ffmpeg / libavcodec / cook.c @ 84dc2d8a
History  View  Annotate  Download (43.3 KB)
1 
/*


2 
* COOK compatible decoder

3 
* Copyright (c) 2003 Sascha Sommer

4 
* Copyright (c) 2005 Benjamin Larsson

5 
*

6 
* This file is part of FFmpeg.

7 
*

8 
* FFmpeg is free software; you can redistribute it and/or

9 
* modify it under the terms of the GNU Lesser General Public

10 
* License as published by the Free Software Foundation; either

11 
* version 2.1 of the License, or (at your option) any later version.

12 
*

13 
* FFmpeg is distributed in the hope that it will be useful,

14 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

15 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

16 
* Lesser General Public License for more details.

17 
*

18 
* You should have received a copy of the GNU Lesser General Public

19 
* License along with FFmpeg; if not, write to the Free Software

20 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

21 
*/

22  
23 
/**

24 
* @file libavcodec/cook.c

25 
* Cook compatible decoder. Bastardization of the G.722.1 standard.

26 
* This decoder handles RealNetworks, RealAudio G2 data.

27 
* Cook is identified by the codec name cook in RM files.

28 
*

29 
* To use this decoder, a calling application must supply the extradata

30 
* bytes provided from the RM container; 8+ bytes for mono streams and

31 
* 16+ for stereo streams (maybe more).

32 
*

33 
* Codec technicalities (all this assume a buffer length of 1024):

34 
* Cook works with several different techniques to achieve its compression.

35 
* In the timedomain the buffer is divided into 8 pieces and quantized. If

36 
* two neighboring pieces have different quantization index a smooth

37 
* quantization curve is used to get a smooth overlap between the different

38 
* pieces.

39 
* To get to the transformdomain Cook uses a modulated lapped transform.

40 
* The transform domain has 50 subbands with 20 elements each. This

41 
* means only a maximum of 50*20=1000 coefficients are used out of the 1024

42 
* available.

43 
*/

44  
45 
#include <math.h> 
46 
#include <stddef.h> 
47 
#include <stdio.h> 
48  
49 
#include "libavutil/lfg.h" 
50 
#include "libavutil/random_seed.h" 
51 
#include "avcodec.h" 
52 
#include "get_bits.h" 
53 
#include "dsputil.h" 
54 
#include "bytestream.h" 
55  
56 
#include "cookdata.h" 
57  
58 
/* the different Cook versions */

59 
#define MONO 0x1000001 
60 
#define STEREO 0x1000002 
61 
#define JOINT_STEREO 0x1000003 
62 
#define MC_COOK 0x2000000 //multichannel Cook, not supported 
63  
64 
#define SUBBAND_SIZE 20 
65 
#define MAX_SUBPACKETS 5 
66 
//#define COOKDEBUG

67  
68 
typedef struct { 
69 
int *now;

70 
int *previous;

71 
} cook_gains; 
72  
73 
typedef struct { 
74 
int ch_idx;

75 
int size;

76 
int num_channels;

77 
int cookversion;

78 
int samples_per_frame;

79 
int subbands;

80 
int js_subband_start;

81 
int js_vlc_bits;

82 
int samples_per_channel;

83 
int log2_numvector_size;

84 
unsigned int channel_mask; 
85 
VLC ccpl; ///< channel coupling

86 
int joint_stereo;

87 
int bits_per_subpacket;

88 
int bits_per_subpdiv;

89 
int total_subbands;

90 
int numvector_size; ///< 1 << log2_numvector_size; 
91  
92 
float mono_previous_buffer1[1024]; 
93 
float mono_previous_buffer2[1024]; 
94 
/** gain buffers */

95 
cook_gains gains1; 
96 
cook_gains gains2; 
97 
int gain_1[9]; 
98 
int gain_2[9]; 
99 
int gain_3[9]; 
100 
int gain_4[9]; 
101 
} COOKSubpacket; 
102  
103 
typedef struct cook { 
104 
/*

105 
* The following 5 functions provide the lowlevel arithmetic on

106 
* the internal audio buffers.

