Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 806ac67b

History | View | Annotate | Download (51.9 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "dsputil.h"
32
#include "cabac.h"
33
#include "mpegvideo.h"
34
#include "h264pred.h"
35
#include "rectangle.h"
36

    
37
#define interlaced_dct interlaced_dct_is_a_bad_name
38
#define mb_intra mb_intra_is_not_initialized_see_mb_type
39

    
40
#define LUMA_DC_BLOCK_INDEX   25
41
#define CHROMA_DC_BLOCK_INDEX 26
42

    
43
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44
#define COEFF_TOKEN_VLC_BITS           8
45
#define TOTAL_ZEROS_VLC_BITS           9
46
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47
#define RUN_VLC_BITS                   3
48
#define RUN7_VLC_BITS                  6
49

    
50
#define MAX_SPS_COUNT 32
51
#define MAX_PPS_COUNT 256
52

    
53
#define MAX_MMCO_COUNT 66
54

    
55
#define MAX_DELAYED_PIC_COUNT 16
56

    
57
/* Compiling in interlaced support reduces the speed
58
 * of progressive decoding by about 2%. */
59
#define ALLOW_INTERLACE
60

    
61
#define ALLOW_NOCHROMA
62

    
63
/**
64
 * The maximum number of slices supported by the decoder.
65
 * must be a power of 2
66
 */
67
#define MAX_SLICES 16
68

    
69
#ifdef ALLOW_INTERLACE
70
#define MB_MBAFF h->mb_mbaff
71
#define MB_FIELD h->mb_field_decoding_flag
72
#define FRAME_MBAFF h->mb_aff_frame
73
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74
#else
75
#define MB_MBAFF 0
76
#define MB_FIELD 0
77
#define FRAME_MBAFF 0
78
#define FIELD_PICTURE 0
79
#undef  IS_INTERLACED
80
#define IS_INTERLACED(mb_type) 0
81
#endif
82
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83

    
84
#ifdef ALLOW_NOCHROMA
85
#define CHROMA h->sps.chroma_format_idc
86
#else
87
#define CHROMA 1
88
#endif
89

    
90
#ifndef CABAC
91
#define CABAC h->pps.cabac
92
#endif
93

    
94
#define EXTENDED_SAR          255
95

    
96
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97
#define MB_TYPE_8x8DCT     0x01000000
98
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100

    
101
/**
102
 * Value of Picture.reference when Picture is not a reference picture, but
103
 * is held for delayed output.
104
 */
105
#define DELAYED_PIC_REF 4
106

    
107

    
108
/* NAL unit types */
109
enum {
110
    NAL_SLICE=1,
111
    NAL_DPA,
112
    NAL_DPB,
113
    NAL_DPC,
114
    NAL_IDR_SLICE,
115
    NAL_SEI,
116
    NAL_SPS,
117
    NAL_PPS,
118
    NAL_AUD,
119
    NAL_END_SEQUENCE,
120
    NAL_END_STREAM,
121
    NAL_FILLER_DATA,
122
    NAL_SPS_EXT,
123
    NAL_AUXILIARY_SLICE=19
124
};
125

    
126
/**
127
 * SEI message types
128
 */
129
typedef enum {
130
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134
} SEI_Type;
135

    
136
/**
137
 * pic_struct in picture timing SEI message
138
 */
139
typedef enum {
140
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149
} SEI_PicStructType;
150

    
151
/**
152
 * Sequence parameter set
153
 */
154
typedef struct SPS{
155

    
156
    int profile_idc;
157
    int level_idc;
158
    int chroma_format_idc;
159
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161
    int poc_type;                      ///< pic_order_cnt_type
162
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163
    int delta_pic_order_always_zero_flag;
164
    int offset_for_non_ref_pic;
165
    int offset_for_top_to_bottom_field;
166
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167
    int ref_frame_count;               ///< num_ref_frames
168
    int gaps_in_frame_num_allowed_flag;
169
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171
    int frame_mbs_only_flag;
172
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
173
    int direct_8x8_inference_flag;
174
    int crop;                   ///< frame_cropping_flag
175
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179
    int vui_parameters_present_flag;
180
    AVRational sar;
181
    int video_signal_type_present_flag;
182
    int full_range;
183
    int colour_description_present_flag;
184
    enum AVColorPrimaries color_primaries;
185
    enum AVColorTransferCharacteristic color_trc;
186
    enum AVColorSpace colorspace;
187
    int timing_info_present_flag;
188
    uint32_t num_units_in_tick;
189
    uint32_t time_scale;
190
    int fixed_frame_rate_flag;
191
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
192
    int bitstream_restriction_flag;
193
    int num_reorder_frames;
194
    int scaling_matrix_present;
195
    uint8_t scaling_matrix4[6][16];
196
    uint8_t scaling_matrix8[2][64];
197
    int nal_hrd_parameters_present_flag;
198
    int vcl_hrd_parameters_present_flag;
199
    int pic_struct_present_flag;
200
    int time_offset_length;
201
    int cpb_cnt;                       ///< See H.264 E.1.2
202
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207
    int residual_color_transform_flag; ///< residual_colour_transform_flag
208
}SPS;
209

