Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 7a93858a

History | View | Annotate | Download (54.4 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "dsputil.h"
32
#include "cabac.h"
33
#include "mpegvideo.h"
34
#include "h264pred.h"
35
#include "rectangle.h"
36

    
37
#define interlaced_dct interlaced_dct_is_a_bad_name
38
#define mb_intra mb_intra_is_not_initialized_see_mb_type
39

    
40
#define LUMA_DC_BLOCK_INDEX   25
41
#define CHROMA_DC_BLOCK_INDEX 26
42

    
43
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44
#define COEFF_TOKEN_VLC_BITS           8
45
#define TOTAL_ZEROS_VLC_BITS           9
46
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47
#define RUN_VLC_BITS                   3
48
#define RUN7_VLC_BITS                  6
49

    
50
#define MAX_SPS_COUNT 32
51
#define MAX_PPS_COUNT 256
52

    
53
#define MAX_MMCO_COUNT 66
54

    
55
#define MAX_DELAYED_PIC_COUNT 16
56

    
57
/* Compiling in interlaced support reduces the speed
58
 * of progressive decoding by about 2%. */
59
#define ALLOW_INTERLACE
60

    
61
#define ALLOW_NOCHROMA
62

    
63
/**
64
 * The maximum number of slices supported by the decoder.
65
 * must be a power of 2
66
 */
67
#define MAX_SLICES 16
68

    
69
#ifdef ALLOW_INTERLACE
70
#define MB_MBAFF h->mb_mbaff
71
#define MB_FIELD h->mb_field_decoding_flag
72
#define FRAME_MBAFF h->mb_aff_frame
73
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74
#else
75
#define MB_MBAFF 0
76
#define MB_FIELD 0
77
#define FRAME_MBAFF 0
78
#define FIELD_PICTURE 0
79
#undef  IS_INTERLACED
80
#define IS_INTERLACED(mb_type) 0
81
#endif
82
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83

    
84
#ifdef ALLOW_NOCHROMA
85
#define CHROMA h->sps.chroma_format_idc
86
#else
87
#define CHROMA 1
88
#endif
89

    
90
#ifndef CABAC
91
#define CABAC h->pps.cabac
92
#endif
93

    
94
#define EXTENDED_SAR          255
95

    
96
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97
#define MB_TYPE_8x8DCT     0x01000000
98
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100

    
101
/**
102
 * Value of Picture.reference when Picture is not a reference picture, but
103
 * is held for delayed output.
104
 */
105
#define DELAYED_PIC_REF 4
106

    
107

    
108
/* NAL unit types */
109
enum {
110
    NAL_SLICE=1,
111
    NAL_DPA,
112
    NAL_DPB,
113
    NAL_DPC,
114
    NAL_IDR_SLICE,
115
    NAL_SEI,
116
    NAL_SPS,
117
    NAL_PPS,
118
    NAL_AUD,
119
    NAL_END_SEQUENCE,
120
    NAL_END_STREAM,
121
    NAL_FILLER_DATA,
122
    NAL_SPS_EXT,
123
    NAL_AUXILIARY_SLICE=19
124
};
125

    
126
/**
127
 * SEI message types
128
 */
129
typedef enum {
130
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134
} SEI_Type;
135

    
136
/**
137
 * pic_struct in picture timing SEI message
138
 */
139
typedef enum {
140
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149
} SEI_PicStructType;
150

    
151
/**
152
 * Sequence parameter set
153
 */
154
typedef struct SPS{
155

    
156
    int profile_idc;
157
    int level_idc;
158
    int chroma_format_idc;
159
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161
    int poc_type;                      ///< pic_order_cnt_type
162
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163
    int delta_pic_order_always_zero_flag;
164
    int offset_for_non_ref_pic;
165
    int offset_for_top_to_bottom_field;
166
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167
    int ref_frame_count;               ///< num_ref_frames
168
    int gaps_in_frame_num_allowed_flag;
169
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171
    int frame_mbs_only_flag;
172
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
173
    int direct_8x8_inference_flag;
174
    int crop;                   ///< frame_cropping_flag
175
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179
    int vui_parameters_present_flag;
180
    AVRational sar;
181
    int video_signal_type_present_flag;
182
    int full_range;
183
    int colour_description_present_flag;
184
    enum AVColorPrimaries color_primaries;
185
    enum AVColorTransferCharacteristic color_trc;
186
    enum AVColorSpace colorspace;
187
    int timing_info_present_flag;
188
    uint32_t num_units_in_tick;
189
    uint32_t time_scale;
190
    int fixed_frame_rate_flag;
191
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
192
    int bitstream_restriction_flag;
193
    int num_reorder_frames;
194
    int scaling_matrix_present;
195
    uint8_t scaling_matrix4[6][16];
196
    uint8_t scaling_matrix8[2][64];
197
    int nal_hrd_parameters_present_flag;
198
    int vcl_hrd_parameters_present_flag;
199
    int pic_struct_present_flag;
200
    int time_offset_length;
201
    int cpb_cnt;                       ///< See H.264 E.1.2
202
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207
    int residual_color_transform_flag; ///< residual_colour_transform_flag
208
}SPS;
209

