Statistics
| Branch: | Revision:

ffmpeg / libswscale / swscale.c @ 7b5d7b9e

History | View | Annotate | Download (104 KB)

1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * the C code (not assembly, mmx, ...) of this file can be used
21
 * under the LGPL license too
22
 */
23

    
24
/*
25
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
26
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27
  {BGR,RGB}{1,4,8,15,16} support dithering
28

29
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31
  x -> x
32
  YUV9 -> YV12
33
  YUV9/YV12 -> Y800
34
  Y800 -> YUV9/YV12
35
  BGR24 -> BGR32 & RGB24 -> RGB32
36
  BGR32 -> BGR24 & RGB32 -> RGB24
37
  BGR15 -> BGR16
38
*/
39

    
40
/*
41
tested special converters (most are tested actually, but I did not write it down ...)
42
 YV12 -> BGR16
43
 YV12 -> YV12
44
 BGR15 -> BGR16
45
 BGR16 -> BGR16
46
 YVU9 -> YV12
47

48
untested special converters
49
  YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
50
  YV12/I420 -> YV12/I420
51
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52
  BGR24 -> BGR32 & RGB24 -> RGB32
53
  BGR32 -> BGR24 & RGB32 -> RGB24
54
  BGR24 -> YV12
55
*/
56

    
57
#define _SVID_SOURCE //needed for MAP_ANONYMOUS
58
#include <inttypes.h>
59
#include <string.h>
60
#include <math.h>
61
#include <stdio.h>
62
#include <unistd.h>
63
#include "config.h"
64
#include <assert.h>
65
#ifdef HAVE_SYS_MMAN_H
66
#include <sys/mman.h>
67
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
68
#define MAP_ANONYMOUS MAP_ANON
69
#endif
70
#endif
71
#include "swscale.h"
72
#include "swscale_internal.h"
73
#include "rgb2rgb.h"
74
#include "libavutil/x86_cpu.h"
75
#include "libavutil/bswap.h"
76

    
77
unsigned swscale_version(void)
78
{
79
    return LIBSWSCALE_VERSION_INT;
80
}
81

    
82
#undef MOVNTQ
83
#undef PAVGB
84

    
85
//#undef HAVE_MMX2
86
//#define HAVE_3DNOW
87
//#undef HAVE_MMX
88
//#undef ARCH_X86
89
//#define WORDS_BIGENDIAN
90
#define DITHER1XBPP
91

    
92
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
93

    
94
#define RET 0xC3 //near return opcode for X86
95

    
96
#ifdef M_PI
97
#define PI M_PI
98
#else
99
#define PI 3.14159265358979323846
100
#endif
101

    
102
#define isSupportedIn(x)    (       \
103
           (x)==PIX_FMT_YUV420P     \
104
        || (x)==PIX_FMT_YUVA420P    \
105
        || (x)==PIX_FMT_YUYV422     \
106
        || (x)==PIX_FMT_UYVY422     \
107
        || (x)==PIX_FMT_RGB32       \
108
        || (x)==PIX_FMT_RGB32_1     \
109
        || (x)==PIX_FMT_BGR24       \
110
        || (x)==PIX_FMT_BGR565      \
111
        || (x)==PIX_FMT_BGR555      \
112
        || (x)==PIX_FMT_BGR32       \
113
        || (x)==PIX_FMT_BGR32_1     \
114
        || (x)==PIX_FMT_RGB24       \
115
        || (x)==PIX_FMT_RGB565      \
116
        || (x)==PIX_FMT_RGB555      \
117
        || (x)==PIX_FMT_GRAY8       \
118
        || (x)==PIX_FMT_YUV410P     \
119
        || (x)==PIX_FMT_GRAY16BE    \
120
        || (x)==PIX_FMT_GRAY16LE    \
121
        || (x)==PIX_FMT_YUV444P     \
122
        || (x)==PIX_FMT_YUV422P     \
123
        || (x)==PIX_FMT_YUV411P     \
124
        || (x)==PIX_FMT_PAL8        \
125
        || (x)==PIX_FMT_BGR8        \
126
        || (x)==PIX_FMT_RGB8        \
127
        || (x)==PIX_FMT_BGR4_BYTE   \
128
        || (x)==PIX_FMT_RGB4_BYTE   \
129
        || (x)==PIX_FMT_YUV440P     \
130
    )
131
#define isSupportedOut(x)   (       \
132
           (x)==PIX_FMT_YUV420P     \
133
        || (x)==PIX_FMT_YUYV422     \
134
        || (x)==PIX_FMT_UYVY422     \
135
        || (x)==PIX_FMT_YUV444P     \
136
        || (x)==PIX_FMT_YUV422P     \
137
        || (x)==PIX_FMT_YUV411P     \
138
        || isRGB(x)                 \
139
        || isBGR(x)                 \
140
        || (x)==PIX_FMT_NV12        \
141
        || (x)==PIX_FMT_NV21        \
142
        || (x)==PIX_FMT_GRAY16BE    \
143
        || (x)==PIX_FMT_GRAY16LE    \
144
        || (x)==PIX_FMT_GRAY8       \
145
        || (x)==PIX_FMT_YUV410P     \
146
    )
147
#define isPacked(x)         (       \
148
           (x)==PIX_FMT_PAL8        \
149
        || (x)==PIX_FMT_YUYV422     \
150
        || (x)==PIX_FMT_UYVY422     \
151
        || isRGB(x)                 \
152
        || isBGR(x)                 \
153
    )
154

    
155
#define RGB2YUV_SHIFT 15
156
#define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
157
#define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
158
#define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
159
#define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
160
#define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
161
#define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
162
#define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
163
#define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
164
#define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
165

    
166
extern const int32_t Inverse_Table_6_9[8][4];
167

    
168
static const double rgb2yuv_table[8][9]={
169
    {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
170
    {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
171
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
172
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
173
    {0.59  , 0.11  , 0.30  , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
174
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
175
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
176
    {0.701 , 0.087 , 0.212 , -0.384, 0.5  -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
177
};
178

    
179
/*
180
NOTES
181
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
182

183
TODO
184
more intelligent misalignment avoidance for the horizontal scaler
185
write special vertical cubic upscale version
186
Optimize C code (yv12 / minmax)
187
add support for packed pixel yuv input & output
188
add support for Y8 output
189
optimize bgr24 & bgr32
190
add BGR4 output support
191
write special BGR->BGR scaler
192
*/
193

    
194
#if defined(ARCH_X86) && defined (CONFIG_GPL)
195
DECLARE_ASM_CONST(8, uint64_t, bF8)=       0xF8F8F8F8F8F8F8F8LL;
196
DECLARE_ASM_CONST(8, uint64_t, bFC)=       0xFCFCFCFCFCFCFCFCLL;
197
DECLARE_ASM_CONST(8, uint64_t, w10)=       0x0010001000100010LL;
198
DECLARE_ASM_CONST(8, uint64_t, w02)=       0x0002000200020002LL;
199
DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
200
DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
201
DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
202
DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
203

    
204
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
205
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
206
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
207
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
208

    
209
const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
210
        0x0103010301030103LL,
211
        0x0200020002000200LL,};
212

    
213
const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
214
        0x0602060206020602LL,
215
        0x0004000400040004LL,};
216

    
217
DECLARE_ASM_CONST(8, uint64_t, b16Mask)=   0x001F001F001F001FLL;
218
DECLARE_ASM_CONST(8, uint64_t, g16Mask)=   0x07E007E007E007E0LL;
219
DECLARE_ASM_CONST(8, uint64_t, r16Mask)=   0xF800F800F800F800LL;
220
DECLARE_ASM_CONST(8, uint64_t, b15Mask)=   0x001F001F001F001FLL;
221
DECLARE_ASM_CONST(8, uint64_t, g15Mask)=   0x03E003E003E003E0LL;
222
DECLARE_ASM_CONST(8, uint64_t, r15Mask)=   0x7C007C007C007C00LL;
223

    
224
DECLARE_ALIGNED(8, const uint64_t, ff_M24A)         = 0x00FF0000FF0000FFLL;
225
DECLARE_ALIGNED(8, const uint64_t, ff_M24B)         = 0xFF0000FF0000FF00LL;
226
DECLARE_ALIGNED(8, const uint64_t, ff_M24C)         = 0x0000FF0000FF0000LL;
227

    
228
#ifdef FAST_BGR2YV12
229
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000000210041000DULL;
230
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000FFEEFFDC0038ULL;
231
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00000038FFD2FFF8ULL;
232
#else
233
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000020E540830C8BULL;
234
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000ED0FDAC23831ULL;
235
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00003831D0E6F6EAULL;
236
#endif /* FAST_BGR2YV12 */
237
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset)  = 0x1010101010101010ULL;
238
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
239
DECLARE_ALIGNED(8, const uint64_t, ff_w1111)        = 0x0001000100010001ULL;
240

    
241
DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
242
DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
243
DECLARE_ALIGNED(8, const uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
244
DECLARE_ALIGNED(8, const uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
245
DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
246

    
247
DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toUV[2][4]) = {
248
    {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
249
    {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
250
};
251

    
252
DECLARE_ALIGNED(8, const uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
253

    
254
#endif /* defined(ARCH_X86) */
255

    
256
// clipping helper table for C implementations:
257
static unsigned char clip_table[768];
258

    
259
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
260

    
261
extern const uint8_t dither_2x2_4[2][8];
262
extern const uint8_t dither_2x2_8[2][8];
263
extern const uint8_t dither_8x8_32[8][8];
264
extern const uint8_t dither_8x8_73[8][8];
265
extern const uint8_t dither_8x8_220[8][8];
266

    
267
const char *sws_format_name(enum PixelFormat format)
268
{
269
    switch (format) {
270
        case PIX_FMT_YUV420P:
271
            return "yuv420p";
272
        case PIX_FMT_YUVA420P:
273
            return "yuva420p";
274
        case PIX_FMT_YUYV422:
275
            return "yuyv422";
276
        case PIX_FMT_RGB24:
277
            return "rgb24";
278
        case PIX_FMT_BGR24:
279
            return "bgr24";
280
        case PIX_FMT_YUV422P:
281
            return "yuv422p";
282
        case PIX_FMT_YUV444P:
283
            return "yuv444p";
284
        case PIX_FMT_RGB32:
285
            return "rgb32";
286
        case PIX_FMT_YUV410P:
287
            return "yuv410p";
288
        case PIX_FMT_YUV411P:
289
            return "yuv411p";
290
        case PIX_FMT_RGB565:
291
            return "rgb565";
292
        case PIX_FMT_RGB555:
293
            return "rgb555";
294
        case PIX_FMT_GRAY16BE:
295
            return "gray16be";
296
        case PIX_FMT_GRAY16LE:
297
            return "gray16le";
298
        case PIX_FMT_GRAY8:
299
            return "gray8";
300
        case PIX_FMT_MONOWHITE:
301
            return "mono white";
302
        case PIX_FMT_MONOBLACK:
303
            return "mono black";
304
        case PIX_FMT_PAL8:
305
            return "Palette";
306
        case PIX_FMT_YUVJ420P:
307
            return "yuvj420p";
308
        case PIX_FMT_YUVJ422P:
309
            return "yuvj422p";
310
        case PIX_FMT_YUVJ444P:
311
            return "yuvj444p";
312
        case PIX_FMT_XVMC_MPEG2_MC:
313
            return "xvmc_mpeg2_mc";
314
        case PIX_FMT_XVMC_MPEG2_IDCT:
315
            return "xvmc_mpeg2_idct";
316
        case PIX_FMT_UYVY422:
317
            return "uyvy422";
318
        case PIX_FMT_UYYVYY411:
319
            return "uyyvyy411";
320
        case PIX_FMT_RGB32_1:
321
            return "rgb32x";
322
        case PIX_FMT_BGR32_1:
323
            return "bgr32x";
324
        case PIX_FMT_BGR32:
325
            return "bgr32";
326
        case PIX_FMT_BGR565:
327
            return "bgr565";
328
        case PIX_FMT_BGR555:
329
            return "bgr555";
330
        case PIX_FMT_BGR8:
331
            return "bgr8";
332
        case PIX_FMT_BGR4:
333
            return "bgr4";
334
        case PIX_FMT_BGR4_BYTE:
335
            return "bgr4 byte";
336
        case PIX_FMT_RGB8:
337
            return "rgb8";
338
        case PIX_FMT_RGB4:
339
            return "rgb4";
340
        case PIX_FMT_RGB4_BYTE:
341
            return "rgb4 byte";
342
        case PIX_FMT_NV12:
343
            return "nv12";
344
        case PIX_FMT_NV21:
345
            return "nv21";
346
        case PIX_FMT_YUV440P:
347
            return "yuv440p";
348
        default:
349
            return "Unknown format";
350
    }
351
}
352

    
353
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
354
                               int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
355
                               uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
356
{
357
    //FIXME Optimize (just quickly writen not opti..)
358
    int i;
359
    for (i=0; i<dstW; i++)
360
    {
361
        int val=1<<18;
362
        int j;
363
        for (j=0; j<lumFilterSize; j++)
364
            val += lumSrc[j][i] * lumFilter[j];
365

