragment, s->fragment_count);
567
                return 1;
568
            }
569
            if (current_fragment != -1) {
570
                int coded = s->superblock_coding[i];
571

    
572
                if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
573

    
574
                    /* fragment may or may not be coded; this is the case
575
                     * that cares about the fragment coding runs */
576
                    if (current_run-- == 0) {
577
                        bit ^= 1;
578
                        current_run = get_vlc2(gb,
579
                            s->fragment_run_length_vlc.table, 5, 2);
580
                    }
581
                    coded = bit;
582
                }
583

    
584
                    if (coded) {
585
                        /* default mode; actual mode will be decoded in
586
                         * the next phase */
587
                        s->all_fragments[current_fragment].coding_method =
588
                            MODE_INTER_NO_MV;
589
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
590
                        s->coded_fragment_list[s->coded_fragment_list_index] =
591
                            current_fragment;
592
                        if (plane && !first_c_fragment_seen) {
593
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
594
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
595
                            first_c_fragment_seen = 1;
596
                        }
597
                        s->coded_fragment_list_index++;
598
                    } else {
599
                        /* not coded; copy this fragment from the prior frame */
600
                        s->all_fragments[current_fragment].coding_method =
601
                            MODE_COPY;
602
                    }
603
            }
604
        }
605
    }
606
    }
607

    
608
    if (!first_c_fragment_seen)
609
        /* only Y fragments coded in this frame */
610
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
611
    else
612
        /* end the list of coded C fragments */
613
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
614

    
615
    for (i = 0; i < s->fragment_count - 1; i++) {
616
        s->fast_fragment_list[i] = i + 1;
617
    }
618
    s->fast_fragment_list[s->fragment_count - 1] = -1;
619

    
620
    if (s->last_coded_y_fragment == -1)
621
        s->fragment_list_y_head = -1;
622
    else {
623
        s->fragment_list_y_head = s->first_coded_y_fragment;
624
        s->fast_fragment_list[s->last_coded_y_fragment] = -1;
625
    }
626

    
627
    if (s->last_coded_c_fragment == -1)
628
        s->fragment_list_c_head = -1;
629
    else {
630
        s->fragment_list_c_head = s->first_coded_c_fragment;
631
        s->fast_fragment_list[s->last_coded_c_fragment] = -1;
632
    }
633

    
634
    return 0;
635
}
636

    
637
/*
638
 * This function unpacks all the coding mode data for individual macroblocks
639
 * from the bitstream.
640
 */
641
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
642
{
643
    int i, j, k, sb_x, sb_y;
644
    int scheme;
645
    int current_macroblock;
646
    int current_fragment;
647
    int coding_mode;
648
    int custom_mode_alphabet[CODING_MODE_COUNT];
649
    const int *alphabet;
650

    
651
    if (s->keyframe) {
652
        for (i = 0; i < s->fragment_count; i++)
653
            s->all_fragments[i].coding_method = MODE_INTRA;
654

    
655
    } else {
656

    
657
        /* fetch the mode coding scheme for this frame */
658
        scheme = get_bits(gb, 3);
659

    
660
        /* is it a custom coding scheme? */
661
        if (scheme == 0) {
662
            for (i = 0; i < 8; i++)
663
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
664
            for (i = 0; i < 8; i++)
665
                custom_mode_alphabet[get_bits(gb, 3)] = i;
666
            alphabet = custom_mode_alphabet;
667
        } else
668
            alphabet = ModeAlphabet[scheme-1];
669

    
670
        /* iterate through all of the macroblocks that contain 1 or more
671
         * coded fragments */
672
        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
673
            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
674

    
675
            for (j = 0; j < 4; j++) {
676
                int mb_x = 2*sb_x +   (j>>1);
677
                int mb_y = 2*sb_y + (((j>>1)+j)&1);
678
                current_macroblock = mb_y * s->macroblock_width + mb_x;
679

    
680
                if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
681
                    continue;
682

    
683
#define BLOCK_X (2*mb_x + (k&1))
684
#define BLOCK_Y (2*mb_y + (k>>1))
685
                /* coding modes are only stored if the macroblock has at least one
686
                 * luma block coded, otherwise it must be INTER_NO_MV */
687
                for (k = 0; k < 4; k++) {
688
                    current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
689
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
690
                        break;
691
                }
692
                if (k == 4) {
693
                    s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
694
                    continue;
695
                }
696

    
697
                /* mode 7 means get 3 bits for each coding mode */
698
                if (scheme == 7)
699
                    coding_mode = get_bits(gb, 3);
700
                else
701
                    coding_mode = alphabet
702
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
703

    
704
                s->macroblock_coding[current_macroblock] = coding_mode;
705
                for (k = 0; k < 4; k++) {
706
                    current_fragment =
707
                        BLOCK_Y*s->fragment_width + BLOCK_X;
708
                    if (s->all_fragments[current_fragment].coding_method !=
709
                        MODE_COPY)
710
                        s->all_fragments[current_fragment].coding_method =
711
                            coding_mode;
712
                }
713
                for (k = 0; k < 2; k++) {
714
                    current_fragment = s->fragment_start[k+1] +
715
                        mb_y*(s->fragment_width>>1) + mb_x;
716
                    if (s->all_fragments[current_fragment].coding_method !=
717
                        MODE_COPY)
718
                        s->all_fragments[current_fragment].coding_method =
719
                            coding_mode;
720
                }
721
            }
722
            }
723
        }
724
    }
725

    
726
    return 0;
727
}
728

    
729
/*
730
 * This function unpacks all the motion vectors for the individual
731
 * macroblocks from the bitstream.
732
 */
733
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
734
{
735
    int j, k, sb_x, sb_y;
736
    int coding_mode;
737
    int motion_x[6];
738
    int motion_y[6];
739
    int last_motion_x = 0;
740
    int last_motion_y = 0;
741
    int prior_last_motion_x = 0;
742
    int prior_last_motion_y = 0;
743
    int current_macroblock;
744
    int current_fragment;
745

    
746
    if (s->keyframe)
747
        return 0;
748

    
749
    memset(motion_x, 0, 6 * sizeof(int));
750
    memset(motion_y, 0, 6 * sizeof(int));
751

    
752
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
753
    coding_mode = get_bits1(gb);
754

    
755
    /* iterate through all of the macroblocks that contain 1 or more
756
     * coded fragments */
757
    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
758
        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
759

    
760
        for (j = 0; j < 4; j++) {
761
            int mb_x = 2*sb_x +   (j>>1);
762
            int mb_y = 2*sb_y + (((j>>1)+j)&1);
763
            current_macroblock = mb_y * s->macroblock_width + mb_x;
764

    
765
            if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
766
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
767
                continue;
768

    
769
            switch (s->macroblock_coding[current_macroblock]) {
770

    
771
            case MODE_INTER_PLUS_MV:
772
            case MODE_GOLDEN_MV:
773
                /* all 6 fragments use the same motion vector */
774
                if (coding_mode == 0) {
775
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
776
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
777
                } else {
778
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
779
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
780
                }
781