    
210
/**
211
 * Picture parameter set
212
 */
213
typedef struct PPS{
214
    unsigned int sps_id;
215
    int cabac;                  ///< entropy_coding_mode_flag
216
    int pic_order_present;      ///< pic_order_present_flag
217
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
218
    int mb_slice_group_map_type;
219
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220
    int weighted_pred;          ///< weighted_pred_flag
221
    int weighted_bipred_idc;
222
    int init_qp;                ///< pic_init_qp_minus26 + 26
223
    int init_qs;                ///< pic_init_qs_minus26 + 26
224
    int chroma_qp_index_offset[2];
225
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226
    int constrained_intra_pred; ///< constrained_intra_pred_flag
227
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
229
    uint8_t scaling_matrix4[6][16];
230
    uint8_t scaling_matrix8[2][64];
231
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232
    int chroma_qp_diff;
233
}PPS;
234

    
235
/**
236
 * Memory management control operation opcode.
237
 */
238
typedef enum MMCOOpcode{
239
    MMCO_END=0,
240
    MMCO_SHORT2UNUSED,
241
    MMCO_LONG2UNUSED,
242
    MMCO_SHORT2LONG,
243
    MMCO_SET_MAX_LONG,
244
    MMCO_RESET,
245
    MMCO_LONG,
246
} MMCOOpcode;
247

    
248
/**
249
 * Memory management control operation.
250
 */
251
typedef struct MMCO{
252
    MMCOOpcode opcode;
253
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255
} MMCO;
256

    
257
/**
258
 * H264Context
259
 */
260
typedef struct H264Context{
261
    MpegEncContext s;
262
    int nal_ref_idc;
263
    int nal_unit_type;
264
    uint8_t *rbsp_buffer[2];
265
    unsigned int rbsp_buffer_size[2];
266

    
267
    /**
268
      * Used to parse AVC variant of h264
269
      */
270
    int is_avc; ///< this flag is != 0 if codec is avc1
271
    int got_avcC; ///< flag used to parse avcC data only once
272
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273

    
274
    int chroma_qp[2]; //QPc
275

    
276
    int qp_thresh;      ///< QP threshold to skip loopfilter
277

    
278
    int prev_mb_skipped;
279
    int next_mb_skipped;
280

    
281
    //prediction stuff
282
    int chroma_pred_mode;
283
    int intra16x16_pred_mode;
284

    
285
    int top_mb_xy;
286
    int left_mb_xy[2];
287

    
288
    int8_t intra4x4_pred_mode_cache[5*8];
289
    int8_t (*intra4x4_pred_mode)[8];
290
    H264PredContext hpc;
291
    unsigned int topleft_samples_available;
292
    unsigned int top_samples_available;
293
    unsigned int topright_samples_available;
294
    unsigned int left_samples_available;
295
    uint8_t (*top_borders[2])[16+2*8];
296
    uint8_t left_border[2*(17+2*9)];
297

    
298
    /**
299
     * non zero coeff count cache.
300
     * is 64 if not available.
301
     */
302
    DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
303

    
304
    /*
305
    .UU.YYYY
306
    .UU.YYYY
307
    .vv.YYYY
308
    .VV.YYYY
309
    */
310
    uint8_t (*non_zero_count)[32];
311

    
312
    /**
313
     * Motion vector cache.
314
     */
315
    DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
316
    DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
317
#define LIST_NOT_USED -1 //FIXME rename?
318
#define PART_NOT_AVAILABLE -2
319

    
320
    /**
321
     * is 1 if the specific list MV&references are set to 0,0,-2.
322
     */
323
    int mv_cache_clean[2];
324

    
325
    /**
326
     * number of neighbors (top and/or left) that used 8x8 dct
327
     */
328
    int neighbor_transform_size;
329

    
330
    /**
331
     * block_offset[ 0..23] for frame macroblocks
332
     * block_offset[24..47] for field macroblocks
333
     */
334
    int block_offset[2*(16+8)];
335

    
336
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
337
    uint32_t *mb2b8_xy;
338
    int b_stride; //FIXME use s->b4_stride
339
    int b8_stride;
340

    
341
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
342
    int mb_uvlinesize;
343

    
344
    int emu_edge_width;
345
    int emu_edge_height;
346

    
347
    int halfpel_flag;
348
    int thirdpel_flag;
349

    
350
    int unknown_svq3_flag;
351
    int next_slice_index;
352

    
353
    SPS *sps_buffers[MAX_SPS_COUNT];
354
    SPS sps; ///< current sps
355

    
356
    PPS *pps_buffers[MAX_PPS_COUNT];
357
    /**
358
     * current pps
359
     */
360
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
361

    
362
    uint32_t dequant4_buffer[6][52][16];
363
    uint32_t dequant8_buffer[2][52][64];
364
    uint32_t (*dequant4_coeff[6])[16];
365
    uint32_t (*dequant8_coeff[2])[64];
366
    int dequant_coeff_pps;     ///< reinit tables when pps changes
367