    
366
        dest[i]= av_clip_uint8(val>>19);
367
    }
368

    
369
    if (uDest)
370
        for (i=0; i<chrDstW; i++)
371
        {
372
            int u=1<<18;
373
            int v=1<<18;
374
            int j;
375
            for (j=0; j<chrFilterSize; j++)
376
            {
377
                u += chrSrc[j][i] * chrFilter[j];
378
                v += chrSrc[j][i + VOFW] * chrFilter[j];
379
            }
380

    
381
            uDest[i]= av_clip_uint8(u>>19);
382
            vDest[i]= av_clip_uint8(v>>19);
383
        }
384
}
385

    
386
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
387
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
388
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
389
{
390
    //FIXME Optimize (just quickly writen not opti..)
391
    int i;
392
    for (i=0; i<dstW; i++)
393
    {
394
        int val=1<<18;
395
        int j;
396
        for (j=0; j<lumFilterSize; j++)
397
            val += lumSrc[j][i] * lumFilter[j];
398

    
399
        dest[i]= av_clip_uint8(val>>19);
400
    }
401

    
402
    if (!uDest)
403
        return;
404

    
405
    if (dstFormat == PIX_FMT_NV12)
406
        for (i=0; i<chrDstW; i++)
407
        {
408
            int u=1<<18;
409
            int v=1<<18;
410
            int j;
411
            for (j=0; j<chrFilterSize; j++)
412
            {
413
                u += chrSrc[j][i] * chrFilter[j];
414
                v += chrSrc[j][i + VOFW] * chrFilter[j];
415
            }
416

    
417
            uDest[2*i]= av_clip_uint8(u>>19);
418
            uDest[2*i+1]= av_clip_uint8(v>>19);
419
        }
420
    else
421
        for (i=0; i<chrDstW; i++)
422
        {
423
            int u=1<<18;
424
            int v=1<<18;
425
            int j;
426
            for (j=0; j<chrFilterSize; j++)
427
            {
428
                u += chrSrc[j][i] * chrFilter[j];
429
                v += chrSrc[j][i + VOFW] * chrFilter[j];
430
            }
431

    
432
            uDest[2*i]= av_clip_uint8(v>>19);
433
            uDest[2*i+1]= av_clip_uint8(u>>19);
434
        }
435
}
436

    
437
#define YSCALE_YUV_2_PACKEDX_C(type) \
438
    for (i=0; i<(dstW>>1); i++){\
439
        int j;\
440
        int Y1 = 1<<18;\
441
        int Y2 = 1<<18;\
442
        int U  = 1<<18;\
443
        int V  = 1<<18;\
444
        type av_unused *r, *b, *g;\
445
        const int i2= 2*i;\
446
        \
447
        for (j=0; j<lumFilterSize; j++)\
448
        {\
449
            Y1 += lumSrc[j][i2] * lumFilter[j];\
450
            Y2 += lumSrc[j][i2+1] * lumFilter[j];\
451
        }\
452
        for (j=0; j<chrFilterSize; j++)\
453
        {\
454
            U += chrSrc[j][i] * chrFilter[j];\
455
            V += chrSrc[j][i+VOFW] * chrFilter[j];\
456
        }\
457
        Y1>>=19;\
458
        Y2>>=19;\
459
        U >>=19;\
460
        V >>=19;\
461
        if ((Y1|Y2|U|V)&256)\
462
        {\
463
            if (Y1>255)   Y1=255; \
464
            else if (Y1<0)Y1=0;   \
465
            if (Y2>255)   Y2=255; \
466
            else if (Y2<0)Y2=0;   \
467
            if (U>255)    U=255;  \
468
            else if (U<0) U=0;    \
469
            if (V>255)    V=255;  \
470
            else if (V<0) V=0;    \
471
        }
472

    
473
#define YSCALE_YUV_2_GRAY16_C(type) \
474
    for (i=0; i<(dstW>>1); i++){\
475
        int j;\
476
        int Y1 = 1<<18;\
477
        int Y2 = 1<<18;\
478
        int U  = 1<<18;\
479
        int V  = 1<<18;\
480
        type av_unused *r, *b, *g;\
481
        const int i2= 2*i;\
482
        \
483
        for (j=0; j<lumFilterSize; j++)\
484
        {\
485
            Y1 += lumSrc[j][i2] * lumFilter[j];\
486
            Y2 += lumSrc[j][i2+1] * lumFilter[j];\
487
        }\
488
        Y1>>=11;\
489
        Y2>>=11;\
490
        if ((Y1|Y2|U|V)&65536)\
491
        {\
492
            if (Y1>65535)   Y1=65535; \
493
            else if (Y1<0)Y1=0;   \
494
            if (Y2>65535)   Y2=65535; \
495
            else if (Y2<0)Y2=0;   \
496
        }
497

    
498
#define YSCALE_YUV_2_RGBX_C(type) \
499
    YSCALE_YUV_2_PACKEDX_C(type)  \
500
    r = (type *)c->table_rV[V];   \
501
    g = (type *)(c->table_gU[U] + c->table_gV[V]); \
502
    b = (type *)c->table_bU[U];   \
503

    
504
#define YSCALE_YUV_2_PACKED2_C   \
505
    for (i=0; i<(dstW>>1); i++){ \
506
        const int i2= 2*i;       \
507
        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;           \
508
        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;           \
509
        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;  \
510
        int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19;  \
511

    
512
#define YSCALE_YUV_2_GRAY16_2_C   \
513
    for (i=0; i<(dstW>>1); i++){ \
514
        const int i2= 2*i;       \
515
        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>11;           \
516
        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11;           \
517

    
518
#define YSCALE_YUV_2_RGB2_C(type) \
519
    YSCALE_YUV_2_PACKED2_C\
520
    type *r, *b, *g;\
521
    r = (type *)c->table_rV[V];\
522
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
523
    b = (type *)c->table_bU[U];\
524

    
525
#define YSCALE_YUV_2_PACKED1_C \
526
    for (i=0; i<(dstW>>1); i++){\
527
        const int i2= 2*i;\
528
        int Y1= buf0[i2  ]>>7;\
529
        int Y2= buf0[i2+1]>>7;\
530
        int U= (uvbuf1[i     ])>>7;\
531
        int V= (uvbuf1[i+VOFW])>>7;\
532

    
533
#define YSCALE_YUV_2_GRAY16_1_C \
534
    for (i=0; i<(dstW>>1); i++){\
535
        const int i2= 2*i;\
536
        int Y1= buf0[i2  ]<<1;\
537
        int Y2= buf0[i2+1]<<1;\
538

    
539
#define YSCALE_YUV_2_RGB1_C(type) \
540
    YSCALE_YUV_2_PACKED1_C\
541
    type *r, *b, *g;\
542
    r = (type *)c->table_rV[V];\
543
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
544
    b = (type *)c->table_bU[U];\
545

    
546
#define YSCALE_YUV_2_PACKED1B_C \
547
    for (i=0; i<(dstW>>1); i++){\
548
        const int i2= 2*i;\
549
        int Y1= buf0[i2  ]>>7;\
550
        int Y2= buf0[i2+1]>>7;\
551
        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
552
        int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
553

    
554
#define YSCALE_YUV_2_RGB1B_C(type) \
555
    YSCALE_YUV_2_PACKED1B_C\
556
    type *r, *b, *g;\
557
    r = (type *)c->table_rV[V];\
558
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
559
    b = (type *)c->table_bU[U];\
560

    
561
#define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16)\
562
    switch(c->dstFormat)\
563
    {\
564
    case PIX_FMT_RGB32:\
565
    case PIX_FMT_BGR32:\
566
    case PIX_FMT_RGB32_1:\
567
    case PIX_FMT_BGR32_1:\
568
        func(uint32_t)\
569
            ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
570
            ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
571
        }                \
572
        break;\
573
    case PIX_FMT_RGB24:\
574
        func(uint8_t)\
575
            ((uint8_t*)dest)[0]= r[Y1];\
576
            ((uint8_t*)dest)[1]= g[Y1];\
577
            ((uint8_t*)dest)[2]= b[Y1];\
578
            ((uint8_t*)dest)[3]= r[Y2];\
579
            ((uint8_t*)dest)[4]= g[Y2];\
580
            ((uint8_t*)dest)[5]= b[Y2];\
581
            dest+=6;\
582
        }\
583
        break;\
584
    case PIX_FMT_BGR24:\
585
        func(uint8_t)\
586
            ((uint8_t*)dest)[0]= b[Y1];\
587
            ((uint8_t*)dest)[1]= g[Y1];\
588
            ((uint8_t*)dest)[2]= r[Y1];\
589
            ((uint8_t*)dest)[3]= b[Y2];\
590
            ((uint8_t*)dest)[4]= g[Y2];\
591
            ((uint8_t*)dest)[5]= r[Y2];\
592
            dest+=6;\
593
        }\
594
        break;\
595
    case PIX_FMT_RGB565:\
596
    case PIX_FMT_BGR565:\
597
        {\
598
            const int dr1= dither_2x2_8[y&1    ][0];\
599
            const int dg1= dither_2x2_4[y&1    ][0];\
600
            const int db1= dither_2x2_8[(y&1)^1][0];\
601
            const int dr2= dither_2x2_8[y&1    ][1];\
602
            const int dg2= dither_2x2_4[y&1    ][1];\
603
            const int db2= dither_2x2_8[(y&1)^1][1];\
604
            func(uint16_t)\
605
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
606
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
607
            }\
608
        }\
609
        break;\
610
    case PIX_FMT_RGB555:\
611
    case PIX_FMT_BGR555:\
612
        {\
613
            const int dr1= dither_2x2_8[y&1    ][0];\
614
            const int dg1= dither_2x2_8[y&1    ][1];\
615
            const int db1= dither_2x2_8[(y&1)^1][0];\
616
            const int dr2= dither_2x2_8[y&1    ][1];\
617
            const int dg2= dither_2x2_8[y&1    ][0];\
618
            const int db2= dither_2x2_8[(y&1)^1][1];\
619
            func(uint16_t)\
620
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
621
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
622
            }\
623
        }\
624
        break;\
625
    case PIX_FMT_RGB8:\
626
    case PIX_FMT_BGR8:\
627
        {\
628
            const uint8_t * const d64= dither_8x8_73[y&7];\
629
            const uint8_t * const d32= dither_8x8_32[y&7];\
630
            func(uint8_t)\
631
                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
632
                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
633
            }\
634
        }\
635
        break;\
636
    case PIX_FMT_RGB4:\
637
    case PIX_FMT_BGR4:\
638
        {\
639
            const uint8_t * const d64= dither_8x8_73 [y&7];\
640
            const uint8_t * const d128=dither_8x8_220[y&7];\
641
            func(uint8_t)\
642
                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
643
                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
644
            }\
645
        }\
646
        break;\
647
    case PIX_FMT_RGB4_BYTE:\
648
    case PIX_FMT_BGR4_BYTE:\
649
        {\
650
            const uint8_t * const d64= dither_8x8_73 [y&7];\
651
            const uint8_t * const d128=dither_8x8_220[y&7];\
652
            func(uint8_t)\
653
                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
654
                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
655
            }\
656
        }\
657
        break;\
658
    case PIX_FMT_MONOBLACK:\
659
        {\
660
            const uint8_t * const d128=dither_8x8_220[y&7];\
661
            uint8_t *g= c->table_gU[128] + c->table_gV[128];\
662
            for (i=0; i<dstW-7; i+=8){\
663
                int acc;\
664
                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
665
                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
666
                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
667
                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
668
                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
669
                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
670
                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
671
                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
672
                ((uint8_t*)dest)[0]= acc;\
673
                dest++;\
674
            }\
675
\
676
/*\
677
((uint8_t*)dest)-= dstW>>4;\
678
{\
679
            int acc=0;\
680
            int left=0;\
681
            static int top[1024];\
682
            static int last_new[1024][1024];\
683
            static int last_in3[1024][1024];\
684
            static int drift[1024][1024];\
685
            int topLeft=0;\
686
            int shift=0;\
687
            int count=0;\
688
            const uint8_t * const d128=dither_8x8_220[y&7];\
689
            int error_new=0;\
690
            int error_in3=0;\
691
            int f=0;\
692
            \
693
            for (i=dstW>>1; i<dstW; i++){\
694
                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
695
                int in2 = (76309 * (in - 16) + 32768) >> 16;\
696
                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
697
                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
698
                         + (last_new[y][i] - in3)*f/256;\
699
                int new= old> 128 ? 255 : 0;\
700
\
701
                error_new+= FFABS(last_new[y][i] - new);\
702
                error_in3+= FFABS(last_in3[y][i] - in3);\
703
                f= error_new - error_in3*4;\
704
                if (f<0) f=0;\
705
                if (f>256) f=256;\
706
\
707
                topLeft= top[i];\
708
                left= top[i]= old - new;\
709
                last_new[y][i]= new;\
710
                last_in3[y][i]= in3;\
711
\
712
                acc+= acc + (new&1);\
713
                if ((i&7)==6){\
714
                    ((uint8_t*)dest)[0]= acc;\
715
                    ((uint8_t*)dest)++;\
716
                }\
717
            }\
718
}\
719
*/\
720
        }\
721
        break;\
722
    case PIX_FMT_YUYV422:\
723
        func2\
724
            ((uint8_t*)dest)[2*i2+0]= Y1;\
725
            ((uint8_t*)dest)[2*i2+1]= U;\
726
            ((uint8_t*)dest)[2*i2+2]= Y2;\
727
            ((uint8_t*)dest)[2*i2+3]= V;\
728
        }                \
729
        break;\
730
    case PIX_FMT_UYVY422:\
731
        func2\
732
            ((uint8_t*)dest)[2*i2+0]= U;\
733
            ((uint8_t*)dest)[2*i2+1]= Y1;\
734
            ((uint8_t*)dest)[2*i2+2]= V;\
735
            ((uint8_t*)dest)[2*i2+3]= Y2;\
736
        }                \
737
        break;\
738
    case PIX_FMT_GRAY16BE:\
739
        func_g16\
740
            ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
741
            ((uint8_t*)dest)[2*i2+1]= Y1;\
742
            ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
743
            ((uint8_t*)dest)[2*i2+3]= Y2;\
744
        }                \
745
        break;\
746
    case PIX_FMT_GRAY16LE:\
747
        func_g16\
748
            ((uint8_t*)dest)[2*i2+0]= Y1;\
749
            ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
750
            ((uint8_t*)dest)[2*i2+2]= Y2;\
751
            ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
752
        }                \
753
        break;\
754
    }\
755