    
782
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
783
                if (s->macroblock_coding[current_macroblock] ==
784
                    MODE_INTER_PLUS_MV) {
785
                    prior_last_motion_x = last_motion_x;
786
                    prior_last_motion_y = last_motion_y;
787
                    last_motion_x = motion_x[0];
788
                    last_motion_y = motion_y[0];
789
                }
790
                break;
791

    
792
            case MODE_INTER_FOURMV:
793
                /* vector maintenance */
794
                prior_last_motion_x = last_motion_x;
795
                prior_last_motion_y = last_motion_y;
796

    
797
                /* fetch 4 vectors from the bitstream, one for each
798
                 * Y fragment, then average for the C fragment vectors */
799
                motion_x[4] = motion_y[4] = 0;
800
                for (k = 0; k < 4; k++) {
801
                    current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
802
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
803
                        if (coding_mode == 0) {
804
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
805
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
806
                        } else {
807
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
808
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
809
                        }
810
                        last_motion_x = motion_x[k];
811
                        last_motion_y = motion_y[k];
812
                    } else {
813
                        motion_x[k] = 0;
814
                        motion_y[k] = 0;
815
                    }
816
                    motion_x[4] += motion_x[k];
817
                    motion_y[4] += motion_y[k];
818
                }
819

    
820
                motion_x[5]=
821
                motion_x[4]= RSHIFT(motion_x[4], 2);
822
                motion_y[5]=
823
                motion_y[4]= RSHIFT(motion_y[4], 2);
824
                break;
825

    
826
            case MODE_INTER_LAST_MV:
827
                /* all 6 fragments use the last motion vector */
828
                motion_x[0] = last_motion_x;
829
                motion_y[0] = last_motion_y;
830

    
831
                /* no vector maintenance (last vector remains the
832
                 * last vector) */
833
                break;
834

    
835
            case MODE_INTER_PRIOR_LAST:
836
                /* all 6 fragments use the motion vector prior to the
837
                 * last motion vector */
838
                motion_x[0] = prior_last_motion_x;
839
                motion_y[0] = prior_last_motion_y;
840

    
841
                /* vector maintenance */
842
                prior_last_motion_x = last_motion_x;
843
                prior_last_motion_y = last_motion_y;
844
                last_motion_x = motion_x[0];
845
                last_motion_y = motion_y[0];
846
                break;
847

    
848
            default:
849
                /* covers intra, inter without MV, golden without MV */
850
                motion_x[0] = 0;
851
                motion_y[0] = 0;
852

    
853
                /* no vector maintenance */
854
                break;
855
            }
856

    
857
            /* assign the motion vectors to the correct fragments */
858
            for (k = 0; k < 4; k++) {
859
                current_fragment =
860
                    BLOCK_Y*s->fragment_width + BLOCK_X;
861
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
862
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
863
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
864
                } else {
865
                    s->all_fragments[current_fragment].motion_x = motion_x[0];
866
                    s->all_fragments[current_fragment].motion_y = motion_y[0];
867
                }
868
            }
869
            for (k = 0; k < 2; k++) {
870
                current_fragment = s->fragment_start[k+1] +
871
                    mb_y*(s->fragment_width>>1) + mb_x;
872
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
873
                    s->all_fragments[current_fragment].motion_x = motion_x[k+4];
874
                    s->all_fragments[current_fragment].motion_y = motion_y[k+4];
875
                } else {
876
                    s->all_fragments[current_fragment].motion_x = motion_x[0];
877
                    s->all_fragments[current_fragment].motion_y = motion_y[0];
878
                }
879
            }
880
        }
881
        }
882
    }
883

    
884
    return 0;
885
}
886

    
887
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
888
{
889
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
890
    int num_blocks = s->coded_fragment_list_index;
891

    
892
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
893
        i = blocks_decoded = num_blocks_at_qpi = 0;
894

    
895
        bit = get_bits1(gb);
896

    
897
        do {
898
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
899
            if (run_length == 34)
900
                run_length += get_bits(gb, 12);
901
            blocks_decoded += run_length;
902

    
903
            if (!bit)
904
                num_blocks_at_qpi += run_length;
905

    
906
            for (j = 0; j < run_length; i++) {
907
                if (i >= s->coded_fragment_list_index)
908
                    return -1;
909

    
910
                if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
911
                    s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
912
                    j++;
913
                }
914
            }
915

    
916
            if (run_length == MAXIMUM_LONG_BIT_RUN)
917
                bit = get_bits1(gb);
918
            else
919
                bit ^= 1;
920
        } while (blocks_decoded < num_blocks);
921

    
922
        num_blocks -= num_blocks_at_qpi;
923
    }
924

    
925
    return 0;
926
}
927

    
928
/*
929
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
930
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
931
 * data. This function unpacks all the VLCs for either the Y plane or both
932
 * C planes, and is called for DC coefficients or different AC coefficient
933
 * levels (since different coefficient types require different VLC tables.
934
 *
935
 * This function returns a residual eob run. E.g, if a particular token gave
936
 * instructions to EOB the next 5 fragments and there were only 2 fragments
937
 * left in the current fragment range, 3 would be returned so that it could
938
 * be passed into the next call to this same function.
939
 */
940
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
941
                        VLC *table, int coeff_index,
942
                        int y_plane,
943
                        int eob_run)
944
{
945
    int i;
946
    int token;
947
    int zero_run = 0;
948
    DCTELEM coeff = 0;
949
    Vp3Fragment *fragment;
950
    int bits_to_get;
951
    int next_fragment;
952
    int previous_fragment;
953
    int fragment_num;
954
    int *list_head;
955

    
956
    /* local references to structure members to avoid repeated deferences */
957
    uint8_t *perm= s->scantable.permutated;
958
    int *coded_fragment_list = s->coded_fragment_list;
959
    Vp3Fragment *all_fragments = s->all_fragments;
960
    uint8_t *coeff_counts = s->coeff_counts;
961
    VLC_TYPE (*vlc_table)[2] = table->table;
962
    int *fast_fragment_list = s->fast_fragment_list;
963

    
964
    if (y_plane) {
965
        next_fragment = s->fragment_list_y_head;
966
        list_head = &s->fragment_list_y_head;
967
    } else {
968
        next_fragment = s->fragment_list_c_head;
969
        list_head = &s->fragment_list_c_head;
970
    }
971

    
972
    i = next_fragment;
973
    previous_fragment = -1;  /* this indicates that the previous fragment is actually the list head */
974
    while (i != -1) {
975
        fragment_num = coded_fragment_list[i];
976

    
977
        if (coeff_counts[fragment_num] > coeff_index) {
978
            previous_fragment = i;
979
            i = fast_fragment_list[i];
980
            continue;
981
        }
982
        fragment = &all_fragments[fragment_num];
983

    
984
        if (!eob_run) {
985
            /* decode a VLC into a token */
986
            token = get_vlc2(gb, vlc_table, 5, 3);
987
            /* use the token to get a zero run, a coefficient, and an eob run */
988
            if (token <= 6) {
989
                eob_run = eob_run_base[token];
990
                if (eob_run_get_bits[token])
991
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
992
                coeff = zero_run = 0;
993
            } else {
994
                bits_to_get = coeff_get_bits[token];
995
                if (bits_to_get)
996
                    bits_to_get = get_bits(gb, bits_to_get);
997
                coeff = coeff_tables[token][bits_to_get];
998