    
368
    int slice_num;
369
    uint16_t *slice_table_base;
370
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
371
    int slice_type;
372
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
373
    int slice_type_fixed;
374

    
375
    //interlacing specific flags
376
    int mb_aff_frame;
377
    int mb_field_decoding_flag;
378
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
379

    
380
    DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]);
381

    
382
    //POC stuff
383
    int poc_lsb;
384
    int poc_msb;
385
    int delta_poc_bottom;
386
    int delta_poc[2];
387
    int frame_num;
388
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
389
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
390
    int frame_num_offset;         ///< for POC type 2
391
    int prev_frame_num_offset;    ///< for POC type 2
392
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
393

    
394
    /**
395
     * frame_num for frames or 2*frame_num+1 for field pics.
396
     */
397
    int curr_pic_num;
398

    
399
    /**
400
     * max_frame_num or 2*max_frame_num for field pics.
401
     */
402
    int max_pic_num;
403

    
404
    //Weighted pred stuff
405
    int use_weight;
406
    int use_weight_chroma;
407
    int luma_log2_weight_denom;
408
    int chroma_log2_weight_denom;
409
    int luma_weight[2][48];
410
    int luma_offset[2][48];
411
    int chroma_weight[2][48][2];
412
    int chroma_offset[2][48][2];
413
    int implicit_weight[48][48];
414

    
415
    //deblock
416
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
417
    int slice_alpha_c0_offset;
418
    int slice_beta_offset;
419

    
420
    int redundant_pic_count;
421

    
422
    int direct_spatial_mv_pred;
423
    int dist_scale_factor[16];
424
    int dist_scale_factor_field[2][32];
425
    int map_col_to_list0[2][16+32];
426
    int map_col_to_list0_field[2][2][16+32];
427

    
428
    /**
429
     * num_ref_idx_l0/1_active_minus1 + 1
430
     */
431
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
432
    unsigned int list_count;
433
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
434
    Picture *short_ref[32];
435
    Picture *long_ref[32];
436
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
437
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
438
                                          Reordered version of default_ref_list
439
                                          according to picture reordering in slice header */
440
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
442
    int outputed_poc;
443

    
444
    /**
445
     * memory management control operations buffer.
446
     */
447
    MMCO mmco[MAX_MMCO_COUNT];
448
    int mmco_index;
449

    
450
    int long_ref_count;  ///< number of actual long term references
451
    int short_ref_count; ///< number of actual short term references
452

    
453
    //data partitioning
454
    GetBitContext intra_gb;
455
    GetBitContext inter_gb;
456
    GetBitContext *intra_gb_ptr;
457
    GetBitContext *inter_gb_ptr;
458

    
459
    DECLARE_ALIGNED_16(DCTELEM, mb[16*24]);
460
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
461

    
462
    /**
463
     * Cabac
464
     */
465
    CABACContext cabac;
466
    uint8_t      cabac_state[460];
467
    int          cabac_init_idc;
468

    
469
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
470
    uint16_t     *cbp_table;
471
    int cbp;
472
    int top_cbp;
473
    int left_cbp;
474
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
475
    uint8_t     *chroma_pred_mode_table;
476
    int         last_qscale_diff;
477
    int16_t     (*mvd_table[2])[2];
478
    DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
479
    uint8_t     *direct_table;
480
    uint8_t     direct_cache[5*8];
481

    
482
    uint8_t zigzag_scan[16];
483
    uint8_t zigzag_scan8x8[64];
484
    uint8_t zigzag_scan8x8_cavlc[64];
485
    uint8_t field_scan[16];
486
    uint8_t field_scan8x8[64];
487
    uint8_t field_scan8x8_cavlc[64];
488
    const uint8_t *zigzag_scan_q0;
489
    const uint8_t *zigzag_scan8x8_q0;
490
    const uint8_t *zigzag_scan8x8_cavlc_q0;
491
    const uint8_t *field_scan_q0;
492
    const uint8_t *field_scan8x8_q0;
493
    const uint8_t *field_scan8x8_cavlc_q0;
494

    
495
    int x264_build;
496

    
497
    /**
498
     * @defgroup multithreading Members for slice based multithreading
499
     * @{
500
     */
501
    struct H264Context *thread_context[MAX_THREADS];
502

    
503
    /**
504
     * current slice number, used to initalize slice_num of each thread/context
505
     */
506
    int current_slice;
507

    
508
    /**
509
     * Max number of threads / contexts.
510
     * This is equal to AVCodecContext.thread_count unless
511
     * multithreaded decoding is impossible, in which case it is
512
     * reduced to 1.
513
     */
514
    int max_contexts;
515

    
516
    /**
517
     *  1 if the single thread fallback warning has already been
518
     *  displayed, 0 otherwise.
519
     */
520
    int single_decode_warning;
521