    
756

    
757
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
758
                                  int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
759
                                  uint8_t *dest, int dstW, int y)
760
{
761
    int i;
762
    switch(c->dstFormat)
763
    {
764
    case PIX_FMT_BGR32:
765
    case PIX_FMT_RGB32:
766
    case PIX_FMT_BGR32_1:
767
    case PIX_FMT_RGB32_1:
768
        YSCALE_YUV_2_RGBX_C(uint32_t)
769
            ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
770
            ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
771
        }
772
        break;
773
    case PIX_FMT_RGB24:
774
        YSCALE_YUV_2_RGBX_C(uint8_t)
775
            ((uint8_t*)dest)[0]= r[Y1];
776
            ((uint8_t*)dest)[1]= g[Y1];
777
            ((uint8_t*)dest)[2]= b[Y1];
778
            ((uint8_t*)dest)[3]= r[Y2];
779
            ((uint8_t*)dest)[4]= g[Y2];
780
            ((uint8_t*)dest)[5]= b[Y2];
781
            dest+=6;
782
        }
783
        break;
784
    case PIX_FMT_BGR24:
785
        YSCALE_YUV_2_RGBX_C(uint8_t)
786
            ((uint8_t*)dest)[0]= b[Y1];
787
            ((uint8_t*)dest)[1]= g[Y1];
788
            ((uint8_t*)dest)[2]= r[Y1];
789
            ((uint8_t*)dest)[3]= b[Y2];
790
            ((uint8_t*)dest)[4]= g[Y2];
791
            ((uint8_t*)dest)[5]= r[Y2];
792
            dest+=6;
793
        }
794
        break;
795
    case PIX_FMT_RGB565:
796
    case PIX_FMT_BGR565:
797
        {
798
            const int dr1= dither_2x2_8[y&1    ][0];
799
            const int dg1= dither_2x2_4[y&1    ][0];
800
            const int db1= dither_2x2_8[(y&1)^1][0];
801
            const int dr2= dither_2x2_8[y&1    ][1];
802
            const int dg2= dither_2x2_4[y&1    ][1];
803
            const int db2= dither_2x2_8[(y&1)^1][1];
804
            YSCALE_YUV_2_RGBX_C(uint16_t)
805
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
806
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
807
            }
808
        }
809
        break;
810
    case PIX_FMT_RGB555:
811
    case PIX_FMT_BGR555:
812
        {
813
            const int dr1= dither_2x2_8[y&1    ][0];
814
            const int dg1= dither_2x2_8[y&1    ][1];
815
            const int db1= dither_2x2_8[(y&1)^1][0];
816
            const int dr2= dither_2x2_8[y&1    ][1];
817
            const int dg2= dither_2x2_8[y&1    ][0];
818
            const int db2= dither_2x2_8[(y&1)^1][1];
819
            YSCALE_YUV_2_RGBX_C(uint16_t)
820
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
821
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
822
            }
823
        }
824
        break;
825
    case PIX_FMT_RGB8:
826
    case PIX_FMT_BGR8:
827
        {
828
            const uint8_t * const d64= dither_8x8_73[y&7];
829
            const uint8_t * const d32= dither_8x8_32[y&7];
830
            YSCALE_YUV_2_RGBX_C(uint8_t)
831
                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
832
                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
833
            }
834
        }
835
        break;
836
    case PIX_FMT_RGB4:
837
    case PIX_FMT_BGR4:
838
        {
839
            const uint8_t * const d64= dither_8x8_73 [y&7];
840
            const uint8_t * const d128=dither_8x8_220[y&7];
841
            YSCALE_YUV_2_RGBX_C(uint8_t)
842
                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
843
                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
844
            }
845
        }
846
        break;
847
    case PIX_FMT_RGB4_BYTE:
848
    case PIX_FMT_BGR4_BYTE:
849
        {
850
            const uint8_t * const d64= dither_8x8_73 [y&7];
851
            const uint8_t * const d128=dither_8x8_220[y&7];
852
            YSCALE_YUV_2_RGBX_C(uint8_t)
853
                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
854
                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
855
            }
856
        }
857
        break;
858
    case PIX_FMT_MONOBLACK:
859
        {
860
            const uint8_t * const d128=dither_8x8_220[y&7];
861
            uint8_t *g= c->table_gU[128] + c->table_gV[128];
862
            int acc=0;
863
            for (i=0; i<dstW-1; i+=2){
864
                int j;
865
                int Y1=1<<18;
866
                int Y2=1<<18;
867

    
868
                for (j=0; j<lumFilterSize; j++)
869
                {
870
                    Y1 += lumSrc[j][i] * lumFilter[j];
871
                    Y2 += lumSrc[j][i+1] * lumFilter[j];
872
                }
873
                Y1>>=19;
874
                Y2>>=19;
875
                if ((Y1|Y2)&256)
876
                {
877
                    if (Y1>255)   Y1=255;
878
                    else if (Y1<0)Y1=0;
879
                    if (Y2>255)   Y2=255;
880
                    else if (Y2<0)Y2=0;
881
                }
882
                acc+= acc + g[Y1+d128[(i+0)&7]];
883
                acc+= acc + g[Y2+d128[(i+1)&7]];
884
                if ((i&7)==6){
885
                    ((uint8_t*)dest)[0]= acc;
886
                    dest++;
887
                }
888
            }
889
        }
890
        break;
891
    case PIX_FMT_YUYV422:
892
        YSCALE_YUV_2_PACKEDX_C(void)
893
            ((uint8_t*)dest)[2*i2+0]= Y1;
894
            ((uint8_t*)dest)[2*i2+1]= U;
895
            ((uint8_t*)dest)[2*i2+2]= Y2;
896
            ((uint8_t*)dest)[2*i2+3]= V;
897
        }
898
        break;
899
    case PIX_FMT_UYVY422:
900
        YSCALE_YUV_2_PACKEDX_C(void)
901
            ((uint8_t*)dest)[2*i2+0]= U;
902
            ((uint8_t*)dest)[2*i2+1]= Y1;
903
            ((uint8_t*)dest)[2*i2+2]= V;
904
            ((uint8_t*)dest)[2*i2+3]= Y2;
905
        }
906
        break;
907
    case PIX_FMT_GRAY16BE:
908
        YSCALE_YUV_2_GRAY16_C(void)
909
            ((uint8_t*)dest)[2*i2+0]= Y1>>8;
910
            ((uint8_t*)dest)[2*i2+1]= Y1;
911
            ((uint8_t*)dest)[2*i2+2]= Y2>>8;
912
            ((uint8_t*)dest)[2*i2+3]= Y2;
913
        }
914
        break;
915
    case PIX_FMT_GRAY16LE:
916
        YSCALE_YUV_2_GRAY16_C(void)
917
            ((uint8_t*)dest)[2*i2+0]= Y1;
918
            ((uint8_t*)dest)[2*i2+1]= Y1>>8;
919
            ((uint8_t*)dest)[2*i2+2]= Y2;
920
            ((uint8_t*)dest)[2*i2+3]= Y2>>8;
921
        }
922
        break;
923
    }
924
}
925

    
926

    
927
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
928
//Plain C versions
929
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
930
#define COMPILE_C
931
#endif
932

    
933
#ifdef ARCH_POWERPC
934
#if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
935
#define COMPILE_ALTIVEC
936
#endif //HAVE_ALTIVEC
937
#endif //ARCH_POWERPC
938

    
939
#if defined(ARCH_X86)
940

    
941
#if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
942
#define COMPILE_MMX
943
#endif
944

    
945
#if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
946
#define COMPILE_MMX2
947
#endif
948

    
949
#if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
950
#define COMPILE_3DNOW
951
#endif
952
#endif //ARCH_X86 || ARCH_X86_64
953

    
954
#undef HAVE_MMX
955
#undef HAVE_MMX2
956
#undef HAVE_3DNOW
957

    
958
#ifdef COMPILE_C
959
#undef HAVE_MMX
960
#undef HAVE_MMX2
961
#undef HAVE_3DNOW
962
#undef HAVE_ALTIVEC
963
#define RENAME(a) a ## _C
964
#include "swscale_template.c"
965
#endif
966

    
967
#ifdef COMPILE_ALTIVEC
968
#undef RENAME
969
#define HAVE_ALTIVEC
970
#define RENAME(a) a ## _altivec
971
#include "swscale_template.c"
972
#endif
973

    
974
#if defined(ARCH_X86)
975

    
976
//X86 versions
977
/*
978
#undef RENAME
979
#undef HAVE_MMX
980
#undef HAVE_MMX2
981
#undef HAVE_3DNOW
982
#define ARCH_X86
983
#define RENAME(a) a ## _X86
984
#include "swscale_template.c"
985
*/
986
//MMX versions
987
#ifdef COMPILE_MMX
988
#undef RENAME
989
#define HAVE_MMX
990
#undef HAVE_MMX2
991
#undef HAVE_3DNOW
992
#define RENAME(a) a ## _MMX
993
#include "swscale_template.c"
994
#endif
995

    
996
//MMX2 versions
997
#ifdef COMPILE_MMX2
998
#undef RENAME
999
#define HAVE_MMX
1000
#define HAVE_MMX2
1001
#undef HAVE_3DNOW
1002
#define RENAME(a) a ## _MMX2
1003
#include "swscale_template.c"
1004
#endif
1005

    
1006
//3DNOW versions
1007
#ifdef COMPILE_3DNOW
1008
#undef RENAME
1009
#define HAVE_MMX
1010
#undef HAVE_MMX2
1011
#define HAVE_3DNOW
1012
#define RENAME(a) a ## _3DNow
1013
#include "swscale_template.c"
1014
#endif
1015

    
1016
#endif //ARCH_X86 || ARCH_X86_64
1017

    
1018
// minor note: the HAVE_xyz is messed up after that line so don't use it
1019

    
1020
static double getSplineCoeff(double a, double b, double c, double d, double dist)
1021
{
1022
//    printf("%f %f %f %f %f\n", a,b,c,d,dist);
1023
    if (dist<=1.0)      return ((d*dist + c)*dist + b)*dist +a;
1024
    else                return getSplineCoeff(        0.0,
1025
                                             b+ 2.0*c + 3.0*d,
1026
                                                    c + 3.0*d,
1027
                                            -b- 3.0*c - 6.0*d,
1028
                                            dist-1.0);
1029
}
1030

    
1031
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
1032
                             int srcW, int dstW, int filterAlign, int one, int flags,
1033
                             SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
1034
{
1035
    int i;
1036
    int filterSize;
1037
    int filter2Size;
1038
    int minFilterSize;
1039
    double *filter=NULL;
1040
    double *filter2=NULL;
1041
    int ret= -1;
1042
#if defined(ARCH_X86)
1043
    if (flags & SWS_CPU_CAPS_MMX)
1044
        asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
1045
#endif
1046

    
1047
    // Note the +1 is for the MMXscaler which reads over the end
1048
    *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
1049

    
1050
    if (FFABS(xInc - 0x10000) <10) // unscaled
1051
    {
1052
        int i;
1053
        filterSize= 1;
1054
        filter= av_malloc(dstW*sizeof(double)*filterSize);
1055
        for (i=0; i<dstW*filterSize; i++) filter[i]=0;
1056

    
1057
        for (i=0; i<dstW; i++)
1058
        {
1059
            filter[i*filterSize]=1;
1060
            (*filterPos)[i]=i;
1061
        }
1062

    
1063
    }
1064
    else if (flags&SWS_POINT) // lame looking point sampling mode
1065
    {
1066
        int i;
1067
        int xDstInSrc;
1068
        filterSize= 1;
1069
        filter= av_malloc(dstW*sizeof(double)*filterSize);
1070

