Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 81ef51e6

History | View | Annotate | Download (57.1 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23
#include "bytestream.h"
24

    
25
/**
26
 * @file adpcm.c
27
 * ADPCM codecs.
28
 * First version by Francois Revol (revol@free.fr)
29
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30
 *   by Mike Melanson (melanson@pcisys.net)
31
 * CD-ROM XA ADPCM codec by BERO
32
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
38
 *
39
 * Features and limitations:
40
 *
41
 * Reference documents:
42
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
43
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
44
 * http://openquicktime.sourceforge.net/plugins.htm
45
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
46
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
47
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
48
 *
49
 * CD-ROM XA:
50
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
51
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
52
 * readstr http://www.geocities.co.jp/Playtown/2004/
53
 */
54

    
55
#define BLKSIZE 1024
56

    
57
/* step_table[] and index_table[] are from the ADPCM reference source */
58
/* This is the index table: */
59
static const int index_table[16] = {
60
    -1, -1, -1, -1, 2, 4, 6, 8,
61
    -1, -1, -1, -1, 2, 4, 6, 8,
62
};
63

    
64
/**
65
 * This is the step table. Note that many programs use slight deviations from
66
 * this table, but such deviations are negligible:
67
 */
68
static const int step_table[89] = {
69
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
70
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
71
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
72
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
73
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
74
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
75
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
76
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
77
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
78
};
79

    
80
/* These are for MS-ADPCM */
81
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
82
static const int AdaptationTable[] = {
83
        230, 230, 230, 230, 307, 409, 512, 614,
84
        768, 614, 512, 409, 307, 230, 230, 230
85
};
86

    
87
static const int AdaptCoeff1[] = {
88
        256, 512, 0, 192, 240, 460, 392
89
};
90

    
91
static const int AdaptCoeff2[] = {
92
        0, -256, 0, 64, 0, -208, -232
93
};
94

    
95
/* These are for CD-ROM XA ADPCM */
96
static const int xa_adpcm_table[5][2] = {
97
   {   0,   0 },
98
   {  60,   0 },
99
   { 115, -52 },
100
   {  98, -55 },
101
   { 122, -60 }
102
};
103

    
104
static const int ea_adpcm_table[] = {
105
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
106
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
107
};
108

    
109
static const int ct_adpcm_table[8] = {
110
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
111
    0x0133, 0x0199, 0x0200, 0x0266
112
};
113

    
114
// padded to zero where table size is less then 16
115
static const int swf_index_tables[4][16] = {
116
    /*2*/ { -1, 2 },
117
    /*3*/ { -1, -1, 2, 4 },
118
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
119
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
120
};
121

    
122
static const int yamaha_indexscale[] = {
123
    230, 230, 230, 230, 307, 409, 512, 614,
124
    230, 230, 230, 230, 307, 409, 512, 614
125
};
126

    
127
static const int yamaha_difflookup[] = {
128
    1, 3, 5, 7, 9, 11, 13, 15,
129
    -1, -3, -5, -7, -9, -11, -13, -15
130
};
131

    
132
/* end of tables */
133

    
134
typedef struct ADPCMChannelStatus {
135
    int predictor;
136
    short int step_index;
137
    int step;
138
    /* for encoding */
139
    int prev_sample;
140

    
141
    /* MS version */
142
    short sample1;
143
    short sample2;
144
    int coeff1;
145
    int coeff2;
146
    int idelta;
147
} ADPCMChannelStatus;
148

    
149
typedef struct ADPCMContext {
150
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
151
    ADPCMChannelStatus status[6];
152
} ADPCMContext;
153

    
154
/* XXX: implement encoding */
155

    
156
#ifdef CONFIG_ENCODERS
157
static int adpcm_encode_init(AVCodecContext *avctx)
158
{
159
    if (avctx->channels > 2)
160
        return -1; /* only stereo or mono =) */
161
    switch(avctx->codec->id) {
162
    case CODEC_ID_ADPCM_IMA_WAV:
163
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
164
                                                             /* and we have 4 bytes per channel overhead */
165
        avctx->block_align = BLKSIZE;
166
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
167
        break;
168
    case CODEC_ID_ADPCM_MS:
169
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
170
                                                             /* and we have 7 bytes per channel overhead */
171
        avctx->block_align = BLKSIZE;
172
        break;
173
    case CODEC_ID_ADPCM_YAMAHA:
174
        avctx->frame_size = BLKSIZE * avctx->channels;
175
        avctx->block_align = BLKSIZE;
176
        break;
177
    case CODEC_ID_ADPCM_SWF:
178
        if (avctx->sample_rate != 11025 &&
179
            avctx->sample_rate != 22050 &&
180
            avctx->sample_rate != 44100) {
181
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
182
            return -1;
183
        }
184
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
185
        break;
186
    default:
187
        return -1;
188
        break;
189
    }
190

    
191
    avctx->coded_frame= avcodec_alloc_frame();
192
    avctx->coded_frame->key_frame= 1;
193

    
194
    return 0;
195
}
196

    
197
static int adpcm_encode_close(AVCodecContext *avctx)
198
{
199
    av_freep(&avctx->coded_frame);
200

    
201
    return 0;
202
}
203

    
204

    
205
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
206
{
207
    int delta = sample - c->prev_sample;
208
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
209
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
210
    c->prev_sample = av_clip_int16(c->prev_sample);
211
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
212
    return nibble;
213
}
214

    
215
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
216
{
217
    int predictor, nibble, bias;
218

    
219
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
220

    
221
    nibble= sample - predictor;
222
    if(nibble>=0) bias= c->idelta/2;
223
    else          bias=-c->idelta/2;
224

    
225
    nibble= (nibble + bias) / c->idelta;
226
    nibble= av_clip(nibble, -8, 7)&0x0F;
227

    
228
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
229

    
230
    c->sample2 = c->sample1;
231
    c->sample1 = av_clip_int16(predictor);
232

    
233
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
234
    if (c->idelta < 16) c->idelta = 16;
235