    
522
    int last_slice_type;
523
    /** @} */
524

    
525
    int mb_xy;
526

    
527
    uint32_t svq3_watermark_key;
528

    
529
    /**
530
     * pic_struct in picture timing SEI message
531
     */
532
    SEI_PicStructType sei_pic_struct;
533

    
534
    /**
535
     * Complement sei_pic_struct
536
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
537
     * However, soft telecined frames may have these values.
538
     * This is used in an attempt to flag soft telecine progressive.
539
     */
540
    int prev_interlaced_frame;
541

    
542
    /**
543
     * Bit set of clock types for fields/frames in picture timing SEI message.
544
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
545
     * interlaced).
546
     */
547
    int sei_ct_type;
548

    
549
    /**
550
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
551
     */
552
    int sei_dpb_output_delay;
553

    
554
    /**
555
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
556
     */
557
    int sei_cpb_removal_delay;
558

    
559
    /**
560
     * recovery_frame_cnt from SEI message
561
     *
562
     * Set to -1 if no recovery point SEI message found or to number of frames
563
     * before playback synchronizes. Frames having recovery point are key
564
     * frames.
565
     */
566
    int sei_recovery_frame_cnt;
567

    
568
    int is_complex;
569

    
570
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
571
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
572

    
573
    // Timestamp stuff
574
    int sei_buffering_period_present;  ///< Buffering period SEI flag
575
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
576
}H264Context;
577

    
578

    
579
extern const uint8_t ff_h264_chroma_qp[52];
580

    
581

    
582
/**
583
 * Decode SEI
584
 */
585
int ff_h264_decode_sei(H264Context *h);
586

    
587
/**
588
 * Decode SPS
589
 */
590
int ff_h264_decode_seq_parameter_set(H264Context *h);
591

    
592
/**
593
 * Decode PPS
594
 */
595
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
596

    
597
/**
598
 * Decodes a network abstraction layer unit.
599
 * @param consumed is the number of bytes used as input
600
 * @param length is the length of the array
601
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
602
 * @returns decoded bytes, might be src+1 if no escapes
603
 */
604
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
605

    
606
/**
607
 * identifies the exact end of the bitstream
608
 * @return the length of the trailing, or 0 if damaged
609
 */
610
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
611

    
612
/**
613
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
614
 */
615
av_cold void ff_h264_free_context(H264Context *h);
616

    
617
/**
618
 * reconstructs bitstream slice_type.
619
 */
620
int ff_h264_get_slice_type(H264Context *h);
621

    
622
/**
623
 * allocates tables.
624
 * needs width/height
625
 */
626
int ff_h264_alloc_tables(H264Context *h);
627

    
628
/**
629
 * fills the default_ref_list.
630
 */
631
int ff_h264_fill_default_ref_list(H264Context *h);
632

    
633
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
634
void ff_h264_fill_mbaff_ref_list(H264Context *h);
635
void ff_h264_remove_all_refs(H264Context *h);
636

    
637
/**
638
 * Executes the reference picture marking (memory management control operations).
639
 */
640
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
641

    
642
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
643

    
644

    
645
/**
646
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
647
 */
648
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
649

    
650
/**
651
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
652
 */
653
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
654

    
655
void ff_h264_write_back_intra_pred_mode(H264Context *h);
656
void ff_h264_hl_decode_mb(H264Context *h);
657
int ff_h264_frame_start(H264Context *h);
658
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
659
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
660
av_cold void ff_h264_decode_init_vlc(void);
661

    
662
/**
663
 * decodes a macroblock
664
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
665
 */
666
int ff_h264_decode_mb_cavlc(H264Context *h);
667

    
668
/**
669
 * decodes a CABAC coded macroblock
670
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
671
 */
672
int ff_h264_decode_mb_cabac(H264Context *h);
673

    
674
void ff_h264_init_cabac_states(H264Context *h);
675

    
676
void ff_h264_direct_dist_scale_factor(H264Context * const h);
677
void ff_h264_direct_ref_list_init(H264Context * const h);
678
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
679

    
680
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
681
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
682

    
683
/**
684
 * Reset SEI values at the beginning of the frame.
685
 *
686
 * @param h H.264 context.
687
 */
688
void ff_h264_reset_sei(H264Context *h);
689

    
690

    
691
/*
692
o-o o-o
693
 / / /
694
o-o o-o
695
 ,---'
696
o-o o-o
697
 / / /
698
o-o o-o
699
*/
700
//This table must be here because scan8[constant] must be known at compiletime
701
static const uint8_t scan8[16 + 2*4]={
702
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
703
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
704
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
705
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
706
 1+1*8, 2+1*8,
707
 1+2*8, 2+2*8,
708
 1+4*8, 2+4*8,
709
 1+5*8, 2+5*8,
710
};
711

    
712
static av_always_inline uint32_t pack16to32(int a, int b){
713
#if HAVE_BIGENDIAN
714
   return (b&0xFFFF) + (a<<16);
715
#else
716
   return (a&0xFFFF) + (b<<16);
717
#endif
718
}
719

