Statistics
| Branch: | Revision:

ffmpeg / libavcodec / jfdctfst.c @ 849f1035

History | View | Annotate | Download (11.1 KB)

1
/*
2
 * jfdctfst.c
3
 *
4
 * This file is part of the Independent JPEG Group's software.
5
 *
6
 * The authors make NO WARRANTY or representation, either express or implied,
7
 * with respect to this software, its quality, accuracy, merchantability, or
8
 * fitness for a particular purpose.  This software is provided "AS IS", and
9
 * you, its user, assume the entire risk as to its quality and accuracy.
10
 *
11
 * This software is copyright (C) 1994-1996, Thomas G. Lane.
12
 * All Rights Reserved except as specified below.
13
 *
14
 * Permission is hereby granted to use, copy, modify, and distribute this
15
 * software (or portions thereof) for any purpose, without fee, subject to
16
 * these conditions:
17
 * (1) If any part of the source code for this software is distributed, then
18
 * this README file must be included, with this copyright and no-warranty
19
 * notice unaltered; and any additions, deletions, or changes to the original
20
 * files must be clearly indicated in accompanying documentation.
21
 * (2) If only executable code is distributed, then the accompanying
22
 * documentation must state that "this software is based in part on the work
23
 * of the Independent JPEG Group".
24
 * (3) Permission for use of this software is granted only if the user accepts
25
 * full responsibility for any undesirable consequences; the authors accept
26
 * NO LIABILITY for damages of any kind.
27
 *
28
 * These conditions apply to any software derived from or based on the IJG
29
 * code, not just to the unmodified library.  If you use our work, you ought
30
 * to acknowledge us.
31
 *
32
 * Permission is NOT granted for the use of any IJG author's name or company
33
 * name in advertising or publicity relating to this software or products
34
 * derived from it.  This software may be referred to only as "the Independent
35
 * JPEG Group's software".
36
 *
37
 * We specifically permit and encourage the use of this software as the basis
38
 * of commercial products, provided that all warranty or liability claims are
39
 * assumed by the product vendor.
40
 *
41
 * This file contains a fast, not so accurate integer implementation of the
42
 * forward DCT (Discrete Cosine Transform).
43
 *
44
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
45
 * on each column.  Direct algorithms are also available, but they are
46
 * much more complex and seem not to be any faster when reduced to code.
47
 *
48
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
49
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
50
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
51
 * JPEG textbook (see REFERENCES section in file README).  The following code
52
 * is based directly on figure 4-8 in P&M.
53
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
54
 * possible to arrange the computation so that many of the multiplies are
55
 * simple scalings of the final outputs.  These multiplies can then be
56
 * folded into the multiplications or divisions by the JPEG quantization
57
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
58
 * to be done in the DCT itself.
59
 * The primary disadvantage of this method is that with fixed-point math,
60
 * accuracy is lost due to imprecise representation of the scaled
61
 * quantization values.  The smaller the quantization table entry, the less
62
 * precise the scaled value, so this implementation does worse with high-
63
 * quality-setting files than with low-quality ones.
64
 */
65

    
66
/**
67
 * @file jfdctfst.c
68
 * Independent JPEG Group's fast AAN dct.
69
 */
70

    
71
#include <stdlib.h>
72
#include <stdio.h>
73
#include "common.h"
74
#include "dsputil.h"
75

    
76
#define DCTSIZE 8
77
#define GLOBAL(x) x
78
#define RIGHT_SHIFT(x, n) ((x) >> (n))
79
#define SHIFT_TEMPS
80

    
81
/*
82
 * This module is specialized to the case DCTSIZE = 8.
83
 */
84

    
85
#if DCTSIZE != 8
86
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
87
#endif
88