    
210
/**
211
 * Picture parameter set
212
 */
213
typedef struct PPS{
214
    unsigned int sps_id;
215
    int cabac;                  ///< entropy_coding_mode_flag
216
    int pic_order_present;      ///< pic_order_present_flag
217
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
218
    int mb_slice_group_map_type;
219
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220
    int weighted_pred;          ///< weighted_pred_flag
221
    int weighted_bipred_idc;
222
    int init_qp;                ///< pic_init_qp_minus26 + 26
223
    int init_qs;                ///< pic_init_qs_minus26 + 26
224
    int chroma_qp_index_offset[2];
225
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226
    int constrained_intra_pred; ///< constrained_intra_pred_flag
227
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
229
    uint8_t scaling_matrix4[6][16];
230
    uint8_t scaling_matrix8[2][64];
231
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232
    int chroma_qp_diff;
233
}PPS;
234

    
235
/**
236
 * Memory management control operation opcode.
237
 */
238
typedef enum MMCOOpcode{
239
    MMCO_END=0,
240
    MMCO_SHORT2UNUSED,
241
    MMCO_LONG2UNUSED,
242
    MMCO_SHORT2LONG,
243
    MMCO_SET_MAX_LONG,
244
    MMCO_RESET,
245
    MMCO_LONG,
246
} MMCOOpcode;
247

    
248
/**
249
 * Memory management control operation.
250
 */
251
typedef struct MMCO{
252
    MMCOOpcode opcode;
253
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255
} MMCO;
256

    
257
/**
258
 * H264Context
259
 */
260
typedef struct H264Context{
261
    MpegEncContext s;
262
    int nal_ref_idc;
263
    int nal_unit_type;
264
    uint8_t *rbsp_buffer[2];
265
    unsigned int rbsp_buffer_size[2];
266

    
267
    /**
268
      * Used to parse AVC variant of h264
269
      */
270
    int is_avc; ///< this flag is != 0 if codec is avc1
271
    int got_avcC; ///< flag used to parse avcC data only once
272
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273

    
274
    int chroma_qp[2]; //QPc
275

    
276
    int qp_thresh;      ///< QP threshold to skip loopfilter
277

    
278
    int prev_mb_skipped;
279
    int next_mb_skipped;
280

    
281
    //prediction stuff
282
    int chroma_pred_mode;
283
    int intra16x16_pred_mode;
284

    
285
    int top_mb_xy;
286
    int left_mb_xy[2];
287

    
288
    int8_t intra4x4_pred_mode_cache[5*8];
289
    int8_t (*intra4x4_pred_mode)[8];
290
    H264PredContext hpc;
291
    unsigned int topleft_samples_available;
292
    unsigned int top_samples_available;
293
    unsigned int topright_samples_available;
294
    unsigned int left_samples_available;
295
    uint8_t (*top_borders[2])[16+2*8];
296
    uint8_t left_border[2*(17+2*9)];
297

    
298
    /**
299
     * non zero coeff count cache.
300
     * is 64 if not available.
301
     */
302
    DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
303

    
304
    /*
305
    .UU.YYYY
306
    .UU.YYYY
307
    .vv.YYYY
308
    .VV.YYYY
309
    */
310
    uint8_t (*non_zero_count)[32];
311

    
312
    /**
313
     * Motion vector cache.
314
     */
315
    DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
316
    DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
317
#define LIST_NOT_USED -1 //FIXME rename?
318
#define PART_NOT_AVAILABLE -2
319

    
320
    /**
321
     * is 1 if the specific list MV&references are set to 0,0,-2.
322
     */
323
    int mv_cache_clean[2];
324

    
325
    /**
326
     * number of neighbors (top and/or left) that used 8x8 dct
327
     */
328
    int neighbor_transform_size;
329

    
330
    /**
331
     * block_offset[ 0..23] for frame macroblocks
332
     * block_offset[24..47] for field macroblocks
333
     */
334
    int block_offset[2*(16+8)];
335

    
336
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
337
    uint32_t *mb2b8_xy;
338
    int b_stride; //FIXME use s->b4_stride
339
    int b8_stride;
340

    
341
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
342
    int mb_uvlinesize;
343

    
344
    int emu_edge_width;
345
    int emu_edge_height;
346

    
347
    int halfpel_flag;
348
    int thirdpel_flag;
349

    
350
    int unknown_svq3_flag;
351
    int next_slice_index;
352

    
353
    SPS *sps_buffers[MAX_SPS_COUNT];
354
    SPS sps; ///< current sps
355

    
356
    PPS *pps_buffers[MAX_PPS_COUNT];
357
    /**
358
     * current pps
359
     */
360
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
361