    
236
    return nibble;
237
}
238

    
239
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
240
{
241
    int nibble, delta;
242

    
243
    if(!c->step) {
244
        c->predictor = 0;
245
        c->step = 127;
246
    }
247

    
248
    delta = sample - c->predictor;
249

    
250
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
251

    
252
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
253
    c->predictor = av_clip_int16(c->predictor);
254
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
255
    c->step = av_clip(c->step, 127, 24567);
256

    
257
    return nibble;
258
}
259

    
260
typedef struct TrellisPath {
261
    int nibble;
262
    int prev;
263
} TrellisPath;
264

    
265
typedef struct TrellisNode {
266
    uint32_t ssd;
267
    int path;
268
    int sample1;
269
    int sample2;
270
    int step;
271
} TrellisNode;
272

    
273
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
274
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
275
{
276
#define FREEZE_INTERVAL 128
277
    //FIXME 6% faster if frontier is a compile-time constant
278
    const int frontier = 1 << avctx->trellis;
279
    const int stride = avctx->channels;
280
    const int version = avctx->codec->id;
281
    const int max_paths = frontier*FREEZE_INTERVAL;
282
    TrellisPath paths[max_paths], *p;
283
    TrellisNode node_buf[2][frontier];
284
    TrellisNode *nodep_buf[2][frontier];
285
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
286
    TrellisNode **nodes_next = nodep_buf[1];
287
    int pathn = 0, froze = -1, i, j, k;
288

    
289
    assert(!(max_paths&(max_paths-1)));
290

    
291
    memset(nodep_buf, 0, sizeof(nodep_buf));
292
    nodes[0] = &node_buf[1][0];
293
    nodes[0]->ssd = 0;
294
    nodes[0]->path = 0;
295
    nodes[0]->step = c->step_index;
296
    nodes[0]->sample1 = c->sample1;
297
    nodes[0]->sample2 = c->sample2;
298
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_SWF))
299
        nodes[0]->sample1 = c->prev_sample;
300
    if(version == CODEC_ID_ADPCM_MS)
301
        nodes[0]->step = c->idelta;
302
    if(version == CODEC_ID_ADPCM_YAMAHA) {
303
        if(c->step == 0) {
304
            nodes[0]->step = 127;
305
            nodes[0]->sample1 = 0;
306
        } else {
307
            nodes[0]->step = c->step;
308
            nodes[0]->sample1 = c->predictor;
309
        }
310
    }
311

    
312
    for(i=0; i<n; i++) {
313
        TrellisNode *t = node_buf[i&1];
314
        TrellisNode **u;
315
        int sample = samples[i*stride];
316
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
317
        for(j=0; j<frontier && nodes[j]; j++) {
318
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
319
            const int range = (j < frontier/2) ? 1 : 0;
320
            const int step = nodes[j]->step;
321
            int nidx;
322
            if(version == CODEC_ID_ADPCM_MS) {
323
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
324
                const int div = (sample - predictor) / step;
325
                const int nmin = av_clip(div-range, -8, 6);
326
                const int nmax = av_clip(div+range, -7, 7);
327
                for(nidx=nmin; nidx<=nmax; nidx++) {
328
                    const int nibble = nidx & 0xf;
329
                    int dec_sample = predictor + nidx * step;
330
#define STORE_NODE(NAME, STEP_INDEX)\
331
                    int d;\
332
                    uint32_t ssd;\
333
                    dec_sample = av_clip_int16(dec_sample);\
334
                    d = sample - dec_sample;\
335
                    ssd = nodes[j]->ssd + d*d;\
336
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
337
                        continue;\
338
                    /* Collapse any two states with the same previous sample value. \
339
                     * One could also distinguish states by step and by 2nd to last
340
                     * sample, but the effects of that are negligible. */\
341
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
342
                        if(dec_sample == nodes_next[k]->sample1) {\
343
                            assert(ssd >= nodes_next[k]->ssd);\
344
                            goto next_##NAME;\
345
                        }\
346
                    }\
347
                    for(k=0; k<frontier; k++) {\
348
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
349
                            TrellisNode *u = nodes_next[frontier-1];\
350
                            if(!u) {\
351
                                assert(pathn < max_paths);\
352
                                u = t++;\
353
                                u->path = pathn++;\
354
                            }\
355
                            u->ssd = ssd;\
356
                            u->step = STEP_INDEX;\
357
                            u->sample2 = nodes[j]->sample1;\
358
                            u->sample1 = dec_sample;\
359
                            paths[u->path].nibble = nibble;\
360
                            paths[u->path].prev = nodes[j]->path;\
361
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
362
                            nodes_next[k] = u;\
363
                            break;\
364
                        }\
365
                    }\
366
                    next_##NAME:;
367
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
368
                }
369
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_SWF)) {
370
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
371
                const int predictor = nodes[j]->sample1;\
372
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
373
                int nmin = av_clip(div-range, -7, 6);\
374
                int nmax = av_clip(div+range, -6, 7);\
375
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
376
                if(nmax<0) nmax--;\
377
                for(nidx=nmin; nidx<=nmax; nidx++) {\
378
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
379
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
380
                    STORE_NODE(NAME, STEP_INDEX);\
381
                }
382
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
383
            } else { //CODEC_ID_ADPCM_YAMAHA
384
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
385
#undef LOOP_NODES
386
#undef STORE_NODE
387
            }
388
        }
389

    
390
        u = nodes;
391
        nodes = nodes_next;
392
        nodes_next = u;
393

    
394
        // prevent overflow
395
        if(nodes[0]->ssd > (1<<28)) {
396
            for(j=1; j<frontier && nodes[j]; j++)
397
                nodes[j]->ssd -= nodes[0]->ssd;
398
            nodes[0]->ssd = 0;
399
        }
400

