Statistics
| Branch: | Revision:

ffmpeg / libavutil / lls.c @ 80a07f6e

History | View | Annotate | Download (3.74 KB)

1
/*
2
 * linear least squares model
3
 *
4
 * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavutil/lls.c
25
 * linear least squares model
26
 */
27

    
28
#include <math.h>
29
#include <string.h>
30

    
31
#include "lls.h"
32

    
33
void av_init_lls(LLSModel *m, int indep_count){
34
    memset(m, 0, sizeof(LLSModel));
35

    
36
    m->indep_count= indep_count;
37
}
38

    
39
void av_update_lls(LLSModel *m, double *var, double decay){
40
    int i,j;
41

    
42
    for(i=0; i<=m->indep_count; i++){
43
        for(j=i; j<=m->indep_count; j++){
44
            m->covariance[i][j] *= decay;
45
            m->covariance[i][j] += var[i]*var[j];
46
        }
47
    }
48
}
49

    
50
void av_solve_lls(LLSModel *m, double threshold, int min_order){
51
    int i,j,k;
52
    double (*factor)[MAX_VARS+1]= (void*)&m->covariance[1][0];
53
    double (*covar )[MAX_VARS+1]= (void*)&m->covariance[1][1];
54
    double  *covar_y            =  m->covariance[0];
55
    int count= m->indep_count;
56

    
57
    for(i=0; i<count; i++){
58
        for(j=i; j<count; j++){
59
            double sum= covar[i][j];
60

    
61
            for(k=i-1; k>=0; k--)
62
                sum -= factor[i][k]*factor[j][k];
63

    
64
            if(i==j){
65
                if(sum < threshold)
66
                    sum= 1.0;
67
                factor[i][i]= sqrt(sum);
68
            }else
69
                factor[j][i]= sum / factor[i][i];
70
        }
71
    }
72
    for(i=0; i<count; i++){
73
        double sum= covar_y[i+1];
74
        for(k=i-1; k>=0; k--)
75
            sum -= factor[i][k]*m->coeff[0][k];
76
        m->coeff[0][i]= sum / factor[i][i];
77
    }
78

    
79
    for(j=count-1; j>=min_order; j--){
80
        for(i=j; i>=0; i--){
81
            double sum= m->coeff[0][i];
82
            for(k=i+1; k<=j; k++)
83
                sum -= factor[k][i]*m->coeff[j][k];
84
            m->coeff[j][i]= sum / factor[i][i];
85
        }
86

    
87
        m->variance[j]= covar_y[0];
88
        for(i=0; i<=j; i++){
89
            double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1];
90
            for(k=0; k<i; k++)
91
                sum += 2*m->coeff[j][k]*covar[k][i];
92
            m->variance[j] += m->coeff[j][i]*sum;
93
        }
94
    }
95
}
96

    
97
double av_evaluate_lls(LLSModel *m, double *param, int order){
98
    int i;
99
    double out= 0;
100

    
101
    for(i=0; i<=order; i++)
102
        out+= param[i]*m->coeff[order][i];
103

    
104
    return out;
105
}
106

    
107
#ifdef TEST
108

    
109
#include <stdlib.h>
110
#include <stdio.h>
111

    
112
int main(void){
113
    LLSModel m;
114
    int i, order;
115

    
116
    av_init_lls(&m, 3);
117

    
118
    for(i=0; i<100; i++){
119
        double var[4];
120
        double eval;
121
        var[0] = (rand() / (double)RAND_MAX - 0.5)*2;
122
        var[1] = var[0] + rand() / (double)RAND_MAX - 0.5;
123
        var[2] = var[1] + rand() / (double)RAND_MAX - 0.5;
124
        var[3] = var[2] + rand() / (double)RAND_MAX - 0.5;
125
        av_update_lls(&m, var, 0.99);
126
        av_solve_lls(&m, 0.001, 0);
127
        for(order=0; order<3; order++){
128
            eval= av_evaluate_lls(&m, var+1, order);
129
            printf("real:%9f order:%d pred:%9f var:%f coeffs:%f %9f %9f\n",
130
                var[0], order, eval, sqrt(m.variance[order] / (i+1)),
131
                m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]);
132
        }
133
    }
134
    return 0;
135
}
136

    
137
#endif