    
362
    uint32_t dequant4_buffer[6][52][16];
363
    uint32_t dequant8_buffer[2][52][64];
364
    uint32_t (*dequant4_coeff[6])[16];
365
    uint32_t (*dequant8_coeff[2])[64];
366
    int dequant_coeff_pps;     ///< reinit tables when pps changes
367

    
368
    int slice_num;
369
    uint16_t *slice_table_base;
370
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
371
    int slice_type;
372
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
373
    int slice_type_fixed;
374

    
375
    //interlacing specific flags
376
    int mb_aff_frame;
377
    int mb_field_decoding_flag;
378
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
379

    
380
    DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
381

    
382
    //POC stuff
383
    int poc_lsb;
384
    int poc_msb;
385
    int delta_poc_bottom;
386
    int delta_poc[2];
387
    int frame_num;
388
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
389
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
390
    int frame_num_offset;         ///< for POC type 2
391
    int prev_frame_num_offset;    ///< for POC type 2
392
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
393

    
394
    /**
395
     * frame_num for frames or 2*frame_num+1 for field pics.
396
     */
397
    int curr_pic_num;
398

    
399
    /**
400
     * max_frame_num or 2*max_frame_num for field pics.
401
     */
402
    int max_pic_num;
403

    
404
    //Weighted pred stuff
405
    int use_weight;
406
    int use_weight_chroma;
407
    int luma_log2_weight_denom;
408
    int chroma_log2_weight_denom;
409
    int luma_weight[2][48];
410
    int luma_offset[2][48];
411
    int chroma_weight[2][48][2];
412
    int chroma_offset[2][48][2];
413
    int implicit_weight[48][48];
414

    
415
    //deblock
416
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
417
    int slice_alpha_c0_offset;
418
    int slice_beta_offset;
419

    
420
    int redundant_pic_count;
421

    
422
    int direct_spatial_mv_pred;
423
    int dist_scale_factor[16];
424
    int dist_scale_factor_field[2][32];
425
    int map_col_to_list0[2][16+32];
426
    int map_col_to_list0_field[2][2][16+32];
427

    
428
    /**
429
     * num_ref_idx_l0/1_active_minus1 + 1
430
     */
431
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
432
    unsigned int list_count;
433
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
434
    Picture *short_ref[32];
435
    Picture *long_ref[32];
436
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
437
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
438
                                          Reordered version of default_ref_list
439
                                          according to picture reordering in slice header */
440
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
442
    int outputed_poc;
443

    
444
    /**
445
     * memory management control operations buffer.
446
     */
447
    MMCO mmco[MAX_MMCO_COUNT];
448
    int mmco_index;
449

    
450
    int long_ref_count;  ///< number of actual long term references
451
    int short_ref_count; ///< number of actual short term references
452

    
453
    //data partitioning
454
    GetBitContext intra_gb;
455
    GetBitContext inter_gb;
456
    GetBitContext *intra_gb_ptr;
457
    GetBitContext *inter_gb_ptr;
458

    
459
    DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
460
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
461

    
462
    /**
463
     * Cabac
464
     */
465
    CABACContext cabac;
466
    uint8_t      cabac_state[460];
467
    int          cabac_init_idc;
468

    
469
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
470
    uint16_t     *cbp_table;
471
    int cbp;
472
    int top_cbp;
473
    int left_cbp;
474
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
475
    uint8_t     *chroma_pred_mode_table;
476
    int         last_qscale_diff;
477
    int16_t     (*mvd_table[2])[2];
478
    DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
479
    uint8_t     *direct_table;
480
    uint8_t     direct_cache[5*8];
481

    
482
    uint8_t zigzag_scan[16];
483
    uint8_t zigzag_scan8x8[64];
484
    uint8_t zigzag_scan8x8_cavlc[64];
485
    uint8_t field_scan[16];
486
    uint8_t field_scan8x8[64];
487
    uint8_t field_scan8x8_cavlc[64];
488
    const uint8_t *zigzag_scan_q0;
489
    const uint8_t *zigzag_scan8x8_q0;
490
    const uint8_t *zigzag_scan8x8_cavlc_q0;
491
    const uint8_t *field_scan_q0;
492
    const uint8_t *field_scan8x8_q0;
493
    const uint8_t *field_scan8x8_cavlc_q0;
494

    
495
    int x264_build;
496

    
497
    /**
498
     * @defgroup multithreading Members for slice based multithreading
499
     * @{
500
     */
501
    struct H264Context *thread_context[MAX_THREADS];
502

    
503
    /**
504
     * current slice number, used to initalize slice_num of each thread/context
505
     */
506
    int current_slice;
507

