Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ 7f57905d

History | View | Annotate | Download (82.7 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file libavcodec/vp3.c
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35
#include <unistd.h>
36

    
37
#include "avcodec.h"
38
#include "dsputil.h"
39
#include "get_bits.h"
40

    
41
#include "vp3data.h"
42
#include "xiph.h"
43

    
44
#define FRAGMENT_PIXELS 8
45

    
46
typedef struct Coeff {
47
    struct Coeff *next;
48
    DCTELEM coeff;
49
    uint8_t index;
50
} Coeff;
51

    
52
//FIXME split things out into their own arrays
53
typedef struct Vp3Fragment {
54
    Coeff *next_coeff;
55
    /* address of first pixel taking into account which plane the fragment
56
     * lives on as well as the plane stride */
57
    int first_pixel;
58
    /* this is the macroblock that the fragment belongs to */
59
    uint16_t macroblock;
60
    uint8_t coding_method;
61
    int8_t motion_x;
62
    int8_t motion_y;
63
    uint8_t qpi;
64
} Vp3Fragment;
65

    
66
#define SB_NOT_CODED        0
67
#define SB_PARTIALLY_CODED  1
68
#define SB_FULLY_CODED      2
69

    
70
#define MODE_INTER_NO_MV      0
71
#define MODE_INTRA            1
72
#define MODE_INTER_PLUS_MV    2
73
#define MODE_INTER_LAST_MV    3
74
#define MODE_INTER_PRIOR_LAST 4
75
#define MODE_USING_GOLDEN     5
76
#define MODE_GOLDEN_MV        6
77
#define MODE_INTER_FOURMV     7
78
#define CODING_MODE_COUNT     8
79

    
80
/* special internal mode */
81
#define MODE_COPY             8
82

    
83
/* There are 6 preset schemes, plus a free-form scheme */
84
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
85
{
86
    /* scheme 1: Last motion vector dominates */
87
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
88
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
89
         MODE_INTRA,            MODE_USING_GOLDEN,
90
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
91

    
92
    /* scheme 2 */
93
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
94
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
95
         MODE_INTRA,            MODE_USING_GOLDEN,
96
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
97

    
98
    /* scheme 3 */
99
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
100
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
101
         MODE_INTRA,            MODE_USING_GOLDEN,
102
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
103

    
104
    /* scheme 4 */
105
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
106
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
107
         MODE_INTRA,            MODE_USING_GOLDEN,
108
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
109

    
110
    /* scheme 5: No motion vector dominates */
111
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
112
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
113
         MODE_INTRA,            MODE_USING_GOLDEN,
114
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
115

    
116
    /* scheme 6 */
117
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
118
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
119
         MODE_INTER_PLUS_MV,    MODE_INTRA,
120
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
121

    
122
};
123

    
124
#define MIN_DEQUANT_VAL 2
125

    
126
typedef struct Vp3DecodeContext {
127
    AVCodecContext *avctx;
128
    int theora, theora_tables;
129
    int version;
130
    int width, height;
131
    AVFrame golden_frame;
132
    AVFrame last_frame;
133
    AVFrame current_frame;
134
    int keyframe;
135
    DSPContext dsp;
136
    int flipped_image;
137

    
138
    int qps[3];
139
    int nqps;
140
    int last_qps[3];
141

    
142
    int superblock_count;
143
    int y_superblock_width;
144
    int y_superblock_height;
145
    int c_superblock_width;
146
    int c_superblock_height;
147
    int u_superblock_start;
148
    int v_superblock_start;
149
    unsigned char *superblock_coding;
150

    
151
    int macroblock_count;
152
    int macroblock_width;
153
    int macroblock_height;
154

    
155
    int fragment_count;
156
    int fragment_width;
157
    int fragment_height;
158

    
159
    Vp3Fragment *all_fragments;
160
    uint8_t *coeff_counts;
161
    Coeff *coeffs;
162
    Coeff *next_coeff;
163
    int fragment_start[3];
164

    
165
    ScanTable scantable;
166

    
167
    /* tables */
168
    uint16_t coded_dc_scale_factor[64];
169
    uint32_t coded_ac_scale_factor[64];
170
    uint8_t base_matrix[384][64];
171
    uint8_t qr_count[2][3];
172
    uint8_t qr_size [2][3][64];
173
    uint16_t qr_base[2][3][64];
174

    
175
    /* this is a list of indexes into the all_fragments array indicating
176
     * which of the fragments are coded */
177
    int *coded_fragment_list;
178
    int coded_fragment_list_index;
179
    int pixel_addresses_initialized;
180

    
181
    VLC dc_vlc[16];
182
    VLC ac_vlc_1[16];
183
    VLC ac_vlc_2[16];
184
    VLC ac_vlc_3[16];
185
    VLC ac_vlc_4[16];
186

    
187
    VLC superblock_run_length_vlc;
188
    VLC fragment_run_length_vlc;
189
    VLC mode_code_vlc;
190
    VLC motion_vector_vlc;
191

    
192
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
193
     * index into them */
194
    DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]);     //<qmat[qpi][is_inter][plane]
195

    
196
    /* This table contains superblock_count * 16 entries. Each set of 16
197
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
198
     * An entry will be -1 to indicate that no entry corresponds to that
199
     * index. */
200
    int *superblock_fragments;
201

    
202
    /* This table contains superblock_count * 4 entries. Each set of 4
203
     * numbers corresponds to the macroblock indexes 0..3 of the superblock.
204
     * An entry will be -1 to indicate that no entry corresponds to that
205
     * index. */
206
    int *superblock_macroblocks;
207

    
208
    /* This table contains macroblock_count * 6 entries. Each set of 6
209
     * numbers corresponds to the fragment indexes 0..5 which comprise
210
     * the macroblock (4 Y fragments and 2 C fragments). */
211
    int *macroblock_fragments;
212
    /* This is an array that indicates how a particular macroblock
213
     * is coded. */
214
    unsigned char *macroblock_coding;
215

    
216
    int first_coded_y_fragment;
217
    int first_coded_c_fragment;
218
    int last_coded_y_fragment;
219
    int last_coded_c_fragment;
220

    
221
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
223

    
224
    /* Huffman decode */
225
    int hti;
226
    unsigned int hbits;
227
    int entries;
228
    int huff_code_size;
229
    uint16_t huffman_table[80][32][2];
230

    
231
    uint8_t filter_limit_values[64];
232
    DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
233
} Vp3DecodeContext;
234

    
235
/************************************************************************
236
 * VP3 specific functions
237
 ************************************************************************/
238

    
239
/*
240
 * This function sets up all of the various blocks mappings:
241
 * superblocks <-> fragments, macroblocks <-> fragments,
242
 * superblocks <-> macroblocks
243
 *
244
 * Returns 0 is successful; returns 1 if *anything* went wrong.
245
 */
246
static int init_block_mapping(Vp3DecodeContext *s)
247
{
248
    int i, j;
249
    signed int hilbert_walk_mb[4];
250

    
251
    int current_fragment = 0;
252
    int current_width = 0;
253
    int current_height = 0;
254
    int right_edge = 0;
255
    int bottom_edge = 0;
256
    int superblock_row_inc = 0;
257
    int mapping_index = 0;
258

    
259
    int current_macroblock;
260
    int c_fragment;
261

    
262
    signed char travel_width[16] = {
263
         1,  1,  0, -1,
264
         0,  0,  1,  0,
265
         1,  0,  1,  0,
266
         0, -1,  0,  1
267
    };
268

    
269
    signed char travel_height[16] = {
270
         0,  0,  1,  0,
271
         1,  1,  0, -1,
272
         0,  1,  0, -1,
273
        -1,  0, -1,  0
274
    };
275

    
276
    signed char travel_width_mb[4] = {
277
         1,  0,  1,  0
278
    };
279

    
280
    signed char travel_height_mb[4] = {
281
         0,  1,  0, -1
282
    };
283

    
284
    hilbert_walk_mb[0] = 1;
285
    hilbert_walk_mb[1] = s->macroblock_width;
286
    hilbert_walk_mb[2] = 1;
287
    hilbert_walk_mb[3] = -s->macroblock_width;
288

    
289
    /* iterate through each superblock (all planes) and map the fragments */
290
    for (i = 0; i < s->superblock_count; i++) {
291
        /* time to re-assign the limits? */
292
        if (i == 0) {
293

    
294
            /* start of Y superblocks */
295
            right_edge = s->fragment_width;
296
            bottom_edge = s->fragment_height;
297
            current_width = -1;
298
            current_height = 0;
299
            superblock_row_inc = 3 * s->fragment_width -
300
                (s->y_superblock_width * 4 - s->fragment_width);
301

    
302
            /* the first operation for this variable is to advance by 1 */
303
            current_fragment = -1;
304

    
305
        } else if (i == s->u_superblock_start) {
306

    
307
            /* start of U superblocks */
308
            right_edge = s->fragment_width / 2;
309
            bottom_edge = s->fragment_height / 2;
310
            current_width = -1;
311
            current_height = 0;
312
            superblock_row_inc = 3 * (s->fragment_width / 2) -
313
                (s->c_superblock_width * 4 - s->fragment_width / 2);
314

    
315
            /* the first operation for this variable is to advance by 1 */
316
            current_fragment = s->fragment_start[1] - 1;
317

    
318
        } else if (i == s->v_superblock_start) {
319

    
320
            /* start of V superblocks */
321
            right_edge = s->fragment_width / 2;
322
            bottom_edge = s->fragment_height / 2;
323
            current_width = -1;
324
            current_height = 0;
325
            superblock_row_inc = 3 * (s->fragment_width / 2) -
326
                (s->c_superblock_width * 4 - s->fragment_width / 2);
327

