Statistics
| Branch: | Revision:

ffmpeg / libswscale / utils.c @ 829e5daf

History | View | Annotate | Download (56 KB)

1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
#define _SVID_SOURCE //needed for MAP_ANONYMOUS
22
#define _DARWIN_C_SOURCE // needed for MAP_ANON
23
#include <inttypes.h>
24
#include <string.h>
25
#include <math.h>
26
#include <stdio.h>
27
#include "config.h"
28
#include <assert.h>
29
#if HAVE_SYS_MMAN_H
30
#include <sys/mman.h>
31
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
32
#define MAP_ANONYMOUS MAP_ANON
33
#endif
34
#endif
35
#if HAVE_VIRTUALALLOC
36
#define WIN32_LEAN_AND_MEAN
37
#include <windows.h>
38
#endif
39
#include "swscale.h"
40
#include "swscale_internal.h"
41
#include "rgb2rgb.h"
42
#include "libavutil/intreadwrite.h"
43
#include "libavutil/x86_cpu.h"
44
#include "libavutil/avutil.h"
45
#include "libavutil/bswap.h"
46
#include "libavutil/pixdesc.h"
47

    
48
unsigned swscale_version(void)
49
{
50
    return LIBSWSCALE_VERSION_INT;
51
}
52

    
53
const char *swscale_configuration(void)
54
{
55
    return FFMPEG_CONFIGURATION;
56
}
57

    
58
const char *swscale_license(void)
59
{
60
#define LICENSE_PREFIX "libswscale license: "
61
    return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
62
}
63

    
64
#define RET 0xC3 //near return opcode for x86
65

    
66
#define isSupportedIn(x)    (       \
67
           (x)==PIX_FMT_YUV420P     \
68
        || (x)==PIX_FMT_YUVA420P    \
69
        || (x)==PIX_FMT_YUYV422     \
70
        || (x)==PIX_FMT_UYVY422     \
71
        || (x)==PIX_FMT_RGB48BE     \
72
        || (x)==PIX_FMT_RGB48LE     \
73
        || (x)==PIX_FMT_RGB32       \
74
        || (x)==PIX_FMT_RGB32_1     \
75
        || (x)==PIX_FMT_BGR24       \
76
        || (x)==PIX_FMT_BGR565      \
77
        || (x)==PIX_FMT_BGR555      \
78
        || (x)==PIX_FMT_BGR32       \
79
        || (x)==PIX_FMT_BGR32_1     \
80
        || (x)==PIX_FMT_RGB24       \
81
        || (x)==PIX_FMT_RGB565      \
82
        || (x)==PIX_FMT_RGB555      \
83
        || (x)==PIX_FMT_GRAY8       \
84
        || (x)==PIX_FMT_YUV410P     \
85
        || (x)==PIX_FMT_YUV440P     \
86
        || (x)==PIX_FMT_NV12        \
87
        || (x)==PIX_FMT_NV21        \
88
        || (x)==PIX_FMT_GRAY16BE    \
89
        || (x)==PIX_FMT_GRAY16LE    \
90
        || (x)==PIX_FMT_YUV444P     \
91
        || (x)==PIX_FMT_YUV422P     \
92
        || (x)==PIX_FMT_YUV411P     \
93
        || (x)==PIX_FMT_YUVJ420P    \
94
        || (x)==PIX_FMT_YUVJ422P    \
95
        || (x)==PIX_FMT_YUVJ440P    \
96
        || (x)==PIX_FMT_YUVJ444P    \
97
        || (x)==PIX_FMT_PAL8        \
98
        || (x)==PIX_FMT_BGR8        \
99
        || (x)==PIX_FMT_RGB8        \
100
        || (x)==PIX_FMT_BGR4_BYTE   \
101
        || (x)==PIX_FMT_RGB4_BYTE   \
102
        || (x)==PIX_FMT_YUV440P     \
103
        || (x)==PIX_FMT_MONOWHITE   \
104
        || (x)==PIX_FMT_MONOBLACK   \
105
        || (x)==PIX_FMT_YUV420P16LE   \
106
        || (x)==PIX_FMT_YUV422P16LE   \
107
        || (x)==PIX_FMT_YUV444P16LE   \
108
        || (x)==PIX_FMT_YUV420P16BE   \
109
        || (x)==PIX_FMT_YUV422P16BE   \
110
        || (x)==PIX_FMT_YUV444P16BE   \
111
    )
112

    
113
int sws_isSupportedInput(enum PixelFormat pix_fmt)
114
{
115
    return isSupportedIn(pix_fmt);
116
}
117

    
118
#define isSupportedOut(x)   (       \
119
           (x)==PIX_FMT_YUV420P     \
120
        || (x)==PIX_FMT_YUVA420P    \
121
        || (x)==PIX_FMT_YUYV422     \
122
        || (x)==PIX_FMT_UYVY422     \
123
        || (x)==PIX_FMT_YUV444P     \
124
        || (x)==PIX_FMT_YUV422P     \
125
        || (x)==PIX_FMT_YUV411P     \
126
        || (x)==PIX_FMT_YUVJ420P    \
127
        || (x)==PIX_FMT_YUVJ422P    \
128
        || (x)==PIX_FMT_YUVJ440P    \
129
        || (x)==PIX_FMT_YUVJ444P    \
130
        || isAnyRGB(x)              \
131
        || (x)==PIX_FMT_NV12        \
132
        || (x)==PIX_FMT_NV21        \
133
        || (x)==PIX_FMT_GRAY16BE    \
134
        || (x)==PIX_FMT_GRAY16LE    \
135
        || (x)==PIX_FMT_GRAY8       \
136
        || (x)==PIX_FMT_YUV410P     \
137
        || (x)==PIX_FMT_YUV440P     \
138
        || (x)==PIX_FMT_YUV420P16LE   \
139
        || (x)==PIX_FMT_YUV422P16LE   \
140
        || (x)==PIX_FMT_YUV444P16LE   \
141
        || (x)==PIX_FMT_YUV420P16BE   \
142
        || (x)==PIX_FMT_YUV422P16BE   \
143
        || (x)==PIX_FMT_YUV444P16BE   \
144
    )
145

    
146
int sws_isSupportedOutput(enum PixelFormat pix_fmt)
147
{
148
    return isSupportedOut(pix_fmt);
149
}
150

    
151
extern const int32_t ff_yuv2rgb_coeffs[8][4];
152

    
153
const char *sws_format_name(enum PixelFormat format)
154
{
155
    if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
156
        return av_pix_fmt_descriptors[format].name;
157
    else
158
        return "Unknown format";
159
}
160