    
508
    /**
509
     * Max number of threads / contexts.
510
     * This is equal to AVCodecContext.thread_count unless
511
     * multithreaded decoding is impossible, in which case it is
512
     * reduced to 1.
513
     */
514
    int max_contexts;
515

    
516
    /**
517
     *  1 if the single thread fallback warning has already been
518
     *  displayed, 0 otherwise.
519
     */
520
    int single_decode_warning;
521

    
522
    int last_slice_type;
523
    /** @} */
524

    
525
    int mb_xy;
526

    
527
    uint32_t svq3_watermark_key;
528

    
529
    /**
530
     * pic_struct in picture timing SEI message
531
     */
532
    SEI_PicStructType sei_pic_struct;
533

    
534
    /**
535
     * Complement sei_pic_struct
536
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
537
     * However, soft telecined frames may have these values.
538
     * This is used in an attempt to flag soft telecine progressive.
539
     */
540
    int prev_interlaced_frame;
541

    
542
    /**
543
     * Bit set of clock types for fields/frames in picture timing SEI message.
544
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
545
     * interlaced).
546
     */
547
    int sei_ct_type;
548

    
549
    /**
550
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
551
     */
552
    int sei_dpb_output_delay;
553

    
554
    /**
555
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
556
     */
557
    int sei_cpb_removal_delay;
558

    
559
    /**
560
     * recovery_frame_cnt from SEI message
561
     *
562
     * Set to -1 if no recovery point SEI message found or to number of frames
563
     * before playback synchronizes. Frames having recovery point are key
564
     * frames.
565
     */
566
    int sei_recovery_frame_cnt;
567

    
568
    int is_complex;
569

    
570
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
571
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
572

    
573
    // Timestamp stuff
574
    int sei_buffering_period_present;  ///< Buffering period SEI flag
575
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
576
}H264Context;
577

    
578

    
579
extern const uint8_t ff_h264_chroma_qp[52];
580

    
581

    
582
/**
583
 * Decode SEI
584
 */
585
int ff_h264_decode_sei(H264Context *h);
586

    
587
/**
588
 * Decode SPS
589
 */
590
int ff_h264_decode_seq_parameter_set(H264Context *h);
591

    
592
/**
593
 * Decode PPS
594
 */
595
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
596

    
597
/**
598
 * Decodes a network abstraction layer unit.
599
 * @param consumed is the number of bytes used as input
600
 * @param length is the length of the array
601
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
602
 * @returns decoded bytes, might be src+1 if no escapes
603
 */
604
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
605

    
606
/**
607
 * identifies the exact end of the bitstream
608
 * @return the length of the trailing, or 0 if damaged
609
 */
610
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
611

    
612
/**
613
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
614
 */
615
av_cold void ff_h264_free_context(H264Context *h);
616

    
617
/**
618
 * reconstructs bitstream slice_type.
619
 */
620
int ff_h264_get_slice_type(const H264Context *h);
621

    
622
/**
623
 * allocates tables.
624
 * needs width/height
625
 */
626
int ff_h264_alloc_tables(H264Context *h);
627

    
628
/**
629
 * fills the default_ref_list.
630
 */
631
int ff_h264_fill_default_ref_list(H264Context *h);
632

    
633
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
634
void ff_h264_fill_mbaff_ref_list(H264Context *h);
635
void ff_h264_remove_all_refs(H264Context *h);
636

    
637
/**
638
 * Executes the reference picture marking (memory management control operations).
639
 */
640
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
641

    
642
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
643

    
644

    
645
/**
646
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
647
 */
648
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
649

    
650
/**
651
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
652
 */
653
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
654

    
655
void ff_h264_write_back_intra_pred_mode(H264Context *h);
656
void ff_h264_hl_decode_mb(H264Context *h);
657
int ff_h264_frame_start(H264Context *h);
658
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
659
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
660
av_cold void ff_h264_decode_init_vlc(void);
661

    
662
/**
663
 * decodes a macroblock
664
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
665
 */
666
int ff_h264_decode_mb_cavlc(H264Context *h);
667

    
668
/**
669
 * decodes a CABAC coded macroblock
670
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
671
 */
672
int ff_h264_decode_mb_cabac(H264Context *h);
673

    
674
void ff_h264_init_cabac_states(H264Context *h);
675

    
676
void ff_h264_direct_dist_scale_factor(H264Context * const h);
677
void ff_h264_direct_ref_list_init(H264Context * const h);
678
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
679

    
680
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
681
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
682

    
683
/**
684
 * Reset SEI values at the beginning of the frame.
685
 *
686
 * @param h H.264 context.
687
 */
688
void ff_h264_reset_sei(H264Context *h);
689