    
328
            /* the first operation for this variable is to advance by 1 */
329
            current_fragment = s->fragment_start[2] - 1;
330

    
331
        }
332

    
333
        if (current_width >= right_edge - 1) {
334
            /* reset width and move to next superblock row */
335
            current_width = -1;
336
            current_height += 4;
337

    
338
            /* fragment is now at the start of a new superblock row */
339
            current_fragment += superblock_row_inc;
340
        }
341

    
342
        /* iterate through all 16 fragments in a superblock */
343
        for (j = 0; j < 16; j++) {
344
            current_fragment += travel_width[j] + right_edge * travel_height[j];
345
            current_width += travel_width[j];
346
            current_height += travel_height[j];
347

    
348
            /* check if the fragment is in bounds */
349
            if ((current_width < right_edge) &&
350
                (current_height < bottom_edge)) {
351
                s->superblock_fragments[mapping_index] = current_fragment;
352
            } else {
353
                s->superblock_fragments[mapping_index] = -1;
354
            }
355

    
356
            mapping_index++;
357
        }
358
    }
359

    
360
    /* initialize the superblock <-> macroblock mapping; iterate through
361
     * all of the Y plane superblocks to build this mapping */
362
    right_edge = s->macroblock_width;
363
    bottom_edge = s->macroblock_height;
364
    current_width = -1;
365
    current_height = 0;
366
    superblock_row_inc = s->macroblock_width -
367
        (s->y_superblock_width * 2 - s->macroblock_width);
368
    mapping_index = 0;
369
    current_macroblock = -1;
370
    for (i = 0; i < s->u_superblock_start; i++) {
371

    
372
        if (current_width >= right_edge - 1) {
373
            /* reset width and move to next superblock row */
374
            current_width = -1;
375
            current_height += 2;
376

    
377
            /* macroblock is now at the start of a new superblock row */
378
            current_macroblock += superblock_row_inc;
379
        }
380

    
381
        /* iterate through each potential macroblock in the superblock */
382
        for (j = 0; j < 4; j++) {
383
            current_macroblock += hilbert_walk_mb[j];
384
            current_width += travel_width_mb[j];
385
            current_height += travel_height_mb[j];
386

    
387
            /* check if the macroblock is in bounds */
388
            if ((current_width < right_edge) &&
389
                (current_height < bottom_edge)) {
390
                s->superblock_macroblocks[mapping_index] = current_macroblock;
391
            } else {
392
                s->superblock_macroblocks[mapping_index] = -1;
393
            }
394

    
395
            mapping_index++;
396
        }
397
    }
398

    
399
    /* initialize the macroblock <-> fragment mapping */
400
    current_fragment = 0;
401
    current_macroblock = 0;
402
    mapping_index = 0;
403
    for (i = 0; i < s->fragment_height; i += 2) {
404

    
405
        for (j = 0; j < s->fragment_width; j += 2) {
406

    
407
            s->all_fragments[current_fragment].macroblock = current_macroblock;
408
            s->macroblock_fragments[mapping_index++] = current_fragment;
409

    
410
            if (j + 1 < s->fragment_width) {
411
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
412
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
413
            } else
414
                s->macroblock_fragments[mapping_index++] = -1;
415

    
416
            if (i + 1 < s->fragment_height) {
417
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
418
                    current_macroblock;
419
                s->macroblock_fragments[mapping_index++] =
420
                    current_fragment + s->fragment_width;
421
            } else
422
                s->macroblock_fragments[mapping_index++] = -1;
423

    
424
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
425
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
426
                    current_macroblock;
427
                s->macroblock_fragments[mapping_index++] =
428
                    current_fragment + s->fragment_width + 1;
429
            } else
430
                s->macroblock_fragments[mapping_index++] = -1;
431

    
432
            /* C planes */
433
            c_fragment = s->fragment_start[1] +
434
                (i * s->fragment_width / 4) + (j / 2);
435
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
436
            s->macroblock_fragments[mapping_index++] = c_fragment;
437

    
438
            c_fragment = s->fragment_start[2] +
439
                (i * s->fragment_width / 4) + (j / 2);
440
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
441
            s->macroblock_fragments[mapping_index++] = c_fragment;
442

    
443
            if (j + 2 <= s->fragment_width)
444
                current_fragment += 2;
445
            else
446
                current_fragment++;
447
            current_macroblock++;
448
        }
449

    
450
        current_fragment += s->fragment_width;
451
    }
452

    
453
    return 0;  /* successful path out */
454
}
455

    
456
/*
457
 * This function wipes out all of the fragment data.
458
 */
459
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
460
{
461
    int i;
462

    
463
    /* zero out all of the fragment information */
464
    s->coded_fragment_list_index = 0;
465
    for (i = 0; i < s->fragment_count; i++) {
466
        s->coeff_counts[i] = 0;
467
        s->all_fragments[i].motion_x = 127;
468
        s->all_fragments[i].motion_y = 127;
469
        s->all_fragments[i].next_coeff= NULL;
470
        s->all_fragments[i].qpi = 0;
471
        s->coeffs[i].index=
472
        s->coeffs[i].coeff=0;
473
        s->coeffs[i].next= NULL;
474
    }
475
}
476

    
477
/*
478
 * This function sets up the dequantization tables used for a particular
479
 * frame.
480
 */
481
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
482
{
483
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
484
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
485
    int i, plane, inter, qri, bmi, bmj, qistart;
486

    
487
    for(inter=0; inter<2; inter++){
488
        for(plane=0; plane<3; plane++){
489
            int sum=0;
490
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
491
                sum+= s->qr_size[inter][plane][qri];
492
                if(s->qps[qpi] <= sum)
493
                    break;
494
            }
495
            qistart= sum - s->qr_size[inter][plane][qri];
496
            bmi= s->qr_base[inter][plane][qri  ];
497
            bmj= s->qr_base[inter][plane][qri+1];
498
            for(i=0; i<64; i++){
499
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
500
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
501
                            + s->qr_size[inter][plane][qri])
502
                           / (2*s->qr_size[inter][plane][qri]);
503

    
504
                int qmin= 8<<(inter + !i);
505
                int qscale= i ? ac_scale_factor : dc_scale_factor;
506

    
507
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
508
            }
509
            // all DC coefficients use the same quant so as not to interfere with DC prediction
510
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
511
        }
512
    }
513

    
514
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
515
}
516

    
517
/*
518
 * This function initializes the loop filter boundary limits if the frame's
519
 * quality index is different from the previous frame's.
520
 */
521
static void init_loop_filter(Vp3DecodeContext *s)
522
{
523
    int *bounding_values= s->bounding_values_array+127;
524
    int filter_limit;
525
    int x;
526

    
527
    filter_limit = s->filter_limit_values[s->qps[0]];
528

    
529
    /* set up the bounding values */
530
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
531
    for (x = 0; x < filter_limit; x++) {
532
        bounding_values[-x - filter_limit] = -filter_limit + x;
533
        bounding_values[-x] = -x;
534
        bounding_values[x] = x;
535
        bounding_values[x + filter_limit] = filter_limit - x;
536
    }
537
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
538
}
539

    
540
/*
541
 * This function unpacks all of the superblock/macroblock/fragment coding
542
 * information from the bitstream.
543
 */
544
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
545
{
546
    int bit = 0;
547
    int current_superblock = 0;
548
    int current_run = 0;
549
    int decode_fully_flags = 0;
550
    int decode_partial_blocks = 0;
551
    int first_c_fragment_seen;
552

    
553
    int i, j;
554
    int current_fragment;
555

    
556
    if (s->keyframe) {
557
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
558

    
559
    } else {
560

    
561
        /* unpack the list of partially-coded superblocks */
562
        bit = get_bits1(gb);
563
        /* toggle the bit because as soon as the first run length is
564
         * fetched the bit will be toggled again */
565
        bit ^= 1;
566
        while (current_superblock < s->superblock_count) {
567
            if (current_run-- == 0) {
568
                bit ^= 1;
569
                current_run = get_vlc2(gb,
570
                    s->superblock_run_length_vlc.table, 6, 2);
571
                if (current_run == 33)
572
                    current_run += get_bits(gb, 12);
573

    
574
                /* if any of the superblocks are not partially coded, flag
575
                 * a boolean to decode the list of fully-coded superblocks */
576
                if (bit == 0) {
577
                    decode_fully_flags = 1;
578
                } else {
579

    
580
                    /* make a note of the fact that there are partially coded
581
                     * superblocks */
582
                    decode_partial_blocks = 1;
583
                }
584
            }
585
            s->superblock_coding[current_superblock++] = bit;
586
        }
587

    
588
        /* unpack the list of fully coded superblocks if any of the blocks were
589
         * not marked as partially coded in the previous step */
590
        if (decode_fully_flags) {
591

    
592
            current_superblock = 0;
593
            current_run = 0;
594
            bit = get_bits1(gb);
595
            /* toggle the bit because as soon as the first run length is
596
             * fetched the bit will be toggled again */
597
            bit ^= 1;
598
            while (current_superblock < s->superblock_count) {
599

    
600
                /* skip any superblocks already marked as partially coded */
601
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
602

    
603
                    if (current_run-- == 0) {
604
                        bit ^= 1;
605
                        current_run = get_vlc2(gb,
606
                            s->superblock_run_length_vlc.table, 6, 2);
607
                        if (current_run == 33)
608
                            current_run += get_bits(gb, 12);
609
                    }
610
                    s->superblock_coding[current_superblock] = 2*bit;
611
                }
612
                current_superblock++;
613
            }
614
        }
615