    
999
                zero_run = zero_run_base[token];
1000
                if (zero_run_get_bits[token])
1001
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1002
            }
1003
        }
1004

    
1005
        if (!eob_run) {
1006
            coeff_counts[fragment_num] += zero_run;
1007
            if (coeff_counts[fragment_num] < 64){
1008
                fragment->next_coeff->coeff= coeff;
1009
                fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already?
1010
                fragment->next_coeff->next= s->next_coeff;
1011
                s->next_coeff->next=NULL;
1012
                fragment->next_coeff= s->next_coeff++;
1013
            }
1014
            /* previous fragment is now this fragment */
1015
            previous_fragment = i;
1016
        } else {
1017
            coeff_counts[fragment_num] |= 128;
1018
            eob_run--;
1019
            /* remove this fragment from the list */
1020
            if (previous_fragment != -1)
1021
                fast_fragment_list[previous_fragment] = fast_fragment_list[i];
1022
            else
1023
                *list_head = fast_fragment_list[i];
1024
            /* previous fragment remains unchanged */
1025
        }
1026

    
1027
        i = fast_fragment_list[i];
1028
    }
1029

    
1030
    return eob_run;
1031
}
1032

    
1033
static void reverse_dc_prediction(Vp3DecodeContext *s,
1034
                                  int first_fragment,
1035
                                  int fragment_width,
1036
                                  int fragment_height);
1037
/*
1038
 * This function unpacks all of the DCT coefficient data from the
1039
 * bitstream.
1040
 */
1041
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1042
{
1043
    int i;
1044
    int dc_y_table;
1045
    int dc_c_table;
1046
    int ac_y_table;
1047
    int ac_c_table;
1048
    int residual_eob_run = 0;
1049
    VLC *y_tables[64];
1050
    VLC *c_tables[64];
1051

    
1052
    /* fetch the DC table indexes */
1053
    dc_y_table = get_bits(gb, 4);
1054
    dc_c_table = get_bits(gb, 4);
1055

    
1056
    /* unpack the Y plane DC coefficients */
1057
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1058
        1, residual_eob_run);
1059

    
1060
    /* reverse prediction of the Y-plane DC coefficients */
1061
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1062

    
1063
    /* unpack the C plane DC coefficients */
1064
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1065
        0, residual_eob_run);
1066

    
1067
    /* reverse prediction of the C-plane DC coefficients */
1068
    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1069
    {
1070
        reverse_dc_prediction(s, s->fragment_start[1],
1071
            s->fragment_width / 2, s->fragment_height / 2);
1072
        reverse_dc_prediction(s, s->fragment_start[2],
1073
            s->fragment_width / 2, s->fragment_height / 2);
1074
    }
1075

    
1076
    /* fetch the AC table indexes */
1077
    ac_y_table = get_bits(gb, 4);
1078
    ac_c_table = get_bits(gb, 4);
1079

    
1080
    /* build tables of AC VLC tables */
1081
    for (i = 1; i <= 5; i++) {
1082
        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1083
        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1084
    }
1085
    for (i = 6; i <= 14; i++) {
1086
        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1087
        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1088
    }
1089
    for (i = 15; i <= 27; i++) {
1090
        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1091
        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1092
    }
1093
    for (i = 28; i <= 63; i++) {
1094
        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1095
        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1096
    }
1097

    
1098
    /* decode all AC coefficents */
1099
    for (i = 1; i <= 63; i++) {
1100
        if (s->fragment_list_y_head != -1)
1101
            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1102
                1, residual_eob_run);
1103

    
1104
        if (s->fragment_list_c_head != -1)
1105
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1106
                0, residual_eob_run);
1107
    }
1108

    
1109
    return 0;
1110
}
1111

    
1112
/*
1113
 * This function reverses the DC prediction for each coded fragment in
1114
 * the frame. Much of this function is adapted directly from the original
1115
 * VP3 source code.
1116
 */
1117
#define COMPATIBLE_FRAME(x) \
1118
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1119
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1120

    
1121
static void reverse_dc_prediction(Vp3DecodeContext *s,
1122
                                  int first_fragment,
1123
                                  int fragment_width,
1124
                                  int fragment_height)
1125
{
1126

    
1127
#define PUL 8
1128
#define PU 4
1129
#define PUR 2
1130
#define PL 1
1131

    
1132
    int x, y;
1133
    int i = first_fragment;
1134

    
1135
    int predicted_dc;
1136

    
1137
    /* DC values for the left, up-left, up, and up-right fragments */
1138
    int vl, vul, vu, vur;
1139

    
1140
    /* indexes for the left, up-left, up, and up-right fragments */
1141
    int l, ul, u, ur;
1142

    
1143
    /*
1144
     * The 6 fields mean:
1145
     *   0: up-left multiplier
1146
     *   1: up multiplier
1147
     *   2: up-right multiplier
1148
     *   3: left multiplier
1149
     */
1150
    static const int predictor_transform[16][4] = {
1151
        {  0,  0,  0,  0},
1152
        {  0,  0,  0,128},        // PL
1153
        {  0,  0,128,  0},        // PUR
1154
        {  0,  0, 53, 75},        // PUR|PL
1155
        {  0,128,  0,  0},        // PU
1156
        {  0, 64,  0, 64},        // PU|PL
1157
        {  0,128,  0,  0},        // PU|PUR
1158
        {  0,  0, 53, 75},        // PU|PUR|PL
1159
        {128,  0,  0,  0},        // PUL
1160
        {  0,  0,  0,128},        // PUL|PL
1161
        { 64,  0, 64,  0},        // PUL|PUR
1162
        {  0,  0, 53, 75},        // PUL|PUR|PL
1163
        {  0,128,  0,  0},        // PUL|PU
1164
       {-104,116,  0,116},        // PUL|PU|PL
1165
        { 24, 80, 24,  0},        // PUL|PU|PUR
1166
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1167
    };
1168

    
1169
    /* This table shows which types of blocks can use other blocks for
1170
     * prediction. For example, INTRA is the only mode in this table to
1171
     * have a frame number of 0. That means INTRA blocks can only predict
1172
     * from other INTRA blocks. There are 2 golden frame coding types;
1173
     * blocks encoding in these modes can only predict from other blocks
1174
     * that were encoded with these 1 of these 2 modes. */
1175
    static const unsigned char compatible_frame[9] = {
1176
        1,    /* MODE_INTER_NO_MV */
1177
        0,    /* MODE_INTRA */
1178
        1,    /* MODE_INTER_PLUS_MV */
1179
        1,    /* MODE_INTER_LAST_MV */
1180
        1,    /* MODE_INTER_PRIOR_MV */
1181
        2,    /* MODE_USING_GOLDEN */
1182
        2,    /* MODE_GOLDEN_MV */
1183
        1,    /* MODE_INTER_FOUR_MV */
1184
        3     /* MODE_COPY */
1185
    };
1186
    int current_frame_type;
1187

    
1188
    /* there is a last DC predictor for each of the 3 frame types */
1189
    short last_dc[3];
1190

    
1191
    int transform = 0;
1192

    
1193
    vul = vu = vur = vl = 0;
1194
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1195