    
720
/**
721
 * gets the chroma qp.
722
 */
723
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
724
    return h->pps.chroma_qp_table[t][qscale];
725
}
726

    
727
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
728

    
729
static av_always_inline int fill_caches(H264Context *h, int mb_type, int for_deblock){
730
    MpegEncContext * const s = &h->s;
731
    const int mb_xy= h->mb_xy;
732
    int topleft_xy, top_xy, topright_xy, left_xy[2];
733
    int topleft_type, top_type, topright_type, left_type[2];
734
    const uint8_t * left_block;
735
    int topleft_partition= -1;
736
    int i;
737
    static const uint8_t left_block_options[4][16]={
738
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
739
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
740
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
741
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
742
    };
743

    
744
    top_xy     = mb_xy  - (s->mb_stride << FIELD_PICTURE);
745

    
746
    //FIXME deblocking could skip the intra and nnz parts.
747
//     if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
748
//         return;
749

    
750
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
751
     * stuff, I can't imagine that these complex rules are worth it. */
752

    
753
    topleft_xy = top_xy - 1;
754
    topright_xy= top_xy + 1;
755
    left_xy[1] = left_xy[0] = mb_xy-1;
756
    left_block = left_block_options[0];
757
    if(FRAME_MBAFF){
758
        const int pair_xy          = s->mb_x     + (s->mb_y & ~1)*s->mb_stride;
759
        const int top_pair_xy      = pair_xy     - s->mb_stride;
760
        const int topleft_pair_xy  = top_pair_xy - 1;
761
        const int topright_pair_xy = top_pair_xy + 1;
762
        const int topleft_mb_field_flag  = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
763
        const int top_mb_field_flag      = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
764
        const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
765
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
766
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
767
        const int bottom = (s->mb_y & 1);
768
        tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
769

    
770
        if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
771
            top_xy -= s->mb_stride;
772
        }
773
        if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
774
            topleft_xy -= s->mb_stride;
775
        } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
776
            topleft_xy += s->mb_stride;
777
            // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
778
            topleft_partition = 0;
779
        }
780
        if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
781
            topright_xy -= s->mb_stride;
782
        }
783
        if (left_mb_field_flag != curr_mb_field_flag) {
784
            left_xy[1] = left_xy[0] = pair_xy - 1;
785
            if (curr_mb_field_flag) {
786
                left_xy[1] += s->mb_stride;
787
                left_block = left_block_options[3];
788
            } else {
789
                left_block= left_block_options[2 - bottom];
790
            }
791
        }
792
    }
793

    
794
    h->top_mb_xy = top_xy;
795
    h->left_mb_xy[0] = left_xy[0];
796
    h->left_mb_xy[1] = left_xy[1];
797
    if(for_deblock){
798

    
799
        //for sufficiently low qp, filtering wouldn't do anything
800
        //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
801
        int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
802
        int qp = s->current_picture.qscale_table[mb_xy];
803
        if(qp <= qp_thresh
804
           && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
805
           && (left_xy[1]<0 || ((qp + s->current_picture.qscale_table[left_xy[1]] + 1)>>1) <= qp_thresh)
806
           && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
807
            return 1;
808
        }
809

    
810
        *((uint64_t*)&h->non_zero_count_cache[0+8*1])= *((uint64_t*)&h->non_zero_count[mb_xy][ 0]);
811
        *((uint64_t*)&h->non_zero_count_cache[0+8*2])= *((uint64_t*)&h->non_zero_count[mb_xy][ 8]);
812
        *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
813
        *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
814
        *((uint64_t*)&h->non_zero_count_cache[0+8*4])= *((uint64_t*)&h->non_zero_count[mb_xy][24]);
815

    
816
        h->cbp= h->cbp_table[mb_xy];
817

    
818
        topleft_type = 0;
819
        topright_type = 0;
820
        top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
821
        left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
822
        left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
823

    
824
        if(!IS_INTRA(mb_type)){
825
            int list;
826
            for(list=0; list<h->list_count; list++){
827
                int8_t *ref;
828
                int y, b_xy;
829
                if(!USES_LIST(mb_type, list)){
830
                    fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
831
                    *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
832
                    *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
833
                    *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
834
                    *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
835
                    continue;
836
                }
837

    
838
                ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
839
                if(for_deblock){
840
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
841
                    *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
842
                    *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
843
                    ref += h->b8_stride;
844
                    *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
845
                    *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
846
                }else{
847
                *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
848
                *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
849
                ref += h->b8_stride;
850
                *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
851
                *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
852
                }
853

    
854
                b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
855
                for(y=0; y<4; y++){
856
                    *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride];
857
                    *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride];
858
                }
859

    
860
            }
861
        }
862
    }else{
863
        topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
864
        top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
865
        topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
866
        left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
867
        left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
868

    
869
        if(IS_INTRA(mb_type)){
870
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
871
            h->topleft_samples_available=
872
            h->top_samples_available=
873
            h->left_samples_available= 0xFFFF;
874
            h->topright_samples_available= 0xEEEA;
875