    
1071
        xDstInSrc= xInc/2 - 0x8000;
1072
        for (i=0; i<dstW; i++)
1073
        {
1074
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1075

    
1076
            (*filterPos)[i]= xx;
1077
            filter[i]= 1.0;
1078
            xDstInSrc+= xInc;
1079
        }
1080
    }
1081
    else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
1082
    {
1083
        int i;
1084
        int xDstInSrc;
1085
        if      (flags&SWS_BICUBIC) filterSize= 4;
1086
        else if (flags&SWS_X      ) filterSize= 4;
1087
        else                        filterSize= 2; // SWS_BILINEAR / SWS_AREA
1088
        filter= av_malloc(dstW*sizeof(double)*filterSize);
1089

    
1090
        xDstInSrc= xInc/2 - 0x8000;
1091
        for (i=0; i<dstW; i++)
1092
        {
1093
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1094
            int j;
1095

    
1096
            (*filterPos)[i]= xx;
1097
                //Bilinear upscale / linear interpolate / Area averaging
1098
                for (j=0; j<filterSize; j++)
1099
                {
1100
                    double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
1101
                    double coeff= 1.0 - d;
1102
                    if (coeff<0) coeff=0;
1103
                    filter[i*filterSize + j]= coeff;
1104
                    xx++;
1105
                }
1106
            xDstInSrc+= xInc;
1107
        }
1108
    }
1109
    else
1110
    {
1111
        double xDstInSrc;
1112
        double sizeFactor, filterSizeInSrc;
1113
        const double xInc1= (double)xInc / (double)(1<<16);
1114

    
1115
        if      (flags&SWS_BICUBIC)      sizeFactor=  4.0;
1116
        else if (flags&SWS_X)            sizeFactor=  8.0;
1117
        else if (flags&SWS_AREA)         sizeFactor=  1.0; //downscale only, for upscale it is bilinear
1118
        else if (flags&SWS_GAUSS)        sizeFactor=  8.0;   // infinite ;)
1119
        else if (flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1120
        else if (flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
1121
        else if (flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
1122
        else if (flags&SWS_BILINEAR)     sizeFactor=  2.0;
1123
        else {
1124
            sizeFactor= 0.0; //GCC warning killer
1125
            assert(0);
1126
        }
1127

    
1128
        if (xInc1 <= 1.0)       filterSizeInSrc= sizeFactor; // upscale
1129
        else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1130

    
1131
        filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1132
        if (filterSize > srcW-2) filterSize=srcW-2;
1133

    
1134
        filter= av_malloc(dstW*sizeof(double)*filterSize);
1135

    
1136
        xDstInSrc= xInc1 / 2.0 - 0.5;
1137
        for (i=0; i<dstW; i++)
1138
        {
1139
            int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1140
            int j;
1141
            (*filterPos)[i]= xx;
1142
            for (j=0; j<filterSize; j++)
1143
            {
1144
                double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1145
                double coeff;
1146
                if (flags & SWS_BICUBIC)
1147
                {
1148
                    double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1149
                    double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1150

    
1151
                    if (d<1.0)
1152
                        coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1153
                    else if (d<2.0)
1154
                        coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1155
                    else
1156
                        coeff=0.0;
1157
                }
1158
/*                else if (flags & SWS_X)
1159
                {
1160
                    double p= param ? param*0.01 : 0.3;
1161
                    coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1162
                    coeff*= pow(2.0, - p*d*d);
1163
                }*/
1164
                else if (flags & SWS_X)
1165
                {
1166
                    double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1167

    
1168
                    if (d<1.0)
1169
                        coeff = cos(d*PI);
1170
                    else
1171
                        coeff=-1.0;
1172
                    if (coeff<0.0)      coeff= -pow(-coeff, A);
1173
                    else                coeff=  pow( coeff, A);
1174
                    coeff= coeff*0.5 + 0.5;
1175
                }
1176
                else if (flags & SWS_AREA)
1177
                {
1178
                    double srcPixelSize= 1.0/xInc1;
1179
                    if      (d + srcPixelSize/2 < 0.5) coeff= 1.0;
1180
                    else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1181
                    else coeff=0.0;
1182
                }
1183
                else if (flags & SWS_GAUSS)
1184
                {
1185
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1186
                    coeff = pow(2.0, - p*d*d);
1187
                }
1188
                else if (flags & SWS_SINC)
1189
                {
1190
                    coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1191
                }
1192
                else if (flags & SWS_LANCZOS)
1193
                {
1194
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1195
                    coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1196
                    if (d>p) coeff=0;
1197
                }
1198
                else if (flags & SWS_BILINEAR)
1199
                {
1200
                    coeff= 1.0 - d;
1201
                    if (coeff<0) coeff=0;
1202
                }
1203
                else if (flags & SWS_SPLINE)
1204
                {
1205
                    double p=-2.196152422706632;
1206
                    coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1207
                }
1208
                else {
1209
                    coeff= 0.0; //GCC warning killer
1210
                    assert(0);
1211
                }
1212

    
1213
                filter[i*filterSize + j]= coeff;
1214
                xx++;
1215
            }
1216
            xDstInSrc+= xInc1;
1217
        }
1218
    }
1219

    
1220
    /* apply src & dst Filter to filter -> filter2
1221
       av_free(filter);
1222
    */
1223
    assert(filterSize>0);
1224
    filter2Size= filterSize;
1225
    if (srcFilter) filter2Size+= srcFilter->length - 1;
1226
    if (dstFilter) filter2Size+= dstFilter->length - 1;
1227
    assert(filter2Size>0);
1228
    filter2= av_malloc(filter2Size*dstW*sizeof(double));
1229

    
1230
    for (i=0; i<dstW; i++)
1231
    {
1232
        int j;
1233
        SwsVector scaleFilter;
1234
        SwsVector *outVec;
1235

    
1236
        scaleFilter.coeff= filter + i*filterSize;
1237
        scaleFilter.length= filterSize;
1238

    
1239
        if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1240
        else           outVec= &scaleFilter;
1241

    
1242
        assert(outVec->length == filter2Size);
1243
        //FIXME dstFilter
1244

    
1245
        for (j=0; j<outVec->length; j++)
1246
        {
1247
            filter2[i*filter2Size + j]= outVec->coeff[j];
1248
        }
1249

    
1250
        (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1251

    
1252
        if (outVec != &scaleFilter) sws_freeVec(outVec);
1253
    }
1254
    av_freep(&filter);
1255

    
1256
    /* try to reduce the filter-size (step1 find size and shift left) */
1257
    // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
1258
    minFilterSize= 0;
1259
    for (i=dstW-1; i>=0; i--)
1260
    {
1261
        int min= filter2Size;
1262
        int j;
1263
        double cutOff=0.0;
1264

    
1265
        /* get rid off near zero elements on the left by shifting left */
1266
        for (j=0; j<filter2Size; j++)
1267
        {
1268
            int k;
1269
            cutOff += FFABS(filter2[i*filter2Size]);
1270

    
1271
            if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1272

    
1273
            /* preserve monotonicity because the core can't handle the filter otherwise */
1274
            if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1275

    
1276
            // Move filter coeffs left
1277
            for (k=1; k<filter2Size; k++)
1278
                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1279
            filter2[i*filter2Size + k - 1]= 0.0;
1280
            (*filterPos)[i]++;
1281
        }
1282

    
1283
        cutOff=0.0;
1284
        /* count near zeros on the right */
1285
        for (j=filter2Size-1; j>0; j--)
1286
        {
1287
            cutOff += FFABS(filter2[i*filter2Size + j]);
1288

    
1289
            if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1290
            min--;
1291
        }
1292

    
1293
        if (min>minFilterSize) minFilterSize= min;
1294
    }
1295

    
1296
    if (flags & SWS_CPU_CAPS_ALTIVEC) {
1297
        // we can handle the special case 4,
1298
        // so we don't want to go to the full 8
1299
        if (minFilterSize < 5)
1300
            filterAlign = 4;
1301

    
1302
        // we really don't want to waste our time
1303
        // doing useless computation, so fall-back on
1304
        // the scalar C code for very small filter.
1305
        // vectorizing is worth it only if you have
1306
        // decent-sized vector.
1307
        if (minFilterSize < 3)
1308
            filterAlign = 1;
1309
    }
1310

    
1311
    if (flags & SWS_CPU_CAPS_MMX) {
1312
        // special case for unscaled vertical filtering
1313
        if (minFilterSize == 1 && filterAlign == 2)
1314
            filterAlign= 1;
1315
    }
1316

    
1317
    assert(minFilterSize > 0);
1318
    filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1319
    assert(filterSize > 0);
1320
    filter= av_malloc(filterSize*dstW*sizeof(double));
1321
    if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
1322
        goto error;
1323
    *outFilterSize= filterSize;
1324

    
1325
    if (flags&SWS_PRINT_INFO)
1326
        av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1327
    /* try to reduce the filter-size (step2 reduce it) */
1328
    for (i=0; i<dstW; i++)
1329
    {
1330
        int j;
1331

    
1332
        for (j=0; j<filterSize; j++)
1333
        {
1334
            if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
1335
            else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
1336
        }
1337
    }
1338

    
1339

    
1340
    //FIXME try to align filterpos if possible
1341

    
1342
    //fix borders
1343
    for (i=0; i<dstW; i++)
1344
    {
1345
        int j;
1346
        if ((*filterPos)[i] < 0)
1347
        {
1348
            // Move filter coeffs left to compensate for filterPos
1349
            for (j=1; j<filterSize; j++)
1350
            {
1351
                int left= FFMAX(j + (*filterPos)[i], 0);
1352
                filter[i*filterSize + left] += filter[i*filterSize + j];
1353
                filter[i*filterSize + j]=0;
1354
            }
1355
            (*filterPos)[i]= 0;
1356
        }
1357

    
1358
        if ((*filterPos)[i] + filterSize > srcW)
1359
        {
1360
            int shift= (*filterPos)[i] + filterSize - srcW;
1361
            // Move filter coeffs right to compensate for filterPos
1362
            for (j=filterSize-2; j>=0; j--)
1363
            {
1364
                int right= FFMIN(j + shift, filterSize-1);
1365
                filter[i*filterSize +right] += filter[i*filterSize +j];
1366
                filter[i*filterSize +j]=0;
1367
            }
1368
            (*filterPos)[i]= srcW - filterSize;
1369
        }
1370
    }
1371

    
1372
    // Note the +1 is for the MMXscaler which reads over the end
1373
    /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1374
    *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1375

    
1376
    /* Normalize & Store in outFilter */
1377
    for (i=0; i<dstW; i++)
1378
    {
1379
        int j;
1380
        double error=0;
1381
        double sum=0;
1382
        double scale= one;
1383

    
1384
        for (j=0; j<filterSize; j++)
1385
        {
1386
            sum+= filter[i*filterSize + j];
1387
        }
1388
        scale/= sum;
1389
        for (j=0; j<*outFilterSize; j++)
1390
        {
1391
            double v= filter[i*filterSize + j]*scale + error;
1392
            int intV= floor(v + 0.5);
1393
            (*outFilter)[i*(*outFilterSize) + j]= intV;
1394
            error = v - intV;
1395
        }
1396
    }
1397

    
1398
    (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1399
    for (i=0; i<*outFilterSize; i++)
1400
    {
1401
        int j= dstW*(*outFilterSize);
1402
        (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1403
    }
1404

    
1405
    ret=0;
1406
error:
1407
    av_free(filter);
1408
    av_free(filter2);
1409
    return ret;
1410
}
1411

    
1412
#ifdef COMPILE_MMX2
1413
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1414
{
1415
    uint8_t *fragmentA;
1416
    long imm8OfPShufW1A;
1417
    long imm8OfPShufW2A;
1418
    long fragmentLengthA;
1419
    uint8_t *fragmentB;
1420
    long imm8OfPShufW1B;
1421
    long imm8OfPShufW2B;
1422
    long fragmentLengthB;
1423
    int fragmentPos;
1424

    
1425
    int xpos, i;
1426

    
1427
    // create an optimized horizontal scaling routine
1428

    
1429
    //code fragment
1430

    
1431
    asm volatile(
1432
        "jmp                         9f                 \n\t"
1433
    // Begin
1434
        "0:                                             \n\t"
1435
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
1436
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
1437
        "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
1438
        "punpcklbw                %%mm7, %%mm1          \n\t"
1439
        "punpcklbw                %%mm7, %%mm0          \n\t"
1440
        "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
1441
        "1:                                             \n\t"
1442
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
1443
        "2:                                             \n\t"
1444
        "psubw                    %%mm1, %%mm0          \n\t"
1445
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
1446
        "pmullw                   %%mm3, %%mm0          \n\t"
1447
        "psllw                       $7, %%mm1          \n\t"
1448
        "paddw                    %%mm1, %%mm0          \n\t"
1449

    
1450
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1451

    
1452
        "add                         $8, %%"REG_a"      \n\t"
1453
    // End
1454
        "9:                                             \n\t"
1455
//        "int $3                                         \n\t"
1456
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
1457
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
1458
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
1459
        "dec                         %1                 \n\t"
1460
        "dec                         %2                 \n\t"
1461
        "sub                         %0, %1             \n\t"
1462
        "sub                         %0, %2             \n\t"
1463
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
1464
        "sub                         %0, %3             \n\t"
1465