    
1196
    /* for each fragment row... */
1197
    for (y = 0; y < fragment_height; y++) {
1198

    
1199
        /* for each fragment in a row... */
1200
        for (x = 0; x < fragment_width; x++, i++) {
1201

    
1202
            /* reverse prediction if this block was coded */
1203
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1204

    
1205
                current_frame_type =
1206
                    compatible_frame[s->all_fragments[i].coding_method];
1207

    
1208
                transform= 0;
1209
                if(x){
1210
                    l= i-1;
1211
                    vl = DC_COEFF(l);
1212
                    if(COMPATIBLE_FRAME(l))
1213
                        transform |= PL;
1214
                }
1215
                if(y){
1216
                    u= i-fragment_width;
1217
                    vu = DC_COEFF(u);
1218
                    if(COMPATIBLE_FRAME(u))
1219
                        transform |= PU;
1220
                    if(x){
1221
                        ul= i-fragment_width-1;
1222
                        vul = DC_COEFF(ul);
1223
                        if(COMPATIBLE_FRAME(ul))
1224
                            transform |= PUL;
1225
                    }
1226
                    if(x + 1 < fragment_width){
1227
                        ur= i-fragment_width+1;
1228
                        vur = DC_COEFF(ur);
1229
                        if(COMPATIBLE_FRAME(ur))
1230
                            transform |= PUR;
1231
                    }
1232
                }
1233

    
1234
                if (transform == 0) {
1235

    
1236
                    /* if there were no fragments to predict from, use last
1237
                     * DC saved */
1238
                    predicted_dc = last_dc[current_frame_type];
1239
                } else {
1240

    
1241
                    /* apply the appropriate predictor transform */
1242
                    predicted_dc =
1243
                        (predictor_transform[transform][0] * vul) +
1244
                        (predictor_transform[transform][1] * vu) +
1245
                        (predictor_transform[transform][2] * vur) +
1246
                        (predictor_transform[transform][3] * vl);
1247

    
1248
                    predicted_dc /= 128;
1249

    
1250
                    /* check for outranging on the [ul u l] and
1251
                     * [ul u ur l] predictors */
1252
                    if ((transform == 15) || (transform == 13)) {
1253
                        if (FFABS(predicted_dc - vu) > 128)
1254
                            predicted_dc = vu;
1255
                        else if (FFABS(predicted_dc - vl) > 128)
1256
                            predicted_dc = vl;
1257
                        else if (FFABS(predicted_dc - vul) > 128)
1258
                            predicted_dc = vul;
1259
                    }
1260
                }
1261

    
1262
                /* at long last, apply the predictor */
1263
                if(s->coeffs[i].index){
1264
                    *s->next_coeff= s->coeffs[i];
1265
                    s->coeffs[i].index=0;
1266
                    s->coeffs[i].coeff=0;
1267
                    s->coeffs[i].next= s->next_coeff++;
1268
                }
1269
                s->coeffs[i].coeff += predicted_dc;
1270
                /* save the DC */
1271
                last_dc[current_frame_type] = DC_COEFF(i);
1272
                if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1273
                    s->coeff_counts[i]= 129;
1274
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1275
                    s->coeffs[i].next= s->next_coeff;
1276
                    (s->next_coeff++)->next=NULL;
1277
                }
1278
            }
1279
        }
1280
    }
1281
}
1282

    
1283
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1284
{
1285
    int x, y;
1286
    int *bounding_values= s->bounding_values_array+127;
1287

    
1288
    int width           = s->fragment_width  >> !!plane;
1289
    int height          = s->fragment_height >> !!plane;
1290
    int fragment        = s->fragment_start        [plane] + ystart * width;
1291
    int stride          = s->current_frame.linesize[plane];
1292
    uint8_t *plane_data = s->current_frame.data    [plane];
1293
    if (!s->flipped_image) stride = -stride;
1294
    plane_data += s->data_offset[plane] + 8*ystart*stride;
1295

    
1296
    for (y = ystart; y < yend; y++) {
1297

    
1298
        for (x = 0; x < width; x++) {
1299
            /* This code basically just deblocks on the edges of coded blocks.
1300
             * However, it has to be much more complicated because of the
1301
             * braindamaged deblock ordering used in VP3/Theora. Order matters
1302
             * because some pixels get filtered twice. */
1303
            if( s->all_fragments[fragment].coding_method != MODE_COPY )
1304
            {
1305
                /* do not perform left edge filter for left columns frags */
1306
                if (x > 0) {
1307
                    s->dsp.vp3_h_loop_filter(
1308
                        plane_data + 8*x,
1309
                        stride, bounding_values);
1310
                }
1311

    
1312
                /* do not perform top edge filter for top row fragments */
1313
                if (y > 0) {
1314
                    s->dsp.vp3_v_loop_filter(
1315
                        plane_data + 8*x,
1316
                        stride, bounding_values);
1317
                }
1318

    
1319
                /* do not perform right edge filter for right column
1320
                 * fragments or if right fragment neighbor is also coded
1321
                 * in this frame (it will be filtered in next iteration) */
1322
                if ((x < width - 1) &&
1323
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1324
                    s->dsp.vp3_h_loop_filter(
1325
                        plane_data + 8*x + 8,
1326
                        stride, bounding_values);
1327
                }
1328

    
1329
                /* do not perform bottom edge filter for bottom row
1330
                 * fragments or if bottom fragment neighbor is also coded
1331
                 * in this frame (it will be filtered in the next row) */
1332
                if ((y < height - 1) &&
1333
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1334
                    s->dsp.vp3_v_loop_filter(
1335
                        plane_data + 8*x + 8*stride,
1336
                        stride, bounding_values);
1337
                }
1338
            }
1339

    
1340
            fragment++;
1341
        }
1342
        plane_data += 8*stride;
1343
    }
1344
}
1345

    
1346
/**
1347
 * called when all pixels up to row y are complete
1348
 */
1349
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1350
{
1351
    int h, cy;
1352
    int offset[4];
1353

    
1354
    if(s->avctx->draw_horiz_band==NULL)
1355
        return;
1356

    
1357
    h= y - s->last_slice_end;
1358
    y -= h;
1359

    
1360
    if (!s->flipped_image) {
1361
        if (y == 0)
1362
            h -= s->height - s->avctx->height;  // account for non-mod16
1363
        y = s->height - y - h;
1364
    }
1365

    
1366
    cy = y >> 1;
1367
    offset[0] = s->current_frame.linesize[0]*y;
1368
    offset[1] = s->current_frame.linesize[1]*cy;
1369
    offset[2] = s->current_frame.linesize[2]*cy;
1370
    offset[3] = 0;
1371

    
1372
    emms_c();
1373
    s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1374
    s->last_slice_end= y + h;
1375
}
1376

    
1377
/*
1378
 * Perform the final rendering for a particular slice of data.
1379
 * The slice number ranges from 0..(c_superblock_height - 1).
1380
 */
1381
static void render_slice(Vp3DecodeContext *s, int slice)
1382
{
1383
    int x, y, i, j;
1384
    int16_t *dequantizer;
1385
    LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1386
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1387
    int motion_halfpel_index;
1388
    uint8_t *motion_source;
1389
    int plane, first_pixel;
1390