107 
*/

108 
void (* scalar_dequant)(struct cook *q, int index, int quant_index, 
109 
int* subband_coef_index, int* subband_coef_sign, 
110 
float* mlt_p);

111  
112 
void (* decouple) (struct cook *q, 
113 
COOKSubpacket *p, 
114 
int subband,

115 
float f1, float f2, 
116 
float *decode_buffer,

117 
float *mlt_buffer1, float *mlt_buffer2); 
118  
119 
void (* imlt_window) (struct cook *q, float *buffer1, 
120 
cook_gains *gains_ptr, float *previous_buffer);

121  
122 
void (* interpolate) (struct cook *q, float* buffer, 
123 
int gain_index, int gain_index_next); 
124  
125 
void (* saturate_output) (struct cook *q, int chan, int16_t *out); 
126  
127 
AVCodecContext* avctx; 
128 
GetBitContext gb; 
129 
/* stream data */

130 
int nb_channels;

131 
int bit_rate;

132 
int sample_rate;

133 
int num_vectors;

134 
int samples_per_channel;

135 
/* states */

136 
AVLFG random_state; 
137  
138 
/* transform data */

139 
FFTContext mdct_ctx; 
140 
float* mlt_window;

141  
142 
/* VLC data */

143 
VLC envelope_quant_index[13];

144 
VLC sqvh[7]; //scalar quantization 
145  
146 
/* generatable tables and related variables */

147 
int gain_size_factor;

148 
float gain_table[23]; 
149  
150 
/* data buffers */

151  
152 
uint8_t* decoded_bytes_buffer; 
153 
DECLARE_ALIGNED(16, float,mono_mdct_output)[2048]; 
154 
float decode_buffer_1[1024]; 
155 
float decode_buffer_2[1024]; 
156 
float decode_buffer_0[1060]; /* static allocation for joint decode */ 
157  
158 
const float *cplscales[5]; 
159 
int num_subpackets;

160 
COOKSubpacket subpacket[MAX_SUBPACKETS]; 
161 
} COOKContext; 
162  
163 
static float pow2tab[127]; 
164 
static float rootpow2tab[127]; 
165  
166 
/* debug functions */

167  
168 
#ifdef COOKDEBUG

169 
static void dump_float_table(float* table, int size, int delimiter) { 
170 
int i=0; 
171 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
172 
for (i=0 ; i<size ; i++) { 
173 
av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]); 
174 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
175 
} 
176 
} 
177  
178 
static void dump_int_table(int* table, int size, int delimiter) { 
179 
int i=0; 
180 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
181 
for (i=0 ; i<size ; i++) { 
182 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
183 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
184 
} 
185 
} 
186  
187 
static void dump_short_table(short* table, int size, int delimiter) { 
188 
int i=0; 
189 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
190 
for (i=0 ; i<size ; i++) { 
191 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
192 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
193 
} 
194 
} 
195  
196 
#endif

197  
198 
/*************** init functions ***************/

199  
200 
/* table generator */

201 
static av_cold void init_pow2table(void){ 
202 
int i;

203 
for (i=63 ; i<64 ; i++){ 
204 
pow2tab[63+i]= pow(2, i); 
205 
rootpow2tab[63+i]=sqrt(pow(2, i)); 
206 
} 
207 
} 
208  
209 
/* table generator */

210 
static av_cold void init_gain_table(COOKContext *q) { 
211 
int i;

212 
q>gain_size_factor = q>samples_per_channel/8;

213 
for (i=0 ; i<23 ; i++) { 
214 
q>gain_table[i] = pow(pow2tab[i+52] ,

215 
(1.0/(double)q>gain_size_factor)); 
216 
} 
217 
} 
218  
219  
220 
static av_cold int init_cook_vlc_tables(COOKContext *q) { 
221 
int i, result;

222  
223 
result = 0;

224 
for (i=0 ; i<13 ; i++) { 
225 
result = init_vlc (&q>envelope_quant_index[i], 9, 24, 
226 
envelope_quant_index_huffbits[i], 1, 1, 
227 
envelope_quant_index_huffcodes[i], 2, 2, 0); 
228 
} 
229 
av_log(q>avctx,AV_LOG_DEBUG,"sqvh VLC init\n");