    
876
            if(!(top_type & type_mask)){
877
                h->topleft_samples_available= 0xB3FF;
878
                h->top_samples_available= 0x33FF;
879
                h->topright_samples_available= 0x26EA;
880
            }
881
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
882
                if(IS_INTERLACED(mb_type)){
883
                    if(!(left_type[0] & type_mask)){
884
                        h->topleft_samples_available&= 0xDFFF;
885
                        h->left_samples_available&= 0x5FFF;
886
                    }
887
                    if(!(left_type[1] & type_mask)){
888
                        h->topleft_samples_available&= 0xFF5F;
889
                        h->left_samples_available&= 0xFF5F;
890
                    }
891
                }else{
892
                    int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
893
                                    ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
894
                    assert(left_xy[0] == left_xy[1]);
895
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
896
                        h->topleft_samples_available&= 0xDF5F;
897
                        h->left_samples_available&= 0x5F5F;
898
                    }
899
                }
900
            }else{
901
                if(!(left_type[0] & type_mask)){
902
                    h->topleft_samples_available&= 0xDF5F;
903
                    h->left_samples_available&= 0x5F5F;
904
                }
905
            }
906

    
907
            if(!(topleft_type & type_mask))
908
                h->topleft_samples_available&= 0x7FFF;
909

    
910
            if(!(topright_type & type_mask))
911
                h->topright_samples_available&= 0xFBFF;
912

    
913
            if(IS_INTRA4x4(mb_type)){
914
                if(IS_INTRA4x4(top_type)){
915
                    h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
916
                    h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
917
                    h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
918
                    h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
919
                }else{
920
                    int pred;
921
                    if(!(top_type & type_mask))
922
                        pred= -1;
923
                    else{
924
                        pred= 2;
925
                    }
926
                    h->intra4x4_pred_mode_cache[4+8*0]=
927
                    h->intra4x4_pred_mode_cache[5+8*0]=
928
                    h->intra4x4_pred_mode_cache[6+8*0]=
929
                    h->intra4x4_pred_mode_cache[7+8*0]= pred;
930
                }
931
                for(i=0; i<2; i++){
932
                    if(IS_INTRA4x4(left_type[i])){
933
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
934
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
935
                    }else{
936
                        int pred;
937
                        if(!(left_type[i] & type_mask))
938
                            pred= -1;
939
                        else{
940
                            pred= 2;
941
                        }
942
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
943
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
944
                    }
945
                }
946
            }
947
        }
948
    }
949

    
950

    
951
/*
952
0 . T T. T T T T
953
1 L . .L . . . .
954
2 L . .L . . . .
955
3 . T TL . . . .
956
4 L . .L . . . .
957
5 L . .. . . . .
958
*/
959
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
960
    if(top_type){
961
        *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
962
        if(!for_deblock){
963
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
964
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
965

    
966
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
967
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
968
        }
969
    }else{
970
        if(for_deblock){
971
            *(uint32_t*)&h->non_zero_count_cache[4+8*0]= 0;
972
        }else{
973

    
974
            h->non_zero_count_cache[1+8*0]=
975
            h->non_zero_count_cache[2+8*0]=
976

    
977
            h->non_zero_count_cache[1+8*3]=
978
            h->non_zero_count_cache[2+8*3]=
979
            *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
980
        }
981

    
982
    }
983

    
984
    for (i=0; i<2; i++) {
985
        if(left_type[i]){
986
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
987
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
988
            if(!for_deblock){
989
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
990
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
991
            }
992
        }else{
993
            if(for_deblock){
994
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
995
                h->non_zero_count_cache[3+8*2 + 2*8*i]= 0;
996
            }else{
997
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
998
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
999
                h->non_zero_count_cache[0+8*1 +   8*i]=
1000
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
1001
            }
1002
        }
1003
    }
1004

    
1005
    // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
1006
    if(for_deblock && !CABAC && h->pps.transform_8x8_mode){
1007
        if(IS_8x8DCT(top_type)){
1008
            h->non_zero_count_cache[4+8*0]=
1009
            h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
1010
            h->non_zero_count_cache[6+8*0]=
1011
            h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
1012
        }
1013
        if(IS_8x8DCT(left_type[0])){
1014
            h->non_zero_count_cache[3+8*1]=
1015
            h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1016
        }
1017
        if(IS_8x8DCT(left_type[1])){
1018
            h->non_zero_count_cache[3+8*3]=
1019
            h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1020
        }
1021

    
1022
        if(IS_8x8DCT(mb_type)){
1023
            h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1024
            h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp_table[mb_xy] & 1;
1025

    
1026
            h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1027
            h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp_table[mb_xy] & 2;
1028

    
1029
            h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1030
            h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp_table[mb_xy] & 4;
1031

    
1032
            h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1033
            h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp_table[mb_xy] & 8;
1034
        }
1035
    }
1036