    
1391
    if (slice >= s->c_superblock_height)
1392
        return;
1393

    
1394
    for (plane = 0; plane < 3; plane++) {
1395
        uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
1396
        uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
1397
        uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
1398
        int stride            = s->current_frame.linesize[plane];
1399
        int plane_width       = s->width  >> !!plane;
1400
        int plane_height      = s->height >> !!plane;
1401

    
1402
        int sb_x, sb_y        = slice << !plane;
1403
        int slice_height      = sb_y + (plane ? 1 : 2);
1404
        int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
1405

    
1406
        int fragment_width    = s->fragment_width  >> !!plane;
1407
        int fragment_height   = s->fragment_height >> !!plane;
1408
        int fragment_start    = s->fragment_start[plane];
1409

    
1410
        if (!s->flipped_image) stride = -stride;
1411
        if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1412
            continue;
1413

    
1414

    
1415
        if(FFABS(stride) > 2048)
1416
            return; //various tables are fixed size
1417

    
1418
        /* for each superblock row in the slice (both of them)... */
1419
        for (; sb_y < slice_height; sb_y++) {
1420

    
1421
            /* for each superblock in a row... */
1422
            for (sb_x = 0; sb_x < slice_width; sb_x++) {
1423

    
1424
                /* for each block in a superblock... */
1425
                for (j = 0; j < 16; j++) {
1426
                    x = 4*sb_x + hilbert_offset[j][0];
1427
                    y = 4*sb_y + hilbert_offset[j][1];
1428

    
1429
                    i = fragment_start + y*fragment_width + x;
1430

    
1431
                    // bounds check
1432
                    if (x >= fragment_width || y >= fragment_height)
1433
                        continue;
1434

    
1435
                first_pixel = 8*y*stride + 8*x;
1436

    
1437
                /* transform if this block was coded */
1438
                if (s->all_fragments[i].coding_method != MODE_COPY) {
1439

    
1440
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1441
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1442
                        motion_source= golden_plane;
1443
                    else
1444
                        motion_source= last_plane;
1445

    
1446
                    motion_source += first_pixel;
1447
                    motion_halfpel_index = 0;
1448

    
1449
                    /* sort out the motion vector if this fragment is coded
1450
                     * using a motion vector method */
1451
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1452
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1453
                        int src_x, src_y;
1454
                        motion_x = s->all_fragments[i].motion_x;
1455
                        motion_y = s->all_fragments[i].motion_y;
1456
                        if(plane){
1457
                            motion_x= (motion_x>>1) | (motion_x&1);
1458
                            motion_y= (motion_y>>1) | (motion_y&1);
1459
                        }
1460

    
1461
                        src_x= (motion_x>>1) + 8*x;
1462
                        src_y= (motion_y>>1) + 8*y;
1463
                        if ((motion_x == 127) || (motion_y == 127))
1464
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1465

    
1466
                        motion_halfpel_index = motion_x & 0x01;
1467
                        motion_source += (motion_x >> 1);
1468

    
1469
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1470
                        motion_source += ((motion_y >> 1) * stride);
1471

    
1472
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1473
                            uint8_t *temp= s->edge_emu_buffer;
1474
                            if(stride<0) temp -= 9*stride;
1475
                            else temp += 9*stride;
1476

    
1477
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1478
                            motion_source= temp;
1479
                        }
1480
                    }
1481

    
1482

    
1483
                    /* first, take care of copying a block from either the
1484
                     * previous or the golden frame */
1485
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1486
                        /* Note, it is possible to implement all MC cases with
1487
                           put_no_rnd_pixels_l2 which would look more like the
1488
                           VP3 source but this would be slower as
1489
                           put_no_rnd_pixels_tab is better optimzed */
1490
                        if(motion_halfpel_index != 3){
1491
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1492
                                output_plane + first_pixel,
1493
                                motion_source, stride, 8);
1494
                        }else{
1495
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1496
                            s->dsp.put_no_rnd_pixels_l2[1](
1497
                                output_plane + first_pixel,
1498
                                motion_source - d,
1499
                                motion_source + stride + 1 + d,
1500
                                stride, 8);
1501
                        }
1502
                        dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1503
                    }else{
1504
                        dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1505
                    }
1506

    
1507
                    /* dequantize the DCT coefficients */
1508
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1509
                        Coeff *coeff= s->coeffs + i;
1510
                        s->dsp.clear_block(block);
1511
                        while(coeff->next){
1512
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1513
                            coeff= coeff->next;
1514
                        }
1515
                    }else{
1516
                        Coeff *coeff= s->coeffs + i;
1517
                        s->dsp.clear_block(block);
1518
                        while(coeff->next){
1519
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1520
                            coeff= coeff->next;
1521
                        }
1522
                    }
1523

    
1524
                    /* invert DCT and place (or add) in final output */
1525

    
1526
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1527
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1528
                            block[0] += 128<<3;
1529
                        s->dsp.idct_put(
1530
                            output_plane + first_pixel,
1531
                            stride,
1532
                            block);
1533
                    } else {
1534
                        s->dsp.idct_add(
1535
                            output_plane + first_pixel,
1536
                            stride,
1537
                            block);
1538
                    }
1539
                } else {
1540

    
1541
                    /* copy directly from the previous frame */
1542
                    s->dsp.put_pixels_tab[1][0](
1543
                        output_plane + first_pixel,
1544
                        last_plane + first_pixel,
1545
                        stride, 8);
1546

    
1547
                }
1548
                }
1549
            }
1550

    
1551
            // Filter up to the last row in the superblock row
1552
            apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1553
        }
1554
    }
1555

    
1556
     /* this looks like a good place for slice dispatch... */
1557
     /* algorithm:
1558
      *   if (slice == s->macroblock_height - 1)
1559
      *     dispatch (both last slice & 2nd-to-last slice);
1560
      *   else if (slice > 0)
1561
      *     dispatch (slice - 1);
1562
      */
1563

    
1564
    vp3_draw_horiz_band(s, 64*slice + 64-16);
1565
}
1566

    
1567
/*
1568
 * This is the ffmpeg/libavcodec API init function.
1569
 */
1570
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1571
{
1572
    Vp3DecodeContext *s = avctx->priv_data;
1573
    int i, inter, plane;
1574
    int c_width;
1575
    int c_height;
1576

    
1577
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1578
        s->version = 0;
1579
    else
1580
        s->version = 1;
1581

    
1582
    s->avctx = avctx;
1583
    s->width = FFALIGN(avctx->width, 16);
1584
    s->height = FFALIGN(avctx->height, 16);
1585
    avctx->pix_fmt = PIX_FMT_YUV420P;
1586
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1587
    if(avctx->idct_algo==FF_IDCT_AUTO)
1588
        avctx->idct_algo=FF_IDCT_VP3;
1589
    dsputil_init(&s->dsp, avctx);
1590

    
1591
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1592

    
1593
    /* initialize to an impossible value which will force a recalculation
1594
     * in the first frame decode */
1595
    for (i = 0; i < 3; i++)
1596
        s->qps[i] = -1;
1597

    
1598
    s->y_superblock_width = (s->width + 31) / 32;
1599
    s->y_superblock_height = (s->height + 31) / 32;
1600
    s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1601