    
89

    
90
/* Scaling decisions are generally the same as in the LL&M algorithm;
91
 * see jfdctint.c for more details.  However, we choose to descale
92
 * (right shift) multiplication products as soon as they are formed,
93
 * rather than carrying additional fractional bits into subsequent additions.
94
 * This compromises accuracy slightly, but it lets us save a few shifts.
95
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
96
 * everywhere except in the multiplications proper; this saves a good deal
97
 * of work on 16-bit-int machines.
98
 *
99
 * Again to save a few shifts, the intermediate results between pass 1 and
100
 * pass 2 are not upscaled, but are represented only to integral precision.
101
 *
102
 * A final compromise is to represent the multiplicative constants to only
103
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
104
 * machines, and may also reduce the cost of multiplication (since there
105
 * are fewer one-bits in the constants).
106
 */
107

    
108
#define CONST_BITS  8
109

    
110

    
111
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
112
 * causing a lot of useless floating-point operations at run time.
113
 * To get around this we use the following pre-calculated constants.
114
 * If you change CONST_BITS you may want to add appropriate values.
115
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
116
 */
117

    
118
#if CONST_BITS == 8
119
#define FIX_0_382683433  ((int32_t)   98)       /* FIX(0.382683433) */
120
#define FIX_0_541196100  ((int32_t)  139)       /* FIX(0.541196100) */
121
#define FIX_0_707106781  ((int32_t)  181)       /* FIX(0.707106781) */
122
#define FIX_1_306562965  ((int32_t)  334)       /* FIX(1.306562965) */
123
#else
124
#define FIX_0_382683433  FIX(0.382683433)
125
#define FIX_0_541196100  FIX(0.541196100)
126
#define FIX_0_707106781  FIX(0.707106781)
127
#define FIX_1_306562965  FIX(1.306562965)
128
#endif
129

    
130

    
131
/* We can gain a little more speed, with a further compromise in accuracy,
132
 * by omitting the addition in a descaling shift.  This yields an incorrectly
133
 * rounded result half the time...
134
 */
135

    
136
#ifndef USE_ACCURATE_ROUNDING
137
#undef DESCALE
138
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
139
#endif
140

    
141

    
142
/* Multiply a DCTELEM variable by an int32_t constant, and immediately
143
 * descale to yield a DCTELEM result.
144
 */
145

    
146
#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
147

    
148
static av_always_inline void row_fdct(DCTELEM * data){
149
  int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
150
  int_fast16_t tmp10, tmp11, tmp12, tmp13;
151
  int_fast16_t z1, z2, z3, z4, z5, z11, z13;
152
  DCTELEM *dataptr;
153
  int ctr;
154
  SHIFT_TEMPS
155

    
156
  /* Pass 1: process rows. */
157

    
158
  dataptr = data;
159
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
160
    tmp0 = dataptr[0] + dataptr[7];
161
    tmp7 = dataptr[0] - dataptr[7];
162
    tmp1 = dataptr[1] + dataptr[6];
163
    tmp6 = dataptr[1] - dataptr[6];
164
    tmp2 = dataptr[2] + dataptr[5];
165
    tmp5 = dataptr[2] - dataptr[5];
166
    tmp3 = dataptr[3] + dataptr[4];
167
    tmp4 = dataptr[3] - dataptr[4];
168

    
169
    /* Even part */
170

    
171
    tmp10 = tmp0 + tmp3;        /* phase 2 */
172
    tmp13 = tmp0 - tmp3;
173
    tmp11 = tmp1 + tmp2;
174
    tmp12 = tmp1 - tmp2;
175

    
176
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
177
    dataptr[4] = tmp10 - tmp11;
178

    
179
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
180
    dataptr[2] = tmp13 + z1;    /* phase 5 */
181
    dataptr[6] = tmp13 - z1;
182

    
183
    /* Odd part */
184

    
185
    tmp10 = tmp4 + tmp5;        /* phase 2 */
186
    tmp11 = tmp5 + tmp6;
187
    tmp12 = tmp6 + tmp7;
188

    
189
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
190
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
191
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5;    /* c2-c6 */
192
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5;    /* c2+c6 */
193
    z3 = MULTIPLY(tmp11, FIX_0_707106781);         /* c4 */
194

    
195
    z11 = tmp7 + z3;            /* phase 5 */
196
    z13 = tmp7 - z3;
197

    
198
    dataptr[5] = z13 + z2;      /* phase 6 */
199
    dataptr[3] = z13 - z2;
200
    dataptr[1] = z11 + z4;
201
    dataptr[7] = z11 - z4;
202