    
690

    
691
/*
692
o-o o-o
693
 / / /
694
o-o o-o
695
 ,---'
696
o-o o-o
697
 / / /
698
o-o o-o
699
*/
700
//This table must be here because scan8[constant] must be known at compiletime
701
static const uint8_t scan8[16 + 2*4]={
702
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
703
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
704
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
705
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
706
 1+1*8, 2+1*8,
707
 1+2*8, 2+2*8,
708
 1+4*8, 2+4*8,
709
 1+5*8, 2+5*8,
710
};
711

    
712
static av_always_inline uint32_t pack16to32(int a, int b){
713
#if HAVE_BIGENDIAN
714
   return (b&0xFFFF) + (a<<16);
715
#else
716
   return (a&0xFFFF) + (b<<16);
717
#endif
718
}
719

    
720
/**
721
 * gets the chroma qp.
722
 */
723
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
724
    return h->pps.chroma_qp_table[t][qscale];
725
}
726

    
727
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
728

    
729
static av_always_inline int fill_caches(H264Context *h, int mb_type, int for_deblock){
730
    MpegEncContext * const s = &h->s;
731
    const int mb_xy= h->mb_xy;
732
    int topleft_xy, top_xy, topright_xy, left_xy[2];
733
    int topleft_type, top_type, topright_type, left_type[2];
734
    const uint8_t * left_block;
735
    int topleft_partition= -1;
736
    int i;
737
    static const uint8_t left_block_options[4][16]={
738
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
739
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
740
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
741
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
742
    };
743

    
744
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
745

    
746
    //FIXME deblocking could skip the intra and nnz parts.
747
//     if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
748
//         return;
749

    
750
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
751
     * stuff, I can't imagine that these complex rules are worth it. */
752

    
753
    topleft_xy = top_xy - 1;
754
    topright_xy= top_xy + 1;
755
    left_xy[1] = left_xy[0] = mb_xy-1;
756
    left_block = left_block_options[0];
757
    if(FRAME_MBAFF){
758
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
759
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
760
        if(s->mb_y&1){
761
            if (left_mb_field_flag != curr_mb_field_flag) {
762
                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
763
                if (curr_mb_field_flag) {
764
                    left_xy[1] += s->mb_stride;
765
                    left_block = left_block_options[3];
766
                } else {
767
                    topleft_xy += s->mb_stride;
768
                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
769
                    topleft_partition = 0;
770
                    left_block = left_block_options[1];
771
                }
772
            }
773
        }else{
774
            if(curr_mb_field_flag){
775
                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
776
                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
777
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
778
            }
779
            if (left_mb_field_flag != curr_mb_field_flag) {
780
                left_xy[1] = left_xy[0] = mb_xy - 1;
781
                if (curr_mb_field_flag) {
782
                    left_xy[1] += s->mb_stride;
783
                    left_block = left_block_options[3];
784
                } else {
785
                    left_block = left_block_options[2];
786
                }
787
            }
788
        }
789
    }
790

    
791
    h->top_mb_xy = top_xy;
792
    h->left_mb_xy[0] = left_xy[0];
793
    h->left_mb_xy[1] = left_xy[1];
794
    if(for_deblock){
795

    
796
        //for sufficiently low qp, filtering wouldn't do anything
797
        //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
798
        int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
799
        int qp = s->current_picture.qscale_table[mb_xy];
800
        if(qp <= qp_thresh
801
           && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
802
           && (left_xy[1]<0 || ((qp + s->current_picture.qscale_table[left_xy[1]] + 1)>>1) <= qp_thresh)
803
           && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
804
            return 1;
805
        }
806
        if(IS_INTRA(mb_type))
807
            return 0;
808

    
809
        AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
810
        AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
811
        *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
812
        *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
813
        AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
814

    
815
        h->cbp= h->cbp_table[mb_xy];
816

    
817
        top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
818
        left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
819
        left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
820

    
821
        {
822
            int list;
823
            for(list=0; list<h->list_count; list++){
824
                int8_t *ref;
825
                int y, b_stride;
826
                int16_t (*mv_dst)[2];
827
                int16_t (*mv_src)[2];
828

    
829
                if(!USES_LIST(mb_type, list)){
830
                    fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
831
                    *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
832
                    *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
833
                    *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
834
                    *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
835
                    continue;
836
                }
837

    
838
                ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
839
                {
840
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
841
                    *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
842
                    *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
843
                    ref += h->b8_stride;
844
                    *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
845
                    *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
846
                }
847

    
848
                b_stride = h->b_stride;
849
                mv_dst   = &h->mv_cache[list][scan8[0]];
850
                mv_src   = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
851
                for(y=0; y<4; y++){
852
                    AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
853
                }
854

    
855
            }
856
        }
857
    }else{
858
        topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
859
        top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
860
        topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
861
        left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
862
        left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
863

    
864
        if(IS_INTRA(mb_type)){
865
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
866
            h->topleft_samples_available=
867
            h->top_samples_available=
868
            h->left_samples_available= 0xFFFF;
869
            h->topright_samples_available= 0xEEEA;
870