    
1602
    /* work out the dimensions for the C planes */
1603
    c_width = s->width / 2;
1604
    c_height = s->height / 2;
1605
    s->c_superblock_width = (c_width + 31) / 32;
1606
    s->c_superblock_height = (c_height + 31) / 32;
1607
    s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1608

    
1609
    s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1610
    s->u_superblock_start = s->y_superblock_count;
1611
    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1612
    s->superblock_coding = av_malloc(s->superblock_count);
1613

    
1614
    s->macroblock_width = (s->width + 15) / 16;
1615
    s->macroblock_height = (s->height + 15) / 16;
1616
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1617

    
1618
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1619
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1620

    
1621
    /* fragment count covers all 8x8 blocks for all 3 planes */
1622
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1623
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1624
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1625

    
1626
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1627
    s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1628
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1629
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1630
    s->fast_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1631
    if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts ||
1632
        !s->coeffs || !s->coded_fragment_list || !s->fast_fragment_list) {
1633
        vp3_decode_end(avctx);
1634
        return -1;
1635
    }
1636

    
1637
    if (!s->theora_tables)
1638
    {
1639
        for (i = 0; i < 64; i++) {
1640
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1641
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1642
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1643
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1644
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1645
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1646
        }
1647

    
1648
        for(inter=0; inter<2; inter++){
1649
            for(plane=0; plane<3; plane++){
1650
                s->qr_count[inter][plane]= 1;
1651
                s->qr_size [inter][plane][0]= 63;
1652
                s->qr_base [inter][plane][0]=
1653
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1654
            }
1655
        }
1656

    
1657
        /* init VLC tables */
1658
        for (i = 0; i < 16; i++) {
1659

    
1660
            /* DC histograms */
1661
            init_vlc(&s->dc_vlc[i], 5, 32,
1662
                &dc_bias[i][0][1], 4, 2,
1663
                &dc_bias[i][0][0], 4, 2, 0);
1664

    
1665
            /* group 1 AC histograms */
1666
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1667
                &ac_bias_0[i][0][1], 4, 2,
1668
                &ac_bias_0[i][0][0], 4, 2, 0);
1669

    
1670
            /* group 2 AC histograms */
1671
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1672
                &ac_bias_1[i][0][1], 4, 2,
1673
                &ac_bias_1[i][0][0], 4, 2, 0);
1674

    
1675
            /* group 3 AC histograms */
1676
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1677
                &ac_bias_2[i][0][1], 4, 2,
1678
                &ac_bias_2[i][0][0], 4, 2, 0);
1679

    
1680
            /* group 4 AC histograms */
1681
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1682
                &ac_bias_3[i][0][1], 4, 2,
1683
                &ac_bias_3[i][0][0], 4, 2, 0);
1684
        }
1685
    } else {
1686
        for (i = 0; i < 16; i++) {
1687

    
1688
            /* DC histograms */
1689
            if (init_vlc(&s->dc_vlc[i], 5, 32,
1690
                &s->huffman_table[i][0][1], 4, 2,
1691
                &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1692
                goto vlc_fail;
1693

    
1694
            /* group 1 AC histograms */
1695
            if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1696
                &s->huffman_table[i+16][0][1], 4, 2,
1697
                &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1698
                goto vlc_fail;
1699

    
1700
            /* group 2 AC histograms */
1701
            if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1702
                &s->huffman_table[i+16*2][0][1], 4, 2,
1703
                &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1704
                goto vlc_fail;
1705

    
1706
            /* group 3 AC histograms */
1707
            if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1708
                &s->huffman_table[i+16*3][0][1], 4, 2,
1709
                &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1710
                goto vlc_fail;
1711

    
1712
            /* group 4 AC histograms */
1713
            if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1714
                &s->huffman_table[i+16*4][0][1], 4, 2,
1715
                &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1716
                goto vlc_fail;
1717
        }
1718
    }
1719

    
1720
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1721
        &superblock_run_length_vlc_table[0][1], 4, 2,
1722
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1723

    
1724
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1725
        &fragment_run_length_vlc_table[0][1], 4, 2,
1726
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1727

    
1728
    init_vlc(&s->mode_code_vlc, 3, 8,
1729
        &mode_code_vlc_table[0][1], 2, 1,
1730
        &mode_code_vlc_table[0][0], 2, 1, 0);
1731

    
1732
    init_vlc(&s->motion_vector_vlc, 6, 63,
1733
        &motion_vector_vlc_table[0][1], 2, 1,
1734
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1735

    
1736
    /* work out the block mapping tables */
1737
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1738
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1739
    if (!s->superblock_fragments || !s->macroblock_coding) {
1740
        vp3_decode_end(avctx);
1741
        return -1;
1742
    }
1743
    init_block_mapping(s);
1744

    
1745
    for (i = 0; i < 3; i++) {
1746
        s->current_frame.data[i] = NULL;
1747
        s->last_frame.data[i] = NULL;
1748
        s->golden_frame.data[i] = NULL;
1749
    }
1750

    
1751
    return 0;
1752

    
1753
vlc_fail:
1754
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1755
    return -1;
1756
}
1757

    
1758
/*
1759
 * This is the ffmpeg/libavcodec API frame decode function.
1760
 */
1761
static int vp3_decode_frame(AVCodecContext *avctx,
1762
                            void *data, int *data_size,
1763
                            AVPacket *avpkt)
1764
{
1765
    const uint8_t *buf = avpkt->data;
1766
    int buf_size = avpkt->size;
1767
    Vp3DecodeContext *s = avctx->priv_data;
1768
    GetBitContext gb;
1769
    static int counter = 0;
1770
    int i;
1771

    
1772
    init_get_bits(&gb, buf, buf_size * 8);
1773

    
1774
    if (s->theora && get_bits1(&gb))
1775
    {
1776
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1777
        return -1;
1778
    }
1779

    
1780
    s->keyframe = !get_bits1(&gb);
1781
    if (!s->theora)
1782
        skip_bits(&gb, 1);
1783
    for (i = 0; i < 3; i++)
1784
        s->last_qps[i] = s->qps[i];
1785

    
1786
    s->nqps=0;
1787
    do{
1788
        s->qps[s->nqps++]= get_bits(&gb, 6);
1789
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1790
    for (i = s->nqps; i < 3; i++)
1791
        s->qps[i] = -1;
1792

    
1793
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1794
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1795
            s->keyframe?"key":"", counter, s->qps[0]);
1796
    counter++;
1797

    
1798
    if (s->qps[0] != s->last_qps[0])
1799
        init_loop_filter(s);
1800

    
1801
    for (i = 0; i < s->nqps; i++)
1802
        // reinit all dequantizers if the first one changed, because
1803
        // the DC of the first quantizer must be used for all matrices
1804
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1805
            init_dequantizer(s, i);
1806

    
1807
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1808
        return buf_size;
1809

    
1810
    if (s->keyframe) {
1811
        if (!s->theora)
1812
        {
1813
            skip_bits(&gb, 4); /* width code */
1814
            skip_bits(&gb, 4); /* height code */
1815
            if (s->version)
1816
            {
1817
                s->version = get_bits(&gb, 5);
1818
                if (counter == 1)
1819
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1820
            }
1821
        }
1822
        if (s->version || s->theora)
1823
        {
1824
                if (get_bits1(&gb))
1825
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1826
            skip_bits(&gb, 2); /* reserved? */
1827
        }
1828