230 
for (i=0 ; i<7 ; i++) { 
231 
result = init_vlc (&q>sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], 
232 
cvh_huffbits[i], 1, 1, 
233 
cvh_huffcodes[i], 2, 2, 0); 
234 
} 
235  
236 
for(i=0;i<q>num_subpackets;i++){ 
237 
if (q>subpacket[i].joint_stereo==1){ 
238 
result = init_vlc (&q>subpacket[i].ccpl, 6, (1<<q>subpacket[i].js_vlc_bits)1, 
239 
ccpl_huffbits[q>subpacket[i].js_vlc_bits2], 1, 1, 
240 
ccpl_huffcodes[q>subpacket[i].js_vlc_bits2], 2, 2, 0); 
241 
av_log(q>avctx,AV_LOG_DEBUG,"subpacket %i Jointstereo VLC used.\n",i);

242 
} 
243 
} 
244  
245 
av_log(q>avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");

246 
return result;

247 
} 
248  
249 
static av_cold int init_cook_mlt(COOKContext *q) { 
250 
int j;

251 
int mlt_size = q>samples_per_channel;

252  
253 
if ((q>mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0) 
254 
return 1; 
255  
256 
/* Initialize the MLT window: simple sine window. */

257 
ff_sine_window_init(q>mlt_window, mlt_size); 
258 
for(j=0 ; j<mlt_size ; j++) 
259 
q>mlt_window[j] *= sqrt(2.0 / q>samples_per_channel); 
260  
261 
/* Initialize the MDCT. */

262 
if (ff_mdct_init(&q>mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) { 
263 
av_free(q>mlt_window); 
264 
return 1; 
265 
} 
266 
av_log(q>avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",

267 
av_log2(mlt_size)+1);

268  
269 
return 0; 
270 
} 
271  
272 
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n) 
273 
{ 
274 
if (1) 
275 
return ptr;

276 
} 
277  
278 
static av_cold void init_cplscales_table (COOKContext *q) { 
279 
int i;

280 
for (i=0;i<5;i++) 
281 
q>cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))1); 
282 
} 
283  
284 
/*************** init functions end ***********/

285  
286 
/**

287 
* Cook indata decoding, every 32 bits are XORed with 0x37c511f2.

288 
* Why? No idea, some checksum/error detection method maybe.

289 
*

290 
* Out buffer size: extra bytes are needed to cope with

291 
* padding/misalignment.

292 
* Subpackets passed to the decoder can contain two, consecutive

293 
* halfsubpackets, of identical but arbitrary size.

294 
* 1234 1234 1234 1234 extraA extraB

295 
* Case 1: AAAA BBBB 0 0

296 
* Case 2: AAAA ABBB BB 3 3

297 
* Case 3: AAAA AABB BBBB 2 2

298 
* Case 4: AAAA AAAB BBBB BB 1 5

299 
*

300 
* Nice way to waste CPU cycles.

301 
*

302 
* @param inbuffer pointer to byte array of indata

303 
* @param out pointer to byte array of outdata

304 
* @param bytes number of bytes

305 
*/

306 
#define DECODE_BYTES_PAD1(bytes) (3  ((bytes)+3) % 4) 
307 
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) 
308  
309 
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ 
310 
int i, off;

311 
uint32_t c; 
312 
const uint32_t* buf;

313 
uint32_t* obuf = (uint32_t*) out; 
314 
/* FIXME: 64 bit platforms would be able to do 64 bits at a time.

315 
* I'm too lazy though, should be something like

316 
* for(i=0 ; i<bitamount/64 ; i++)

317 
* (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);

318 
* Buffer alignment needs to be checked. */

319  
320 
off = (intptr_t)inbuffer & 3;

321 
buf = (const uint32_t*) (inbuffer  off);

322 
c = be2me_32((0x37c511f2 >> (off*8))  (0x37c511f2 << (32(off*8)))); 
323 
bytes += 3 + off;

324 
for (i = 0; i < bytes/4; i++) 
325 
obuf[i] = c ^ buf[i]; 
326  
327 
return off;

328 
} 
329  
330 
/**

331 
* Cook uninit

332 
*/

333  
334 
static av_cold int cook_decode_close(AVCodecContext *avctx) 
335 
{ 
336 
int i;