    
161
static double getSplineCoeff(double a, double b, double c, double d, double dist)
162
{
163
//    printf("%f %f %f %f %f\n", a,b,c,d,dist);
164
    if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
165
    else           return getSplineCoeff(        0.0,
166
                                          b+ 2.0*c + 3.0*d,
167
                                                 c + 3.0*d,
168
                                         -b- 3.0*c - 6.0*d,
169
                                         dist-1.0);
170
}
171

    
172
static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
173
                      int srcW, int dstW, int filterAlign, int one, int flags,
174
                      SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
175
{
176
    int i;
177
    int filterSize;
178
    int filter2Size;
179
    int minFilterSize;
180
    int64_t *filter=NULL;
181
    int64_t *filter2=NULL;
182
    const int64_t fone= 1LL<<54;
183
    int ret= -1;
184
#if ARCH_X86
185
    if (flags & SWS_CPU_CAPS_MMX)
186
        __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
187
#endif
188

    
189
    // NOTE: the +1 is for the MMX scaler which reads over the end
190
    FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
191

    
192
    if (FFABS(xInc - 0x10000) <10) { // unscaled
193
        int i;
194
        filterSize= 1;
195
        FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
196

    
197
        for (i=0; i<dstW; i++) {
198
            filter[i*filterSize]= fone;
199
            (*filterPos)[i]=i;
200
        }
201

    
202
    } else if (flags&SWS_POINT) { // lame looking point sampling mode
203
        int i;
204
        int xDstInSrc;
205
        filterSize= 1;
206
        FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
207

    
208
        xDstInSrc= xInc/2 - 0x8000;
209
        for (i=0; i<dstW; i++) {
210
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
211

    
212
            (*filterPos)[i]= xx;
213
            filter[i]= fone;
214
            xDstInSrc+= xInc;
215
        }
216
    } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
217
        int i;
218
        int xDstInSrc;
219
        filterSize= 2;
220
        FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
221

    
222
        xDstInSrc= xInc/2 - 0x8000;
223
        for (i=0; i<dstW; i++) {
224
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
225
            int j;
226

    
227
            (*filterPos)[i]= xx;
228
            //bilinear upscale / linear interpolate / area averaging
229
            for (j=0; j<filterSize; j++) {
230
                int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
231
                if (coeff<0) coeff=0;
232
                filter[i*filterSize + j]= coeff;
233
                xx++;
234
            }
235
            xDstInSrc+= xInc;
236
        }
237
    } else {
238
        int xDstInSrc;
239
        int sizeFactor;
240

    
241
        if      (flags&SWS_BICUBIC)      sizeFactor=  4;
242
        else if (flags&SWS_X)            sizeFactor=  8;
243
        else if (flags&SWS_AREA)         sizeFactor=  1; //downscale only, for upscale it is bilinear
244
        else if (flags&SWS_GAUSS)        sizeFactor=  8;   // infinite ;)
245
        else if (flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
246
        else if (flags&SWS_SINC)         sizeFactor= 20; // infinite ;)
247
        else if (flags&SWS_SPLINE)       sizeFactor= 20;  // infinite ;)
248
        else if (flags&SWS_BILINEAR)     sizeFactor=  2;
249
        else {
250
            sizeFactor= 0; //GCC warning killer
251
            assert(0);
252
        }
253

    
254
        if (xInc <= 1<<16)      filterSize= 1 + sizeFactor; // upscale
255
        else                    filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
256

    
257
        if (filterSize > srcW-2) filterSize=srcW-2;
258

    
259
        FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
260

    
261
        xDstInSrc= xInc - 0x10000;
262
        for (i=0; i<dstW; i++) {
263
            int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
264
            int j;
265
            (*filterPos)[i]= xx;
266
            for (j=0; j<filterSize; j++) {
267
                int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
268
                double floatd;
269
                int64_t coeff;
270

    
271
                if (xInc > 1<<16)
272
                    d= d*dstW/srcW;
273
                floatd= d * (1.0/(1<<30));
274

    
275
                if (flags & SWS_BICUBIC) {
276
                    int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] :   0) * (1<<24);
277
                    int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
278
                    int64_t dd = ( d*d)>>30;
279
                    int64_t ddd= (dd*d)>>30;
280

    
281
                    if      (d < 1LL<<30)
282
                        coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
283
                    else if (d < 1LL<<31)
284
                        coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
285
                    else
286
                        coeff=0.0;
287
                    coeff *= fone>>(30+24);
288
                }
289
/*                else if (flags & SWS_X) {
290
                    double p= param ? param*0.01 : 0.3;
291
                    coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
292
                    coeff*= pow(2.0, - p*d*d);
293
                }*/
294
                else if (flags & SWS_X) {
295
                    double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
296
                    double c;
297

    
298
                    if (floatd<1.0)
299
                        c = cos(floatd*M_PI);
300
                    else
301
                        c=-1.0;
302
                    if (c<0.0)      c= -pow(-c, A);
303
                    else            c=  pow( c, A);
304
                    coeff= (c*0.5 + 0.5)*fone;
305
                } else if (flags & SWS_AREA) {
306
                    int64_t d2= d - (1<<29);
307
                    if      (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
308
                    else if (d2*xInc <  (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
309
                    else coeff=0.0;
310
                    coeff *= fone>>(30+16);
311
                } else if (flags & SWS_GAUSS) {
312
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
313
                    coeff = (pow(2.0, - p*floatd*floatd))*fone;
314
                } else if (flags & SWS_SINC) {
315
                    coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
316
                } else if (flags & SWS_LANCZOS) {
317
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
318
                    coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
319
                    if (floatd>p) coeff=0;
320
                } else if (flags & SWS_BILINEAR) {
321
                    coeff= (1<<30) - d;
322
                    if (coeff<0) coeff=0;
323
                    coeff *= fone >> 30;
324
                } else if (flags & SWS_SPLINE) {
325
                    double p=-2.196152422706632;
326
                    coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
327
                } else {
328
                    coeff= 0.0; //GCC warning killer
329
                    assert(0);
330
                }
331

    
332
                filter[i*filterSize + j]= coeff;
333
                xx++;
334
            }
335
            xDstInSrc+= 2*xInc;
336
        }
337
    }
338

    
339
    /* apply src & dst Filter to filter -> filter2
340
       av_free(filter);
341
    */
342
    assert(filterSize>0);
343
    filter2Size= filterSize;
344
    if (srcFilter) filter2Size+= srcFilter->length - 1;
345
    if (dstFilter) filter2Size+= dstFilter->length - 1;
346
    assert(filter2Size>0);
347
    FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
348