    
871
            if(!(top_type & type_mask)){
872
                h->topleft_samples_available= 0xB3FF;
873
                h->top_samples_available= 0x33FF;
874
                h->topright_samples_available= 0x26EA;
875
            }
876
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
877
                if(IS_INTERLACED(mb_type)){
878
                    if(!(left_type[0] & type_mask)){
879
                        h->topleft_samples_available&= 0xDFFF;
880
                        h->left_samples_available&= 0x5FFF;
881
                    }
882
                    if(!(left_type[1] & type_mask)){
883
                        h->topleft_samples_available&= 0xFF5F;
884
                        h->left_samples_available&= 0xFF5F;
885
                    }
886
                }else{
887
                    int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
888
                                    ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
889
                    assert(left_xy[0] == left_xy[1]);
890
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
891
                        h->topleft_samples_available&= 0xDF5F;
892
                        h->left_samples_available&= 0x5F5F;
893
                    }
894
                }
895
            }else{
896
                if(!(left_type[0] & type_mask)){
897
                    h->topleft_samples_available&= 0xDF5F;
898
                    h->left_samples_available&= 0x5F5F;
899
                }
900
            }
901

    
902
            if(!(topleft_type & type_mask))
903
                h->topleft_samples_available&= 0x7FFF;
904

    
905
            if(!(topright_type & type_mask))
906
                h->topright_samples_available&= 0xFBFF;
907

    
908
            if(IS_INTRA4x4(mb_type)){
909
                if(IS_INTRA4x4(top_type)){
910
                    h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
911
                    h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
912
                    h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
913
                    h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
914
                }else{
915
                    int pred;
916
                    if(!(top_type & type_mask))
917
                        pred= -1;
918
                    else{
919
                        pred= 2;
920
                    }
921
                    h->intra4x4_pred_mode_cache[4+8*0]=
922
                    h->intra4x4_pred_mode_cache[5+8*0]=
923
                    h->intra4x4_pred_mode_cache[6+8*0]=
924
                    h->intra4x4_pred_mode_cache[7+8*0]= pred;
925
                }
926
                for(i=0; i<2; i++){
927
                    if(IS_INTRA4x4(left_type[i])){
928
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
929
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
930
                    }else{
931
                        int pred;
932
                        if(!(left_type[i] & type_mask))
933
                            pred= -1;
934
                        else{
935
                            pred= 2;
936
                        }
937
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
938
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
939
                    }
940
                }
941
            }
942
        }
943
    }
944

    
945

    
946
/*
947
0 . T T. T T T T
948
1 L . .L . . . .
949
2 L . .L . . . .
950
3 . T TL . . . .
951
4 L . .L . . . .
952
5 L . .. . . . .
953
*/
954
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
955
    if(top_type){
956
        *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
957
        if(!for_deblock){
958
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
959
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
960

    
961
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
962
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
963
        }
964
    }else if(!for_deblock){
965
            h->non_zero_count_cache[1+8*0]=
966
            h->non_zero_count_cache[2+8*0]=
967

    
968
            h->non_zero_count_cache[1+8*3]=
969
            h->non_zero_count_cache[2+8*3]=
970
            *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
971
    }
972

    
973
    for (i=0; i<2; i++) {
974
        if(left_type[i]){
975
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
976
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
977
            if(!for_deblock){
978
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
979
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
980
            }
981
        }else if(!for_deblock){
982
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
983
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
984
                h->non_zero_count_cache[0+8*1 +   8*i]=
985
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
986
        }
987
    }
988

    
989
    // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
990
    if(for_deblock && !CABAC && h->pps.transform_8x8_mode){
991
        if(IS_8x8DCT(top_type)){
992
            h->non_zero_count_cache[4+8*0]=
993
            h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
994
            h->non_zero_count_cache[6+8*0]=
995
            h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
996
        }
997
        if(IS_8x8DCT(left_type[0])){
998
            h->non_zero_count_cache[3+8*1]=
999
            h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1000
        }
1001
        if(IS_8x8DCT(left_type[1])){
1002
            h->non_zero_count_cache[3+8*3]=
1003
            h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1004
        }
1005

    
1006
        if(IS_8x8DCT(mb_type)){
1007
            h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1008
            h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp & 1;
1009

    
1010
            h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1011
            h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1012

    
1013
            h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1014
            h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1015

    
1016
            h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1017
            h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1018
        }
1019
    }
1020