337 
COOKContext *q = avctx>priv_data; 
338 
av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");

339  
340 
/* Free allocated memory buffers. */

341 
av_free(q>mlt_window); 
342 
av_free(q>decoded_bytes_buffer); 
343  
344 
/* Free the transform. */

345 
ff_mdct_end(&q>mdct_ctx); 
346  
347 
/* Free the VLC tables. */

348 
for (i=0 ; i<13 ; i++) { 
349 
free_vlc(&q>envelope_quant_index[i]); 
350 
} 
351 
for (i=0 ; i<7 ; i++) { 
352 
free_vlc(&q>sqvh[i]); 
353 
} 
354 
for (i=0 ; i<q>num_subpackets ; i++) { 
355 
free_vlc(&q>subpacket[i].ccpl); 
356 
} 
357  
358 
av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");

359  
360 
return 0; 
361 
} 
362  
363 
/**

364 
* Fill the gain array for the timedomain quantization.

365 
*

366 
* @param q pointer to the COOKContext

367 
* @param gaininfo[9] array of gain indexes

368 
*/

369  
370 
static void decode_gain_info(GetBitContext *gb, int *gaininfo) 
371 
{ 
372 
int i, n;

373  
374 
while (get_bits1(gb)) {}

375 
n = get_bits_count(gb)  1; //amount of elements*2 to update 
376  
377 
i = 0;

378 
while (n) {

379 
int index = get_bits(gb, 3); 
380 
int gain = get_bits1(gb) ? get_bits(gb, 4)  7 : 1; 
381  
382 
while (i <= index) gaininfo[i++] = gain;

383 
} 
384 
while (i <= 8) gaininfo[i++] = 0; 
385 
} 
386  
387 
/**

388 
* Create the quant index table needed for the envelope.

389 
*

390 
* @param q pointer to the COOKContext

391 
* @param quant_index_table pointer to the array

392 
*/

393  
394 
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) { 
395 
int i,j, vlc_index;

396  
397 
quant_index_table[0]= get_bits(&q>gb,6)  6; //This is used later in categorize 
398  
399 
for (i=1 ; i < p>total_subbands ; i++){ 
400 
vlc_index=i; 
401 
if (i >= p>js_subband_start * 2) { 
402 
vlc_index=p>js_subband_start; 
403 
} else {

404 
vlc_index/=2;

405 
if(vlc_index < 1) vlc_index = 1; 
406 
} 
407 
if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 
408  
409 
j = get_vlc2(&q>gb, q>envelope_quant_index[vlc_index1].table,

410 
q>envelope_quant_index[vlc_index1].bits,2); 
411 
quant_index_table[i] = quant_index_table[i1] + j  12; //differential encoding 
412 
} 
413 
} 
414  
415 
/**

416 
* Calculate the category and category_index vector.

417 
*

418 
* @param q pointer to the COOKContext

419 
* @param quant_index_table pointer to the array

420 
* @param category pointer to the category array

421 
* @param category_index pointer to the category_index array

422 
*/

423  
424 
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table, 
425 
int* category, int* category_index){ 
426 
int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;

427 
int exp_index2[102]; 
428 
int exp_index1[102]; 
429  
430 
int tmp_categorize_array[128*2]; 
431 
int tmp_categorize_array1_idx=p>numvector_size;

432 
int tmp_categorize_array2_idx=p>numvector_size;

433  
434 
bits_left = p>bits_per_subpacket  get_bits_count(&q>gb); 
435  
436 
if(bits_left > q>samples_per_channel) {

437 
bits_left = q>samples_per_channel + 
438 
((bits_left  q>samples_per_channel)*5)/8; 
439 
//av_log(q>avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);

440 
} 
441  
442 
memset(&exp_index1,0,102*sizeof(int)); 
443 
memset(&exp_index2,0,102*sizeof(int)); 
444 
memset(&tmp_categorize_array,0,128*2*sizeof(int)); 
445  
446 
bias=32;

447  
448 
/* Estimate bias. */

449 
for (i=32 ; i>0 ; i=i/2){ 
450 
num_bits = 0;

451 
index = 0;