    
349
    for (i=0; i<dstW; i++) {
350
        int j, k;
351

    
352
        if(srcFilter) {
353
            for (k=0; k<srcFilter->length; k++) {
354
                for (j=0; j<filterSize; j++)
355
                    filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
356
            }
357
        } else {
358
            for (j=0; j<filterSize; j++)
359
                filter2[i*filter2Size + j]= filter[i*filterSize + j];
360
        }
361
        //FIXME dstFilter
362

    
363
        (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
364
    }
365
    av_freep(&filter);
366

    
367
    /* try to reduce the filter-size (step1 find size and shift left) */
368
    // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
369
    minFilterSize= 0;
370
    for (i=dstW-1; i>=0; i--) {
371
        int min= filter2Size;
372
        int j;
373
        int64_t cutOff=0.0;
374

    
375
        /* get rid of near zero elements on the left by shifting left */
376
        for (j=0; j<filter2Size; j++) {
377
            int k;
378
            cutOff += FFABS(filter2[i*filter2Size]);
379

    
380
            if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
381

    
382
            /* preserve monotonicity because the core can't handle the filter otherwise */
383
            if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
384

    
385
            // move filter coefficients left
386
            for (k=1; k<filter2Size; k++)
387
                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
388
            filter2[i*filter2Size + k - 1]= 0;
389
            (*filterPos)[i]++;
390
        }
391

    
392
        cutOff=0;
393
        /* count near zeros on the right */
394
        for (j=filter2Size-1; j>0; j--) {
395
            cutOff += FFABS(filter2[i*filter2Size + j]);
396

    
397
            if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
398
            min--;
399
        }
400

    
401
        if (min>minFilterSize) minFilterSize= min;
402
    }
403

    
404
    if (flags & SWS_CPU_CAPS_ALTIVEC) {
405
        // we can handle the special case 4,
406
        // so we don't want to go to the full 8
407
        if (minFilterSize < 5)
408
            filterAlign = 4;
409

    
410
        // We really don't want to waste our time
411
        // doing useless computation, so fall back on
412
        // the scalar C code for very small filters.
413
        // Vectorizing is worth it only if you have a
414
        // decent-sized vector.
415
        if (minFilterSize < 3)
416
            filterAlign = 1;
417
    }
418

    
419
    if (flags & SWS_CPU_CAPS_MMX) {
420
        // special case for unscaled vertical filtering
421
        if (minFilterSize == 1 && filterAlign == 2)
422
            filterAlign= 1;
423
    }
424

    
425
    assert(minFilterSize > 0);
426
    filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
427
    assert(filterSize > 0);
428
    filter= av_malloc(filterSize*dstW*sizeof(*filter));
429
    if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
430
        goto fail;
431
    *outFilterSize= filterSize;
432

    
433
    if (flags&SWS_PRINT_INFO)
434
        av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
435
    /* try to reduce the filter-size (step2 reduce it) */
436
    for (i=0; i<dstW; i++) {
437
        int j;
438

    
439
        for (j=0; j<filterSize; j++) {
440
            if (j>=filter2Size) filter[i*filterSize + j]= 0;
441
            else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
442
            if((flags & SWS_BITEXACT) && j>=minFilterSize)
443
                filter[i*filterSize + j]= 0;
444
        }
445
    }
446

    
447
    //FIXME try to align filterPos if possible
448

    
449
    //fix borders
450
    for (i=0; i<dstW; i++) {
451
        int j;
452
        if ((*filterPos)[i] < 0) {
453
            // move filter coefficients left to compensate for filterPos
454
            for (j=1; j<filterSize; j++) {
455
                int left= FFMAX(j + (*filterPos)[i], 0);
456
                filter[i*filterSize + left] += filter[i*filterSize + j];
457
                filter[i*filterSize + j]=0;
458
            }
459
            (*filterPos)[i]= 0;
460
        }
461

    
462
        if ((*filterPos)[i] + filterSize > srcW) {
463
            int shift= (*filterPos)[i] + filterSize - srcW;
464
            // move filter coefficients right to compensate for filterPos
465
            for (j=filterSize-2; j>=0; j--) {
466
                int right= FFMIN(j + shift, filterSize-1);
467
                filter[i*filterSize +right] += filter[i*filterSize +j];
468
                filter[i*filterSize +j]=0;
469
            }
470
            (*filterPos)[i]= srcW - filterSize;
471
        }
472
    }
473

    
474
    // Note the +1 is for the MMX scaler which reads over the end
475
    /* align at 16 for AltiVec (needed by hScale_altivec_real) */
476
    FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
477

    
478
    /* normalize & store in outFilter */
479
    for (i=0; i<dstW; i++) {
480
        int j;
481
        int64_t error=0;
482
        int64_t sum=0;
483

    
484
        for (j=0; j<filterSize; j++) {
485
            sum+= filter[i*filterSize + j];
486
        }
487
        sum= (sum + one/2)/ one;
488
        for (j=0; j<*outFilterSize; j++) {
489
            int64_t v= filter[i*filterSize + j] + error;
490
            int intV= ROUNDED_DIV(v, sum);
491
            (*outFilter)[i*(*outFilterSize) + j]= intV;
492
            error= v - intV*sum;
493
        }
494
    }
495

    
496
    (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
497
    for (i=0; i<*outFilterSize; i++) {
498
        int j= dstW*(*outFilterSize);
499
        (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
500
    }
501

    
502
    ret=0;
503
fail:
504
    av_free(filter);
505
    av_free(filter2);
506
    return ret;
507
}
508

    
509
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
510
static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
511
{
512
    uint8_t *fragmentA;
513
    x86_reg imm8OfPShufW1A;
514
    x86_reg imm8OfPShufW2A;
515
    x86_reg fragmentLengthA;
516
    uint8_t *fragmentB;
517
    x86_reg imm8OfPShufW1B;
518
    x86_reg imm8OfPShufW2B;
519
    x86_reg fragmentLengthB;
520
    int fragmentPos;
521

    
522
    int xpos, i;
523

    
524
    // create an optimized horizontal scaling routine
525
    /* This scaler is made of runtime-generated MMX2 code using specially
526
     * tuned pshufw instructions. For every four output pixels, if four
527
     * input pixels are enough for the fast bilinear scaling, then a chunk
528
     * of fragmentB is used. If five input pixels are needed, then a chunk
529
     * of fragmentA is used.
530
     */
531