    
1037
    if( CABAC && !for_deblock) {
1038
        // top_cbp
1039
        if(top_type) {
1040
            h->top_cbp = h->cbp_table[top_xy];
1041
        } else if(IS_INTRA(mb_type)) {
1042
            h->top_cbp = 0x1C0;
1043
        } else {
1044
            h->top_cbp = 0;
1045
        }
1046
        // left_cbp
1047
        if (left_type[0]) {
1048
            h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
1049
        } else if(IS_INTRA(mb_type)) {
1050
            h->left_cbp = 0x1C0;
1051
        } else {
1052
            h->left_cbp = 0;
1053
        }
1054
        if (left_type[0]) {
1055
            h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
1056
        }
1057
        if (left_type[1]) {
1058
            h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
1059
        }
1060
    }
1061

    
1062
#if 1
1063
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1064
        int list;
1065
        for(list=0; list<h->list_count; list++){
1066
            if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
1067
                /*if(!h->mv_cache_clean[list]){
1068
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1069
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1070
                    h->mv_cache_clean[list]= 1;
1071
                }*/
1072
                continue;
1073
            }
1074
            h->mv_cache_clean[list]= 0;
1075

    
1076
            if(USES_LIST(top_type, list)){
1077
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1078
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1079
                *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
1080
                *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
1081
                *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
1082
                *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
1083
                if(for_deblock){
1084
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1085
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1086
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1087
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1088
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1089
                }else{
1090
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1091
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1092
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1093
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1094
                }
1095
            }else{
1096
                *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
1097
                *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
1098
                *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
1099
                *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
1100
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= (((for_deblock||top_type) ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1101
            }
1102

    
1103
            for(i=0; i<2; i++){
1104
                int cache_idx = scan8[0] - 1 + i*2*8;
1105
                if(USES_LIST(left_type[i], list)){
1106
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1107
                    const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1108
                    *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1109
                    *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1110
                    if(for_deblock){
1111
                        int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[i]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1112
                        h->ref_cache[list][cache_idx  ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]];
1113
                        h->ref_cache[list][cache_idx+8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]];
1114
                    }else{
1115
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1116
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1117
                    }
1118
                }else{
1119
                    *(uint32_t*)h->mv_cache [list][cache_idx  ]=
1120
                    *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1121
                    h->ref_cache[list][cache_idx  ]=
1122
                    h->ref_cache[list][cache_idx+8]= (for_deblock||left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1123
                }
1124
            }
1125

    
1126
            if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
1127
                continue;
1128

    
1129
            if(USES_LIST(topleft_type, list)){
1130
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
1131
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1132
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1133
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1134
            }else{
1135
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1136
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1137
            }
1138

    
1139
            if(USES_LIST(topright_type, list)){
1140
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1141
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1142
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1143
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1144
            }else{
1145
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1146
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1147
            }
1148

    
1149
            if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1150
                continue;
1151

    
1152
            h->ref_cache[list][scan8[5 ]+1] =
1153
            h->ref_cache[list][scan8[7 ]+1] =
1154
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1155
            h->ref_cache[list][scan8[4 ]] =
1156
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1157
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1158
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1159
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1160
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1161
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1162

    
1163
            if( CABAC ) {
1164
                /* XXX beurk, Load mvd */
1165
                if(USES_LIST(top_type, list)){
1166
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1167
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
1168
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
1169
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
1170
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
1171
                }else{
1172
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
1173
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
1174
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
1175
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
1176
                }
1177
                if(USES_LIST(left_type[0], list)){
1178
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1179
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1180
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1181
                }else{
1182
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1183
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1184
                }
1185
                if(USES_LIST(left_type[1], list)){
1186
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1187
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1188
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1189
                }else{
1190
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1191
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1192
                }
1193
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1194
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1195
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1196
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1197
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1198

    
1199
                if(h->slice_type_nos == FF_B_TYPE){
1200
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1201

    
1202
                    if(IS_DIRECT(top_type)){
1203
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1204
                    }else if(IS_8X8(top_type)){
1205
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1206
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1207
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1208
                    }else{
1209
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1210
                    }
1211

    
1212
                    if(IS_DIRECT(left_type[0]))
1213
                        h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1214
                    else if(IS_8X8(left_type[0]))
1215
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1216
                    else
1217
                        h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1218

    
1219
                    if(IS_DIRECT(left_type[1]))
1220
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1221
                    else if(IS_8X8(left_type[1]))
1222
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1223
                    else
1224
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1225
                }
1226
            }
1227

    
1228
            if(FRAME_MBAFF){
1229
#define MAP_MVS\
1230
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1231
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1232
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1233
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1234
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1235
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1236
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1237
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1238
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1239
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1240
                if(MB_FIELD){
1241
#define MAP_F2F(idx, mb_type)\
1242
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1243
                        h->ref_cache[list][idx] <<= 1;\
1244
                        h->mv_cache[list][idx][1] /= 2;\
1245
                        h->mvd_cache[list][idx][1] /= 2;\
1246
                    }
1247
                    MAP_MVS
1248
#undef MAP_F2F
1249
                }else{
1250
#define MAP_F2F(idx, mb_type)\
1251
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1252
                        h->ref_cache[list][idx] >>= 1;\
1253
                        h->mv_cache[list][idx][1] <<= 1;\
1254
                        h->mvd_cache[list][idx][1] <<= 1;\
1255
                    }
1256
                    MAP_MVS
1257
#undef MAP_F2F
1258
                }
1259
            }
1260
        }
1261
    }
1262
#endif
1263