452 
for (j=p>total_subbands ; j>0 ; j){ 
453 
exp_idx = av_clip((i  quant_index_table[index] + bias) / 2, 0, 7); 
454 
index++; 
455 
num_bits+=expbits_tab[exp_idx]; 
456 
} 
457 
if(num_bits >= bits_left  32){ 
458 
bias+=i; 
459 
} 
460 
} 
461  
462 
/* Calculate total number of bits. */

463 
num_bits=0;

464 
for (i=0 ; i<p>total_subbands ; i++) { 
465 
exp_idx = av_clip((bias  quant_index_table[i]) / 2, 0, 7); 
466 
num_bits += expbits_tab[exp_idx]; 
467 
exp_index1[i] = exp_idx; 
468 
exp_index2[i] = exp_idx; 
469 
} 
470 
tmpbias1 = tmpbias2 = num_bits; 
471  
472 
for (j = 1 ; j < p>numvector_size ; j++) { 
473 
if (tmpbias1 + tmpbias2 > 2*bits_left) { /* > */ 
474 
int max = 999999; 
475 
index=1;

476 
for (i=0 ; i<p>total_subbands ; i++){ 
477 
if (exp_index1[i] < 7) { 
478 
v = (2*exp_index1[i])  quant_index_table[i] + bias;

479 
if ( v >= max) {

480 
max = v; 
481 
index = i; 
482 
} 
483 
} 
484 
} 
485 
if(index==1)break; 
486 
tmp_categorize_array[tmp_categorize_array1_idx++] = index; 
487 
tmpbias1 = expbits_tab[exp_index1[index]]  
488 
expbits_tab[exp_index1[index]+1];

489 
++exp_index1[index]; 
490 
} else { /* < */ 
491 
int min = 999999; 
492 
index=1;

493 
for (i=0 ; i<p>total_subbands ; i++){ 
494 
if(exp_index2[i] > 0){ 
495 
v = (2*exp_index2[i])quant_index_table[i]+bias;

496 
if ( v < min) {

497 
min = v; 
498 
index = i; 
499 
} 
500 
} 
501 
} 
502 
if(index == 1)break; 
503 
tmp_categorize_array[tmp_categorize_array2_idx] = index; 
504 
tmpbias2 = expbits_tab[exp_index2[index]]  
505 
expbits_tab[exp_index2[index]1];

506 
exp_index2[index]; 
507 
} 
508 
} 
509  
510 
for(i=0 ; i<p>total_subbands ; i++) 
511 
category[i] = exp_index2[i]; 
512  
513 
for(i=0 ; i<p>numvector_size1 ; i++) 
514 
category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; 
515  
516 
} 
517  
518  
519 
/**

520 
* Expand the category vector.

521 
*

522 
* @param q pointer to the COOKContext

523 
* @param category pointer to the category array

524 
* @param category_index pointer to the category_index array

525 
*/

526  
527 
static inline void expand_category(COOKContext *q, int* category, 
528 
int* category_index){

529 
int i;

530 
for(i=0 ; i<q>num_vectors ; i++){ 
531 
++category[category_index[i]]; 
532 
} 
533 
} 
534  
535 
/**

536 
* The real requantization of the mltcoefs

537 
*

538 
* @param q pointer to the COOKContext

539 
* @param index index

540 
* @param quant_index quantisation index

541 
* @param subband_coef_index array of indexes to quant_centroid_tab

542 
* @param subband_coef_sign signs of coefficients

543 
* @param mlt_p pointer into the mlt buffer

544 
*/

545  
546 
static void scalar_dequant_float(COOKContext *q, int index, int quant_index, 
547 
int* subband_coef_index, int* subband_coef_sign, 
548 
float* mlt_p){

549 
int i;

550 
float f1;

551  
552 
for(i=0 ; i<SUBBAND_SIZE ; i++) { 
553 
if (subband_coef_index[i]) {

554 
f1 = quant_centroid_tab[index][subband_coef_index[i]]; 
555 
if (subband_coef_sign[i]) f1 = f1;

556 
} else {

557 
/* noise coding if subband_coef_index[i] == 0 */

558 
f1 = dither_tab[index]; 
559 
if (av_lfg_get(&q>random_state) < 0x80000000) f1 = f1; 
560 
} 
561 
mlt_p[i] = f1 * rootpow2tab[quant_index+63];

562 
} 
563 
} 
564 
/**

565 
* Unpack the subband_coef_index and subband_coef_sign vectors.