    
1829
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1830
            if (s->golden_frame.data[0])
1831
                avctx->release_buffer(avctx, &s->golden_frame);
1832
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1833
        } else {
1834
            if (s->golden_frame.data[0])
1835
                avctx->release_buffer(avctx, &s->golden_frame);
1836
            if (s->last_frame.data[0])
1837
                avctx->release_buffer(avctx, &s->last_frame);
1838
        }
1839

    
1840
        s->golden_frame.reference = 3;
1841
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1842
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1843
            return -1;
1844
        }
1845

    
1846
        /* golden frame is also the current frame */
1847
        s->current_frame= s->golden_frame;
1848
    } else {
1849
        /* allocate a new current frame */
1850
        s->current_frame.reference = 3;
1851
        if (!s->golden_frame.data[0]) {
1852
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1853
            return -1;
1854
        }
1855
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1856
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1857
            return -1;
1858
        }
1859
    }
1860

    
1861
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1862
    s->current_frame.qstride= 0;
1863

    
1864
    init_frame(s, &gb);
1865

    
1866
    if (unpack_superblocks(s, &gb)){
1867
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1868
        return -1;
1869
    }
1870
    if (unpack_modes(s, &gb)){
1871
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1872
        return -1;
1873
    }
1874
    if (unpack_vectors(s, &gb)){
1875
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1876
        return -1;
1877
    }
1878
    if (unpack_block_qpis(s, &gb)){
1879
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1880
        return -1;
1881
    }
1882
    if (unpack_dct_coeffs(s, &gb)){
1883
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1884
        return -1;
1885
    }
1886

    
1887
    for (i = 0; i < 3; i++) {
1888
        if (s->flipped_image)
1889
            s->data_offset[i] = 0;
1890
        else
1891
            s->data_offset[i] = ((s->height>>!!i)-1) * s->current_frame.linesize[i];
1892
    }
1893

    
1894
    s->last_slice_end = 0;
1895
    for (i = 0; i < s->c_superblock_height; i++)
1896
        render_slice(s, i);
1897

    
1898
    // filter the last row
1899
    for (i = 0; i < 3; i++) {
1900
        int row = (s->height >> (3+!!i)) - 1;
1901
        apply_loop_filter(s, i, row, row+1);
1902
    }
1903
    vp3_draw_horiz_band(s, s->height);
1904

    
1905
    *data_size=sizeof(AVFrame);
1906
    *(AVFrame*)data= s->current_frame;
1907

    
1908
    /* release the last frame, if it is allocated and if it is not the
1909
     * golden frame */
1910
    if ((s->last_frame.data[0]) &&
1911
        (s->last_frame.data[0] != s->golden_frame.data[0]))
1912
        avctx->release_buffer(avctx, &s->last_frame);
1913

    
1914
    /* shuffle frames (last = current) */
1915
    s->last_frame= s->current_frame;
1916
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1917

    
1918
    return buf_size;
1919
}
1920

    
1921
/*
1922
 * This is the ffmpeg/libavcodec API module cleanup function.
1923
 */
1924
static av_cold int vp3_decode_end(AVCodecContext *avctx)
1925
{
1926
    Vp3DecodeContext *s = avctx->priv_data;
1927
    int i;
1928

    
1929
    av_free(s->superblock_coding);
1930
    av_free(s->all_fragments);
1931
    av_free(s->coeff_counts);
1932
    av_free(s->coeffs);
1933
    av_free(s->coded_fragment_list);
1934
    av_free(s->fast_fragment_list);
1935
    av_free(s->superblock_fragments);
1936
    av_free(s->macroblock_coding);
1937

    
1938
    for (i = 0; i < 16; i++) {
1939
        free_vlc(&s->dc_vlc[i]);
1940
        free_vlc(&s->ac_vlc_1[i]);
1941
        free_vlc(&s->ac_vlc_2[i]);
1942
        free_vlc(&s->ac_vlc_3[i]);
1943
        free_vlc(&s->ac_vlc_4[i]);
1944
    }
1945

    
1946
    free_vlc(&s->superblock_run_length_vlc);
1947
    free_vlc(&s->fragment_run_length_vlc);
1948
    free_vlc(&s->mode_code_vlc);
1949
    free_vlc(&s->motion_vector_vlc);
1950

    
1951
    /* release all frames */
1952
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
1953
        avctx->release_buffer(avctx, &s->golden_frame);
1954
    if (s->last_frame.data[0])
1955
        avctx->release_buffer(avctx, &s->last_frame);
1956
    /* no need to release the current_frame since it will always be pointing
1957
     * to the same frame as either the golden or last frame */
1958

    
1959
    return 0;
1960
}
1961

    
1962
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1963
{
1964
    Vp3DecodeContext *s = avctx->priv_data;
1965

    
1966
    if (get_bits1(gb)) {
1967
        int token;
1968
        if (s->entries >= 32) { /* overflow */
1969
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1970
            return -1;
1971
        }
1972
        token = get_bits(gb, 5);
1973
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1974
        s->huffman_table[s->hti][token][0] = s->hbits;
1975
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
1976
        s->entries++;
1977
    }
1978
    else {
1979
        if (s->huff_code_size >= 32) {/* overflow */
1980
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1981
            return -1;
1982
        }
1983
        s->huff_code_size++;
1984
        s->hbits <<= 1;
1985
        if (read_huffman_tree(avctx, gb))
1986
            return -1;
1987
        s->hbits |= 1;
1988
        if (read_huffman_tree(avctx, gb))
1989
            return -1;
1990
        s->hbits >>= 1;
1991
        s->huff_code_size--;
1992
    }
1993
    return 0;
1994
}
1995

    
1996
#if CONFIG_THEORA_DECODER
1997
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1998
{
1999
    Vp3DecodeContext *s = avctx->priv_data;
2000
    int visible_width, visible_height, colorspace;
2001

    
2002
    s->theora = get_bits_long(gb, 24);
2003
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2004

    
2005
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2006
    /* but previous versions have the image flipped relative to vp3 */
2007
    if (s->theora < 0x030200)
2008
    {
2009
        s->flipped_image = 1;
2010
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2011
    }
2012

    
2013
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2014
    visible_height = s->height = get_bits(gb, 16) << 4;
2015

    
2016
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2017
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2018
        s->width= s->height= 0;
2019
        return -1;
2020
    }
2021

    
2022
    if (s->theora >= 0x030200) {
2023
        visible_width  = get_bits_long(gb, 24);
2024
        visible_height = get_bits_long(gb, 24);
2025

    
2026
        skip_bits(gb, 8); /* offset x */
2027
        skip_bits(gb, 8); /* offset y */
2028
    }
2029

    
2030
    skip_bits(gb, 32); /* fps numerator */
2031
    skip_bits(gb, 32); /* fps denumerator */
2032
    skip_bits(gb, 24); /* aspect numerator */
2033
    skip_bits(gb, 24); /* aspect denumerator */
2034