    
1264
    if(!for_deblock)
1265
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1266
    return 0;
1267
}
1268

    
1269
static void fill_decode_caches(H264Context *h, int mb_type){
1270
    fill_caches(h, mb_type, 0);
1271
}
1272

    
1273
/**
1274
 *
1275
 * @returns non zero if the loop filter can be skiped
1276
 */
1277
static int fill_filter_caches(H264Context *h, int mb_type){
1278
    return fill_caches(h, mb_type, 1);
1279
}
1280

    
1281
/**
1282
 * gets the predicted intra4x4 prediction mode.
1283
 */
1284
static inline int pred_intra_mode(H264Context *h, int n){
1285
    const int index8= scan8[n];
1286
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1287
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1288
    const int min= FFMIN(left, top);
1289

    
1290
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1291

    
1292
    if(min<0) return DC_PRED;
1293
    else      return min;
1294
}
1295

    
1296
static inline void write_back_non_zero_count(H264Context *h){
1297
    const int mb_xy= h->mb_xy;
1298

    
1299
    *((uint64_t*)&h->non_zero_count[mb_xy][ 0]) = *((uint64_t*)&h->non_zero_count_cache[0+8*1]);
1300
    *((uint64_t*)&h->non_zero_count[mb_xy][ 8]) = *((uint64_t*)&h->non_zero_count_cache[0+8*2]);
1301
    *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1302
    *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1303
    *((uint64_t*)&h->non_zero_count[mb_xy][24]) = *((uint64_t*)&h->non_zero_count_cache[0+8*4]);
1304
}
1305

    
1306
static inline void write_back_motion(H264Context *h, int mb_type){
1307
    MpegEncContext * const s = &h->s;
1308
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1309
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1310
    int list;
1311

    
1312
    if(!USES_LIST(mb_type, 0))
1313
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1314

    
1315
    for(list=0; list<h->list_count; list++){
1316
        int y;
1317
        if(!USES_LIST(mb_type, list))
1318
            continue;
1319

    
1320
        for(y=0; y<4; y++){
1321
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1322
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1323
        }
1324
        if( CABAC ) {
1325
            if(IS_SKIP(mb_type))
1326
                fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1327
            else
1328
            for(y=0; y<4; y++){
1329
                *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1330
                *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1331
            }
1332
        }
1333

    
1334
        {
1335
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1336
            ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1337
            ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1338
            ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1339
            ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1340
        }
1341
    }
1342

    
1343
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1344
        if(IS_8X8(mb_type)){
1345
            uint8_t *direct_table = &h->direct_table[b8_xy];
1346
            direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1347
            direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1348
            direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1349
        }
1350
    }
1351
}
1352

    
1353
static inline int get_dct8x8_allowed(H264Context *h){
1354
    if(h->sps.direct_8x8_inference_flag)
1355
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1356
    else
1357
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1358
}
1359

    
1360
static void predict_field_decoding_flag(H264Context *h){
1361
    MpegEncContext * const s = &h->s;
1362
    const int mb_xy= h->mb_xy;
1363
    int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1364
                ? s->current_picture.mb_type[mb_xy-1]
1365
                : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1366
                ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1367
                : 0;
1368
    h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1369
}
1370

    
1371
/**
1372
 * decodes a P_SKIP or B_SKIP macroblock
1373
 */
1374
static void decode_mb_skip(H264Context *h){
1375
    MpegEncContext * const s = &h->s;
1376
    const int mb_xy= h->mb_xy;
1377
    int mb_type=0;
1378

    
1379
    memset(h->non_zero_count[mb_xy], 0, 32);
1380
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1381

    
1382
    if(MB_FIELD)
1383
        mb_type|= MB_TYPE_INTERLACED;
1384

    
1385
    if( h->slice_type_nos == FF_B_TYPE )
1386
    {
1387
        // just for fill_caches. pred_direct_motion will set the real mb_type
1388
        mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1389

    
1390
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1391
        ff_h264_pred_direct_motion(h, &mb_type);
1392
        mb_type|= MB_TYPE_SKIP;
1393
    }
1394
    else
1395
    {
1396
        int mx, my;
1397
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1398

    
1399
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1400
        pred_pskip_motion(h, &mx, &my);
1401
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1402
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1403
    }
1404

    
1405
    write_back_motion(h, mb_type);
1406
    s->current_picture.mb_type[mb_xy]= mb_type;
1407
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1408
    h->slice_table[ mb_xy ]= h->slice_num;
1409
    h->prev_mb_skipped= 1;
1410
}
1411

    
1412
#include "h264_mvpred.h" //For pred_pskip_motion()
1413

    
1414
#endif /* AVCODEC_H264_H */