    
616
        /* if there were partial blocks, initialize bitstream for
617
         * unpacking fragment codings */
618
        if (decode_partial_blocks) {
619

    
620
            current_run = 0;
621
            bit = get_bits1(gb);
622
            /* toggle the bit because as soon as the first run length is
623
             * fetched the bit will be toggled again */
624
            bit ^= 1;
625
        }
626
    }
627

    
628
    /* figure out which fragments are coded; iterate through each
629
     * superblock (all planes) */
630
    s->coded_fragment_list_index = 0;
631
    s->next_coeff= s->coeffs + s->fragment_count;
632
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
633
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
634
    first_c_fragment_seen = 0;
635
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
636
    for (i = 0; i < s->superblock_count; i++) {
637

    
638
        /* iterate through all 16 fragments in a superblock */
639
        for (j = 0; j < 16; j++) {
640

    
641
            /* if the fragment is in bounds, check its coding status */
642
            current_fragment = s->superblock_fragments[i * 16 + j];
643
            if (current_fragment >= s->fragment_count) {
644
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
645
                    current_fragment, s->fragment_count);
646
                return 1;
647
            }
648
            if (current_fragment != -1) {
649
                if (s->superblock_coding[i] == SB_NOT_CODED) {
650

    
651
                    /* copy all the fragments from the prior frame */
652
                    s->all_fragments[current_fragment].coding_method =
653
                        MODE_COPY;
654

    
655
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
656

    
657
                    /* fragment may or may not be coded; this is the case
658
                     * that cares about the fragment coding runs */
659
                    if (current_run-- == 0) {
660
                        bit ^= 1;
661
                        current_run = get_vlc2(gb,
662
                            s->fragment_run_length_vlc.table, 5, 2);
663
                    }
664

    
665
                    if (bit) {
666
                        /* default mode; actual mode will be decoded in
667
                         * the next phase */
668
                        s->all_fragments[current_fragment].coding_method =
669
                            MODE_INTER_NO_MV;
670
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
671
                        s->coded_fragment_list[s->coded_fragment_list_index] =
672
                            current_fragment;
673
                        if ((current_fragment >= s->fragment_start[1]) &&
674
                            (s->last_coded_y_fragment == -1) &&
675
                            (!first_c_fragment_seen)) {
676
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
677
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
678
                            first_c_fragment_seen = 1;
679
                        }
680
                        s->coded_fragment_list_index++;
681
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
682
                    } else {
683
                        /* not coded; copy this fragment from the prior frame */
684
                        s->all_fragments[current_fragment].coding_method =
685
                            MODE_COPY;
686
                    }
687

    
688
                } else {
689

    
690
                    /* fragments are fully coded in this superblock; actual
691
                     * coding will be determined in next step */
692
                    s->all_fragments[current_fragment].coding_method =
693
                        MODE_INTER_NO_MV;
694
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
695
                    s->coded_fragment_list[s->coded_fragment_list_index] =
696
                        current_fragment;
697
                    if ((current_fragment >= s->fragment_start[1]) &&
698
                        (s->last_coded_y_fragment == -1) &&
699
                        (!first_c_fragment_seen)) {
700
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
701
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
702
                        first_c_fragment_seen = 1;
703
                    }
704
                    s->coded_fragment_list_index++;
705
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
706
                }
707
            }
708
        }
709
    }
710

    
711
    if (!first_c_fragment_seen)
712
        /* only Y fragments coded in this frame */
713
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
714
    else
715
        /* end the list of coded C fragments */
716
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
717

    
718
    return 0;
719
}
720

    
721
/*
722
 * This function unpacks all the coding mode data for individual macroblocks
723
 * from the bitstream.
724
 */
725
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
726
{
727
    int i, j, k;
728
    int scheme;
729
    int current_macroblock;
730
    int current_fragment;
731
    int coding_mode;
732
    int custom_mode_alphabet[CODING_MODE_COUNT];
733

    
734
    if (s->keyframe) {
735
        for (i = 0; i < s->fragment_count; i++)
736
            s->all_fragments[i].coding_method = MODE_INTRA;
737

    
738
    } else {
739

    
740
        /* fetch the mode coding scheme for this frame */
741
        scheme = get_bits(gb, 3);
742

    
743
        /* is it a custom coding scheme? */
744
        if (scheme == 0) {
745
            for (i = 0; i < 8; i++)
746
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
747
            for (i = 0; i < 8; i++)
748
                custom_mode_alphabet[get_bits(gb, 3)] = i;
749
        }
750

    
751
        /* iterate through all of the macroblocks that contain 1 or more
752
         * coded fragments */
753
        for (i = 0; i < s->u_superblock_start; i++) {
754

    
755
            for (j = 0; j < 4; j++) {
756
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
757
                if ((current_macroblock == -1) ||
758
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
759
                    continue;
760
                if (current_macroblock >= s->macroblock_count) {
761
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
762
                        current_macroblock, s->macroblock_count);
763
                    return 1;
764
                }
765

    
766
                /* mode 7 means get 3 bits for each coding mode */
767
                if (scheme == 7)
768
                    coding_mode = get_bits(gb, 3);
769
                else if(scheme == 0)
770
                    coding_mode = custom_mode_alphabet
771
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
772
                else
773
                    coding_mode = ModeAlphabet[scheme-1]
774
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
775

    
776
                s->macroblock_coding[current_macroblock] = coding_mode;
777
                for (k = 0; k < 6; k++) {
778
                    current_fragment =
779
                        s->macroblock_fragments[current_macroblock * 6 + k];
780
                    if (current_fragment == -1)
781
                        continue;
782
                    if (current_fragment >= s->fragment_count) {
783
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
784
                            current_fragment, s->fragment_count);
785
                        return 1;
786
                    }
787
                    if (s->all_fragments[current_fragment].coding_method !=
788
                        MODE_COPY)
789
                        s->all_fragments[current_fragment].coding_method =
790
                            coding_mode;
791
                }
792
            }
793
        }
794
    }
795

    
796
    return 0;
797
}
798

    
799
/*
800
 * This function unpacks all the motion vectors for the individual
801
 * macroblocks from the bitstream.
802
 */
803
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
804
{
805
    int i, j, k, l;
806
    int coding_mode;
807
    int motion_x[6];
808
    int motion_y[6];
809
    int last_motion_x = 0;
810
    int last_motion_y = 0;
811
    int prior_last_motion_x = 0;
812
    int prior_last_motion_y = 0;
813
    int current_macroblock;
814
    int current_fragment;
815

    
816
    if (s->keyframe)
817
        return 0;
818

    
819
    memset(motion_x, 0, 6 * sizeof(int));
820
    memset(motion_y, 0, 6 * sizeof(int));
821

    
822
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
823
    coding_mode = get_bits1(gb);
824

    
825
    /* iterate through all of the macroblocks that contain 1 or more
826
     * coded fragments */
827
    for (i = 0; i < s->u_superblock_start; i++) {
828

    
829
        for (j = 0; j < 4; j++) {
830
            current_macroblock = s->superblock_macroblocks[i * 4 + j];
831
            if ((current_macroblock == -1) ||
832
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
833
                continue;
834
            if (current_macroblock >= s->macroblock_count) {
835
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
836
                    current_macroblock, s->macroblock_count);
837
                return 1;
838
            }
839

    
840
            current_fragment = s->macroblock_fragments[current_macroblock * 6];
841
            if (current_fragment >= s->fragment_count) {
842
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
843
                    current_fragment, s->fragment_count);
844
                return 1;
845
            }
846
            switch (s->macroblock_coding[current_macroblock]) {
847

    
848
            case MODE_INTER_PLUS_MV:
849
            case MODE_GOLDEN_MV:
850
                /* all 6 fragments use the same motion vector */
851
                if (coding_mode == 0) {
852
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
853
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
854
                } else {
855
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
856
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
857
                }
858

    
859
                for (k = 1; k < 6; k++) {
860
                    motion_x[k] = motion_x[0];
861
                    motion_y[k] = motion_y[0];
862
                }
863

    
864
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
865
                if (s->macroblock_coding[current_macroblock] ==
866
                    MODE_INTER_PLUS_MV) {
867
                    prior_last_motion_x = last_motion_x;
868
                    prior_last_motion_y = last_motion_y;
869
                    last_motion_x = motion_x[0];
870
                    last_motion_y = motion_y[0];
871
                }
872
                break;
873

    
874
            case MODE_INTER_FOURMV:
875
                /* vector maintenance */
876
                prior_last_motion_x = last_motion_x;
877
                prior_last_motion_y = last_motion_y;
878

    
879
                /* fetch 4 vectors from the bitstream, one for each
880
                 * Y fragment, then average for the C fragment vectors */
881
                motion_x[4] = motion_y[4] = 0;
882
                for (k = 0; k < 4; k++) {
883
                    for (l = 0; l < s->coded_fragment_list_index; l++)
884
                        if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
885
                            break;
886
                    if (l < s->coded_fragment_list_index) {
887
                        if (coding_mode == 0) {
888
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
889
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
890
                        } else {
891
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
892
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
893
                        }
894
                        last_motion_x = motion_x[k];
895
                        last_motion_y = motion_y[k];
896
                    } else {
897
                        motion_x[k] = 0;
898
                        motion_y[k] = 0;
899
                    }
900
                    motion_x[4] += motion_x[k];
901
                    motion_y[4] += motion_y[k];
902
                }
903

    
904
                motion_x[5]=
905
                motion_x[4]= RSHIFT(motion_x[4], 2);
906
                motion_y[5]=
907
                motion_y[4]= RSHIFT(motion_y[4], 2);
908
                break;
909