    
532
    //code fragment
533

    
534
    __asm__ volatile(
535
        "jmp                         9f                 \n\t"
536
    // Begin
537
        "0:                                             \n\t"
538
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
539
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
540
        "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
541
        "punpcklbw                %%mm7, %%mm1          \n\t"
542
        "punpcklbw                %%mm7, %%mm0          \n\t"
543
        "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
544
        "1:                                             \n\t"
545
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
546
        "2:                                             \n\t"
547
        "psubw                    %%mm1, %%mm0          \n\t"
548
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
549
        "pmullw                   %%mm3, %%mm0          \n\t"
550
        "psllw                       $7, %%mm1          \n\t"
551
        "paddw                    %%mm1, %%mm0          \n\t"
552

    
553
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
554

    
555
        "add                         $8, %%"REG_a"      \n\t"
556
    // End
557
        "9:                                             \n\t"
558
//        "int $3                                         \n\t"
559
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
560
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
561
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
562
        "dec                         %1                 \n\t"
563
        "dec                         %2                 \n\t"
564
        "sub                         %0, %1             \n\t"
565
        "sub                         %0, %2             \n\t"
566
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
567
        "sub                         %0, %3             \n\t"
568

    
569

    
570
        :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
571
        "=r" (fragmentLengthA)
572
    );
573

    
574
    __asm__ volatile(
575
        "jmp                         9f                 \n\t"
576
    // Begin
577
        "0:                                             \n\t"
578
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
579
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
580
        "punpcklbw                %%mm7, %%mm0          \n\t"
581
        "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
582
        "1:                                             \n\t"
583
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
584
        "2:                                             \n\t"
585
        "psubw                    %%mm1, %%mm0          \n\t"
586
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
587
        "pmullw                   %%mm3, %%mm0          \n\t"
588
        "psllw                       $7, %%mm1          \n\t"
589
        "paddw                    %%mm1, %%mm0          \n\t"
590

    
591
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
592

    
593
        "add                         $8, %%"REG_a"      \n\t"
594
    // End
595
        "9:                                             \n\t"
596
//        "int                       $3                   \n\t"
597
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
598
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
599
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
600
        "dec                         %1                 \n\t"
601
        "dec                         %2                 \n\t"
602
        "sub                         %0, %1             \n\t"
603
        "sub                         %0, %2             \n\t"
604
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
605
        "sub                         %0, %3             \n\t"
606

    
607

    
608
        :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
609
        "=r" (fragmentLengthB)
610
    );
611

    
612
    xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
613
    fragmentPos=0;
614

    
615
    for (i=0; i<dstW/numSplits; i++) {
616
        int xx=xpos>>16;
617

    
618
        if ((i&3) == 0) {
619
            int a=0;
620
            int b=((xpos+xInc)>>16) - xx;
621
            int c=((xpos+xInc*2)>>16) - xx;
622
            int d=((xpos+xInc*3)>>16) - xx;
623
            int inc                = (d+1<4);
624
            uint8_t *fragment      = (d+1<4) ? fragmentB       : fragmentA;
625
            x86_reg imm8OfPShufW1  = (d+1<4) ? imm8OfPShufW1B  : imm8OfPShufW1A;
626
            x86_reg imm8OfPShufW2  = (d+1<4) ? imm8OfPShufW2B  : imm8OfPShufW2A;
627
            x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
628
            int maxShift= 3-(d+inc);
629
            int shift=0;
630

    
631
            if (filterCode) {
632
                filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
633
                filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
634
                filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
635
                filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
636
                filterPos[i/2]= xx;
637

    
638
                memcpy(filterCode + fragmentPos, fragment, fragmentLength);
639

    
640
                filterCode[fragmentPos + imm8OfPShufW1]=
641
                    (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
642
                filterCode[fragmentPos + imm8OfPShufW2]=
643
                    a | (b<<2) | (c<<4) | (d<<6);
644

    
645
                if (i+4-inc>=dstW) shift=maxShift; //avoid overread
646
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
647

    
648
                if (shift && i>=shift) {
649
                    filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
650
                    filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
651
                    filterPos[i/2]-=shift;
652
                }
653
            }
654

    
655
            fragmentPos+= fragmentLength;
656

    
657
            if (filterCode)
658
                filterCode[fragmentPos]= RET;
659
        }
660
        xpos+=xInc;
661
    }
662
    if (filterCode)
663
        filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
664

    
665
    return fragmentPos + 1;
666
}
667
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
668

    
669
static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
670
{
671
    *h = av_pix_fmt_descriptors[format].log2_chroma_w;
672
    *v = av_pix_fmt_descriptors[format].log2_chroma_h;
673
}
674

    
675
static int update_flags_cpu(int flags);
676

    
677
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
678
{
679
    memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
680
    memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
681

    
682
    c->brightness= brightness;
683
    c->contrast  = contrast;
684
    c->saturation= saturation;
685
    c->srcRange  = srcRange;
686
    c->dstRange  = dstRange;
687
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
688

    
689
    c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
690
    c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
691
    c->flags = update_flags_cpu(c->flags);
692

    
693
    ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
694
    //FIXME factorize
695

    
696
#if HAVE_ALTIVEC
697
    if (c->flags & SWS_CPU_CAPS_ALTIVEC)
698
        ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
699
#endif
700
    return 0;
701
}
702

    
703
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
704
{
705
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
706

    
707
    *inv_table = c->srcColorspaceTable;
708
    *table     = c->dstColorspaceTable;
709
    *srcRange  = c->srcRange;
710
    *dstRange  = c->dstRange;
711
    *brightness= c->brightness;
712
    *contrast  = c->contrast;
713
    *saturation= c->saturation;
714

    
715
    return 0;
716
}
717

    
718
static int handle_jpeg(enum PixelFormat *format)
719
{
720
    switch (*format) {
721
    case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
722
    case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
723
    case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
724
    case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
725
    default:                                          return 0;
726
    }
727
}
728

    
729
static int update_flags_cpu(int flags)
730
{
731
#if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
732
    flags &= ~( SWS_CPU_CAPS_MMX
733
               |SWS_CPU_CAPS_MMX2
734
               |SWS_CPU_CAPS_3DNOW
735
               |SWS_CPU_CAPS_ALTIVEC
736
               |SWS_CPU_CAPS_BFIN);
737
    flags |= ff_hardcodedcpuflags();
738
#endif /* CONFIG_RUNTIME_CPUDETECT */
739
    return flags;
740
}
741