    
1466

    
1467
        :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1468
        "=r" (fragmentLengthA)
1469
    );
1470

    
1471
    asm volatile(
1472
        "jmp                         9f                 \n\t"
1473
    // Begin
1474
        "0:                                             \n\t"
1475
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
1476
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
1477
        "punpcklbw                %%mm7, %%mm0          \n\t"
1478
        "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
1479
        "1:                                             \n\t"
1480
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
1481
        "2:                                             \n\t"
1482
        "psubw                    %%mm1, %%mm0          \n\t"
1483
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
1484
        "pmullw                   %%mm3, %%mm0          \n\t"
1485
        "psllw                       $7, %%mm1          \n\t"
1486
        "paddw                    %%mm1, %%mm0          \n\t"
1487

    
1488
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1489

    
1490
        "add                         $8, %%"REG_a"      \n\t"
1491
    // End
1492
        "9:                                             \n\t"
1493
//        "int                       $3                   \n\t"
1494
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
1495
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
1496
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
1497
        "dec                         %1                 \n\t"
1498
        "dec                         %2                 \n\t"
1499
        "sub                         %0, %1             \n\t"
1500
        "sub                         %0, %2             \n\t"
1501
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
1502
        "sub                         %0, %3             \n\t"
1503

    
1504

    
1505
        :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1506
        "=r" (fragmentLengthB)
1507
    );
1508

    
1509
    xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1510
    fragmentPos=0;
1511

    
1512
    for (i=0; i<dstW/numSplits; i++)
1513
    {
1514
        int xx=xpos>>16;
1515

    
1516
        if ((i&3) == 0)
1517
        {
1518
            int a=0;
1519
            int b=((xpos+xInc)>>16) - xx;
1520
            int c=((xpos+xInc*2)>>16) - xx;
1521
            int d=((xpos+xInc*3)>>16) - xx;
1522

    
1523
            filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1524
            filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1525
            filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1526
            filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1527
            filterPos[i/2]= xx;
1528

    
1529
            if (d+1<4)
1530
            {
1531
                int maxShift= 3-(d+1);
1532
                int shift=0;
1533

    
1534
                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1535

    
1536
                funnyCode[fragmentPos + imm8OfPShufW1B]=
1537
                    (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1538
                funnyCode[fragmentPos + imm8OfPShufW2B]=
1539
                    a | (b<<2) | (c<<4) | (d<<6);
1540

    
1541
                if (i+3>=dstW) shift=maxShift; //avoid overread
1542
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1543

    
1544
                if (shift && i>=shift)
1545
                {
1546
                    funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1547
                    funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1548
                    filterPos[i/2]-=shift;
1549
                }
1550

    
1551
                fragmentPos+= fragmentLengthB;
1552
            }
1553
            else
1554
            {
1555
                int maxShift= 3-d;
1556
                int shift=0;
1557

    
1558
                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1559

    
1560
                funnyCode[fragmentPos + imm8OfPShufW1A]=
1561
                funnyCode[fragmentPos + imm8OfPShufW2A]=
1562
                    a | (b<<2) | (c<<4) | (d<<6);
1563

    
1564
                if (i+4>=dstW) shift=maxShift; //avoid overread
1565
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1566

    
1567
                if (shift && i>=shift)
1568
                {
1569
                    funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1570
                    funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1571
                    filterPos[i/2]-=shift;
1572
                }
1573

    
1574
                fragmentPos+= fragmentLengthA;
1575
            }
1576

    
1577
            funnyCode[fragmentPos]= RET;
1578
        }
1579
        xpos+=xInc;
1580
    }
1581
    filterPos[i/2]= xpos>>16; // needed to jump to the next part
1582
}
1583
#endif /* COMPILE_MMX2 */
1584

    
1585
static void globalInit(void){
1586
    // generating tables:
1587
    int i;
1588
    for (i=0; i<768; i++){
1589
        int c= av_clip_uint8(i-256);
1590
        clip_table[i]=c;
1591
    }
1592
}
1593

    
1594
static SwsFunc getSwsFunc(int flags){
1595

    
1596
#if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1597
#if defined(ARCH_X86)
1598
    // ordered per speed fastest first
1599
    if (flags & SWS_CPU_CAPS_MMX2)
1600
        return swScale_MMX2;
1601
    else if (flags & SWS_CPU_CAPS_3DNOW)
1602
        return swScale_3DNow;
1603
    else if (flags & SWS_CPU_CAPS_MMX)
1604
        return swScale_MMX;
1605
    else
1606
        return swScale_C;
1607

    
1608
#else
1609
#ifdef ARCH_POWERPC
1610
    if (flags & SWS_CPU_CAPS_ALTIVEC)
1611
        return swScale_altivec;
1612
    else
1613
        return swScale_C;
1614
#endif
1615
    return swScale_C;
1616
#endif /* defined(ARCH_X86) */
1617
#else //RUNTIME_CPUDETECT
1618
#ifdef HAVE_MMX2
1619
    return swScale_MMX2;
1620
#elif defined (HAVE_3DNOW)
1621
    return swScale_3DNow;
1622
#elif defined (HAVE_MMX)
1623
    return swScale_MMX;
1624
#elif defined (HAVE_ALTIVEC)
1625
    return swScale_altivec;
1626
#else
1627
    return swScale_C;
1628
#endif
1629
#endif //!RUNTIME_CPUDETECT
1630
}
1631

    
1632
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1633
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1634
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1635
    /* Copy Y plane */
1636
    if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1637
        memcpy(dst, src[0], srcSliceH*dstStride[0]);
1638
    else
1639
    {
1640
        int i;
1641
        uint8_t *srcPtr= src[0];
1642
        uint8_t *dstPtr= dst;
1643
        for (i=0; i<srcSliceH; i++)
1644
        {
1645
            memcpy(dstPtr, srcPtr, c->srcW);
1646
            srcPtr+= srcStride[0];
1647
            dstPtr+= dstStride[0];
1648
        }
1649
    }
1650
    dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1651
    if (c->dstFormat == PIX_FMT_NV12)
1652
        interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
1653
    else
1654
        interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
1655

    
1656
    return srcSliceH;
1657
}
1658

    
1659
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1660
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1661
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1662

    
1663
    yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1664

    
1665
    return srcSliceH;
1666
}
1667

    
1668
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1669
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1670
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1671

    
1672
    yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1673

    
1674
    return srcSliceH;
1675
}
1676

    
1677
static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1678
                                int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1679
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1680

    
1681
    yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
1682

    
1683
    return srcSliceH;
1684
}
1685

    
1686
static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1687
                                int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1688
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1689

    
1690
    yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
1691

    
1692
    return srcSliceH;
1693
}
1694

    
1695
/* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
1696
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1697
                          int srcSliceH, uint8_t* dst[], int dstStride[]){
1698
    const int srcFormat= c->srcFormat;
1699
    const int dstFormat= c->dstFormat;
1700
    const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1701
    const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1702
    const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1703
    const int dstId= fmt_depth(dstFormat) >> 2;
1704
    void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1705

    
1706
    /* BGR -> BGR */
1707
    if (  (isBGR(srcFormat) && isBGR(dstFormat))
1708
       || (isRGB(srcFormat) && isRGB(dstFormat))){
1709
        switch(srcId | (dstId<<4)){
1710
        case 0x34: conv= rgb16to15; break;
1711
        case 0x36: conv= rgb24to15; break;
1712
        case 0x38: conv= rgb32to15; break;
1713
        case 0x43: conv= rgb15to16; break;
1714
        case 0x46: conv= rgb24to16; break;
1715
        case 0x48: conv= rgb32to16; break;
1716
        case 0x63: conv= rgb15to24; break;
1717
        case 0x64: conv= rgb16to24; break;
1718
        case 0x68: conv= rgb32to24; break;
1719
        case 0x83: conv= rgb15to32; break;
1720
        case 0x84: conv= rgb16to32; break;
1721
        case 0x86: conv= rgb24to32; break;
1722
        default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1723
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1724
        }
1725
    }else if (  (isBGR(srcFormat) && isRGB(dstFormat))
1726
             || (isRGB(srcFormat) && isBGR(dstFormat))){
1727
        switch(srcId | (dstId<<4)){
1728
        case 0x33: conv= rgb15tobgr15; break;
1729
        case 0x34: conv= rgb16tobgr15; break;
1730
        case 0x36: conv= rgb24tobgr15; break;
1731
        case 0x38: conv= rgb32tobgr15; break;
1732
        case 0x43: conv= rgb15tobgr16; break;
1733
        case 0x44: conv= rgb16tobgr16; break;
1734
        case 0x46: conv= rgb24tobgr16; break;
1735
        case 0x48: conv= rgb32tobgr16; break;
1736
        case 0x63: conv= rgb15tobgr24; break;
1737
        case 0x64: conv= rgb16tobgr24; break;
1738
        case 0x66: conv= rgb24tobgr24; break;
1739
        case 0x68: conv= rgb32tobgr24; break;
1740
        case 0x83: conv= rgb15tobgr32; break;
1741
        case 0x84: conv= rgb16tobgr32; break;
1742
        case 0x86: conv= rgb24tobgr32; break;
1743
        case 0x88: conv= rgb32tobgr32; break;
1744
        default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1745
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1746
        }
1747
    }else{
1748
        av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1749
               sws_format_name(srcFormat), sws_format_name(dstFormat));
1750
    }
1751

    
1752
    if(conv)
1753
    {
1754
        uint8_t *srcPtr= src[0];
1755
        if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
1756
            srcPtr += ALT32_CORR;
1757

    
1758
        if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
1759
            conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1760
        else
1761
        {
1762
            int i;
1763
            uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1764

    
1765
            for (i=0; i<srcSliceH; i++)
1766
            {
1767
                conv(srcPtr, dstPtr, c->srcW*srcBpp);
1768
                srcPtr+= srcStride[0];
1769
                dstPtr+= dstStride[0];
1770
            }
1771
        }
1772
    }
1773
    return srcSliceH;
1774
}
1775

    
1776
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1777
                              int srcSliceH, uint8_t* dst[], int dstStride[]){
1778

    
1779
    rgb24toyv12(
1780
        src[0],
1781
        dst[0]+ srcSliceY    *dstStride[0],
1782
        dst[1]+(srcSliceY>>1)*dstStride[1],
1783
        dst[2]+(srcSliceY>>1)*dstStride[2],
1784
        c->srcW, srcSliceH,
1785
        dstStride[0], dstStride[1], srcStride[0]);
1786
    return srcSliceH;
1787
}
1788

    
1789
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1790
                             int srcSliceH, uint8_t* dst[], int dstStride[]){
1791
    int i;
1792

    
1793
    /* copy Y */
1794
    if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
1795
        memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1796
    else{
1797
        uint8_t *srcPtr= src[0];
1798
        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1799

    
1800
        for (i=0; i<srcSliceH; i++)
1801
        {
1802
            memcpy(dstPtr, srcPtr, c->srcW);
1803
            srcPtr+= srcStride[0];
1804
            dstPtr+= dstStride[0];
1805
        }
1806
    }
1807

    
1808
    if (c->dstFormat==PIX_FMT_YUV420P){
1809
        planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1810
        planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1811
    }else{
1812
        planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1813
        planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1814
    }
1815
    return srcSliceH;
1816
}
1817

    
1818
/* unscaled copy like stuff (assumes nearly identical formats) */
1819
static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1820
                      int srcSliceH, uint8_t* dst[], int dstStride[])
1821
{
1822
    if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1823
        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1824
    else
1825
    {
1826
        int i;
1827
        uint8_t *srcPtr= src[0];
1828
        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1829
        int length=0;
1830

    
1831
        /* universal length finder */
1832
        while(length+c->srcW <= FFABS(dstStride[0])
1833
           && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1834
        assert(length!=0);
1835

    
1836
        for (i=0; i<srcSliceH; i++)
1837
        {
1838
            memcpy(dstPtr, srcPtr, length);
1839
            srcPtr+= srcStride[0];
1840
            dstPtr+= dstStride[0];
1841
        }
1842
    }
1843
    return srcSliceH;
1844
}
1845

    
1846
static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1847
                      int srcSliceH, uint8_t* dst[], int dstStride[])
1848
{
1849
    int plane;
1850
    for (plane=0; plane<3; plane++)
1851
    {
1852
        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1853
        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1854
        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1855

    
1856
        if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1857
        {
1858
            if (!isGray(c->dstFormat))
1859
                memset(dst[plane], 128, dstStride[plane]*height);
1860
        }
1861
        else
1862
        {
1863
            if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1864
                memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1865
            else
1866
            {
1867
                int i;
1868
                uint8_t *srcPtr= src[plane];
1869
                uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1870
                for (i=0; i<height; i++)
1871
                {
1872
                    memcpy(dstPtr, srcPtr, length);
1873
                    srcPtr+= srcStride[plane];
1874
                    dstPtr+= dstStride[plane];
1875
                }
1876
            }
1877
        }
1878
    }
1879
    return srcSliceH;
1880
}
1881