    
2035
    if (s->theora < 0x030200)
2036
        skip_bits(gb, 5); /* keyframe frequency force */
2037
    colorspace = get_bits(gb, 8);
2038
    skip_bits(gb, 24); /* bitrate */
2039

    
2040
    skip_bits(gb, 6); /* quality hint */
2041

    
2042
    if (s->theora >= 0x030200)
2043
    {
2044
        skip_bits(gb, 5); /* keyframe frequency force */
2045
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2046
        skip_bits(gb, 3); /* reserved */
2047
    }
2048

    
2049
//    align_get_bits(gb);
2050

    
2051
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2052
        && visible_height <= s->height && visible_height > s->height-16)
2053
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2054
    else
2055
        avcodec_set_dimensions(avctx, s->width, s->height);
2056

    
2057
    if (colorspace == 1) {
2058
        avctx->color_primaries = AVCOL_PRI_BT470M;
2059
    } else if (colorspace == 2) {
2060
        avctx->color_primaries = AVCOL_PRI_BT470BG;
2061
    }
2062
    if (colorspace == 1 || colorspace == 2) {
2063
        avctx->colorspace = AVCOL_SPC_BT470BG;
2064
        avctx->color_trc  = AVCOL_TRC_BT709;
2065
    }
2066

    
2067
    return 0;
2068
}
2069

    
2070
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2071
{
2072
    Vp3DecodeContext *s = avctx->priv_data;
2073
    int i, n, matrices, inter, plane;
2074

    
2075
    if (s->theora >= 0x030200) {
2076
        n = get_bits(gb, 3);
2077
        /* loop filter limit values table */
2078
        for (i = 0; i < 64; i++) {
2079
            s->filter_limit_values[i] = get_bits(gb, n);
2080
            if (s->filter_limit_values[i] > 127) {
2081
                av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2082
                s->filter_limit_values[i] = 127;
2083
            }
2084
        }
2085
    }
2086

    
2087
    if (s->theora >= 0x030200)
2088
        n = get_bits(gb, 4) + 1;
2089
    else
2090
        n = 16;
2091
    /* quality threshold table */
2092
    for (i = 0; i < 64; i++)
2093
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2094

    
2095
    if (s->theora >= 0x030200)
2096
        n = get_bits(gb, 4) + 1;
2097
    else
2098
        n = 16;
2099
    /* dc scale factor table */
2100
    for (i = 0; i < 64; i++)
2101
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2102

    
2103
    if (s->theora >= 0x030200)
2104
        matrices = get_bits(gb, 9) + 1;
2105
    else
2106
        matrices = 3;
2107

    
2108
    if(matrices > 384){
2109
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2110
        return -1;
2111
    }
2112

    
2113
    for(n=0; n<matrices; n++){
2114
        for (i = 0; i < 64; i++)
2115
            s->base_matrix[n][i]= get_bits(gb, 8);
2116
    }
2117

    
2118
    for (inter = 0; inter <= 1; inter++) {
2119
        for (plane = 0; plane <= 2; plane++) {
2120
            int newqr= 1;
2121
            if (inter || plane > 0)
2122
                newqr = get_bits1(gb);
2123
            if (!newqr) {
2124
                int qtj, plj;
2125
                if(inter && get_bits1(gb)){
2126
                    qtj = 0;
2127
                    plj = plane;
2128
                }else{
2129
                    qtj= (3*inter + plane - 1) / 3;
2130
                    plj= (plane + 2) % 3;
2131
                }
2132
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2133
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2134
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2135
            } else {
2136
                int qri= 0;
2137
                int qi = 0;
2138

    
2139
                for(;;){
2140
                    i= get_bits(gb, av_log2(matrices-1)+1);
2141
                    if(i>= matrices){
2142
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2143
                        return -1;
2144
                    }
2145
                    s->qr_base[inter][plane][qri]= i;
2146
                    if(qi >= 63)
2147
                        break;
2148
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2149
                    s->qr_size[inter][plane][qri++]= i;
2150
                    qi += i;
2151
                }
2152

    
2153
                if (qi > 63) {
2154
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2155
                    return -1;
2156
                }
2157
                s->qr_count[inter][plane]= qri;
2158
            }
2159
        }
2160
    }
2161

    
2162
    /* Huffman tables */
2163
    for (s->hti = 0; s->hti < 80; s->hti++) {
2164
        s->entries = 0;
2165
        s->huff_code_size = 1;
2166
        if (!get_bits1(gb)) {
2167
            s->hbits = 0;
2168
            if(read_huffman_tree(avctx, gb))
2169
                return -1;
2170
            s->hbits = 1;
2171
            if(read_huffman_tree(avctx, gb))
2172
                return -1;
2173
        }
2174
    }
2175

    
2176
    s->theora_tables = 1;
2177

    
2178
    return 0;
2179
}
2180

    
2181
static av_cold int theora_decode_init(AVCodecContext *avctx)
2182
{
2183
    Vp3DecodeContext *s = avctx->priv_data;
2184
    GetBitContext gb;
2185
    int ptype;
2186
    uint8_t *header_start[3];
2187
    int header_len[3];
2188
    int i;
2189

    
2190
    s->theora = 1;
2191

    
2192
    if (!avctx->extradata_size)
2193
    {
2194
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2195
        return -1;
2196
    }
2197

    
2198
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2199
                              42, header_start, header_len) < 0) {
2200
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2201
        return -1;
2202
    }
2203

    
2204
  for(i=0;i<3;i++) {
2205
    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2206

    
2207
    ptype = get_bits(&gb, 8);
2208

    
2209
     if (!(ptype & 0x80))
2210
     {
2211
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2212
//        return -1;
2213
     }
2214

    
2215
    // FIXME: Check for this as well.
2216
    skip_bits_long(&gb, 6*8); /* "theora" */
2217

    
2218
    switch(ptype)
2219
    {
2220
        case 0x80:
2221
            theora_decode_header(avctx, &gb);
2222
                break;
2223
        case 0x81:
2224
// FIXME: is this needed? it breaks sometimes
2225
//            theora_decode_comments(avctx, gb);
2226
            break;
2227
        case 0x82:
2228
            if (theora_decode_tables(avctx, &gb))
2229
                return -1;
2230
            break;
2231
        default:
2232
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2233
            break;
2234
    }
2235
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2236
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2237
    if (s->theora < 0x030200)
2238
        break;
2239
  }
2240

    
2241
    return vp3_decode_init(avctx);
2242
}
2243

    
2244
AVCodec theora_decoder = {
2245
    "theora",
2246
    CODEC_TYPE_VIDEO,
2247
    CODEC_ID_THEORA,
2248
    sizeof(Vp3DecodeContext),
2249
    theora_decode_init,
2250
    NULL,
2251
    vp3_decode_end,
2252
    vp3_decode_frame,
2253
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2254
    NULL,
2255
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2256
};
2257
#endif
2258

    
2259
AVCodec vp3_decoder = {
2260
    "vp3",
2261
    CODEC_TYPE_VIDEO,
2262
    CODEC_ID_VP3,
2263
    sizeof(Vp3DecodeContext),
2264
    vp3_decode_init,
2265
    NULL,
2266
    vp3_decode_end,
2267
    vp3_decode_frame,
2268
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2269
    NULL,
2270
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2271
};