    
401
        // merge old paths to save memory
402
        if(i == froze + FREEZE_INTERVAL) {
403
            p = &paths[nodes[0]->path];
404
            for(k=i; k>froze; k--) {
405
                dst[k] = p->nibble;
406
                p = &paths[p->prev];
407
            }
408
            froze = i;
409
            pathn = 0;
410
            // other nodes might use paths that don't coincide with the frozen one.
411
            // checking which nodes do so is too slow, so just kill them all.
412
            // this also slightly improves quality, but I don't know why.
413
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
414
        }
415
    }
416

    
417
    p = &paths[nodes[0]->path];
418
    for(i=n-1; i>froze; i--) {
419
        dst[i] = p->nibble;
420
        p = &paths[p->prev];
421
    }
422

    
423
    c->predictor = nodes[0]->sample1;
424
    c->sample1 = nodes[0]->sample1;
425
    c->sample2 = nodes[0]->sample2;
426
    c->step_index = nodes[0]->step;
427
    c->step = nodes[0]->step;
428
    c->idelta = nodes[0]->step;
429
}
430

    
431
static int adpcm_encode_frame(AVCodecContext *avctx,
432
                            unsigned char *frame, int buf_size, void *data)
433
{
434
    int n, i, st;
435
    short *samples;
436
    unsigned char *dst;
437
    ADPCMContext *c = avctx->priv_data;
438

    
439
    dst = frame;
440
    samples = (short *)data;
441
    st= avctx->channels == 2;
442
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
443

    
444
    switch(avctx->codec->id) {
445
    case CODEC_ID_ADPCM_IMA_WAV:
446
        n = avctx->frame_size / 8;
447
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
448
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
449
            bytestream_put_le16(&dst, c->status[0].prev_sample);
450
            *dst++ = (unsigned char)c->status[0].step_index;
451
            *dst++ = 0; /* unknown */
452
            samples++;
453
            if (avctx->channels == 2) {
454
                c->status[1].prev_sample = (signed short)samples[0];
455
/*                c->status[1].step_index = 0; */
456
                bytestream_put_le16(&dst, c->status[1].prev_sample);
457
                *dst++ = (unsigned char)c->status[1].step_index;
458
                *dst++ = 0;
459
                samples++;
460
            }
461

    
462
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
463
            if(avctx->trellis > 0) {
464
                uint8_t buf[2][n*8];
465
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
466
                if(avctx->channels == 2)
467
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
468
                for(i=0; i<n; i++) {
469
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
470
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
471
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
472
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
473
                    if (avctx->channels == 2) {
474
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
475
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
476
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
477
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
478
                    }
479
                }
480
            } else
481
            for (; n>0; n--) {
482
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
483
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
484
                dst++;
485
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
486
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
487
                dst++;
488
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
489
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
490
                dst++;
491
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
492
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
493
                dst++;
494
                /* right channel */
495
                if (avctx->channels == 2) {
496
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
497
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
498
                    dst++;
499
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
500
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
501
                    dst++;
502
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
503
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
504
                    dst++;
505
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
506
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
507
                    dst++;
508
                }
509
                samples += 8 * avctx->channels;
510
            }
511
        break;
512
    case CODEC_ID_ADPCM_SWF:
513
    {
514
        int i;
515
        PutBitContext pb;
516
        init_put_bits(&pb, dst, buf_size*8);
517

    
518
        n = avctx->frame_size-1;
519

    
520
        //Store AdpcmCodeSize
521
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
522

    
523
        //Init the encoder state
524
        for(i=0; i<avctx->channels; i++){
525
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
526
            put_bits(&pb, 16, samples[i] & 0xFFFF);
527
            put_bits(&pb, 6, c->status[i].step_index);
528
            c->status[i].prev_sample = (signed short)samples[i];
529
        }
530

    
531
        if(avctx->trellis > 0) {
532
            uint8_t buf[2][n];
533
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
534
            if (avctx->channels == 2)
535
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
536
            for(i=0; i<n; i++) {
537
                put_bits(&pb, 4, buf[0][i]);
538
                if (avctx->channels == 2)
539
                    put_bits(&pb, 4, buf[1][i]);
540
            }
541
        } else {
542
            for (i=1; i<avctx->frame_size; i++) {
543
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
544
                if (avctx->channels == 2)
545
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
546
            }
547
        }
548
        flush_put_bits(&pb);
549
        dst += put_bits_count(&pb)>>3;
550
        break;
551
    }
552
    case CODEC_ID_ADPCM_MS:
553
        for(i=0; i<avctx->channels; i++){
554
            int predictor=0;
555

    
556
            *dst++ = predictor;
557
            c->status[i].coeff1 = AdaptCoeff1[predictor];
558
            c->status[i].coeff2 = AdaptCoeff2[predictor];
559
        }
560
        for(i=0; i<avctx->channels; i++){
561
            if (c->status[i].idelta < 16)
562
                c->status[i].idelta = 16;
563

    
564
            bytestream_put_le16(&dst, c->status[i].idelta);
565
        }
566
        for(i=0; i<avctx->channels; i++){
567
            c->status[i].sample1= *samples++;
568

    
569
            bytestream_put_le16(&dst, c->status[i].sample1);
570
        }
571
        for(i=0; i<avctx->channels; i++){
572
            c->status[i].sample2= *samples++;
573

    
574
            bytestream_put_le16(&dst, c->status[i].sample2);
575
        }
576

    
577
        if(avctx->trellis > 0) {
578
            int n = avctx->block_align - 7*avctx->channels;
579
            uint8_t buf[2][n];
580
            if(avctx->channels == 1) {
581
                n *= 2;
582
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
583
                for(i=0; i<n; i+=2)
584
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
585
            } else {
586
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
587
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
588
                for(i=0; i<n; i++)
589
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
590
            }
591
        } else
592
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
593
            int nibble;
594
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
595
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
596
            *dst++ = nibble;
597
        }
598
        break;
599
    case CODEC_ID_ADPCM_YAMAHA:
600
        n = avctx->frame_size / 2;
601
        if(avctx->trellis > 0) {
602
            uint8_t buf[2][n*2];
603
            n *= 2;
604
            if(avctx->channels == 1) {
605
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
606
                for(i=0; i<n; i+=2)
607
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
608
            } else {
609
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
610
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
611
                for(i=0; i<n; i++)
612
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
613
            }
614
        } else
615
        for (; n>0; n--) {
616
            for(i = 0; i < avctx->channels; i++) {
617
                int nibble;
618
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
619
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
620
                *dst++ = nibble;
621
            }
622
            samples += 2 * avctx->channels;
623
        }
624
        break;
625
    default:
626
        return -1;
627
    }
628
    return dst - frame;
629
}
630
#endif //CONFIG_ENCODERS
631