    
1882
static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1883
                        int srcSliceH, uint8_t* dst[], int dstStride[]){
1884

    
1885
    int length= c->srcW;
1886
    int y=      srcSliceY;
1887
    int height= srcSliceH;
1888
    int i, j;
1889
    uint8_t *srcPtr= src[0];
1890
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1891

    
1892
    if (!isGray(c->dstFormat)){
1893
        int height= -((-srcSliceH)>>c->chrDstVSubSample);
1894
        memset(dst[1], 128, dstStride[1]*height);
1895
        memset(dst[2], 128, dstStride[2]*height);
1896
    }
1897
    if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1898
    for (i=0; i<height; i++)
1899
    {
1900
        for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1901
        srcPtr+= srcStride[0];
1902
        dstPtr+= dstStride[0];
1903
    }
1904
    return srcSliceH;
1905
}
1906

    
1907
static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1908
                        int srcSliceH, uint8_t* dst[], int dstStride[]){
1909

    
1910
    int length= c->srcW;
1911
    int y=      srcSliceY;
1912
    int height= srcSliceH;
1913
    int i, j;
1914
    uint8_t *srcPtr= src[0];
1915
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1916
    for (i=0; i<height; i++)
1917
    {
1918
        for (j=0; j<length; j++)
1919
        {
1920
            dstPtr[j<<1] = srcPtr[j];
1921
            dstPtr[(j<<1)+1] = srcPtr[j];
1922
        }
1923
        srcPtr+= srcStride[0];
1924
        dstPtr+= dstStride[0];
1925
    }
1926
    return srcSliceH;
1927
}
1928

    
1929
static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1930
                      int srcSliceH, uint8_t* dst[], int dstStride[]){
1931

    
1932
    int length= c->srcW;
1933
    int y=      srcSliceY;
1934
    int height= srcSliceH;
1935
    int i, j;
1936
    uint16_t *srcPtr= (uint16_t*)src[0];
1937
    uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
1938
    for (i=0; i<height; i++)
1939
    {
1940
        for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1941
        srcPtr+= srcStride[0]/2;
1942
        dstPtr+= dstStride[0]/2;
1943
    }
1944
    return srcSliceH;
1945
}
1946

    
1947

    
1948
static void getSubSampleFactors(int *h, int *v, int format){
1949
    switch(format){
1950
    case PIX_FMT_UYVY422:
1951
    case PIX_FMT_YUYV422:
1952
        *h=1;
1953
        *v=0;
1954
        break;
1955
    case PIX_FMT_YUV420P:
1956
    case PIX_FMT_YUVA420P:
1957
    case PIX_FMT_GRAY16BE:
1958
    case PIX_FMT_GRAY16LE:
1959
    case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1960
    case PIX_FMT_NV12:
1961
    case PIX_FMT_NV21:
1962
        *h=1;
1963
        *v=1;
1964
        break;
1965
    case PIX_FMT_YUV440P:
1966
        *h=0;
1967
        *v=1;
1968
        break;
1969
    case PIX_FMT_YUV410P:
1970
        *h=2;
1971
        *v=2;
1972
        break;
1973
    case PIX_FMT_YUV444P:
1974
        *h=0;
1975
        *v=0;
1976
        break;
1977
    case PIX_FMT_YUV422P:
1978
        *h=1;
1979
        *v=0;
1980
        break;
1981
    case PIX_FMT_YUV411P:
1982
        *h=2;
1983
        *v=0;
1984
        break;
1985
    default:
1986
        *h=0;
1987
        *v=0;
1988
        break;
1989
    }
1990
}
1991

    
1992
static uint16_t roundToInt16(int64_t f){
1993
    int r= (f + (1<<15))>>16;
1994
         if (r<-0x7FFF) return 0x8000;
1995
    else if (r> 0x7FFF) return 0x7FFF;
1996
    else                return r;
1997
}
1998

    
1999
/**
2000
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
2001
 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
2002
 * @return -1 if not supported
2003
 */
2004
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
2005
    int64_t crv =  inv_table[0];
2006
    int64_t cbu =  inv_table[1];
2007
    int64_t cgu = -inv_table[2];
2008
    int64_t cgv = -inv_table[3];
2009
    int64_t cy  = 1<<16;
2010
    int64_t oy  = 0;
2011

    
2012
    memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
2013
    memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
2014

    
2015
    c->brightness= brightness;
2016
    c->contrast  = contrast;
2017
    c->saturation= saturation;
2018
    c->srcRange  = srcRange;
2019
    c->dstRange  = dstRange;
2020
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
2021

    
2022
    c->uOffset=   0x0400040004000400LL;
2023
    c->vOffset=   0x0400040004000400LL;
2024

    
2025
    if (!srcRange){
2026
        cy= (cy*255) / 219;
2027
        oy= 16<<16;
2028
    }else{
2029
        crv= (crv*224) / 255;
2030
        cbu= (cbu*224) / 255;
2031
        cgu= (cgu*224) / 255;
2032
        cgv= (cgv*224) / 255;
2033
    }
2034

    
2035
    cy = (cy *contrast             )>>16;
2036
    crv= (crv*contrast * saturation)>>32;
2037
    cbu= (cbu*contrast * saturation)>>32;
2038
    cgu= (cgu*contrast * saturation)>>32;
2039
    cgv= (cgv*contrast * saturation)>>32;
2040

    
2041
    oy -= 256*brightness;
2042

    
2043
    c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
2044
    c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
2045
    c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
2046
    c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
2047
    c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
2048
    c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
2049

    
2050
    yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
2051
    //FIXME factorize
2052

    
2053
#ifdef COMPILE_ALTIVEC
2054
    if (c->flags & SWS_CPU_CAPS_ALTIVEC)
2055
        yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
2056
#endif
2057
    return 0;
2058
}
2059

    
2060
/**
2061
 * @return -1 if not supported
2062
 */
2063
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
2064
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
2065

    
2066
    *inv_table = c->srcColorspaceTable;
2067
    *table     = c->dstColorspaceTable;
2068
    *srcRange  = c->srcRange;
2069
    *dstRange  = c->dstRange;
2070
    *brightness= c->brightness;
2071
    *contrast  = c->contrast;
2072
    *saturation= c->saturation;
2073

    
2074
    return 0;
2075
}
2076

    
2077
static int handle_jpeg(int *format)
2078
{
2079
    switch (*format) {
2080
        case PIX_FMT_YUVJ420P:
2081
            *format = PIX_FMT_YUV420P;
2082
            return 1;
2083
        case PIX_FMT_YUVJ422P:
2084
            *format = PIX_FMT_YUV422P;
2085
            return 1;
2086
        case PIX_FMT_YUVJ444P:
2087
            *format = PIX_FMT_YUV444P;
2088
            return 1;
2089
        case PIX_FMT_YUVJ440P:
2090
            *format = PIX_FMT_YUV440P;
2091
            return 1;
2092
        default:
2093
            return 0;
2094
    }
2095
}
2096

    
2097
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
2098
                           SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
2099

    
2100
    SwsContext *c;
2101
    int i;
2102
    int usesVFilter, usesHFilter;
2103
    int unscaled, needsDither;
2104
    int srcRange, dstRange;
2105
    SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
2106
#if defined(ARCH_X86)
2107
    if (flags & SWS_CPU_CAPS_MMX)
2108
        asm volatile("emms\n\t"::: "memory");
2109
#endif
2110

    
2111
#if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
2112
    flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
2113
#ifdef HAVE_MMX2
2114
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
2115
#elif defined (HAVE_3DNOW)
2116
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
2117
#elif defined (HAVE_MMX)
2118
    flags |= SWS_CPU_CAPS_MMX;
2119
#elif defined (HAVE_ALTIVEC)
2120
    flags |= SWS_CPU_CAPS_ALTIVEC;
2121
#elif defined (ARCH_BFIN)
2122
    flags |= SWS_CPU_CAPS_BFIN;
2123
#endif
2124
#endif /* RUNTIME_CPUDETECT */
2125
    if (clip_table[512] != 255) globalInit();
2126
    if (!rgb15to16) sws_rgb2rgb_init(flags);
2127

    
2128
    unscaled = (srcW == dstW && srcH == dstH);
2129
    needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
2130
        && (fmt_depth(dstFormat))<24
2131
        && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
2132

    
2133
    srcRange = handle_jpeg(&srcFormat);
2134
    dstRange = handle_jpeg(&dstFormat);
2135

    
2136
    if (!isSupportedIn(srcFormat))
2137
    {
2138
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
2139
        return NULL;
2140
    }
2141
    if (!isSupportedOut(dstFormat))
2142
    {
2143
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
2144
        return NULL;
2145
    }
2146

    
2147
    i= flags & ( SWS_POINT
2148
                |SWS_AREA
2149
                |SWS_BILINEAR
2150
                |SWS_FAST_BILINEAR
2151
                |SWS_BICUBIC
2152
                |SWS_X
2153
                |SWS_GAUSS
2154
                |SWS_LANCZOS
2155
                |SWS_SINC
2156
                |SWS_SPLINE
2157
                |SWS_BICUBLIN);
2158
    if(!i || (i & (i-1)))
2159
    {
2160
        av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be choosen\n");
2161
        return NULL;
2162
    }
2163

    
2164

    
2165
    /* sanity check */
2166
    if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2167
    {
2168
        av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2169
               srcW, srcH, dstW, dstH);
2170
        return NULL;
2171
    }
2172
    if(srcW > VOFW || dstW > VOFW){
2173
        av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
2174
        return NULL;
2175
    }
2176

    
2177
    if (!dstFilter) dstFilter= &dummyFilter;
2178
    if (!srcFilter) srcFilter= &dummyFilter;
2179

    
2180
    c= av_mallocz(sizeof(SwsContext));
2181

    
2182
    c->av_class = &sws_context_class;
2183
    c->srcW= srcW;
2184
    c->srcH= srcH;
2185
    c->dstW= dstW;
2186
    c->dstH= dstH;
2187
    c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2188
    c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2189
    c->flags= flags;
2190
    c->dstFormat= dstFormat;
2191
    c->srcFormat= srcFormat;
2192
    c->vRounder= 4* 0x0001000100010001ULL;
2193

    
2194
    usesHFilter= usesVFilter= 0;
2195
    if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
2196
    if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
2197
    if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
2198
    if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
2199
    if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
2200
    if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
2201
    if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
2202
    if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
2203

    
2204
    getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2205
    getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2206

    
2207
    // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2208
    if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2209

    
2210
    // drop some chroma lines if the user wants it
2211
    c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2212
    c->chrSrcVSubSample+= c->vChrDrop;
2213

    
2214
    // drop every 2. pixel for chroma calculation unless user wants full chroma
2215
    if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
2216
      && srcFormat!=PIX_FMT_RGB8      && srcFormat!=PIX_FMT_BGR8
2217
      && srcFormat!=PIX_FMT_RGB4      && srcFormat!=PIX_FMT_BGR4
2218
      && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
2219
      && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
2220
        c->chrSrcHSubSample=1;
2221

    
2222
    if (param){
2223
        c->param[0] = param[0];
2224
        c->param[1] = param[1];
2225
    }else{
2226
        c->param[0] =
2227
        c->param[1] = SWS_PARAM_DEFAULT;
2228
    }
2229

    
2230
    c->chrIntHSubSample= c->chrDstHSubSample;
2231
    c->chrIntVSubSample= c->chrSrcVSubSample;
2232

    
2233
    // Note the -((-x)>>y) is so that we always round toward +inf.
2234
    c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2235
    c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2236
    c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2237
    c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2238

    
2239
    sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2240

    
2241
    /* unscaled special Cases */
2242
    if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
2243
    {
2244
        /* yv12_to_nv12 */
2245
        if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2246
        {
2247
            c->swScale= PlanarToNV12Wrapper;
2248
        }
2249
#ifdef CONFIG_GPL
2250
        /* yuv2bgr */
2251
        if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2252
        {
2253
            c->swScale= yuv2rgb_get_func_ptr(c);
2254
        }
2255
#endif
2256

    
2257
        if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P)
2258
        {
2259
            c->swScale= yvu9toyv12Wrapper;
2260
        }
2261

    
2262
        /* bgr24toYV12 */
2263
        if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2264
            c->swScale= bgr24toyv12Wrapper;
2265

    
2266
        /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2267
        if (  (isBGR(srcFormat) || isRGB(srcFormat))
2268
           && (isBGR(dstFormat) || isRGB(dstFormat))
2269
           && srcFormat != PIX_FMT_BGR8      && dstFormat != PIX_FMT_BGR8
2270
           && srcFormat != PIX_FMT_RGB8      && dstFormat != PIX_FMT_RGB8
2271
           && srcFormat != PIX_FMT_BGR4      && dstFormat != PIX_FMT_BGR4
2272
           && srcFormat != PIX_FMT_RGB4      && dstFormat != PIX_FMT_RGB4
2273
           && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2274
           && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2275
           && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2276
                                             && dstFormat != PIX_FMT_RGB32_1
2277
                                             && dstFormat != PIX_FMT_BGR32_1
2278
           && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
2279
             c->swScale= rgb2rgbWrapper;
2280