    
1021
    if( CABAC && !for_deblock) {
1022
        // top_cbp
1023
        if(top_type) {
1024
            h->top_cbp = h->cbp_table[top_xy];
1025
        } else if(IS_INTRA(mb_type)) {
1026
            h->top_cbp = 0x1C0;
1027
        } else {
1028
            h->top_cbp = 0;
1029
        }
1030
        // left_cbp
1031
        if (left_type[0]) {
1032
            h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
1033
        } else if(IS_INTRA(mb_type)) {
1034
            h->left_cbp = 0x1C0;
1035
        } else {
1036
            h->left_cbp = 0;
1037
        }
1038
        if (left_type[0]) {
1039
            h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
1040
        }
1041
        if (left_type[1]) {
1042
            h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
1043
        }
1044
    }
1045

    
1046
#if 1
1047
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1048
        int list;
1049
        for(list=0; list<h->list_count; list++){
1050
            if(!for_deblock && !USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
1051
                /*if(!h->mv_cache_clean[list]){
1052
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1053
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1054
                    h->mv_cache_clean[list]= 1;
1055
                }*/
1056
                continue;
1057
            }
1058
            h->mv_cache_clean[list]= 0;
1059

    
1060
            if(USES_LIST(top_type, list)){
1061
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1062
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1063
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1064
                if(for_deblock){
1065
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1066
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1067
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1068
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1069
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1070
                }else{
1071
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1072
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1073
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1074
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1075
                }
1076
            }else{
1077
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1078
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= (((for_deblock||top_type) ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1079
            }
1080

    
1081
            for(i=0; i<2; i++){
1082
                int cache_idx = scan8[0] - 1 + i*2*8;
1083
                if(USES_LIST(left_type[i], list)){
1084
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1085
                    const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1086
                    *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1087
                    *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1088
                    if(for_deblock){
1089
                        int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[i]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1090
                        h->ref_cache[list][cache_idx  ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]];
1091
                        h->ref_cache[list][cache_idx+8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]];
1092
                    }else{
1093
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1094
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1095
                    }
1096
                }else{
1097
                    *(uint32_t*)h->mv_cache [list][cache_idx  ]=
1098
                    *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1099
                    h->ref_cache[list][cache_idx  ]=
1100
                    h->ref_cache[list][cache_idx+8]= (for_deblock||left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1101
                }
1102
            }
1103

    
1104
            if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
1105
                continue;
1106

    
1107
            if(USES_LIST(topleft_type, list)){
1108
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
1109
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1110
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1111
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1112
            }else{
1113
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1114
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1115
            }
1116

    
1117
            if(USES_LIST(topright_type, list)){
1118
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1119
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1120
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1121
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1122
            }else{
1123
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1124
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1125
            }
1126

    
1127
            if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1128
                continue;
1129

    
1130
            h->ref_cache[list][scan8[5 ]+1] =
1131
            h->ref_cache[list][scan8[7 ]+1] =
1132
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1133
            h->ref_cache[list][scan8[4 ]] =
1134
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1135
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1136
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1137
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1138
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1139
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1140

    
1141
            if( CABAC ) {
1142
                /* XXX beurk, Load mvd */
1143
                if(USES_LIST(top_type, list)){
1144
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1145
                    AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1146
                }else{
1147
                    AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1148
                }
1149
                if(USES_LIST(left_type[0], list)){
1150
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1151
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1152
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1153
                }else{
1154
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1155
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1156
                }
1157
                if(USES_LIST(left_type[1], list)){
1158
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1159
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1160
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1161
                }else{
1162
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1163
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1164
                }
1165
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1166
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1167
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1168
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1169
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1170

    
1171
                if(h->slice_type_nos == FF_B_TYPE){
1172
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1173

    
1174
                    if(IS_DIRECT(top_type)){
1175
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1176
                    }else if(IS_8X8(top_type)){
1177
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1178
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1179
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1180
                    }else{
1181
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1182
                    }
1183

    
1184
                    if(IS_DIRECT(left_type[0]))
1185
                        h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1186
                    else if(IS_8X8(left_type[0]))
1187
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1188
                    else
1189
                        h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1190

    
1191
                    if(IS_DIRECT(left_type[1]))
1192
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1193
                    else if(IS_8X8(left_type[1]))
1194
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1195
                    else
1196
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1197
                }
1198
            }
1199

    
1200
            if(FRAME_MBAFF){
1201
#define MAP_MVS\
1202
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1203
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1204
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1205
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1206
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1207
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1208
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1209
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1210
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1211
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1212
                if(MB_FIELD){
1213
#define MAP_F2F(idx, mb_type)\
1214
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1215
                        h->ref_cache[list][idx] <<= 1;\
1216
                        h->mv_cache[list][idx][1] /= 2;\
1217
                        h->mvd_cache[list][idx][1] /= 2;\
1218
                    }
1219
                    MAP_MVS
1220
#undef MAP_F2F
1221
                }else{
1222
#define MAP_F2F(idx, mb_type)\
1223
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1224
                        h->ref_cache[list][idx] >>= 1;\
1225
                        h->mv_cache[list][idx][1] <<= 1;\
1226
                        h->mvd_cache[list][idx][1] <<= 1;\
1227
                    }
1228
                    MAP_MVS
1229
#undef MAP_F2F
1230
                }
1231
            }
1232
        }
1233
    }
1234
#endif
1235