    
203
    dataptr += DCTSIZE;         /* advance pointer to next row */
204
  }
205
}
206

    
207
/*
208
 * Perform the forward DCT on one block of samples.
209
 */
210

    
211
GLOBAL(void)
212
fdct_ifast (DCTELEM * data)
213
{
214
  int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
215
  int_fast16_t tmp10, tmp11, tmp12, tmp13;
216
  int_fast16_t z1, z2, z3, z4, z5, z11, z13;
217
  DCTELEM *dataptr;
218
  int ctr;
219
  SHIFT_TEMPS
220

    
221
  row_fdct(data);
222

    
223
  /* Pass 2: process columns. */
224

    
225
  dataptr = data;
226
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
227
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
228
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
229
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
230
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
231
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
232
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
233
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
234
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
235

    
236
    /* Even part */
237

    
238
    tmp10 = tmp0 + tmp3;        /* phase 2 */
239
    tmp13 = tmp0 - tmp3;
240
    tmp11 = tmp1 + tmp2;
241
    tmp12 = tmp1 - tmp2;
242

    
243
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
244
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
245

    
246
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
247
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
248
    dataptr[DCTSIZE*6] = tmp13 - z1;
249

    
250
    /* Odd part */
251

    
252
    tmp10 = tmp4 + tmp5;        /* phase 2 */
253
    tmp11 = tmp5 + tmp6;
254
    tmp12 = tmp6 + tmp7;
255

    
256
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
257
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
258
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
259
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
260
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
261

    
262
    z11 = tmp7 + z3;            /* phase 5 */
263
    z13 = tmp7 - z3;
264

    
265
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
266
    dataptr[DCTSIZE*3] = z13 - z2;
267
    dataptr[DCTSIZE*1] = z11 + z4;
268
    dataptr[DCTSIZE*7] = z11 - z4;
269

    
270
    dataptr++;                  /* advance pointer to next column */
271
  }
272
}
273

    
274
/*
275
 * Perform the forward 2-4-8 DCT on one block of samples.
276
 */
277

    
278
GLOBAL(void)
279
fdct_ifast248 (DCTELEM * data)
280
{
281
  int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
282
  int_fast16_t tmp10, tmp11, tmp12, tmp13;
283
  int_fast16_t z1;
284
  DCTELEM *dataptr;
285
  int ctr;
286
  SHIFT_TEMPS
287

    
288
  row_fdct(data);
289

    
290
  /* Pass 2: process columns. */
291

    
292
  dataptr = data;
293
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
294
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
295
    tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
296
    tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
297
    tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
298
    tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
299
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
300
    tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
301
    tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
302

    
303
    /* Even part */
304

    
305
    tmp10 = tmp0 + tmp3;
306
    tmp11 = tmp1 + tmp2;
307
    tmp12 = tmp1 - tmp2;
308
    tmp13 = tmp0 - tmp3;
309

    
310
    dataptr[DCTSIZE*0] = tmp10 + tmp11;
311
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
312

    
313
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
314
    dataptr[DCTSIZE*2] = tmp13 + z1;
315
    dataptr[DCTSIZE*6] = tmp13 - z1;
316

    
317
    tmp10 = tmp4 + tmp7;
318
    tmp11 = tmp5 + tmp6;
319
    tmp12 = tmp5 - tmp6;
320
    tmp13 = tmp4 - tmp7;
321

    
322
    dataptr[DCTSIZE*1] = tmp10 + tmp11;
323
    dataptr[DCTSIZE*5] = tmp10 - tmp11;
324

    
325
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
326
    dataptr[DCTSIZE*3] = tmp13 + z1;
327
    dataptr[DCTSIZE*7] = tmp13 - z1;
328

    
329
    dataptr++;                        /* advance pointer to next column */
330
  }
331
}
332

    
333

    
334
#undef GLOBAL
335
#undef CONST_BITS
336
#undef DESCALE
337
#undef FIX_0_541196100
338
#undef FIX_1_306562965