    
632
static int adpcm_decode_init(AVCodecContext * avctx)
633
{
634
    ADPCMContext *c = avctx->priv_data;
635
    unsigned int max_channels = 2;
636

    
637
    switch(avctx->codec->id) {
638
    case CODEC_ID_ADPCM_EA_R1:
639
    case CODEC_ID_ADPCM_EA_R2:
640
    case CODEC_ID_ADPCM_EA_R3:
641
        max_channels = 6;
642
        break;
643
    }
644
    if(avctx->channels > max_channels){
645
        return -1;
646
    }
647

    
648
    switch(avctx->codec->id) {
649
    case CODEC_ID_ADPCM_CT:
650
        c->status[0].step = c->status[1].step = 511;
651
        break;
652
    case CODEC_ID_ADPCM_IMA_WS:
653
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
654
            c->status[0].predictor = AV_RL32(avctx->extradata);
655
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
656
        }
657
        break;
658
    default:
659
        break;
660
    }
661
    return 0;
662
}
663

    
664
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
665
{
666
    int step_index;
667
    int predictor;
668
    int sign, delta, diff, step;
669

    
670
    step = step_table[c->step_index];
671
    step_index = c->step_index + index_table[(unsigned)nibble];
672
    if (step_index < 0) step_index = 0;
673
    else if (step_index > 88) step_index = 88;
674

    
675
    sign = nibble & 8;
676
    delta = nibble & 7;
677
    /* perform direct multiplication instead of series of jumps proposed by
678
     * the reference ADPCM implementation since modern CPUs can do the mults
679
     * quickly enough */
680
    diff = ((2 * delta + 1) * step) >> shift;
681
    predictor = c->predictor;
682
    if (sign) predictor -= diff;
683
    else predictor += diff;
684

    
685
    c->predictor = av_clip_int16(predictor);
686
    c->step_index = step_index;
687

    
688
    return (short)c->predictor;
689
}
690

    
691
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
692
{
693
    int predictor;
694

    
695
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
696
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
697

    
698
    c->sample2 = c->sample1;
699
    c->sample1 = av_clip_int16(predictor);
700
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
701
    if (c->idelta < 16) c->idelta = 16;
702

    
703
    return c->sample1;
704
}
705

    
706
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
707
{
708
    int sign, delta, diff;
709
    int new_step;
710

    
711
    sign = nibble & 8;
712
    delta = nibble & 7;
713
    /* perform direct multiplication instead of series of jumps proposed by
714
     * the reference ADPCM implementation since modern CPUs can do the mults
715
     * quickly enough */
716
    diff = ((2 * delta + 1) * c->step) >> 3;
717
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
718
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
719
    c->predictor = av_clip_int16(c->predictor);
720
    /* calculate new step and clamp it to range 511..32767 */
721
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
722
    c->step = av_clip(new_step, 511, 32767);
723

    
724
    return (short)c->predictor;
725
}
726

    
727
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
728
{
729
    int sign, delta, diff;
730

    
731
    sign = nibble & (1<<(size-1));
732
    delta = nibble & ((1<<(size-1))-1);
733
    diff = delta << (7 + c->step + shift);
734

    
735
    /* clamp result */
736
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
737

    
738
    /* calculate new step */
739
    if (delta >= (2*size - 3) && c->step < 3)
740
        c->step++;
741
    else if (delta == 0 && c->step > 0)
742
        c->step--;
743

    
744
    return (short) c->predictor;
745
}
746

    
747
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
748
{
749
    if(!c->step) {
750
        c->predictor = 0;
751
        c->step = 127;
752
    }
753

    
754
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
755
    c->predictor = av_clip_int16(c->predictor);
756
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
757
    c->step = av_clip(c->step, 127, 24567);
758
    return c->predictor;
759
}
760

    
761
static void xa_decode(short *out, const unsigned char *in,
762
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
763
{
764
    int i, j;
765
    int shift,filter,f0,f1;
766
    int s_1,s_2;
767
    int d,s,t;
768

    
769
    for(i=0;i<4;i++) {
770

    
771
        shift  = 12 - (in[4+i*2] & 15);
772
        filter = in[4+i*2] >> 4;
773
        f0 = xa_adpcm_table[filter][0];
774
        f1 = xa_adpcm_table[filter][1];
775

    
776
        s_1 = left->sample1;
777
        s_2 = left->sample2;
778

    
779
        for(j=0;j<28;j++) {
780
            d = in[16+i+j*4];
781

    
782
            t = (signed char)(d<<4)>>4;
783
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
784
            s_2 = s_1;
785
            s_1 = av_clip_int16(s);
786
            *out = s_1;
787
            out += inc;
788
        }
789

    
790
        if (inc==2) { /* stereo */
791
            left->sample1 = s_1;
792
            left->sample2 = s_2;
793
            s_1 = right->sample1;
794
            s_2 = right->sample2;
795
            out = out + 1 - 28*2;
796
        }
797

    
798
        shift  = 12 - (in[5+i*2] & 15);
799
        filter = in[5+i*2] >> 4;
800

    
801
        f0 = xa_adpcm_table[filter][0];
802
        f1 = xa_adpcm_table[filter][1];
803

    
804
        for(j=0;j<28;j++) {
805
            d = in[16+i+j*4];
806

    
807
            t = (signed char)d >> 4;
808
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
809
            s_2 = s_1;
810
            s_1 = av_clip_int16(s);
811
            *out = s_1;
812
            out += inc;
813
        }
814