    
742
SwsContext *sws_alloc_context(void){
743
    SwsContext *c= av_mallocz(sizeof(SwsContext));
744

    
745
    c->av_class = &sws_context_class;
746

    
747
    return c;
748
}
749

    
750
int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter){
751
    int i;
752
    int usesVFilter, usesHFilter;
753
    int unscaled;
754
    SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
755
    int srcW= c->srcW;
756
    int srcH= c->srcH;
757
    int dstW= c->dstW;
758
    int dstH= c->dstH;
759
    int flags;
760
    enum PixelFormat srcFormat= c->srcFormat;
761
    enum PixelFormat dstFormat= c->dstFormat;
762

    
763
    flags= c->flags = update_flags_cpu(c->flags);
764
#if ARCH_X86
765
    if (flags & SWS_CPU_CAPS_MMX)
766
        __asm__ volatile("emms\n\t"::: "memory");
767
#endif
768
    if (!rgb15to16) sws_rgb2rgb_init(flags);
769

    
770
    unscaled = (srcW == dstW && srcH == dstH);
771

    
772
    if (!isSupportedIn(srcFormat)) {
773
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
774
        return AVERROR(EINVAL);
775
    }
776
    if (!isSupportedOut(dstFormat)) {
777
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
778
        return AVERROR(EINVAL);
779
    }
780

    
781
    i= flags & ( SWS_POINT
782
                |SWS_AREA
783
                |SWS_BILINEAR
784
                |SWS_FAST_BILINEAR
785
                |SWS_BICUBIC
786
                |SWS_X
787
                |SWS_GAUSS
788
                |SWS_LANCZOS
789
                |SWS_SINC
790
                |SWS_SPLINE
791
                |SWS_BICUBLIN);
792
    if(!i || (i & (i-1))) {
793
        av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
794
        return AVERROR(EINVAL);
795
    }
796
    /* sanity check */
797
    if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
798
        av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
799
               srcW, srcH, dstW, dstH);
800
        return AVERROR(EINVAL);
801
    }
802
    if(srcW > VOFW || dstW > VOFW) {
803
        av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
804
        return AVERROR(EINVAL);
805
    }
806

    
807
    if (!dstFilter) dstFilter= &dummyFilter;
808
    if (!srcFilter) srcFilter= &dummyFilter;
809

    
810
    c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
811
    c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
812
    c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
813
    c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
814
    c->vRounder= 4* 0x0001000100010001ULL;
815

    
816
    usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
817
                  (srcFilter->chrV && srcFilter->chrV->length>1) ||
818
                  (dstFilter->lumV && dstFilter->lumV->length>1) ||
819
                  (dstFilter->chrV && dstFilter->chrV->length>1);
820
    usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
821
                  (srcFilter->chrH && srcFilter->chrH->length>1) ||
822
                  (dstFilter->lumH && dstFilter->lumH->length>1) ||
823
                  (dstFilter->chrH && dstFilter->chrH->length>1);
824

    
825
    getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
826
    getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
827

    
828
    // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
829
    if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
830

    
831
    // drop some chroma lines if the user wants it
832
    c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
833
    c->chrSrcVSubSample+= c->vChrDrop;
834

    
835
    // drop every other pixel for chroma calculation unless user wants full chroma
836
    if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
837
      && srcFormat!=PIX_FMT_RGB8      && srcFormat!=PIX_FMT_BGR8
838
      && srcFormat!=PIX_FMT_RGB4      && srcFormat!=PIX_FMT_BGR4
839
      && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
840
      && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
841
        c->chrSrcHSubSample=1;
842

    
843
    // Note the -((-x)>>y) is so that we always round toward +inf.
844
    c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
845
    c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
846
    c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
847
    c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
848

    
849
    /* unscaled special cases */
850
    if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
851
        ff_get_unscaled_swscale(c);
852

    
853
        if (c->swScale) {
854
            if (flags&SWS_PRINT_INFO)
855
                av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
856
                       sws_format_name(srcFormat), sws_format_name(dstFormat));
857
            return 0;
858
        }
859
    }
860

    
861
    if (flags & SWS_CPU_CAPS_MMX2) {
862
        c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
863
        if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
864
            if (flags&SWS_PRINT_INFO)
865
                av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
866
        }
867
        if (usesHFilter) c->canMMX2BeUsed=0;
868
    }
869
    else
870
        c->canMMX2BeUsed=0;
871

    
872
    c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
873
    c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
874

    
875
    // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
876
    // but only for the FAST_BILINEAR mode otherwise do correct scaling
877
    // n-2 is the last chrominance sample available
878
    // this is not perfect, but no one should notice the difference, the more correct variant
879
    // would be like the vertical one, but that would require some special code for the
880
    // first and last pixel
881
    if (flags&SWS_FAST_BILINEAR) {
882
        if (c->canMMX2BeUsed) {
883
            c->lumXInc+= 20;
884
            c->chrXInc+= 20;
885
        }
886
        //we don't use the x86 asm scaler if MMX is available
887
        else if (flags & SWS_CPU_CAPS_MMX) {
888
            c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
889
            c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
890
        }
891
    }
892

    
893
    /* precalculate horizontal scaler filter coefficients */
894
    {
895
#if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
896
// can't downscale !!!
897
        if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
898
            c->lumMmx2FilterCodeSize = initMMX2HScaler(      dstW, c->lumXInc, NULL, NULL, NULL, 8);
899
            c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
900

    
901
#ifdef MAP_ANONYMOUS
902
            c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
903
            c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
904
#elif HAVE_VIRTUALALLOC
905
            c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
906
            c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
907
#else
908
            c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
909
            c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
910
#endif
911

    
912
            if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
913
                return AVERROR(ENOMEM);
914
            FF_ALLOCZ_OR_GOTO(c, c->hLumFilter   , (dstW        /8+8)*sizeof(int16_t), fail);
915
            FF_ALLOCZ_OR_GOTO(c, c->hChrFilter   , (c->chrDstW  /4+8)*sizeof(int16_t), fail);
916
            FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW      /2/8+8)*sizeof(int32_t), fail);
917
            FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
918

    
919
            initMMX2HScaler(      dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
920
            initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
921

    
922
#ifdef MAP_ANONYMOUS
923
            mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
924
            mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
925
#endif
926
        } else
927
#endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
928
        {
929
            const int filterAlign=
930
                (flags & SWS_CPU_CAPS_MMX) ? 4 :
931
                (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
932
                1;
933