    
2281
        if (srcFormat == PIX_FMT_YUV422P)
2282
        {
2283
            if (dstFormat == PIX_FMT_YUYV422)
2284
                c->swScale= YUV422PToYuy2Wrapper;
2285
            else if (dstFormat == PIX_FMT_UYVY422)
2286
                c->swScale= YUV422PToUyvyWrapper;
2287
        }
2288

    
2289
        /* LQ converters if -sws 0 or -sws 4*/
2290
        if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2291
            /* yv12_to_yuy2 */
2292
            if (srcFormat == PIX_FMT_YUV420P)
2293
            {
2294
                if (dstFormat == PIX_FMT_YUYV422)
2295
                    c->swScale= PlanarToYuy2Wrapper;
2296
                else if (dstFormat == PIX_FMT_UYVY422)
2297
                    c->swScale= PlanarToUyvyWrapper;
2298
            }
2299
        }
2300

    
2301
#ifdef COMPILE_ALTIVEC
2302
        if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2303
            srcFormat == PIX_FMT_YUV420P) {
2304
          // unscaled YV12 -> packed YUV, we want speed
2305
          if (dstFormat == PIX_FMT_YUYV422)
2306
              c->swScale= yv12toyuy2_unscaled_altivec;
2307
          else if (dstFormat == PIX_FMT_UYVY422)
2308
              c->swScale= yv12touyvy_unscaled_altivec;
2309
        }
2310
#endif
2311

    
2312
        /* simple copy */
2313
        if (  srcFormat == dstFormat
2314
            || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2315
            || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
2316
        {
2317
            if (isPacked(c->srcFormat))
2318
                c->swScale= packedCopy;
2319
            else /* Planar YUV or gray */
2320
                c->swScale= planarCopy;
2321
        }
2322

    
2323
        /* gray16{le,be} conversions */
2324
        if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2325
        {
2326
            c->swScale= gray16togray;
2327
        }
2328
        if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2329
        {
2330
            c->swScale= graytogray16;
2331
        }
2332
        if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2333
        {
2334
            c->swScale= gray16swap;
2335
        }
2336

    
2337
#ifdef ARCH_BFIN
2338
        if (flags & SWS_CPU_CAPS_BFIN)
2339
            ff_bfin_get_unscaled_swscale (c);
2340
#endif
2341

    
2342
        if (c->swScale){
2343
            if (flags&SWS_PRINT_INFO)
2344
                av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
2345
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
2346
            return c;
2347
        }
2348
    }
2349

    
2350
    if (flags & SWS_CPU_CAPS_MMX2)
2351
    {
2352
        c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2353
        if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2354
        {
2355
            if (flags&SWS_PRINT_INFO)
2356
                av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
2357
        }
2358
        if (usesHFilter) c->canMMX2BeUsed=0;
2359
    }
2360
    else
2361
        c->canMMX2BeUsed=0;
2362

    
2363
    c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2364
    c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2365

    
2366
    // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2367
    // but only for the FAST_BILINEAR mode otherwise do correct scaling
2368
    // n-2 is the last chrominance sample available
2369
    // this is not perfect, but no one should notice the difference, the more correct variant
2370
    // would be like the vertical one, but that would require some special code for the
2371
    // first and last pixel
2372
    if (flags&SWS_FAST_BILINEAR)
2373
    {
2374
        if (c->canMMX2BeUsed)
2375
        {
2376
            c->lumXInc+= 20;
2377
            c->chrXInc+= 20;
2378
        }
2379
        //we don't use the x86asm scaler if mmx is available
2380
        else if (flags & SWS_CPU_CAPS_MMX)
2381
        {
2382
            c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2383
            c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2384
        }
2385
    }
2386

    
2387
    /* precalculate horizontal scaler filter coefficients */
2388
    {
2389
        const int filterAlign=
2390
            (flags & SWS_CPU_CAPS_MMX) ? 4 :
2391
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2392
            1;
2393

    
2394
        initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2395
                   srcW      ,       dstW, filterAlign, 1<<14,
2396
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2397
                   srcFilter->lumH, dstFilter->lumH, c->param);
2398
        initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2399
                   c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2400
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2401
                   srcFilter->chrH, dstFilter->chrH, c->param);
2402

    
2403
#define MAX_FUNNY_CODE_SIZE 10000
2404
#if defined(COMPILE_MMX2)
2405
// can't downscale !!!
2406
        if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2407
        {
2408
#ifdef MAP_ANONYMOUS
2409
            c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2410
            c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2411
#else
2412
            c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2413
            c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2414
#endif
2415

    
2416
            c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
2417
            c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
2418
            c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
2419
            c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2420

    
2421
            initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2422
            initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2423
        }
2424
#endif /* defined(COMPILE_MMX2) */
2425
    } // Init Horizontal stuff
2426

    
2427

    
2428

    
2429
    /* precalculate vertical scaler filter coefficients */
2430
    {
2431
        const int filterAlign=
2432
            (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2433
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2434
            1;
2435

    
2436
        initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2437
                   srcH      ,        dstH, filterAlign, (1<<12),
2438
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2439
                   srcFilter->lumV, dstFilter->lumV, c->param);
2440
        initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2441
                   c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
2442
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2443
                   srcFilter->chrV, dstFilter->chrV, c->param);
2444

    
2445
#ifdef HAVE_ALTIVEC
2446
        c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2447
        c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2448

    
2449
        for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2450
            int j;
2451
            short *p = (short *)&c->vYCoeffsBank[i];
2452
            for (j=0;j<8;j++)
2453
                p[j] = c->vLumFilter[i];
2454
        }
2455

    
2456
        for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2457
            int j;
2458
            short *p = (short *)&c->vCCoeffsBank[i];
2459
            for (j=0;j<8;j++)
2460
                p[j] = c->vChrFilter[i];
2461
        }
2462
#endif
2463
    }
2464

    
2465
    // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2466
    c->vLumBufSize= c->vLumFilterSize;
2467
    c->vChrBufSize= c->vChrFilterSize;
2468
    for (i=0; i<dstH; i++)
2469
    {
2470
        int chrI= i*c->chrDstH / dstH;
2471
        int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2472
                           ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2473

    
2474
        nextSlice>>= c->chrSrcVSubSample;
2475
        nextSlice<<= c->chrSrcVSubSample;
2476
        if (c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2477
            c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
2478
        if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2479
            c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2480
    }
2481

    
2482
    // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2483
    c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2484
    c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2485
    //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2486
    /* align at 16 bytes for AltiVec */
2487
    for (i=0; i<c->vLumBufSize; i++)
2488
        c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
2489
    for (i=0; i<c->vChrBufSize; i++)
2490
        c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
2491

    
2492
    //try to avoid drawing green stuff between the right end and the stride end
2493
    for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
2494

    
2495
    assert(2*VOFW == VOF);
2496

    
2497
    assert(c->chrDstH <= dstH);
2498

    
2499
    if (flags&SWS_PRINT_INFO)
2500
    {
2501
#ifdef DITHER1XBPP
2502
        const char *dither= " dithered";
2503
#else
2504
        const char *dither= "";
2505
#endif
2506
        if (flags&SWS_FAST_BILINEAR)
2507
            av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
2508
        else if (flags&SWS_BILINEAR)
2509
            av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
2510
        else if (flags&SWS_BICUBIC)
2511
            av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
2512
        else if (flags&SWS_X)
2513
            av_log(c, AV_LOG_INFO, "Experimental scaler, ");
2514
        else if (flags&SWS_POINT)
2515
            av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
2516
        else if (flags&SWS_AREA)
2517
            av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
2518
        else if (flags&SWS_BICUBLIN)
2519
            av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
2520
        else if (flags&SWS_GAUSS)
2521
            av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
2522
        else if (flags&SWS_SINC)
2523
            av_log(c, AV_LOG_INFO, "Sinc scaler, ");
2524
        else if (flags&SWS_LANCZOS)
2525
            av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
2526
        else if (flags&SWS_SPLINE)
2527
            av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
2528
        else
2529
            av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
2530

    
2531
        if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2532
            av_log(c, AV_LOG_INFO, "from %s to%s %s ",
2533
                   sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2534
        else
2535
            av_log(c, AV_LOG_INFO, "from %s to %s ",
2536
                   sws_format_name(srcFormat), sws_format_name(dstFormat));
2537

    
2538
        if (flags & SWS_CPU_CAPS_MMX2)
2539
            av_log(c, AV_LOG_INFO, "using MMX2\n");
2540
        else if (flags & SWS_CPU_CAPS_3DNOW)
2541
            av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2542
        else if (flags & SWS_CPU_CAPS_MMX)
2543
            av_log(c, AV_LOG_INFO, "using MMX\n");
2544
        else if (flags & SWS_CPU_CAPS_ALTIVEC)
2545
            av_log(c, AV_LOG_INFO, "using AltiVec\n");
2546
        else
2547
            av_log(c, AV_LOG_INFO, "using C\n");
2548
    }
2549

    
2550
    if (flags & SWS_PRINT_INFO)
2551
    {
2552
        if (flags & SWS_CPU_CAPS_MMX)
2553
        {
2554
            if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2555
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2556
            else
2557
            {
2558
                if (c->hLumFilterSize==4)
2559
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
2560
                else if (c->hLumFilterSize==8)
2561
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
2562
                else
2563
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
2564

    
2565
                if (c->hChrFilterSize==4)
2566
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
2567
                else if (c->hChrFilterSize==8)
2568
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
2569
                else
2570
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
2571
            }
2572
        }
2573
        else
2574
        {
2575
#if defined(ARCH_X86)
2576
            av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
2577
#else
2578
            if (flags & SWS_FAST_BILINEAR)
2579
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
2580
            else
2581
                av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
2582
#endif
2583
        }
2584
        if (isPlanarYUV(dstFormat))
2585
        {
2586
            if (c->vLumFilterSize==1)
2587
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2588
            else
2589
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2590
        }
2591
        else
2592
        {
2593
            if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
2594
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2595
                       "      2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2596
            else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
2597
                av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2598
            else
2599
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2600
        }
2601

    
2602
        if (dstFormat==PIX_FMT_BGR24)
2603
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
2604
                   (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2605
        else if (dstFormat==PIX_FMT_RGB32)
2606
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2607
        else if (dstFormat==PIX_FMT_BGR565)
2608
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2609
        else if (dstFormat==PIX_FMT_BGR555)
2610
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2611

    
2612
        av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2613
    }
2614
    if (flags & SWS_PRINT_INFO)
2615
    {
2616
        av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2617
               c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2618
        av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2619
               c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2620
    }
2621

    
2622
    c->swScale= getSwsFunc(flags);
2623
    return c;
2624
}
2625

    
2626
/**
2627
 * swscale wrapper, so we don't need to export the SwsContext.
2628
 * assumes planar YUV to be in YUV order instead of YVU
2629
 */
2630
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2631
              int srcSliceH, uint8_t* dst[], int dstStride[]){
2632
    int i;
2633
    uint8_t* src2[4]= {src[0], src[1], src[2]};
2634
    uint32_t pal[256];
2635
    int use_pal=   c->srcFormat == PIX_FMT_PAL8
2636
                || c->srcFormat == PIX_FMT_BGR4_BYTE
2637
                || c->srcFormat == PIX_FMT_RGB4_BYTE
2638
                || c->srcFormat == PIX_FMT_BGR8
2639
                || c->srcFormat == PIX_FMT_RGB8;
2640

    
2641
    if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2642
        av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
2643
        return 0;
2644
    }
2645
    if (c->sliceDir == 0) {
2646
        if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2647
    }
2648

    
2649
    if (use_pal){
2650
        for (i=0; i<256; i++){
2651
            int p, r, g, b,y,u,v;
2652
            if(c->srcFormat == PIX_FMT_PAL8){
2653
                p=((uint32_t*)(src[1]))[i];
2654
                r= (p>>16)&0xFF;
2655
                g= (p>> 8)&0xFF;
2656
                b=  p     &0xFF;
2657
            }else if(c->srcFormat == PIX_FMT_RGB8){
2658
                r= (i>>5    )*36;
2659
                g= ((i>>2)&7)*36;
2660
                b= (i&3     )*85;
2661
            }else if(c->srcFormat == PIX_FMT_BGR8){
2662
                b= (i>>6    )*85;
2663
                g= ((i>>3)&7)*36;
2664
                r= (i&7     )*36;
2665
            }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
2666
                r= (i>>3    )*255;
2667
                g= ((i>>1)&3)*85;
2668
                b= (i&1     )*255;
2669
            }else if(c->srcFormat == PIX_FMT_BGR4_BYTE){
2670
                b= (i>>3    )*255;
2671
                g= ((i>>1)&3)*85;
2672
                r= (i&1     )*255;
2673
            }
2674
            y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
2675
            u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
2676
            v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
2677
            pal[i]= y + (u<<8) + (v<<16);
2678
        }
2679
        src2[1]= (uint8_t*)pal;
2680
    }
2681

