Statistics
| Branch: | Revision:

ffmpeg / libavcodec / mdct.c @ 7d485f16

History | View | Annotate | Download (6.16 KB)

1
/*
2
 * MDCT/IMDCT transforms
3
 * Copyright (c) 2002 Fabrice Bellard
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "dsputil.h"
22

    
23
/**
24
 * @file libavcodec/mdct.c
25
 * MDCT/IMDCT transforms.
26
 */
27

    
28
// Generate a Kaiser-Bessel Derived Window.
29
#define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
30
av_cold void ff_kbd_window_init(float *window, float alpha, int n)
31
{
32
   int i, j;
33
   double sum = 0.0, bessel, tmp;
34
   double local_window[n];
35
   double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
36

    
37
   for (i = 0; i < n; i++) {
38
       tmp = i * (n - i) * alpha2;
39
       bessel = 1.0;
40
       for (j = BESSEL_I0_ITER; j > 0; j--)
41
           bessel = bessel * tmp / (j * j) + 1;
42
       sum += bessel;
43
       local_window[i] = sum;
44
   }
45

    
46
   sum++;
47
   for (i = 0; i < n; i++)
48
       window[i] = sqrt(local_window[i] / sum);
49
}
50

    
51
DECLARE_ALIGNED(16, float, ff_sine_128 [ 128]);
52
DECLARE_ALIGNED(16, float, ff_sine_256 [ 256]);
53
DECLARE_ALIGNED(16, float, ff_sine_512 [ 512]);
54
DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
55
DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
56
DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
57
float *ff_sine_windows[6] = {
58
    ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024, ff_sine_2048, ff_sine_4096
59
};
60

    
61
// Generate a sine window.
62
av_cold void ff_sine_window_init(float *window, int n) {
63
    int i;
64
    for(i = 0; i < n; i++)
65
        window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
66
}
67

    
68
/**
69
 * init MDCT or IMDCT computation.
70
 */
71
av_cold int ff_mdct_init(MDCTContext *s, int nbits, int inverse, double scale)
72
{
73
    int n, n4, i;
74
    double alpha, theta;
75

    
76
    memset(s, 0, sizeof(*s));
77
    n = 1 << nbits;
78
    s->nbits = nbits;
79
    s->n = n;
80
    n4 = n >> 2;
81
    s->tcos = av_malloc(n4 * sizeof(FFTSample));
82
    if (!s->tcos)
83
        goto fail;
84
    s->tsin = av_malloc(n4 * sizeof(FFTSample));
85
    if (!s->tsin)
86
        goto fail;
87

    
88
    theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
89
    scale = sqrt(fabs(scale));
90
    for(i=0;i<n4;i++) {
91
        alpha = 2 * M_PI * (i + theta) / n;
92
        s->tcos[i] = -cos(alpha) * scale;
93
        s->tsin[i] = -sin(alpha) * scale;
94
    }
95
    if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
96
        goto fail;
97
    return 0;
98
 fail:
99
    av_freep(&s->tcos);
100
    av_freep(&s->tsin);
101
    return -1;
102
}
103

    
104
/* complex multiplication: p = a * b */
105
#define CMUL(pre, pim, are, aim, bre, bim) \
106
{\
107
    FFTSample _are = (are);\
108
    FFTSample _aim = (aim);\
109
    FFTSample _bre = (bre);\
110
    FFTSample _bim = (bim);\
111
    (pre) = _are * _bre - _aim * _bim;\
112
    (pim) = _are * _bim + _aim * _bre;\
113
}
114

    
115
/**
116
 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
117
 * thus excluding the parts that can be derived by symmetry
118
 * @param output N/2 samples
119
 * @param input N/2 samples
120
 */
121
void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
122
{
123
    int k, n8, n4, n2, n, j;
124
    const uint16_t *revtab = s->fft.revtab;
125
    const FFTSample *tcos = s->tcos;
126
    const FFTSample *tsin = s->tsin;
127
    const FFTSample *in1, *in2;
128
    FFTComplex *z = (FFTComplex *)output;
129

    
130
    n = 1 << s->nbits;
131
    n2 = n >> 1;
132
    n4 = n >> 2;
133
    n8 = n >> 3;
134

    
135
    /* pre rotation */
136
    in1 = input;
137
    in2 = input + n2 - 1;
138
    for(k = 0; k < n4; k++) {
139
        j=revtab[k];
140
        CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
141
        in1 += 2;
142
        in2 -= 2;
143
    }
144
    ff_fft_calc(&s->fft, z);
145

    
146
    /* post rotation + reordering */
147
    for(k = 0; k < n8; k++) {
148
        FFTSample r0, i0, r1, i1;
149
        CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
150
        CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
151
        z[n8-k-1].re = r0;
152
        z[n8-k-1].im = i0;
153
        z[n8+k  ].re = r1;
154
        z[n8+k  ].im = i1;
155
    }
156
}
157

    
158
/**
159
 * Compute inverse MDCT of size N = 2^nbits
160
 * @param output N samples
161
 * @param input N/2 samples
162
 */
163
void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
164
{
165
    int k;
166
    int n = 1 << s->nbits;
167
    int n2 = n >> 1;
168
    int n4 = n >> 2;
169

    
170
    ff_imdct_half_c(s, output+n4, input);
171

    
172
    for(k = 0; k < n4; k++) {
173
        output[k] = -output[n2-k-1];
174
        output[n-k-1] = output[n2+k];
175
    }
176
}
177

    
178
/**
179
 * Compute MDCT of size N = 2^nbits
180
 * @param input N samples
181
 * @param out N/2 samples
182
 */
183
void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input)
184
{
185
    int i, j, n, n8, n4, n2, n3;
186
    FFTSample re, im;
187
    const uint16_t *revtab = s->fft.revtab;
188
    const FFTSample *tcos = s->tcos;
189
    const FFTSample *tsin = s->tsin;
190
    FFTComplex *x = (FFTComplex *)out;
191

    
192
    n = 1 << s->nbits;
193
    n2 = n >> 1;
194
    n4 = n >> 2;
195
    n8 = n >> 3;
196
    n3 = 3 * n4;
197

    
198
    /* pre rotation */
199
    for(i=0;i<n8;i++) {
200
        re = -input[2*i+3*n4] - input[n3-1-2*i];
201
        im = -input[n4+2*i] + input[n4-1-2*i];
202
        j = revtab[i];
203
        CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
204

    
205
        re = input[2*i] - input[n2-1-2*i];
206
        im = -(input[n2+2*i] + input[n-1-2*i]);
207
        j = revtab[n8 + i];
208
        CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
209
    }
210

    
211
    ff_fft_calc(&s->fft, x);
212

    
213
    /* post rotation */
214
    for(i=0;i<n8;i++) {
215
        FFTSample r0, i0, r1, i1;
216
        CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
217
        CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
218
        x[n8-i-1].re = r0;
219
        x[n8-i-1].im = i0;
220
        x[n8+i  ].re = r1;
221
        x[n8+i  ].im = i1;
222
    }
223
}
224

    
225
av_cold void ff_mdct_end(MDCTContext *s)
226
{
227
    av_freep(&s->tcos);
228
    av_freep(&s->tsin);
229
    ff_fft_end(&s->fft);
230
}