    
1236
    if(!for_deblock)
1237
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1238
    return 0;
1239
}
1240

    
1241
static void fill_decode_caches(H264Context *h, int mb_type){
1242
    fill_caches(h, mb_type, 0);
1243
}
1244

    
1245
/**
1246
 *
1247
 * @returns non zero if the loop filter can be skiped
1248
 */
1249
static int fill_filter_caches(H264Context *h, int mb_type){
1250
    return fill_caches(h, mb_type, 1);
1251
}
1252

    
1253
/**
1254
 * gets the predicted intra4x4 prediction mode.
1255
 */
1256
static inline int pred_intra_mode(H264Context *h, int n){
1257
    const int index8= scan8[n];
1258
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1259
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1260
    const int min= FFMIN(left, top);
1261

    
1262
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1263

    
1264
    if(min<0) return DC_PRED;
1265
    else      return min;
1266
}
1267

    
1268
static inline void write_back_non_zero_count(H264Context *h){
1269
    const int mb_xy= h->mb_xy;
1270

    
1271
    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1272
    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1273
    *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1274
    *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1275
    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1276
}
1277

    
1278
static inline void write_back_motion(H264Context *h, int mb_type){
1279
    MpegEncContext * const s = &h->s;
1280
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1281
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1282
    int list;
1283

    
1284
    if(!USES_LIST(mb_type, 0))
1285
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1286

    
1287
    for(list=0; list<h->list_count; list++){
1288
        int y, b_stride;
1289
        int16_t (*mv_dst)[2];
1290
        int16_t (*mv_src)[2];
1291

    
1292
        if(!USES_LIST(mb_type, list))
1293
            continue;
1294

    
1295
        b_stride = h->b_stride;
1296
        mv_dst   = &s->current_picture.motion_val[list][b_xy];
1297
        mv_src   = &h->mv_cache[list][scan8[0]];
1298
        for(y=0; y<4; y++){
1299
            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1300
        }
1301
        if( CABAC ) {
1302
            int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
1303
            int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1304
            if(IS_SKIP(mb_type))
1305
                fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
1306
            else
1307
            for(y=0; y<4; y++){
1308
                AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
1309
            }
1310
        }
1311

    
1312
        {
1313
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1314
            ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1315
            ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1316
            ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1317
            ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1318
        }
1319
    }
1320

    
1321
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1322
        if(IS_8X8(mb_type)){
1323
            uint8_t *direct_table = &h->direct_table[b8_xy];
1324
            direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1325
            direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1326
            direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1327
        }
1328
    }
1329
}
1330

    
1331
static inline int get_dct8x8_allowed(H264Context *h){
1332
    if(h->sps.direct_8x8_inference_flag)
1333
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1334
    else
1335
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1336
}
1337

    
1338
static void predict_field_decoding_flag(H264Context *h){
1339
    MpegEncContext * const s = &h->s;
1340
    const int mb_xy= h->mb_xy;
1341
    int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1342
                ? s->current_picture.mb_type[mb_xy-1]
1343
                : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1344
                ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1345
                : 0;
1346
    h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1347
}
1348

    
1349
/**
1350
 * decodes a P_SKIP or B_SKIP macroblock
1351
 */
1352
static void decode_mb_skip(H264Context *h){
1353
    MpegEncContext * const s = &h->s;
1354
    const int mb_xy= h->mb_xy;
1355
    int mb_type=0;
1356

    
1357
    memset(h->non_zero_count[mb_xy], 0, 32);
1358
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1359

    
1360
    if(MB_FIELD)
1361
        mb_type|= MB_TYPE_INTERLACED;
1362

    
1363
    if( h->slice_type_nos == FF_B_TYPE )
1364
    {
1365
        // just for fill_caches. pred_direct_motion will set the real mb_type
1366
        mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1367

    
1368
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1369
        ff_h264_pred_direct_motion(h, &mb_type);
1370
        mb_type|= MB_TYPE_SKIP;
1371
    }
1372
    else
1373
    {
1374
        int mx, my;
1375
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1376

    
1377
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1378
        pred_pskip_motion(h, &mx, &my);
1379
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1380
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1381
    }
1382

    
1383
    write_back_motion(h, mb_type);
1384
    s->current_picture.mb_type[mb_xy]= mb_type;
1385
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1386
    h->slice_table[ mb_xy ]= h->slice_num;
1387
    h->prev_mb_skipped= 1;
1388
}
1389

    
1390
#include "h264_mvpred.h" //For pred_pskip_motion()
1391

    
1392
#endif /* AVCODEC_H264_H */