    
934
            if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
935
                           srcW      ,       dstW, filterAlign, 1<<14,
936
                           (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
937
                           srcFilter->lumH, dstFilter->lumH, c->param) < 0)
938
                goto fail;
939
            if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
940
                           c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
941
                           (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
942
                           srcFilter->chrH, dstFilter->chrH, c->param) < 0)
943
                goto fail;
944
        }
945
    } // initialize horizontal stuff
946

    
947
    /* precalculate vertical scaler filter coefficients */
948
    {
949
        const int filterAlign=
950
            (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
951
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
952
            1;
953

    
954
        if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
955
                       srcH      ,        dstH, filterAlign, (1<<12),
956
                       (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
957
                       srcFilter->lumV, dstFilter->lumV, c->param) < 0)
958
            goto fail;
959
        if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
960
                       c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
961
                       (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
962
                       srcFilter->chrV, dstFilter->chrV, c->param) < 0)
963
            goto fail;
964

    
965
#if HAVE_ALTIVEC
966
        FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
967
        FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
968

    
969
        for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
970
            int j;
971
            short *p = (short *)&c->vYCoeffsBank[i];
972
            for (j=0;j<8;j++)
973
                p[j] = c->vLumFilter[i];
974
        }
975

    
976
        for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
977
            int j;
978
            short *p = (short *)&c->vCCoeffsBank[i];
979
            for (j=0;j<8;j++)
980
                p[j] = c->vChrFilter[i];
981
        }
982
#endif
983
    }
984

    
985
    // calculate buffer sizes so that they won't run out while handling these damn slices
986
    c->vLumBufSize= c->vLumFilterSize;
987
    c->vChrBufSize= c->vChrFilterSize;
988
    for (i=0; i<dstH; i++) {
989
        int chrI= i*c->chrDstH / dstH;
990
        int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
991
                           ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
992

    
993
        nextSlice>>= c->chrSrcVSubSample;
994
        nextSlice<<= c->chrSrcVSubSample;
995
        if (c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
996
            c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
997
        if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
998
            c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
999
    }
1000

    
1001
    // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1002
    // allocate several megabytes to handle all possible cases)
1003
    FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1004
    FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
1005
    if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1006
        FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1007
    //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
1008
    /* align at 16 bytes for AltiVec */
1009
    for (i=0; i<c->vLumBufSize; i++) {
1010
        FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
1011
        c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
1012
    }
1013
    for (i=0; i<c->vChrBufSize; i++) {
1014
        FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
1015
        c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
1016
    }
1017
    if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1018
        for (i=0; i<c->vLumBufSize; i++) {
1019
            FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
1020
            c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
1021
        }
1022

    
1023
    //try to avoid drawing green stuff between the right end and the stride end
1024
    for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
1025

    
1026
    assert(2*VOFW == VOF);
1027

    
1028
    assert(c->chrDstH <= dstH);
1029

    
1030
    if (flags&SWS_PRINT_INFO) {
1031
        if (flags&SWS_FAST_BILINEAR)
1032
            av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1033
        else if (flags&SWS_BILINEAR)
1034
            av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1035
        else if (flags&SWS_BICUBIC)
1036
            av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1037
        else if (flags&SWS_X)
1038
            av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1039
        else if (flags&SWS_POINT)
1040
            av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1041
        else if (flags&SWS_AREA)
1042
            av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1043
        else if (flags&SWS_BICUBLIN)
1044
            av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1045
        else if (flags&SWS_GAUSS)
1046
            av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1047
        else if (flags&SWS_SINC)
1048
            av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1049
        else if (flags&SWS_LANCZOS)
1050
            av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1051
        else if (flags&SWS_SPLINE)
1052
            av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1053
        else
1054
            av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1055

    
1056
        av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1057
               sws_format_name(srcFormat),
1058
#ifdef DITHER1XBPP
1059
               dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
1060
               dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
1061
               dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
1062
#else
1063
               "",
1064
#endif
1065
               sws_format_name(dstFormat));
1066

    
1067
        if (flags & SWS_CPU_CAPS_MMX2)
1068
            av_log(c, AV_LOG_INFO, "using MMX2\n");
1069
        else if (flags & SWS_CPU_CAPS_3DNOW)
1070
            av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1071
        else if (flags & SWS_CPU_CAPS_MMX)
1072
            av_log(c, AV_LOG_INFO, "using MMX\n");
1073
        else if (flags & SWS_CPU_CAPS_ALTIVEC)
1074
            av_log(c, AV_LOG_INFO, "using AltiVec\n");
1075
        else
1076
            av_log(c, AV_LOG_INFO, "using C\n");
1077

    
1078
        if (flags & SWS_CPU_CAPS_MMX) {
1079
            if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
1080
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
1081
            else {
1082
                if (c->hLumFilterSize==4)
1083
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
1084
                else if (c->hLumFilterSize==8)
1085
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
1086
                else
1087
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
1088

    
1089
                if (c->hChrFilterSize==4)
1090
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
1091
                else if (c->hChrFilterSize==8)
1092
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
1093
                else
1094
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
1095
            }
1096
        } else {
1097
#if ARCH_X86
1098
            av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
1099
#else
1100
            if (flags & SWS_FAST_BILINEAR)
1101
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
1102
            else
1103
                av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
1104
#endif
1105
        }
1106
        if (isPlanarYUV(dstFormat)) {
1107
            if (c->vLumFilterSize==1)
1108
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1109
            else
1110
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1111
        } else {
1112
            if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
1113
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
1114
                       "      2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1115
            else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
1116
                av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1117
            else
1118
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1119
        }
1120

    
1121
        if (dstFormat==PIX_FMT_BGR24)
1122
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
1123
                   (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
1124
        else if (dstFormat==PIX_FMT_RGB32)
1125
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1126
        else if (dstFormat==PIX_FMT_BGR565)
1127
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1128
        else if (dstFormat==PIX_FMT_BGR555)
1129
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1130
        else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
1131
                 dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
1132
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1133

    
1134
        av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1135
        av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1136
               c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1137
        av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1138
               c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
1139
    }
1140

    
1141
    c->swScale= ff_getSwsFunc(c);
1142
    return 0;
1143
fail: //FIXME replace things by appropriate error codes
1144
    return -1;
1145
}
1146

    
1147
SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
1148
                           int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1149
                           SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1150
{
1151
    SwsContext *c;
1152

    
1153
    if(!(c=sws_alloc_context()))
1154
        return NULL;
1155

    
1156
    c->flags= flags;
1157
    c->srcW= srcW;
1158
    c->srcH= srcH;
1159
    c->dstW= dstW;
1160
    c->dstH= dstH;
1161
    c->srcRange = handle_jpeg(&srcFormat);
1162
    c->dstRange = handle_jpeg(&dstFormat);
1163
    c->srcFormat= srcFormat;
1164
    c->dstFormat= dstFormat;
1165