    
910
            case MODE_INTER_LAST_MV:
911
                /* all 6 fragments use the last motion vector */
912
                motion_x[0] = last_motion_x;
913
                motion_y[0] = last_motion_y;
914
                for (k = 1; k < 6; k++) {
915
                    motion_x[k] = motion_x[0];
916
                    motion_y[k] = motion_y[0];
917
                }
918

    
919
                /* no vector maintenance (last vector remains the
920
                 * last vector) */
921
                break;
922

    
923
            case MODE_INTER_PRIOR_LAST:
924
                /* all 6 fragments use the motion vector prior to the
925
                 * last motion vector */
926
                motion_x[0] = prior_last_motion_x;
927
                motion_y[0] = prior_last_motion_y;
928
                for (k = 1; k < 6; k++) {
929
                    motion_x[k] = motion_x[0];
930
                    motion_y[k] = motion_y[0];
931
                }
932

    
933
                /* vector maintenance */
934
                prior_last_motion_x = last_motion_x;
935
                prior_last_motion_y = last_motion_y;
936
                last_motion_x = motion_x[0];
937
                last_motion_y = motion_y[0];
938
                break;
939

    
940
            default:
941
                /* covers intra, inter without MV, golden without MV */
942
                memset(motion_x, 0, 6 * sizeof(int));
943
                memset(motion_y, 0, 6 * sizeof(int));
944

    
945
                /* no vector maintenance */
946
                break;
947
            }
948

    
949
            /* assign the motion vectors to the correct fragments */
950
            for (k = 0; k < 6; k++) {
951
                current_fragment =
952
                    s->macroblock_fragments[current_macroblock * 6 + k];
953
                if (current_fragment == -1)
954
                    continue;
955
                if (current_fragment >= s->fragment_count) {
956
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
957
                        current_fragment, s->fragment_count);
958
                    return 1;
959
                }
960
                s->all_fragments[current_fragment].motion_x = motion_x[k];
961
                s->all_fragments[current_fragment].motion_y = motion_y[k];
962
            }
963
        }
964
    }
965

    
966
    return 0;
967
}
968

    
969
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
970
{
971
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
972
    int num_blocks = s->coded_fragment_list_index;
973

    
974
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
975
        i = blocks_decoded = num_blocks_at_qpi = 0;
976

    
977
        bit = get_bits1(gb);
978

    
979
        do {
980
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
981
            if (run_length == 34)
982
                run_length += get_bits(gb, 12);
983
            blocks_decoded += run_length;
984

    
985
            if (!bit)
986
                num_blocks_at_qpi += run_length;
987

    
988
            for (j = 0; j < run_length; i++) {
989
                if (i > s->coded_fragment_list_index)
990
                    return -1;
991

    
992
                if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
993
                    s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
994
                    j++;
995
                }
996
            }
997

    
998
            if (run_length == 4129)
999
                bit = get_bits1(gb);
1000
            else
1001
                bit ^= 1;
1002
        } while (blocks_decoded < num_blocks);
1003

    
1004
        num_blocks -= num_blocks_at_qpi;
1005
    }
1006

    
1007
    return 0;
1008
}
1009

    
1010
/*
1011
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1012
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1013
 * data. This function unpacks all the VLCs for either the Y plane or both
1014
 * C planes, and is called for DC coefficients or different AC coefficient
1015
 * levels (since different coefficient types require different VLC tables.
1016
 *
1017
 * This function returns a residual eob run. E.g, if a particular token gave
1018
 * instructions to EOB the next 5 fragments and there were only 2 fragments
1019
 * left in the current fragment range, 3 would be returned so that it could
1020
 * be passed into the next call to this same function.
1021
 */
1022
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1023
                        VLC *table, int coeff_index,
1024
                        int first_fragment, int last_fragment,
1025
                        int eob_run)
1026
{
1027
    int i;
1028
    int token;
1029
    int zero_run = 0;
1030
    DCTELEM coeff = 0;
1031
    Vp3Fragment *fragment;
1032
    uint8_t *perm= s->scantable.permutated;
1033
    int bits_to_get;
1034

    
1035
    if ((first_fragment >= s->fragment_count) ||
1036
        (last_fragment >= s->fragment_count)) {
1037

    
1038
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1039
            first_fragment, last_fragment);
1040
        return 0;
1041
    }
1042

    
1043
    for (i = first_fragment; i <= last_fragment; i++) {
1044
        int fragment_num = s->coded_fragment_list[i];
1045

    
1046
        if (s->coeff_counts[fragment_num] > coeff_index)
1047
            continue;
1048
        fragment = &s->all_fragments[fragment_num];
1049

    
1050
        if (!eob_run) {
1051
            /* decode a VLC into a token */
1052
            token = get_vlc2(gb, table->table, 5, 3);
1053
            /* use the token to get a zero run, a coefficient, and an eob run */
1054
            if (token <= 6) {
1055
                eob_run = eob_run_base[token];
1056
                if (eob_run_get_bits[token])
1057
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
1058
                coeff = zero_run = 0;
1059
            } else {
1060
                bits_to_get = coeff_get_bits[token];
1061
                if (!bits_to_get)
1062
                    coeff = coeff_tables[token][0];
1063
                else
1064
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1065

    
1066
                zero_run = zero_run_base[token];
1067
                if (zero_run_get_bits[token])
1068
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1069
            }
1070
        }
1071

    
1072
        if (!eob_run) {
1073
            s->coeff_counts[fragment_num] += zero_run;
1074
            if (s->coeff_counts[fragment_num] < 64){
1075
                fragment->next_coeff->coeff= coeff;
1076
                fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
1077
                fragment->next_coeff->next= s->next_coeff;
1078
                s->next_coeff->next=NULL;
1079
                fragment->next_coeff= s->next_coeff++;
1080
            }
1081
        } else {
1082
            s->coeff_counts[fragment_num] |= 128;
1083
            eob_run--;
1084
        }
1085
    }
1086

    
1087
    return eob_run;
1088
}
1089

    
1090
/*
1091
 * This function unpacks all of the DCT coefficient data from the
1092
 * bitstream.
1093
 */
1094
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1095
{
1096
    int i;
1097
    int dc_y_table;
1098
    int dc_c_table;
1099
    int ac_y_table;
1100
    int ac_c_table;
1101
    int residual_eob_run = 0;
1102

    
1103
    /* fetch the DC table indexes */
1104
    dc_y_table = get_bits(gb, 4);
1105
    dc_c_table = get_bits(gb, 4);
1106

    
1107
    /* unpack the Y plane DC coefficients */
1108
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1109
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1110

    
1111
    /* unpack the C plane DC coefficients */
1112
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1113
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1114

    
1115
    /* fetch the AC table indexes */
1116
    ac_y_table = get_bits(gb, 4);
1117
    ac_c_table = get_bits(gb, 4);
1118

    
1119
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1120
    for (i = 1; i <= 5; i++) {
1121
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1122
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1123

    
1124
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1125
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1126
    }
1127

    
1128
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1129
    for (i = 6; i <= 14; i++) {
1130
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1131
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1132

    
1133
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1134
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1135
    }
1136

    
1137
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1138
    for (i = 15; i <= 27; i++) {
1139
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1140
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1141

    
1142
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1143
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1144
    }
1145

    
1146
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1147
    for (i = 28; i <= 63; i++) {
1148
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1149
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1150

    
1151
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1152
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1153
    }
1154

    
1155
    return 0;
1156
}
1157

    
1158
/*
1159
 * This function reverses the DC prediction for each coded fragment in
1160
 * the frame. Much of this function is adapted directly from the original
1161
 * VP3 source code.
1162
 */
1163
#define COMPATIBLE_FRAME(x) \
1164
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1165
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1166
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1167

    
1168
static void reverse_dc_prediction(Vp3DecodeContext *s,
1169
                                  int first_fragment,
1170
                                  int fragment_width,
1171
                                  int fragment_height)
1172
{
1173

    
1174
#define PUL 8
1175
#define PU 4
1176
#define PUR 2
1177
#define PL 1
1178

    
1179
    int x, y;
1180
    int i = first_fragment;
1181

    
1182
    int predicted_dc;
1183

    
1184
    /* DC values for the left, up-left, up, and up-right fragments */
1185
    int vl, vul, vu, vur;
1186

    
1187
    /* indexes for the left, up-left, up, and up-right fragments */
1188
    int l, ul, u, ur;
1189

    
1190
    /*
1191
     * The 6 fields mean:
1192
     *   0: up-left multiplier
1193
     *   1: up multiplier
1194
     *   2: up-right multiplier
1195
     *   3: left multiplier
1196
     */
1197
    int predictor_transform[16][4] = {
1198
        {  0,  0,  0,  0},
1199
        {  0,  0,  0,128},        // PL
1200
        {  0,  0,128,  0},        // PUR
1201
        {  0,  0, 53, 75},        // PUR|PL
1202
        {  0,128,  0,  0},        // PU
1203
        {  0, 64,  0, 64},        // PU|PL
1204
        {  0,128,  0,  0},        // PU|PUR
1205
        {  0,  0, 53, 75},        // PU|PUR|PL
1206
        {128,  0,  0,  0},        // PUL
1207
        {  0,  0,  0,128},        // PUL|PL
1208
        { 64,  0, 64,  0},        // PUL|PUR
1209
        {  0,  0, 53, 75},        // PUL|PUR|PL
1210
        {  0,128,  0,  0},        // PUL|PU
1211
       {-104,116,  0,116},        // PUL|PU|PL
1212
        { 24, 80, 24,  0},        // PUL|PU|PUR
1213
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1214
    };
1215