    
2682
    // copy strides, so they can safely be modified
2683
    if (c->sliceDir == 1) {
2684
        // slices go from top to bottom
2685
        int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2686
        int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2687
        return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2688
    } else {
2689
        // slices go from bottom to top => we flip the image internally
2690
        uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2691
                           dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2692
                           dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2693
        int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2694
        int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2695

    
2696
        src2[0] += (srcSliceH-1)*srcStride[0];
2697
        if (!use_pal)
2698
            src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
2699
        src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
2700

    
2701
        return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2702
    }
2703
}
2704

    
2705
/**
2706
 * swscale wrapper, so we don't need to export the SwsContext
2707
 */
2708
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2709
                      int srcSliceH, uint8_t* dst[], int dstStride[]){
2710
    return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2711
}
2712

    
2713
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2714
                                float lumaSharpen, float chromaSharpen,
2715
                                float chromaHShift, float chromaVShift,
2716
                                int verbose)
2717
{
2718
    SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2719

    
2720
    if (lumaGBlur!=0.0){
2721
        filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2722
        filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2723
    }else{
2724
        filter->lumH= sws_getIdentityVec();
2725
        filter->lumV= sws_getIdentityVec();
2726
    }
2727

    
2728
    if (chromaGBlur!=0.0){
2729
        filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2730
        filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2731
    }else{
2732
        filter->chrH= sws_getIdentityVec();
2733
        filter->chrV= sws_getIdentityVec();
2734
    }
2735

    
2736
    if (chromaSharpen!=0.0){
2737
        SwsVector *id= sws_getIdentityVec();
2738
        sws_scaleVec(filter->chrH, -chromaSharpen);
2739
        sws_scaleVec(filter->chrV, -chromaSharpen);
2740
        sws_addVec(filter->chrH, id);
2741
        sws_addVec(filter->chrV, id);
2742
        sws_freeVec(id);
2743
    }
2744

    
2745
    if (lumaSharpen!=0.0){
2746
        SwsVector *id= sws_getIdentityVec();
2747
        sws_scaleVec(filter->lumH, -lumaSharpen);
2748
        sws_scaleVec(filter->lumV, -lumaSharpen);
2749
        sws_addVec(filter->lumH, id);
2750
        sws_addVec(filter->lumV, id);
2751
        sws_freeVec(id);
2752
    }
2753

    
2754
    if (chromaHShift != 0.0)
2755
        sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2756

    
2757
    if (chromaVShift != 0.0)
2758
        sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2759

    
2760
    sws_normalizeVec(filter->chrH, 1.0);
2761
    sws_normalizeVec(filter->chrV, 1.0);
2762
    sws_normalizeVec(filter->lumH, 1.0);
2763
    sws_normalizeVec(filter->lumV, 1.0);
2764

    
2765
    if (verbose) sws_printVec(filter->chrH);
2766
    if (verbose) sws_printVec(filter->lumH);
2767

    
2768
    return filter;
2769
}
2770

    
2771
/**
2772
 * returns a normalized gaussian curve used to filter stuff
2773
 * quality=3 is high quality, lowwer is lowwer quality
2774
 */
2775
SwsVector *sws_getGaussianVec(double variance, double quality){
2776
    const int length= (int)(variance*quality + 0.5) | 1;
2777
    int i;
2778
    double *coeff= av_malloc(length*sizeof(double));
2779
    double middle= (length-1)*0.5;
2780
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2781

    
2782
    vec->coeff= coeff;
2783
    vec->length= length;
2784

    
2785
    for (i=0; i<length; i++)
2786
    {
2787
        double dist= i-middle;
2788
        coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
2789
    }
2790

    
2791
    sws_normalizeVec(vec, 1.0);
2792

    
2793
    return vec;
2794
}
2795

    
2796
SwsVector *sws_getConstVec(double c, int length){
2797
    int i;
2798
    double *coeff= av_malloc(length*sizeof(double));
2799
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2800

    
2801
    vec->coeff= coeff;
2802
    vec->length= length;
2803

    
2804
    for (i=0; i<length; i++)
2805
        coeff[i]= c;
2806

    
2807
    return vec;
2808
}
2809

    
2810

    
2811
SwsVector *sws_getIdentityVec(void){
2812
    return sws_getConstVec(1.0, 1);
2813
}
2814

    
2815
double sws_dcVec(SwsVector *a){
2816
    int i;
2817
    double sum=0;
2818

    
2819
    for (i=0; i<a->length; i++)
2820
        sum+= a->coeff[i];
2821

    
2822
    return sum;
2823
}
2824

    
2825
void sws_scaleVec(SwsVector *a, double scalar){
2826
    int i;
2827

    
2828
    for (i=0; i<a->length; i++)
2829
        a->coeff[i]*= scalar;
2830
}
2831

    
2832
void sws_normalizeVec(SwsVector *a, double height){
2833
    sws_scaleVec(a, height/sws_dcVec(a));
2834
}
2835

    
2836
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2837
    int length= a->length + b->length - 1;
2838
    double *coeff= av_malloc(length*sizeof(double));
2839
    int i, j;
2840
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2841

    
2842
    vec->coeff= coeff;
2843
    vec->length= length;
2844

    
2845
    for (i=0; i<length; i++) coeff[i]= 0.0;
2846

    
2847
    for (i=0; i<a->length; i++)
2848
    {
2849
        for (j=0; j<b->length; j++)
2850
        {
2851
            coeff[i+j]+= a->coeff[i]*b->coeff[j];
2852
        }
2853
    }
2854

    
2855
    return vec;
2856
}
2857

    
2858
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2859
    int length= FFMAX(a->length, b->length);
2860
    double *coeff= av_malloc(length*sizeof(double));
2861
    int i;
2862
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2863

    
2864
    vec->coeff= coeff;
2865
    vec->length= length;
2866

    
2867
    for (i=0; i<length; i++) coeff[i]= 0.0;
2868

    
2869
    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2870
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2871

    
2872
    return vec;
2873
}
2874

    
2875
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2876
    int length= FFMAX(a->length, b->length);
2877
    double *coeff= av_malloc(length*sizeof(double));
2878
    int i;
2879
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2880

    
2881
    vec->coeff= coeff;
2882
    vec->length= length;
2883

    
2884
    for (i=0; i<length; i++) coeff[i]= 0.0;
2885

    
2886
    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2887
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2888

    
2889
    return vec;
2890
}
2891

    
2892
/* shift left / or right if "shift" is negative */
2893
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2894
    int length= a->length + FFABS(shift)*2;
2895
    double *coeff= av_malloc(length*sizeof(double));
2896
    int i;
2897
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2898

    
2899
    vec->coeff= coeff;
2900
    vec->length= length;
2901

    
2902
    for (i=0; i<length; i++) coeff[i]= 0.0;
2903

    
2904
    for (i=0; i<a->length; i++)
2905
    {
2906
        coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2907
    }
2908

    
2909
    return vec;
2910
}
2911

    
2912
void sws_shiftVec(SwsVector *a, int shift){
2913
    SwsVector *shifted= sws_getShiftedVec(a, shift);
2914
    av_free(a->coeff);
2915
    a->coeff= shifted->coeff;
2916
    a->length= shifted->length;
2917
    av_free(shifted);
2918
}
2919

    
2920
void sws_addVec(SwsVector *a, SwsVector *b){
2921
    SwsVector *sum= sws_sumVec(a, b);
2922
    av_free(a->coeff);
2923
    a->coeff= sum->coeff;
2924
    a->length= sum->length;
2925
    av_free(sum);
2926
}
2927

    
2928
void sws_subVec(SwsVector *a, SwsVector *b){
2929
    SwsVector *diff= sws_diffVec(a, b);
2930
    av_free(a->coeff);
2931
    a->coeff= diff->coeff;
2932
    a->length= diff->length;
2933
    av_free(diff);
2934
}
2935

    
2936
void sws_convVec(SwsVector *a, SwsVector *b){
2937
    SwsVector *conv= sws_getConvVec(a, b);
2938
    av_free(a->coeff);
2939
    a->coeff= conv->coeff;
2940
    a->length= conv->length;
2941
    av_free(conv);
2942
}
2943

    
2944
SwsVector *sws_cloneVec(SwsVector *a){
2945
    double *coeff= av_malloc(a->length*sizeof(double));
2946
    int i;
2947
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2948

    
2949
    vec->coeff= coeff;
2950
    vec->length= a->length;
2951

    
2952
    for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2953

    
2954
    return vec;
2955
}
2956

    
2957
void sws_printVec(SwsVector *a){
2958
    int i;
2959
    double max=0;
2960
    double min=0;
2961
    double range;
2962

    
2963
    for (i=0; i<a->length; i++)
2964
        if (a->coeff[i]>max) max= a->coeff[i];
2965

    
2966
    for (i=0; i<a->length; i++)
2967
        if (a->coeff[i]<min) min= a->coeff[i];
2968

    
2969
    range= max - min;
2970

    
2971
    for (i=0; i<a->length; i++)
2972
    {
2973
        int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2974
        av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2975
        for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2976
        av_log(NULL, AV_LOG_DEBUG, "|\n");
2977
    }
2978
}
2979

    
2980
void sws_freeVec(SwsVector *a){
2981
    if (!a) return;
2982
    av_freep(&a->coeff);
2983
    a->length=0;
2984
    av_free(a);
2985
}
2986

    
2987
void sws_freeFilter(SwsFilter *filter){
2988
    if (!filter) return;
2989

    
2990
    if (filter->lumH) sws_freeVec(filter->lumH);
2991
    if (filter->lumV) sws_freeVec(filter->lumV);
2992
    if (filter->chrH) sws_freeVec(filter->chrH);
2993
    if (filter->chrV) sws_freeVec(filter->chrV);
2994
    av_free(filter);
2995
}
2996

    
2997

    
2998
void sws_freeContext(SwsContext *c){
2999
    int i;
3000
    if (!c) return;
3001

    
3002
    if (c->lumPixBuf)
3003
    {
3004
        for (i=0; i<c->vLumBufSize; i++)
3005
            av_freep(&c->lumPixBuf[i]);
3006
        av_freep(&c->lumPixBuf);
3007
    }
3008

    
3009
    if (c->chrPixBuf)
3010
    {
3011
        for (i=0; i<c->vChrBufSize; i++)
3012
            av_freep(&c->chrPixBuf[i]);
3013
        av_freep(&c->chrPixBuf);
3014
    }
3015

    
3016
    av_freep(&c->vLumFilter);
3017
    av_freep(&c->vChrFilter);
3018
    av_freep(&c->hLumFilter);
3019
    av_freep(&c->hChrFilter);
3020
#ifdef HAVE_ALTIVEC
3021
    av_freep(&c->vYCoeffsBank);
3022
    av_freep(&c->vCCoeffsBank);
3023
#endif
3024

    
3025
    av_freep(&c->vLumFilterPos);
3026
    av_freep(&c->vChrFilterPos);
3027
    av_freep(&c->hLumFilterPos);
3028
    av_freep(&c->hChrFilterPos);
3029

    
3030
#if defined(ARCH_X86) && defined(CONFIG_GPL)
3031
#ifdef MAP_ANONYMOUS
3032
    if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
3033
    if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
3034
#else
3035
    av_free(c->funnyYCode);
3036
    av_free(c->funnyUVCode);
3037
#endif
3038
    c->funnyYCode=NULL;
3039
    c->funnyUVCode=NULL;
3040
#endif /* defined(ARCH_X86) */
3041

    
3042
    av_freep(&c->lumMmx2Filter);
3043
    av_freep(&c->chrMmx2Filter);
3044
    av_freep(&c->lumMmx2FilterPos);
3045
    av_freep(&c->chrMmx2FilterPos);
3046
    av_freep(&c->yuvTable);
3047

    
3048
    av_free(c);
3049
}
3050

    
3051
/**
3052
 * Checks if context is valid or reallocs a new one instead.
3053
 * If context is NULL, just calls sws_getContext() to get a new one.
3054
 * Otherwise, checks if the parameters are the same already saved in context.
3055
 * If that is the case, returns the current context.
3056
 * Otherwise, frees context and gets a new one.
3057
 *
3058
 * Be warned that srcFilter, dstFilter are not checked, they are
3059
 * asumed to remain valid.
3060
 */
3061
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
3062
                                        int srcW, int srcH, int srcFormat,
3063
                                        int dstW, int dstH, int dstFormat, int flags,
3064
                                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
3065
{
3066
    static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
3067

    
3068
    if (!param)
3069
        param = default_param;
3070

    
3071
    if (context) {
3072
        if (context->srcW != srcW || context->srcH != srcH ||
3073
            context->srcFormat != srcFormat ||
3074
            context->dstW != dstW || context->dstH != dstH ||
3075
            context->dstFormat != dstFormat || context->flags != flags ||
3076
            context->param[0] != param[0] || context->param[1] != param[1])
3077
        {
3078
            sws_freeContext(context);
3079
            context = NULL;
3080
        }
3081
    }
3082
    if (!context) {
3083
        return sws_getContext(srcW, srcH, srcFormat,
3084
                              dstW, dstH, dstFormat, flags,
3085
                              srcFilter, dstFilter, param);
3086
    }
3087
    return context;
3088
}
3089