    
815
        if (inc==2) { /* stereo */
816
            right->sample1 = s_1;
817
            right->sample2 = s_2;
818
            out -= 1;
819
        } else {
820
            left->sample1 = s_1;
821
            left->sample2 = s_2;
822
        }
823
    }
824
}
825

    
826

    
827
/* DK3 ADPCM support macro */
828
#define DK3_GET_NEXT_NIBBLE() \
829
    if (decode_top_nibble_next) \
830
    { \
831
        nibble = (last_byte >> 4) & 0x0F; \
832
        decode_top_nibble_next = 0; \
833
    } \
834
    else \
835
    { \
836
        last_byte = *src++; \
837
        if (src >= buf + buf_size) break; \
838
        nibble = last_byte & 0x0F; \
839
        decode_top_nibble_next = 1; \
840
    }
841

    
842
static int adpcm_decode_frame(AVCodecContext *avctx,
843
                            void *data, int *data_size,
844
                            const uint8_t *buf, int buf_size)
845
{
846
    ADPCMContext *c = avctx->priv_data;
847
    ADPCMChannelStatus *cs;
848
    int n, m, channel, i;
849
    int block_predictor[2];
850
    short *samples;
851
    short *samples_end;
852
    const uint8_t *src;
853
    int st; /* stereo */
854

    
855
    /* DK3 ADPCM accounting variables */
856
    unsigned char last_byte = 0;
857
    unsigned char nibble;
858
    int decode_top_nibble_next = 0;
859
    int diff_channel;
860

    
861
    /* EA ADPCM state variables */
862
    uint32_t samples_in_chunk;
863
    int32_t previous_left_sample, previous_right_sample;
864
    int32_t current_left_sample, current_right_sample;
865
    int32_t next_left_sample, next_right_sample;
866
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
867
    uint8_t shift_left, shift_right;
868
    int count1, count2;
869

    
870
    if (!buf_size)
871
        return 0;
872

    
873
    //should protect all 4bit ADPCM variants
874
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
875
    //
876
    if(*data_size/4 < buf_size + 8)
877
        return -1;
878

    
879
    samples = data;
880
    samples_end= samples + *data_size/2;
881
    *data_size= 0;
882
    src = buf;
883

    
884
    st = avctx->channels == 2 ? 1 : 0;
885

    
886
    switch(avctx->codec->id) {
887
    case CODEC_ID_ADPCM_IMA_QT:
888
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
889
        channel = c->channel;
890
        cs = &(c->status[channel]);
891
        /* (pppppp) (piiiiiii) */
892

    
893
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
894
        cs->predictor = (*src++) << 8;
895
        cs->predictor |= (*src & 0x80);
896
        cs->predictor &= 0xFF80;
897

    
898
        /* sign extension */
899
        if(cs->predictor & 0x8000)
900
            cs->predictor -= 0x10000;
901

    
902
        cs->predictor = av_clip_int16(cs->predictor);
903

    
904
        cs->step_index = (*src++) & 0x7F;
905

    
906
        if (cs->step_index > 88){
907
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
908
            cs->step_index = 88;
909
        }
910

    
911
        cs->step = step_table[cs->step_index];
912

    
913
        if (st && channel)
914
            samples++;
915

    
916
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
917
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
918
            samples += avctx->channels;
919
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
920
            samples += avctx->channels;
921
            src ++;
922
        }
923

    
924
        if(st) { /* handle stereo interlacing */
925
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
926
            if(channel == 1) { /* wait for the other packet before outputing anything */
927
                return src - buf;
928
            }
929
        }
930
        break;
931
    case CODEC_ID_ADPCM_IMA_WAV:
932
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
933
            buf_size = avctx->block_align;
934

    
935
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
936

    
937
        for(i=0; i<avctx->channels; i++){
938
            cs = &(c->status[i]);
939
            cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8));
940
            src+=2;
941

    
942
            cs->step_index = *src++;
943
            if (cs->step_index > 88){
944
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
945
                cs->step_index = 88;
946
            }
947
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
948
        }
949

    
950
        while(src < buf + buf_size){
951
            for(m=0; m<4; m++){
952
                for(i=0; i<=st; i++)
953
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
954
                for(i=0; i<=st; i++)
955
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
956
                src++;
957
            }
958
            src += 4*st;
959
        }
960
        break;
961
    case CODEC_ID_ADPCM_4XM:
962
        cs = &(c->status[0]);
963
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
964
        if(st){
965
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
966
        }
967
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
968
        if(st){
969
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
970
        }
971
        if (cs->step_index < 0) cs->step_index = 0;
972
        if (cs->step_index > 88) cs->step_index = 88;
973

    
974
        m= (buf_size - (src - buf))>>st;
975
        for(i=0; i<m; i++) {
976
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
977
            if (st)
978
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
979
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
980
            if (st)
981
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
982
        }
983

    
984
        src += m<<st;
985

    
986
        break;
987
    case CODEC_ID_ADPCM_MS:
988
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
989
            buf_size = avctx->block_align;
990
        n = buf_size - 7 * avctx->channels;
991
        if (n < 0)
992
            return -1;
993
        block_predictor[0] = av_clip(*src++, 0, 7);
994
        block_predictor[1] = 0;
995
        if (st)
996
            block_predictor[1] = av_clip(*src++, 0, 7);
997
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
998
        src+=2;
999
        if (st){
1000
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1001
            src+=2;
1002
        }
1003
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1004
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1005
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1006
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1007

    
1008
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1009
        src+=2;
1010
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1011
        if (st) src+=2;
1012
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1013
        src+=2;
1014
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1015
        if (st) src+=2;
1016

    
1017
        *samples++ = c->status[0].sample1;
1018
        if (st) *samples++ = c->status[1].sample1;
1019
        *samples++ = c->status[0].sample2;
1020
        if (st) *samples++ = c->status[1].sample2;
1021
        for(;n>0;n--) {
1022
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1023
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1024
            src ++;
1025
        }
1026
        break;
1027
    case CODEC_ID_ADPCM_IMA_DK4:
1028
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1029
            buf_size = avctx->block_align;
1030