    
1216
    /* This table shows which types of blocks can use other blocks for
1217
     * prediction. For example, INTRA is the only mode in this table to
1218
     * have a frame number of 0. That means INTRA blocks can only predict
1219
     * from other INTRA blocks. There are 2 golden frame coding types;
1220
     * blocks encoding in these modes can only predict from other blocks
1221
     * that were encoded with these 1 of these 2 modes. */
1222
    unsigned char compatible_frame[8] = {
1223
        1,    /* MODE_INTER_NO_MV */
1224
        0,    /* MODE_INTRA */
1225
        1,    /* MODE_INTER_PLUS_MV */
1226
        1,    /* MODE_INTER_LAST_MV */
1227
        1,    /* MODE_INTER_PRIOR_MV */
1228
        2,    /* MODE_USING_GOLDEN */
1229
        2,    /* MODE_GOLDEN_MV */
1230
        1     /* MODE_INTER_FOUR_MV */
1231
    };
1232
    int current_frame_type;
1233

    
1234
    /* there is a last DC predictor for each of the 3 frame types */
1235
    short last_dc[3];
1236

    
1237
    int transform = 0;
1238

    
1239
    vul = vu = vur = vl = 0;
1240
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1241

    
1242
    /* for each fragment row... */
1243
    for (y = 0; y < fragment_height; y++) {
1244

    
1245
        /* for each fragment in a row... */
1246
        for (x = 0; x < fragment_width; x++, i++) {
1247

    
1248
            /* reverse prediction if this block was coded */
1249
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1250

    
1251
                current_frame_type =
1252
                    compatible_frame[s->all_fragments[i].coding_method];
1253

    
1254
                transform= 0;
1255
                if(x){
1256
                    l= i-1;
1257
                    vl = DC_COEFF(l);
1258
                    if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1259
                        transform |= PL;
1260
                }
1261
                if(y){
1262
                    u= i-fragment_width;
1263
                    vu = DC_COEFF(u);
1264
                    if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1265
                        transform |= PU;
1266
                    if(x){
1267
                        ul= i-fragment_width-1;
1268
                        vul = DC_COEFF(ul);
1269
                        if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1270
                            transform |= PUL;
1271
                    }
1272
                    if(x + 1 < fragment_width){
1273
                        ur= i-fragment_width+1;
1274
                        vur = DC_COEFF(ur);
1275
                        if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1276
                            transform |= PUR;
1277
                    }
1278
                }
1279

    
1280
                if (transform == 0) {
1281

    
1282
                    /* if there were no fragments to predict from, use last
1283
                     * DC saved */
1284
                    predicted_dc = last_dc[current_frame_type];
1285
                } else {
1286

    
1287
                    /* apply the appropriate predictor transform */
1288
                    predicted_dc =
1289
                        (predictor_transform[transform][0] * vul) +
1290
                        (predictor_transform[transform][1] * vu) +
1291
                        (predictor_transform[transform][2] * vur) +
1292
                        (predictor_transform[transform][3] * vl);
1293

    
1294
                    predicted_dc /= 128;
1295

    
1296
                    /* check for outranging on the [ul u l] and
1297
                     * [ul u ur l] predictors */
1298
                    if ((transform == 13) || (transform == 15)) {
1299
                        if (FFABS(predicted_dc - vu) > 128)
1300
                            predicted_dc = vu;
1301
                        else if (FFABS(predicted_dc - vl) > 128)
1302
                            predicted_dc = vl;
1303
                        else if (FFABS(predicted_dc - vul) > 128)
1304
                            predicted_dc = vul;
1305
                    }
1306
                }
1307

    
1308
                /* at long last, apply the predictor */
1309
                if(s->coeffs[i].index){
1310
                    *s->next_coeff= s->coeffs[i];
1311
                    s->coeffs[i].index=0;
1312
                    s->coeffs[i].coeff=0;
1313
                    s->coeffs[i].next= s->next_coeff++;
1314
                }
1315
                s->coeffs[i].coeff += predicted_dc;
1316
                /* save the DC */
1317
                last_dc[current_frame_type] = DC_COEFF(i);
1318
                if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1319
                    s->coeff_counts[i]= 129;
1320
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1321
                    s->coeffs[i].next= s->next_coeff;
1322
                    (s->next_coeff++)->next=NULL;
1323
                }
1324
            }
1325
        }
1326
    }
1327
}
1328

    
1329
/*
1330
 * Perform the final rendering for a particular slice of data.
1331
 * The slice number ranges from 0..(macroblock_height - 1).
1332
 */
1333
static void render_slice(Vp3DecodeContext *s, int slice)
1334
{
1335
    int x;
1336
    int16_t *dequantizer;
1337
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
1338
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1339
    int motion_halfpel_index;
1340
    uint8_t *motion_source;
1341
    int plane;
1342
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1343

    
1344
    if (slice >= s->macroblock_height)
1345
        return;
1346

    
1347
    for (plane = 0; plane < 3; plane++) {
1348
        uint8_t *output_plane = s->current_frame.data    [plane];
1349
        uint8_t *  last_plane = s->   last_frame.data    [plane];
1350
        uint8_t *golden_plane = s-> golden_frame.data    [plane];
1351
        int stride            = s->current_frame.linesize[plane];
1352
        int plane_width       = s->width  >> !!plane;
1353
        int plane_height      = s->height >> !!plane;
1354
        int y =        slice *  FRAGMENT_PIXELS << !plane ;
1355
        int slice_height = y + (FRAGMENT_PIXELS << !plane);
1356
        int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1357

    
1358
        if (!s->flipped_image) stride = -stride;
1359

    
1360

    
1361
        if(FFABS(stride) > 2048)
1362
            return; //various tables are fixed size
1363

    
1364
        /* for each fragment row in the slice (both of them)... */
1365
        for (; y < slice_height; y += 8) {
1366

    
1367
            /* for each fragment in a row... */
1368
            for (x = 0; x < plane_width; x += 8, i++) {
1369

    
1370
                if ((i < 0) || (i >= s->fragment_count)) {
1371
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1372
                    return;
1373
                }
1374

    
1375
                /* transform if this block was coded */
1376
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1377
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1378

    
1379
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1380
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1381
                        motion_source= golden_plane;
1382
                    else
1383
                        motion_source= last_plane;
1384

    
1385
                    motion_source += s->all_fragments[i].first_pixel;
1386
                    motion_halfpel_index = 0;
1387

    
1388
                    /* sort out the motion vector if this fragment is coded
1389
                     * using a motion vector method */
1390
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1391
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1392
                        int src_x, src_y;
1393
                        motion_x = s->all_fragments[i].motion_x;
1394
                        motion_y = s->all_fragments[i].motion_y;
1395
                        if(plane){
1396
                            motion_x= (motion_x>>1) | (motion_x&1);
1397
                            motion_y= (motion_y>>1) | (motion_y&1);
1398
                        }
1399

    
1400
                        src_x= (motion_x>>1) + x;
1401
                        src_y= (motion_y>>1) + y;
1402
                        if ((motion_x == 127) || (motion_y == 127))
1403
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1404

    
1405
                        motion_halfpel_index = motion_x & 0x01;
1406
                        motion_source += (motion_x >> 1);
1407

    
1408
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1409
                        motion_source += ((motion_y >> 1) * stride);
1410

    
1411
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1412
                            uint8_t *temp= s->edge_emu_buffer;
1413
                            if(stride<0) temp -= 9*stride;
1414
                            else temp += 9*stride;
1415

    
1416
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1417
                            motion_source= temp;
1418
                        }
1419
                    }
1420

    
1421

    
1422
                    /* first, take care of copying a block from either the
1423
                     * previous or the golden frame */
1424
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1425
                        /* Note, it is possible to implement all MC cases with
1426
                           put_no_rnd_pixels_l2 which would look more like the
1427
                           VP3 source but this would be slower as
1428
                           put_no_rnd_pixels_tab is better optimzed */
1429
                        if(motion_halfpel_index != 3){
1430
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1431
                                output_plane + s->all_fragments[i].first_pixel,
1432
                                motion_source, stride, 8);
1433
                        }else{
1434
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1435
                            s->dsp.put_no_rnd_pixels_l2[1](
1436
                                output_plane + s->all_fragments[i].first_pixel,
1437
                                motion_source - d,
1438
                                motion_source + stride + 1 + d,
1439
                                stride, 8);
1440
                        }
1441
                        dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1442
                    }else{
1443
                        dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1444
                    }
1445

    
1446
                    /* dequantize the DCT coefficients */
1447
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1448
                        Coeff *coeff= s->coeffs + i;
1449
                        s->dsp.clear_block(block);
1450
                        while(coeff->next){
1451
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1452
                            coeff= coeff->next;
1453
                        }
1454
                    }else{
1455
                        Coeff *coeff= s->coeffs + i;
1456
                        s->dsp.clear_block(block);
1457
                        while(coeff->next){
1458
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1459
                            coeff= coeff->next;
1460
                        }
1461
                    }
1462

    
1463
                    /* invert DCT and place (or add) in final output */
1464

    
1465
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1466
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1467
                            block[0] += 128<<3;
1468
                        s->dsp.idct_put(
1469
                            output_plane + s->all_fragments[i].first_pixel,
1470
                            stride,
1471
                            block);
1472
                    } else {
1473
                        s->dsp.idct_add(
1474
                            output_plane + s->all_fragments[i].first_pixel,
1475
                            stride,
1476
                            block);
1477
                    }
1478
                } else {
1479