    
1166
    if (param) {
1167
        c->param[0] = param[0];
1168
        c->param[1] = param[1];
1169
    } else {
1170
        c->param[0] =
1171
        c->param[1] = SWS_PARAM_DEFAULT;
1172
    }
1173
    sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
1174

    
1175
    if(sws_init_context(c, srcFilter, dstFilter) < 0){
1176
        sws_freeContext(c);
1177
        return NULL;
1178
    }
1179

    
1180
    return c;
1181
}
1182

    
1183
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1184
                                float lumaSharpen, float chromaSharpen,
1185
                                float chromaHShift, float chromaVShift,
1186
                                int verbose)
1187
{
1188
    SwsFilter *filter= av_malloc(sizeof(SwsFilter));
1189
    if (!filter)
1190
        return NULL;
1191

    
1192
    if (lumaGBlur!=0.0) {
1193
        filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
1194
        filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
1195
    } else {
1196
        filter->lumH= sws_getIdentityVec();
1197
        filter->lumV= sws_getIdentityVec();
1198
    }
1199

    
1200
    if (chromaGBlur!=0.0) {
1201
        filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
1202
        filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
1203
    } else {
1204
        filter->chrH= sws_getIdentityVec();
1205
        filter->chrV= sws_getIdentityVec();
1206
    }
1207

    
1208
    if (chromaSharpen!=0.0) {
1209
        SwsVector *id= sws_getIdentityVec();
1210
        sws_scaleVec(filter->chrH, -chromaSharpen);
1211
        sws_scaleVec(filter->chrV, -chromaSharpen);
1212
        sws_addVec(filter->chrH, id);
1213
        sws_addVec(filter->chrV, id);
1214
        sws_freeVec(id);
1215
    }
1216

    
1217
    if (lumaSharpen!=0.0) {
1218
        SwsVector *id= sws_getIdentityVec();
1219
        sws_scaleVec(filter->lumH, -lumaSharpen);
1220
        sws_scaleVec(filter->lumV, -lumaSharpen);
1221
        sws_addVec(filter->lumH, id);
1222
        sws_addVec(filter->lumV, id);
1223
        sws_freeVec(id);
1224
    }
1225

    
1226
    if (chromaHShift != 0.0)
1227
        sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
1228

    
1229
    if (chromaVShift != 0.0)
1230
        sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
1231

    
1232
    sws_normalizeVec(filter->chrH, 1.0);
1233
    sws_normalizeVec(filter->chrV, 1.0);
1234
    sws_normalizeVec(filter->lumH, 1.0);
1235
    sws_normalizeVec(filter->lumV, 1.0);
1236

    
1237
    if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1238
    if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1239

    
1240
    return filter;
1241
}
1242

    
1243
SwsVector *sws_allocVec(int length)
1244
{
1245
    SwsVector *vec = av_malloc(sizeof(SwsVector));
1246
    if (!vec)
1247
        return NULL;
1248
    vec->length = length;
1249
    vec->coeff  = av_malloc(sizeof(double) * length);
1250
    if (!vec->coeff)
1251
        av_freep(&vec);
1252
    return vec;
1253
}
1254

    
1255
SwsVector *sws_getGaussianVec(double variance, double quality)
1256
{
1257
    const int length= (int)(variance*quality + 0.5) | 1;
1258
    int i;
1259
    double middle= (length-1)*0.5;
1260
    SwsVector *vec= sws_allocVec(length);
1261

    
1262
    if (!vec)
1263
        return NULL;
1264

    
1265
    for (i=0; i<length; i++) {
1266
        double dist= i-middle;
1267
        vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
1268
    }
1269

    
1270
    sws_normalizeVec(vec, 1.0);
1271

    
1272
    return vec;
1273
}
1274

    
1275
SwsVector *sws_getConstVec(double c, int length)
1276
{
1277
    int i;
1278
    SwsVector *vec= sws_allocVec(length);
1279

    
1280
    if (!vec)
1281
        return NULL;
1282

    
1283
    for (i=0; i<length; i++)
1284
        vec->coeff[i]= c;
1285

    
1286
    return vec;
1287
}
1288

    
1289
SwsVector *sws_getIdentityVec(void)
1290
{
1291
    return sws_getConstVec(1.0, 1);
1292
}
1293

    
1294
static double sws_dcVec(SwsVector *a)
1295
{
1296
    int i;
1297
    double sum=0;
1298

    
1299
    for (i=0; i<a->length; i++)
1300
        sum+= a->coeff[i];
1301

    
1302
    return sum;
1303
}
1304

    
1305
void sws_scaleVec(SwsVector *a, double scalar)
1306
{
1307
    int i;
1308

    
1309
    for (i=0; i<a->length; i++)
1310
        a->coeff[i]*= scalar;
1311
}
1312

    
1313
void sws_normalizeVec(SwsVector *a, double height)
1314
{
1315
    sws_scaleVec(a, height/sws_dcVec(a));
1316
}
1317

    
1318
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1319
{
1320
    int length= a->length + b->length - 1;
1321
    int i, j;
1322
    SwsVector *vec= sws_getConstVec(0.0, length);
1323

    
1324
    if (!vec)
1325
        return NULL;
1326

    
1327
    for (i=0; i<a->length; i++) {
1328
        for (j=0; j<b->length; j++) {
1329
            vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
1330
        }
1331
    }
1332

    
1333
    return vec;
1334
}
1335

    
1336
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1337
{
1338
    int length= FFMAX(a->length, b->length);
1339
    int i;
1340
    SwsVector *vec= sws_getConstVec(0.0, length);
1341

    
1342
    if (!vec)
1343
        return NULL;
1344

    
1345
    for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1346
    for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
1347

    
1348
    return vec;
1349
}
1350

    
1351
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1352
{
1353
    int length= FFMAX(a->length, b->length);
1354
    int i;
1355
    SwsVector *vec= sws_getConstVec(0.0, length);
1356

    
1357
    if (!vec)
1358
        return NULL;
1359

    
1360
    for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1361
    for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
1362

    
1363
    return vec;
1364
}
1365

    
1366
/* shift left / or right if "shift" is negative */
1367
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1368
{
1369
    int length= a->length + FFABS(shift)*2;
1370
    int i;
1371
    SwsVector *vec= sws_getConstVec(0.0, length);
1372

    
1373
    if (!vec)
1374
        return NULL;
1375

    
1376
    for (i=0; i<a->length; i++) {
1377
        vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
1378
    }
1379