    
1031
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1032
        c->status[0].step_index = src[2];
1033
        src += 4;
1034
        *samples++ = c->status[0].predictor;
1035
        if (st) {
1036
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1037
            c->status[1].step_index = src[2];
1038
            src += 4;
1039
            *samples++ = c->status[1].predictor;
1040
        }
1041
        while (src < buf + buf_size) {
1042

    
1043
            /* take care of the top nibble (always left or mono channel) */
1044
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1045
                (src[0] >> 4) & 0x0F, 3);
1046

    
1047
            /* take care of the bottom nibble, which is right sample for
1048
             * stereo, or another mono sample */
1049
            if (st)
1050
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1051
                    src[0] & 0x0F, 3);
1052
            else
1053
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1054
                    src[0] & 0x0F, 3);
1055

    
1056
            src++;
1057
        }
1058
        break;
1059
    case CODEC_ID_ADPCM_IMA_DK3:
1060
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1061
            buf_size = avctx->block_align;
1062

    
1063
        if(buf_size + 16 > (samples_end - samples)*3/8)
1064
            return -1;
1065

    
1066
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1067
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1068
        c->status[0].step_index = src[14];
1069
        c->status[1].step_index = src[15];
1070
        /* sign extend the predictors */
1071
        src += 16;
1072
        diff_channel = c->status[1].predictor;
1073

    
1074
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1075
         * the buffer is consumed */
1076
        while (1) {
1077

    
1078
            /* for this algorithm, c->status[0] is the sum channel and
1079
             * c->status[1] is the diff channel */
1080

    
1081
            /* process the first predictor of the sum channel */
1082
            DK3_GET_NEXT_NIBBLE();
1083
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1084

    
1085
            /* process the diff channel predictor */
1086
            DK3_GET_NEXT_NIBBLE();
1087
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1088

    
1089
            /* process the first pair of stereo PCM samples */
1090
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1091
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1092
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1093

    
1094
            /* process the second predictor of the sum channel */
1095
            DK3_GET_NEXT_NIBBLE();
1096
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1097

    
1098
            /* process the second pair of stereo PCM samples */
1099
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1100
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1101
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1102
        }
1103
        break;
1104
    case CODEC_ID_ADPCM_IMA_WS:
1105
        /* no per-block initialization; just start decoding the data */
1106
        while (src < buf + buf_size) {
1107

    
1108
            if (st) {
1109
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1110
                    (src[0] >> 4) & 0x0F, 3);
1111
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1112
                    src[0] & 0x0F, 3);
1113
            } else {
1114
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1115
                    (src[0] >> 4) & 0x0F, 3);
1116
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1117
                    src[0] & 0x0F, 3);
1118
            }
1119

    
1120
            src++;
1121
        }
1122
        break;
1123
    case CODEC_ID_ADPCM_XA:
1124
        while (buf_size >= 128) {
1125
            xa_decode(samples, src, &c->status[0], &c->status[1],
1126
                avctx->channels);
1127
            src += 128;
1128
            samples += 28 * 8;
1129
            buf_size -= 128;
1130
        }
1131
        break;
1132
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1133
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1134

    
1135
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1136
            src += buf_size - 4;
1137
            break;
1138
        }
1139

    
1140
        for (i=0; i<=st; i++)
1141
            c->status[i].step_index = bytestream_get_le32(&src);
1142
        for (i=0; i<=st; i++)
1143
            c->status[i].predictor  = bytestream_get_le32(&src);
1144

    
1145
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1146
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1147
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1148
        }
1149
        break;
1150
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1151
        for (; src < buf+buf_size; src++) {
1152
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1153
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1154
        }
1155
        break;
1156
    case CODEC_ID_ADPCM_EA:
1157
        samples_in_chunk = AV_RL32(src);
1158
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1159
            src += buf_size;
1160
            break;
1161
        }
1162
        src += 4;
1163
        current_left_sample = (int16_t)AV_RL16(src);
1164
        src += 2;
1165
        previous_left_sample = (int16_t)AV_RL16(src);
1166
        src += 2;
1167
        current_right_sample = (int16_t)AV_RL16(src);
1168
        src += 2;
1169
        previous_right_sample = (int16_t)AV_RL16(src);
1170
        src += 2;
1171

    
1172
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1173
            coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1174
            coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1175
            coeff1r = ea_adpcm_table[*src & 0x0F];
1176
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1177
            src++;
1178

    
1179
            shift_left = ((*src >> 4) & 0x0F) + 8;
1180
            shift_right = (*src & 0x0F) + 8;
1181
            src++;
1182

    
1183
            for (count2 = 0; count2 < 28; count2++) {
1184
                next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1185
                next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1186
                src++;
1187

    
1188
                next_left_sample = (next_left_sample +
1189
                    (current_left_sample * coeff1l) +
1190
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1191
                next_right_sample = (next_right_sample +
1192
                    (current_right_sample * coeff1r) +
1193
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1194

    
1195
                previous_left_sample = current_left_sample;
1196
                current_left_sample = av_clip_int16(next_left_sample);
1197
                previous_right_sample = current_right_sample;
1198
                current_right_sample = av_clip_int16(next_right_sample);
1199
                *samples++ = (unsigned short)current_left_sample;
1200
                *samples++ = (unsigned short)current_right_sample;
1201
            }
1202
        }
1203
        break;
1204
    case CODEC_ID_ADPCM_EA_R1:
1205
    case CODEC_ID_ADPCM_EA_R2:
1206
    case CODEC_ID_ADPCM_EA_R3: {
1207
        /* channel numbering
1208
           2chan: 0=fl, 1=fr
1209
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1210
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1211
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1212
        int32_t previous_sample, current_sample, next_sample;
1213
        int32_t coeff1, coeff2;
1214
        uint8_t shift;
1215
        unsigned int channel;
1216
        uint16_t *samplesC;
1217
        const uint8_t *srcC;
1218

    
1219
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1220
                                       : bytestream_get_le32(&src)) / 28;
1221
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1222
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1223
            src += buf_size - 4;
1224
            break;
1225
        }
1226