    
1480
                    /* copy directly from the previous frame */
1481
                    s->dsp.put_pixels_tab[1][0](
1482
                        output_plane + s->all_fragments[i].first_pixel,
1483
                        last_plane + s->all_fragments[i].first_pixel,
1484
                        stride, 8);
1485

    
1486
                }
1487
#if 0
1488
                /* perform the left edge filter if:
1489
                 *   - the fragment is not on the left column
1490
                 *   - the fragment is coded in this frame
1491
                 *   - the fragment is not coded in this frame but the left
1492
                 *     fragment is coded in this frame (this is done instead
1493
                 *     of a right edge filter when rendering the left fragment
1494
                 *     since this fragment is not available yet) */
1495
                if ((x > 0) &&
1496
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1497
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1498
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1499
                    horizontal_filter(
1500
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
1501
                        -stride, s->bounding_values_array + 127);
1502
                }
1503

1504
                /* perform the top edge filter if:
1505
                 *   - the fragment is not on the top row
1506
                 *   - the fragment is coded in this frame
1507
                 *   - the fragment is not coded in this frame but the above
1508
                 *     fragment is coded in this frame (this is done instead
1509
                 *     of a bottom edge filter when rendering the above
1510
                 *     fragment since this fragment is not available yet) */
1511
                if ((y > 0) &&
1512
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1513
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1514
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1515
                    vertical_filter(
1516
                        output_plane + s->all_fragments[i].first_pixel - stride,
1517
                        -stride, s->bounding_values_array + 127);
1518
                }
1519
#endif
1520
            }
1521
        }
1522
    }
1523

    
1524
     /* this looks like a good place for slice dispatch... */
1525
     /* algorithm:
1526
      *   if (slice == s->macroblock_height - 1)
1527
      *     dispatch (both last slice & 2nd-to-last slice);
1528
      *   else if (slice > 0)
1529
      *     dispatch (slice - 1);
1530
      */
1531

    
1532
    emms_c();
1533
}
1534

    
1535
static void apply_loop_filter(Vp3DecodeContext *s)
1536
{
1537
    int plane;
1538
    int x, y;
1539
    int *bounding_values= s->bounding_values_array+127;
1540

    
1541
#if 0
1542
    int bounding_values_array[256];
1543
    int filter_limit;
1544

1545
    /* find the right loop limit value */
1546
    for (x = 63; x >= 0; x--) {
1547
        if (vp31_ac_scale_factor[x] >= s->quality_index)
1548
            break;
1549
    }
1550
    filter_limit = vp31_filter_limit_values[s->quality_index];
1551

1552
    /* set up the bounding values */
1553
    memset(bounding_values_array, 0, 256 * sizeof(int));
1554
    for (x = 0; x < filter_limit; x++) {
1555
        bounding_values[-x - filter_limit] = -filter_limit + x;
1556
        bounding_values[-x] = -x;
1557
        bounding_values[x] = x;
1558
        bounding_values[x + filter_limit] = filter_limit - x;
1559
    }
1560
#endif
1561

    
1562
    for (plane = 0; plane < 3; plane++) {
1563
        int width           = s->fragment_width  >> !!plane;
1564
        int height          = s->fragment_height >> !!plane;
1565
        int fragment        = s->fragment_start        [plane];
1566
        int stride          = s->current_frame.linesize[plane];
1567
        uint8_t *plane_data = s->current_frame.data    [plane];
1568
        if (!s->flipped_image) stride = -stride;
1569

    
1570
        for (y = 0; y < height; y++) {
1571

    
1572
            for (x = 0; x < width; x++) {
1573
                /* do not perform left edge filter for left columns frags */
1574
                if ((x > 0) &&
1575
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1576
                    s->dsp.vp3_h_loop_filter(
1577
                        plane_data + s->all_fragments[fragment].first_pixel,
1578
                        stride, bounding_values);
1579
                }
1580

    
1581
                /* do not perform top edge filter for top row fragments */
1582
                if ((y > 0) &&
1583
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1584
                    s->dsp.vp3_v_loop_filter(
1585
                        plane_data + s->all_fragments[fragment].first_pixel,
1586
                        stride, bounding_values);
1587
                }
1588

    
1589
                /* do not perform right edge filter for right column
1590
                 * fragments or if right fragment neighbor is also coded
1591
                 * in this frame (it will be filtered in next iteration) */
1592
                if ((x < width - 1) &&
1593
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1594
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1595
                    s->dsp.vp3_h_loop_filter(
1596
                        plane_data + s->all_fragments[fragment + 1].first_pixel,
1597
                        stride, bounding_values);
1598
                }
1599

    
1600
                /* do not perform bottom edge filter for bottom row
1601
                 * fragments or if bottom fragment neighbor is also coded
1602
                 * in this frame (it will be filtered in the next row) */
1603
                if ((y < height - 1) &&
1604
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1605
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1606
                    s->dsp.vp3_v_loop_filter(
1607
                        plane_data + s->all_fragments[fragment + width].first_pixel,
1608
                        stride, bounding_values);
1609
                }
1610

    
1611
                fragment++;
1612
            }
1613
        }
1614
    }
1615
}
1616

    
1617
/*
1618
 * This function computes the first pixel addresses for each fragment.
1619
 * This function needs to be invoked after the first frame is allocated
1620
 * so that it has access to the plane strides.
1621
 */
1622
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1623
{
1624
#define Y_INITIAL(chroma_shift)  s->flipped_image ? 1  : s->fragment_height >> chroma_shift
1625
#define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1626

    
1627
    int i, x, y;
1628
    const int y_inc = s->flipped_image ? 1 : -1;
1629

    
1630
    /* figure out the first pixel addresses for each of the fragments */
1631
    /* Y plane */
1632
    i = 0;
1633
    for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1634
        for (x = 0; x < s->fragment_width; x++) {
1635
            s->all_fragments[i++].first_pixel =
1636
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1637
                    s->golden_frame.linesize[0] +
1638
                    x * FRAGMENT_PIXELS;
1639
        }
1640
    }
1641

    
1642
    /* U plane */
1643
    i = s->fragment_start[1];
1644
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1645
        for (x = 0; x < s->fragment_width / 2; x++) {
1646
            s->all_fragments[i++].first_pixel =
1647
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1648
                    s->golden_frame.linesize[1] +
1649
                    x * FRAGMENT_PIXELS;
1650
        }
1651
    }
1652

    
1653
    /* V plane */
1654
    i = s->fragment_start[2];
1655
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1656
        for (x = 0; x < s->fragment_width / 2; x++) {
1657
            s->all_fragments[i++].first_pixel =
1658
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1659
                    s->golden_frame.linesize[2] +
1660
                    x * FRAGMENT_PIXELS;
1661
        }
1662
    }
1663
}
1664

    
1665
/*
1666
 * This is the ffmpeg/libavcodec API init function.
1667
 */
1668
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1669
{
1670
    Vp3DecodeContext *s = avctx->priv_data;
1671
    int i, inter, plane;
1672
    int c_width;
1673
    int c_height;
1674
    int y_superblock_count;
1675
    int c_superblock_count;
1676

    
1677
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1678
        s->version = 0;
1679
    else
1680
        s->version = 1;
1681

    
1682
    s->avctx = avctx;
1683
    s->width = FFALIGN(avctx->width, 16);
1684
    s->height = FFALIGN(avctx->height, 16);
1685
    avctx->pix_fmt = PIX_FMT_YUV420P;
1686
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1687
    if(avctx->idct_algo==FF_IDCT_AUTO)
1688
        avctx->idct_algo=FF_IDCT_VP3;
1689
    dsputil_init(&s->dsp, avctx);
1690

    
1691
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1692

    
1693
    /* initialize to an impossible value which will force a recalculation
1694
     * in the first frame decode */
1695
    for (i = 0; i < 3; i++)
1696
        s->qps[i] = -1;
1697

    
1698
    s->y_superblock_width = (s->width + 31) / 32;
1699
    s->y_superblock_height = (s->height + 31) / 32;
1700
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1701

    
1702
    /* work out the dimensions for the C planes */
1703
    c_width = s->width / 2;
1704
    c_height = s->height / 2;
1705
    s->c_superblock_width = (c_width + 31) / 32;
1706
    s->c_superblock_height = (c_height + 31) / 32;
1707
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1708

    
1709
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1710
    s->u_superblock_start = y_superblock_count;
1711
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1712
    s->superblock_coding = av_malloc(s->superblock_count);
1713

    
1714
    s->macroblock_width = (s->width + 15) / 16;
1715
    s->macroblock_height = (s->height + 15) / 16;
1716
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1717

    
1718
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1719
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1720

    
1721
    /* fragment count covers all 8x8 blocks for all 3 planes */
1722
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1723
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1724
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1725

    
1726
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1727
    s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1728
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1729
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1730
    s->pixel_addresses_initialized = 0;
1731

    
1732
    if (!s->theora_tables)
1733
    {
1734
        for (i = 0; i < 64; i++) {
1735
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1736
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1737
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1738
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1739
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1740
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1741
        }
1742

    
1743
        for(inter=0; inter<2; inter++){
1744
            for(plane=0; plane<3; plane++){
1745
                s->qr_count[inter][plane]= 1;
1746
                s->qr_size [inter][plane][0]= 63;
1747
                s->qr_base [inter][plane][0]=
1748
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1749
            }
1750
        }
1751

    
1752
        /* init VLC tables */
1753
        for (i = 0; i < 16; i++) {
1754

    
1755
            /* DC histograms */
1756
            init_vlc(&s->dc_vlc[i], 5, 32,
1757
                &dc_bias[i][0][1], 4, 2,
1758
                &dc_bias[i][0][0], 4, 2, 0);
1759