    
1380
    return vec;
1381
}
1382

    
1383
void sws_shiftVec(SwsVector *a, int shift)
1384
{
1385
    SwsVector *shifted= sws_getShiftedVec(a, shift);
1386
    av_free(a->coeff);
1387
    a->coeff= shifted->coeff;
1388
    a->length= shifted->length;
1389
    av_free(shifted);
1390
}
1391

    
1392
void sws_addVec(SwsVector *a, SwsVector *b)
1393
{
1394
    SwsVector *sum= sws_sumVec(a, b);
1395
    av_free(a->coeff);
1396
    a->coeff= sum->coeff;
1397
    a->length= sum->length;
1398
    av_free(sum);
1399
}
1400

    
1401
void sws_subVec(SwsVector *a, SwsVector *b)
1402
{
1403
    SwsVector *diff= sws_diffVec(a, b);
1404
    av_free(a->coeff);
1405
    a->coeff= diff->coeff;
1406
    a->length= diff->length;
1407
    av_free(diff);
1408
}
1409

    
1410
void sws_convVec(SwsVector *a, SwsVector *b)
1411
{
1412
    SwsVector *conv= sws_getConvVec(a, b);
1413
    av_free(a->coeff);
1414
    a->coeff= conv->coeff;
1415
    a->length= conv->length;
1416
    av_free(conv);
1417
}
1418

    
1419
SwsVector *sws_cloneVec(SwsVector *a)
1420
{
1421
    int i;
1422
    SwsVector *vec= sws_allocVec(a->length);
1423

    
1424
    if (!vec)
1425
        return NULL;
1426

    
1427
    for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
1428

    
1429
    return vec;
1430
}
1431

    
1432
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1433
{
1434
    int i;
1435
    double max=0;
1436
    double min=0;
1437
    double range;
1438

    
1439
    for (i=0; i<a->length; i++)
1440
        if (a->coeff[i]>max) max= a->coeff[i];
1441

    
1442
    for (i=0; i<a->length; i++)
1443
        if (a->coeff[i]<min) min= a->coeff[i];
1444

    
1445
    range= max - min;
1446

    
1447
    for (i=0; i<a->length; i++) {
1448
        int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
1449
        av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1450
        for (;x>0; x--) av_log(log_ctx, log_level, " ");
1451
        av_log(log_ctx, log_level, "|\n");
1452
    }
1453
}
1454

    
1455
#if LIBSWSCALE_VERSION_MAJOR < 1
1456
void sws_printVec(SwsVector *a)
1457
{
1458
    sws_printVec2(a, NULL, AV_LOG_DEBUG);
1459
}
1460
#endif
1461

    
1462
void sws_freeVec(SwsVector *a)
1463
{
1464
    if (!a) return;
1465
    av_freep(&a->coeff);
1466
    a->length=0;
1467
    av_free(a);
1468
}
1469

    
1470
void sws_freeFilter(SwsFilter *filter)
1471
{
1472
    if (!filter) return;
1473

    
1474
    if (filter->lumH) sws_freeVec(filter->lumH);
1475
    if (filter->lumV) sws_freeVec(filter->lumV);
1476
    if (filter->chrH) sws_freeVec(filter->chrH);
1477
    if (filter->chrV) sws_freeVec(filter->chrV);
1478
    av_free(filter);
1479
}
1480

    
1481
void sws_freeContext(SwsContext *c)
1482
{
1483
    int i;
1484
    if (!c) return;
1485

    
1486
    if (c->lumPixBuf) {
1487
        for (i=0; i<c->vLumBufSize; i++)
1488
            av_freep(&c->lumPixBuf[i]);
1489
        av_freep(&c->lumPixBuf);
1490
    }
1491

    
1492
    if (c->chrPixBuf) {
1493
        for (i=0; i<c->vChrBufSize; i++)
1494
            av_freep(&c->chrPixBuf[i]);
1495
        av_freep(&c->chrPixBuf);
1496
    }
1497

    
1498
    if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1499
        for (i=0; i<c->vLumBufSize; i++)
1500
            av_freep(&c->alpPixBuf[i]);
1501
        av_freep(&c->alpPixBuf);
1502
    }
1503

    
1504
    av_freep(&c->vLumFilter);
1505
    av_freep(&c->vChrFilter);
1506
    av_freep(&c->hLumFilter);
1507
    av_freep(&c->hChrFilter);
1508
#if HAVE_ALTIVEC
1509
    av_freep(&c->vYCoeffsBank);
1510
    av_freep(&c->vCCoeffsBank);
1511
#endif
1512

    
1513
    av_freep(&c->vLumFilterPos);
1514
    av_freep(&c->vChrFilterPos);
1515
    av_freep(&c->hLumFilterPos);
1516
    av_freep(&c->hChrFilterPos);
1517

    
1518
#if ARCH_X86
1519
#ifdef MAP_ANONYMOUS
1520
    if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
1521
    if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
1522
#elif HAVE_VIRTUALALLOC
1523
    if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
1524
    if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
1525
#else
1526
    av_free(c->lumMmx2FilterCode);
1527
    av_free(c->chrMmx2FilterCode);
1528
#endif
1529
    c->lumMmx2FilterCode=NULL;
1530
    c->chrMmx2FilterCode=NULL;
1531
#endif /* ARCH_X86 */
1532

    
1533
    av_freep(&c->yuvTable);
1534

    
1535
    av_free(c);
1536
}
1537

    
1538
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
1539
                                        int srcW, int srcH, enum PixelFormat srcFormat,
1540
                                        int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1541
                                        SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1542
{
1543
    static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
1544

    
1545
    if (!param)
1546
        param = default_param;
1547

    
1548
    flags = update_flags_cpu(flags);
1549

    
1550
    if (context &&
1551
        (context->srcW      != srcW      ||
1552
         context->srcH      != srcH      ||
1553
         context->srcFormat != srcFormat ||
1554
         context->dstW      != dstW      ||
1555
         context->dstH      != dstH      ||
1556
         context->dstFormat != dstFormat ||
1557
         context->flags     != flags     ||
1558
         context->param[0]  != param[0]  ||
1559
         context->param[1]  != param[1])) {
1560
        sws_freeContext(context);
1561
        context = NULL;
1562
    }
1563

    
1564
    if (!context) {
1565
        return sws_getContext(srcW, srcH, srcFormat,
1566
                              dstW, dstH, dstFormat, flags,
1567
                              srcFilter, dstFilter, param);
1568
    }
1569
    return context;
1570
}
1571