    
1227
        for (channel=0; channel<avctx->channels; channel++) {
1228
            srcC = src + (big_endian ? bytestream_get_be32(&src)
1229
                                     : bytestream_get_le32(&src))
1230
                       + (avctx->channels-channel-1) * 4;
1231
            samplesC = samples + channel;
1232

    
1233
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1234
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1235
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1236
            } else {
1237
                current_sample  = c->status[channel].predictor;
1238
                previous_sample = c->status[channel].prev_sample;
1239
            }
1240

    
1241
            for (count1=0; count1<samples_in_chunk; count1++) {
1242
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1243
                    srcC++;
1244
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1245
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1246

    
1247
                    for (count2=0; count2<28; count2++) {
1248
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1249
                        samplesC += avctx->channels;
1250
                    }
1251
                } else {
1252
                    coeff1 = ea_adpcm_table[ (*srcC>>4) & 0x0F     ];
1253
                    coeff2 = ea_adpcm_table[((*srcC>>4) & 0x0F) + 4];
1254
                    shift = (*srcC++ & 0x0F) + 8;
1255

    
1256
                    for (count2=0; count2<28; count2++) {
1257
                        if (count2 & 1)
1258
                            next_sample = ((*srcC++ & 0x0F) << 28) >> shift;
1259
                        else
1260
                            next_sample = ((*srcC   & 0xF0) << 24) >> shift;
1261

    
1262
                        next_sample += (current_sample  * coeff1) +
1263
                                       (previous_sample * coeff2);
1264
                        next_sample = av_clip_int16(next_sample >> 8);
1265

    
1266
                        previous_sample = current_sample;
1267
                        current_sample  = next_sample;
1268
                        *samplesC = current_sample;
1269
                        samplesC += avctx->channels;
1270
                    }
1271
                }
1272
            }
1273

    
1274
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1275
                c->status[channel].predictor   = current_sample;
1276
                c->status[channel].prev_sample = previous_sample;
1277
            }
1278
        }
1279

    
1280
        src = src + buf_size - (4 + 4*avctx->channels);
1281
        samples += 28 * samples_in_chunk * avctx->channels;
1282
        break;
1283
    }
1284
    case CODEC_ID_ADPCM_EA_XAS:
1285
        if (samples_end-samples < 32*4*avctx->channels
1286
            || buf_size < (4+15)*4*avctx->channels) {
1287
            src += buf_size;
1288
            break;
1289
        }
1290
        for (channel=0; channel<avctx->channels; channel++) {
1291
            int coeff[2][4], shift[4];
1292
            short *s2, *s = &samples[channel];
1293
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1294
                for (i=0; i<2; i++)
1295
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1296
                shift[n] = (src[2]&0x0F) + 8;
1297
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1298
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1299
            }
1300

    
1301
            for (m=2; m<32; m+=2) {
1302
                s = &samples[m*avctx->channels + channel];
1303
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1304
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1305
                        int level = ((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1306
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1307
                                  + s2[-2*avctx->channels] * coeff[1][n];
1308
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1309
                    }
1310
                }
1311
            }
1312
        }
1313
        samples += 32*4*avctx->channels;
1314
        break;
1315
    case CODEC_ID_ADPCM_IMA_AMV:
1316
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1317
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1318
        c->status[0].step_index = bytestream_get_le16(&src);
1319

    
1320
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1321
            src+=4;
1322

    
1323
        while (src < buf + buf_size) {
1324
            char hi, lo;
1325
            lo = *src & 0x0F;
1326
            hi = (*src >> 4) & 0x0F;
1327

    
1328
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1329
                FFSWAP(char, hi, lo);
1330

    
1331
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1332
                lo, 3);
1333
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1334
                hi, 3);
1335
            src++;
1336
        }
1337
        break;
1338
    case CODEC_ID_ADPCM_CT:
1339
        while (src < buf + buf_size) {
1340
            if (st) {
1341
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1342
                    (src[0] >> 4) & 0x0F);
1343
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1344
                    src[0] & 0x0F);
1345
            } else {
1346
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1347
                    (src[0] >> 4) & 0x0F);
1348
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1349
                    src[0] & 0x0F);
1350
            }
1351
            src++;
1352
        }
1353
        break;
1354
    case CODEC_ID_ADPCM_SBPRO_4:
1355
    case CODEC_ID_ADPCM_SBPRO_3:
1356
    case CODEC_ID_ADPCM_SBPRO_2:
1357
        if (!c->status[0].step_index) {
1358
            /* the first byte is a raw sample */
1359
            *samples++ = 128 * (*src++ - 0x80);
1360
            if (st)
1361
              *samples++ = 128 * (*src++ - 0x80);
1362
            c->status[0].step_index = 1;
1363
        }
1364
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1365
            while (src < buf + buf_size) {
1366
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1367
                    (src[0] >> 4) & 0x0F, 4, 0);
1368
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1369
                    src[0] & 0x0F, 4, 0);
1370
                src++;
1371
            }
1372
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1373
            while (src < buf + buf_size && samples + 2 < samples_end) {
1374
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1375
                    (src[0] >> 5) & 0x07, 3, 0);
1376
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1377
                    (src[0] >> 2) & 0x07, 3, 0);
1378
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1379
                    src[0] & 0x03, 2, 0);
1380
                src++;
1381
            }
1382
        } else {
1383
            while (src < buf + buf_size && samples + 3 < samples_end) {
1384
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1385
                    (src[0] >> 6) & 0x03, 2, 2);
1386
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1387
                    (src[0] >> 4) & 0x03, 2, 2);
1388
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1389
                    (src[0] >> 2) & 0x03, 2, 2);
1390
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1391
                    src[0] & 0x03, 2, 2);
1392
                src++;
1393
            }
1394
        }
1395
        break;
1396
    case CODEC_ID_ADPCM_SWF:
1397
    {
1398
        GetBitContext gb;
1399
        const int *table;
1400
        int k0, signmask, nb_bits, count;
1401
        int size = buf_size*8;
1402