    
1760
            /* group 1 AC histograms */
1761
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1762
                &ac_bias_0[i][0][1], 4, 2,
1763
                &ac_bias_0[i][0][0], 4, 2, 0);
1764

    
1765
            /* group 2 AC histograms */
1766
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1767
                &ac_bias_1[i][0][1], 4, 2,
1768
                &ac_bias_1[i][0][0], 4, 2, 0);
1769

    
1770
            /* group 3 AC histograms */
1771
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1772
                &ac_bias_2[i][0][1], 4, 2,
1773
                &ac_bias_2[i][0][0], 4, 2, 0);
1774

    
1775
            /* group 4 AC histograms */
1776
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1777
                &ac_bias_3[i][0][1], 4, 2,
1778
                &ac_bias_3[i][0][0], 4, 2, 0);
1779
        }
1780
    } else {
1781
        for (i = 0; i < 16; i++) {
1782

    
1783
            /* DC histograms */
1784
            init_vlc(&s->dc_vlc[i], 5, 32,
1785
                &s->huffman_table[i][0][1], 4, 2,
1786
                &s->huffman_table[i][0][0], 4, 2, 0);
1787

    
1788
            /* group 1 AC histograms */
1789
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1790
                &s->huffman_table[i+16][0][1], 4, 2,
1791
                &s->huffman_table[i+16][0][0], 4, 2, 0);
1792

    
1793
            /* group 2 AC histograms */
1794
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1795
                &s->huffman_table[i+16*2][0][1], 4, 2,
1796
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);
1797

    
1798
            /* group 3 AC histograms */
1799
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1800
                &s->huffman_table[i+16*3][0][1], 4, 2,
1801
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);
1802

    
1803
            /* group 4 AC histograms */
1804
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1805
                &s->huffman_table[i+16*4][0][1], 4, 2,
1806
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
1807
        }
1808
    }
1809

    
1810
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1811
        &superblock_run_length_vlc_table[0][1], 4, 2,
1812
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1813

    
1814
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1815
        &fragment_run_length_vlc_table[0][1], 4, 2,
1816
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1817

    
1818
    init_vlc(&s->mode_code_vlc, 3, 8,
1819
        &mode_code_vlc_table[0][1], 2, 1,
1820
        &mode_code_vlc_table[0][0], 2, 1, 0);
1821

    
1822
    init_vlc(&s->motion_vector_vlc, 6, 63,
1823
        &motion_vector_vlc_table[0][1], 2, 1,
1824
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1825

    
1826
    /* work out the block mapping tables */
1827
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1828
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1829
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1830
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1831
    init_block_mapping(s);
1832

    
1833
    for (i = 0; i < 3; i++) {
1834
        s->current_frame.data[i] = NULL;
1835
        s->last_frame.data[i] = NULL;
1836
        s->golden_frame.data[i] = NULL;
1837
    }
1838

    
1839
    return 0;
1840
}
1841

    
1842
/*
1843
 * This is the ffmpeg/libavcodec API frame decode function.
1844
 */
1845
static int vp3_decode_frame(AVCodecContext *avctx,
1846
                            void *data, int *data_size,
1847
                            AVPacket *avpkt)
1848
{
1849
    const uint8_t *buf = avpkt->data;
1850
    int buf_size = avpkt->size;
1851
    Vp3DecodeContext *s = avctx->priv_data;
1852
    GetBitContext gb;
1853
    static int counter = 0;
1854
    int i;
1855

    
1856
    init_get_bits(&gb, buf, buf_size * 8);
1857

    
1858
    if (s->theora && get_bits1(&gb))
1859
    {
1860
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1861
        return -1;
1862
    }
1863

    
1864
    s->keyframe = !get_bits1(&gb);
1865
    if (!s->theora)
1866
        skip_bits(&gb, 1);
1867
    for (i = 0; i < 3; i++)
1868
        s->last_qps[i] = s->qps[i];
1869

    
1870
    s->nqps=0;
1871
    do{
1872
        s->qps[s->nqps++]= get_bits(&gb, 6);
1873
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1874
    for (i = s->nqps; i < 3; i++)
1875
        s->qps[i] = -1;
1876

    
1877
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1878
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1879
            s->keyframe?"key":"", counter, s->qps[0]);
1880
    counter++;
1881

    
1882
    if (s->qps[0] != s->last_qps[0])
1883
        init_loop_filter(s);
1884

    
1885
    for (i = 0; i < s->nqps; i++)
1886
        // reinit all dequantizers if the first one changed, because
1887
        // the DC of the first quantizer must be used for all matrices
1888
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1889
            init_dequantizer(s, i);
1890

    
1891
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1892
        return buf_size;
1893

    
1894
    if (s->keyframe) {
1895
        if (!s->theora)
1896
        {
1897
            skip_bits(&gb, 4); /* width code */
1898
            skip_bits(&gb, 4); /* height code */
1899
            if (s->version)
1900
            {
1901
                s->version = get_bits(&gb, 5);
1902
                if (counter == 1)
1903
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1904
            }
1905
        }
1906
        if (s->version || s->theora)
1907
        {
1908
                if (get_bits1(&gb))
1909
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1910
            skip_bits(&gb, 2); /* reserved? */
1911
        }
1912

    
1913
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1914
            if (s->golden_frame.data[0])
1915
                avctx->release_buffer(avctx, &s->golden_frame);
1916
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1917
        } else {
1918
            if (s->golden_frame.data[0])
1919
                avctx->release_buffer(avctx, &s->golden_frame);
1920
            if (s->last_frame.data[0])
1921
                avctx->release_buffer(avctx, &s->last_frame);
1922
        }
1923

    
1924
        s->golden_frame.reference = 3;
1925
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1926
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1927
            return -1;
1928
        }
1929

    
1930
        /* golden frame is also the current frame */
1931
        s->current_frame= s->golden_frame;
1932

    
1933
        /* time to figure out pixel addresses? */
1934
        if (!s->pixel_addresses_initialized)
1935
        {
1936
            vp3_calculate_pixel_addresses(s);
1937
            s->pixel_addresses_initialized = 1;
1938
        }
1939
    } else {
1940
        /* allocate a new current frame */
1941
        s->current_frame.reference = 3;
1942
        if (!s->pixel_addresses_initialized) {
1943
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1944
            return -1;
1945
        }
1946
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1947
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1948
            return -1;
1949
        }
1950
    }
1951

    
1952
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1953
    s->current_frame.qstride= 0;
1954

    
1955
    init_frame(s, &gb);
1956

    
1957
    if (unpack_superblocks(s, &gb)){
1958
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1959
        return -1;
1960
    }
1961
    if (unpack_modes(s, &gb)){
1962
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1963
        return -1;
1964
    }
1965
    if (unpack_vectors(s, &gb)){
1966
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1967
        return -1;
1968
    }
1969
    if (unpack_block_qpis(s, &gb)){
1970
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1971
        return -1;
1972
    }
1973
    if (unpack_dct_coeffs(s, &gb)){
1974
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1975
        return -1;
1976
    }
1977

    
1978
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1979
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
1980
        reverse_dc_prediction(s, s->fragment_start[1],
1981
            s->fragment_width / 2, s->fragment_height / 2);
1982
        reverse_dc_prediction(s, s->fragment_start[2],
1983
            s->fragment_width / 2, s->fragment_height / 2);
1984
    }
1985

    
1986
    for (i = 0; i < s->macroblock_height; i++)
1987
        render_slice(s, i);
1988

    
1989
    apply_loop_filter(s);
1990

    
1991
    *data_size=sizeof(AVFrame);
1992
    *(AVFrame*)data= s->current_frame;
1993

    
1994
    /* release the last frame, if it is allocated and if it is not the
1995
     * golden frame */
1996
    if ((s->last_frame.data[0]) &&
1997
        (s->last_frame.data[0] != s->golden_frame.data[0]))
1998
        avctx->release_buffer(avctx, &s->last_frame);
1999

    
2000
    /* shuffle frames (last = current) */
2001
    s->last_frame= s->current_frame;
2002
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2003

    
2004
    return buf_size;
2005
}
2006

    
2007
/*
2008
 * This is the ffmpeg/libavcodec API module cleanup function.
2009
 */
2010
static av_cold int vp3_decode_end(AVCodecContext *avctx)
2011
{
2012
    Vp3DecodeContext *s = avctx->priv_data;
2013
    int i;
2014

    
2015
    av_free(s->superblock_coding);
2016
    av_free(s->all_fragments);
2017
    av_free(s->coeff_counts);
2018
    av_free(s->coeffs);
2019
    av_free(s->coded_fragment_list);
2020
    av_free(s->superblock_fragments);
2021
    av_free(s->superblock_macroblocks);
2022
    av_free(s->macroblock_fragments);
2023
    av_free(s->macroblock_coding);
2024

    
2025
    for (i = 0; i < 16; i++) {
2026
        free_vlc(&s->dc_vlc[i]);
2027
        free_vlc(&s->ac_vlc_1[i]);
2028
        free_vlc(&s->ac_vlc_2[i]);
2029
        free_vlc(&s->ac_vlc_3[i]);
2030
        free_vlc(&s->ac_vlc_4[i]);
2031
    }
2032

    
2033
    free_vlc(&s->superblock_run_length_vlc);
2034
    free_vlc(&s->fragment_run_length_vlc);
2035
    free_vlc(&s->mode_code_vlc);
2036
    free_vlc(&s->motion_vector_vlc);
2037

    
2038
    /* release all frames */
2039
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2040
        avctx->release_buffer(avctx, &s->golden_frame);
2041
    if (s->last_frame.data[0])
2042
        avctx->release_buffer(avctx, &s->last_frame);
2043
    /* no need to release the current_frame since it will always be pointing
2044
     * to the same frame as either the golden or last frame */
2045