    
1403
        init_get_bits(&gb, buf, size);
1404

    
1405
        //read bits & initial values
1406
        nb_bits = get_bits(&gb, 2)+2;
1407
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1408
        table = swf_index_tables[nb_bits-2];
1409
        k0 = 1 << (nb_bits-2);
1410
        signmask = 1 << (nb_bits-1);
1411

    
1412
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1413
            for (i = 0; i < avctx->channels; i++) {
1414
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1415
                c->status[i].step_index = get_bits(&gb, 6);
1416
            }
1417

    
1418
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1419
                int i;
1420

    
1421
                for (i = 0; i < avctx->channels; i++) {
1422
                    // similar to IMA adpcm
1423
                    int delta = get_bits(&gb, nb_bits);
1424
                    int step = step_table[c->status[i].step_index];
1425
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1426
                    int k = k0;
1427

    
1428
                    do {
1429
                        if (delta & k)
1430
                            vpdiff += step;
1431
                        step >>= 1;
1432
                        k >>= 1;
1433
                    } while(k);
1434
                    vpdiff += step;
1435

    
1436
                    if (delta & signmask)
1437
                        c->status[i].predictor -= vpdiff;
1438
                    else
1439
                        c->status[i].predictor += vpdiff;
1440

    
1441
                    c->status[i].step_index += table[delta & (~signmask)];
1442

    
1443
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1444
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1445

    
1446
                    *samples++ = c->status[i].predictor;
1447
                    if (samples >= samples_end) {
1448
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1449
                        return -1;
1450
                    }
1451
                }
1452
            }
1453
        }
1454
        src += buf_size;
1455
        break;
1456
    }
1457
    case CODEC_ID_ADPCM_YAMAHA:
1458
        while (src < buf + buf_size) {
1459
            if (st) {
1460
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1461
                        src[0] & 0x0F);
1462
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1463
                        (src[0] >> 4) & 0x0F);
1464
            } else {
1465
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1466
                        src[0] & 0x0F);
1467
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1468
                        (src[0] >> 4) & 0x0F);
1469
            }
1470
            src++;
1471
        }
1472
        break;
1473
    case CODEC_ID_ADPCM_THP:
1474
    {
1475
        int table[2][16];
1476
        unsigned int samplecnt;
1477
        int prev[2][2];
1478
        int ch;
1479

    
1480
        if (buf_size < 80) {
1481
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1482
            return -1;
1483
        }
1484

    
1485
        src+=4;
1486
        samplecnt = bytestream_get_be32(&src);
1487

    
1488
        for (i = 0; i < 32; i++)
1489
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1490

    
1491
        /* Initialize the previous sample.  */
1492
        for (i = 0; i < 4; i++)
1493
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1494

    
1495
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1496
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1497
            return -1;
1498
        }
1499

    
1500
        for (ch = 0; ch <= st; ch++) {
1501
            samples = (unsigned short *) data + ch;
1502

    
1503
            /* Read in every sample for this channel.  */
1504
            for (i = 0; i < samplecnt / 14; i++) {
1505
                int index = (*src >> 4) & 7;
1506
                unsigned int exp = 28 - (*src++ & 15);
1507
                int factor1 = table[ch][index * 2];
1508
                int factor2 = table[ch][index * 2 + 1];
1509

    
1510
                /* Decode 14 samples.  */
1511
                for (n = 0; n < 14; n++) {
1512
                    int32_t sampledat;
1513
                    if(n&1) sampledat=  *src++    <<28;
1514
                    else    sampledat= (*src&0xF0)<<24;
1515

    
1516
                    sampledat = ((prev[ch][0]*factor1
1517
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1518
                    *samples = av_clip_int16(sampledat);
1519
                    prev[ch][1] = prev[ch][0];
1520
                    prev[ch][0] = *samples++;
1521

    
1522
                    /* In case of stereo, skip one sample, this sample
1523
                       is for the other channel.  */
1524
                    samples += st;
1525
                }
1526
            }
1527
        }
1528

    
1529
        /* In the previous loop, in case stereo is used, samples is
1530
           increased exactly one time too often.  */
1531
        samples -= st;
1532
        break;
1533
    }
1534

    
1535
    default:
1536
        return -1;
1537
    }
1538
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1539
    return src - buf;
1540
}
1541

    
1542

    
1543

    
1544
#ifdef CONFIG_ENCODERS
1545
#define ADPCM_ENCODER(id,name)                  \
1546
AVCodec name ## _encoder = {                    \
1547
    #name,                                      \
1548
    CODEC_TYPE_AUDIO,                           \
1549
    id,                                         \
1550
    sizeof(ADPCMContext),                       \
1551
    adpcm_encode_init,                          \
1552
    adpcm_encode_frame,                         \
1553
    adpcm_encode_close,                         \
1554
    NULL,                                       \
1555
};
1556
#else
1557
#define ADPCM_ENCODER(id,name)
1558
#endif
1559

    
1560
#ifdef CONFIG_DECODERS
1561
#define ADPCM_DECODER(id,name)                  \
1562
AVCodec name ## _decoder = {                    \
1563
    #name,                                      \
1564
    CODEC_TYPE_AUDIO,                           \
1565
    id,                                         \
1566
    sizeof(ADPCMContext),                       \
1567
    adpcm_decode_init,                          \
1568
    NULL,                                       \
1569
    NULL,                                       \
1570
    adpcm_decode_frame,                         \
1571
};
1572
#else
1573
#define ADPCM_DECODER(id,name)
1574
#endif
1575

    
1576
#define ADPCM_CODEC(id, name)                   \
1577
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1578

    
1579
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1580
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct);
1581
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea);
1582
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1);
1583
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2);
1584
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3);
1585
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas);
1586
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv);
1587
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1588
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1589
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs);
1590
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead);
1591
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1592
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1593
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1594
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1595
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms);
1596
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1597
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1598
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1599
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf);
1600
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp);
1601
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa);
1602
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);