    
2046
    return 0;
2047
}
2048

    
2049
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2050
{
2051
    Vp3DecodeContext *s = avctx->priv_data;
2052

    
2053
    if (get_bits1(gb)) {
2054
        int token;
2055
        if (s->entries >= 32) { /* overflow */
2056
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2057
            return -1;
2058
        }
2059
        token = get_bits(gb, 5);
2060
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2061
        s->huffman_table[s->hti][token][0] = s->hbits;
2062
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2063
        s->entries++;
2064
    }
2065
    else {
2066
        if (s->huff_code_size >= 32) {/* overflow */
2067
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2068
            return -1;
2069
        }
2070
        s->huff_code_size++;
2071
        s->hbits <<= 1;
2072
        if (read_huffman_tree(avctx, gb))
2073
            return -1;
2074
        s->hbits |= 1;
2075
        if (read_huffman_tree(avctx, gb))
2076
            return -1;
2077
        s->hbits >>= 1;
2078
        s->huff_code_size--;
2079
    }
2080
    return 0;
2081
}
2082

    
2083
#if CONFIG_THEORA_DECODER
2084
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2085
{
2086
    Vp3DecodeContext *s = avctx->priv_data;
2087
    int visible_width, visible_height;
2088

    
2089
    s->theora = get_bits_long(gb, 24);
2090
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2091

    
2092
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2093
    /* but previous versions have the image flipped relative to vp3 */
2094
    if (s->theora < 0x030200)
2095
    {
2096
        s->flipped_image = 1;
2097
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2098
    }
2099

    
2100
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2101
    visible_height = s->height = get_bits(gb, 16) << 4;
2102

    
2103
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2104
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2105
        s->width= s->height= 0;
2106
        return -1;
2107
    }
2108

    
2109
    if (s->theora >= 0x030400)
2110
    {
2111
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2112
        // fixme, the next field is 36bits long
2113
        skip_bits(gb, 32); /* total number of blocks in a frame */
2114
        skip_bits(gb, 4); /* total number of blocks in a frame */
2115
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2116
    }
2117

    
2118
    if (s->theora >= 0x030200) {
2119
        visible_width  = get_bits_long(gb, 24);
2120
        visible_height = get_bits_long(gb, 24);
2121

    
2122
        skip_bits(gb, 8); /* offset x */
2123
        skip_bits(gb, 8); /* offset y */
2124
    }
2125

    
2126
    skip_bits(gb, 32); /* fps numerator */
2127
    skip_bits(gb, 32); /* fps denumerator */
2128
    skip_bits(gb, 24); /* aspect numerator */
2129
    skip_bits(gb, 24); /* aspect denumerator */
2130

    
2131
    if (s->theora < 0x030200)
2132
        skip_bits(gb, 5); /* keyframe frequency force */
2133
    skip_bits(gb, 8); /* colorspace */
2134
    if (s->theora >= 0x030400)
2135
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2136
    skip_bits(gb, 24); /* bitrate */
2137

    
2138
    skip_bits(gb, 6); /* quality hint */
2139

    
2140
    if (s->theora >= 0x030200)
2141
    {
2142
        skip_bits(gb, 5); /* keyframe frequency force */
2143

    
2144
        if (s->theora < 0x030400)
2145
            skip_bits(gb, 5); /* spare bits */
2146
    }
2147

    
2148
//    align_get_bits(gb);
2149

    
2150
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2151
        && visible_height <= s->height && visible_height > s->height-16)
2152
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2153
    else
2154
        avcodec_set_dimensions(avctx, s->width, s->height);
2155

    
2156
    return 0;
2157
}
2158

    
2159
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2160
{
2161
    Vp3DecodeContext *s = avctx->priv_data;
2162
    int i, n, matrices, inter, plane;
2163

    
2164
    if (s->theora >= 0x030200) {
2165
        n = get_bits(gb, 3);
2166
        /* loop filter limit values table */
2167
        for (i = 0; i < 64; i++)
2168
            s->filter_limit_values[i] = get_bits(gb, n);
2169
    }
2170

    
2171
    if (s->theora >= 0x030200)
2172
        n = get_bits(gb, 4) + 1;
2173
    else
2174
        n = 16;
2175
    /* quality threshold table */
2176
    for (i = 0; i < 64; i++)
2177
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2178

    
2179
    if (s->theora >= 0x030200)
2180
        n = get_bits(gb, 4) + 1;
2181
    else
2182
        n = 16;
2183
    /* dc scale factor table */
2184
    for (i = 0; i < 64; i++)
2185
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2186

    
2187
    if (s->theora >= 0x030200)
2188
        matrices = get_bits(gb, 9) + 1;
2189
    else
2190
        matrices = 3;
2191

    
2192
    if(matrices > 384){
2193
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2194
        return -1;
2195
    }
2196

    
2197
    for(n=0; n<matrices; n++){
2198
        for (i = 0; i < 64; i++)
2199
            s->base_matrix[n][i]= get_bits(gb, 8);
2200
    }
2201

    
2202
    for (inter = 0; inter <= 1; inter++) {
2203
        for (plane = 0; plane <= 2; plane++) {
2204
            int newqr= 1;
2205
            if (inter || plane > 0)
2206
                newqr = get_bits1(gb);
2207
            if (!newqr) {
2208
                int qtj, plj;
2209
                if(inter && get_bits1(gb)){
2210
                    qtj = 0;
2211
                    plj = plane;
2212
                }else{
2213
                    qtj= (3*inter + plane - 1) / 3;
2214
                    plj= (plane + 2) % 3;
2215
                }
2216
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2217
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2218
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2219
            } else {
2220
                int qri= 0;
2221
                int qi = 0;
2222

    
2223
                for(;;){
2224
                    i= get_bits(gb, av_log2(matrices-1)+1);
2225
                    if(i>= matrices){
2226
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2227
                        return -1;
2228
                    }
2229
                    s->qr_base[inter][plane][qri]= i;
2230
                    if(qi >= 63)
2231
                        break;
2232
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2233
                    s->qr_size[inter][plane][qri++]= i;
2234
                    qi += i;
2235
                }
2236

    
2237
                if (qi > 63) {
2238
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2239
                    return -1;
2240
                }
2241
                s->qr_count[inter][plane]= qri;
2242
            }
2243
        }
2244
    }
2245

    
2246
    /* Huffman tables */
2247
    for (s->hti = 0; s->hti < 80; s->hti++) {
2248
        s->entries = 0;
2249
        s->huff_code_size = 1;
2250
        if (!get_bits1(gb)) {
2251
            s->hbits = 0;
2252
            if(read_huffman_tree(avctx, gb))
2253
                return -1;
2254
            s->hbits = 1;
2255
            if(read_huffman_tree(avctx, gb))
2256
                return -1;
2257
        }
2258
    }
2259

    
2260
    s->theora_tables = 1;
2261

    
2262
    return 0;
2263
}
2264

    
2265
static av_cold int theora_decode_init(AVCodecContext *avctx)
2266
{
2267
    Vp3DecodeContext *s = avctx->priv_data;
2268
    GetBitContext gb;
2269
    int ptype;
2270
    uint8_t *header_start[3];
2271
    int header_len[3];
2272
    int i;
2273

    
2274
    s->theora = 1;
2275

    
2276
    if (!avctx->extradata_size)
2277
    {
2278
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2279
        return -1;
2280
    }
2281

    
2282
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2283
                              42, header_start, header_len) < 0) {
2284
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2285
        return -1;
2286
    }
2287

    
2288
  for(i=0;i<3;i++) {
2289
    init_get_bits(&gb, header_start[i], header_len[i]);
2290

    
2291
    ptype = get_bits(&gb, 8);
2292

    
2293
     if (!(ptype & 0x80))
2294
     {
2295
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2296
//        return -1;
2297
     }
2298

    
2299
    // FIXME: Check for this as well.
2300
    skip_bits_long(&gb, 6*8); /* "theora" */
2301

    
2302
    switch(ptype)
2303
    {
2304
        case 0x80:
2305
            theora_decode_header(avctx, &gb);
2306
                break;
2307
        case 0x81:
2308
// FIXME: is this needed? it breaks sometimes
2309
//            theora_decode_comments(avctx, gb);
2310
            break;
2311
        case 0x82:
2312
            if (theora_decode_tables(avctx, &gb))
2313
                return -1;
2314
            break;
2315
        default:
2316
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2317
            break;
2318
    }
2319
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2320
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2321
    if (s->theora < 0x030200)
2322
        break;
2323
  }
2324

    
2325
    vp3_decode_init(avctx);
2326
    return 0;
2327
}
2328

    
2329
AVCodec theora_decoder = {
2330
    "theora",
2331
    CODEC_TYPE_VIDEO,
2332
    CODEC_ID_THEORA,
2333
    sizeof(Vp3DecodeContext),
2334
    theora_decode_init,
2335
    NULL,
2336
    vp3_decode_end,
2337
    vp3_decode_frame,
2338
    CODEC_CAP_DR1,
2339
    NULL,
2340
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2341
};
2342
#endif
2343

    
2344
AVCodec vp3_decoder = {
2345
    "vp3",
2346
    CODEC_TYPE_VIDEO,
2347
    CODEC_ID_VP3,
2348
    sizeof(Vp3DecodeContext),
2349
    vp3_decode_init,
2350
    NULL,
2351
    vp3_decode_end,
2352
    vp3_decode_frame,
2353
    CODEC_CAP_DR1,
2354
    NULL,
2355
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2356
};