566 
*

567 
* @param q pointer to the COOKContext

568 
* @param category pointer to the category array

569 
* @param subband_coef_index array of indexes to quant_centroid_tab

570 
* @param subband_coef_sign signs of coefficients

571 
*/

572  
573 
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index, 
574 
int* subband_coef_sign) {

575 
int i,j;

576 
int vlc, vd ,tmp, result;

577  
578 
vd = vd_tab[category]; 
579 
result = 0;

580 
for(i=0 ; i<vpr_tab[category] ; i++){ 
581 
vlc = get_vlc2(&q>gb, q>sqvh[category].table, q>sqvh[category].bits, 3);

582 
if (p>bits_per_subpacket < get_bits_count(&q>gb)){

583 
vlc = 0;

584 
result = 1;

585 
} 
586 
for(j=vd1 ; j>=0 ; j){ 
587 
tmp = (vlc * invradix_tab[category])/0x100000;

588 
subband_coef_index[vd*i+j] = vlc  tmp * (kmax_tab[category]+1);

589 
vlc = tmp; 
590 
} 
591 
for(j=0 ; j<vd ; j++){ 
592 
if (subband_coef_index[i*vd + j]) {

593 
if(get_bits_count(&q>gb) < p>bits_per_subpacket){

594 
subband_coef_sign[i*vd+j] = get_bits1(&q>gb); 
595 
} else {

596 
result=1;

597 
subband_coef_sign[i*vd+j]=0;

598 
} 
599 
} else {

600 
subband_coef_sign[i*vd+j]=0;

601 
} 
602 
} 
603 
} 
604 
return result;

605 
} 
606  
607  
608 
/**

609 
* Fill the mlt_buffer with mlt coefficients.

610 
*

611 
* @param q pointer to the COOKContext

612 
* @param category pointer to the category array

613 
* @param quant_index_table pointer to the array

614 
* @param mlt_buffer pointer to mlt coefficients

615 
*/

616  
617  
618 
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category, 
619 
int *quant_index_table, float* mlt_buffer){ 
620 
/* A zero in this table means that the subband coefficient is

621 
random noise coded. */

622 
int subband_coef_index[SUBBAND_SIZE];

623 
/* A zero in this table means that the subband coefficient is a

624 
positive multiplicator. */

625 
int subband_coef_sign[SUBBAND_SIZE];

626 
int band, j;

627 
int index=0; 
628  
629 
for(band=0 ; band<p>total_subbands ; band++){ 
630 
index = category[band]; 
631 
if(category[band] < 7){ 
632 
if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){

633 
index=7;

634 
for(j=0 ; j<p>total_subbands ; j++) category[band+j]=7; 
635 
} 
636 
} 
637 
if(index>=7) { 
638 
memset(subband_coef_index, 0, sizeof(subband_coef_index)); 
639 
memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); 
640 
} 
641 
q>scalar_dequant(q, index, quant_index_table[band], 
642 
subband_coef_index, subband_coef_sign, 
643 
&mlt_buffer[band * SUBBAND_SIZE]); 
644 
} 
645  
646 
if(p>total_subbands*SUBBAND_SIZE >= q>samples_per_channel){

647 
return;

648 
} /* FIXME: should this be removed, or moved into loop above? */

649 
} 
650  
651  
652 
/**

653 
* function for decoding mono data

654 
*

655 
* @param q pointer to the COOKContext

656 
* @param mlt_buffer pointer to mlt coefficients

657 
*/

658  
659 
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) { 
660  
661 
int category_index[128]; 
662 
int quant_index_table[102]; 
663 
int category[128]; 
664  
665 
memset(&category, 0, 128*sizeof(int)); 
666 
memset(&category_index, 0, 128*sizeof(int)); 
667  
668 
decode_envelope(q, p, quant_index_table); 
669 
q>num_vectors = get_bits(&q>gb,p>log2_numvector_size); 
670 
categorize(q, p, quant_index_table, category, category_index); 
671 
expand_category(q, category, category_index); 
672 
decode_vectors(q, p, category, quant_index_table, mlt_buffer); 
673 
} 
674  
675  
676 
/**

677 
* the actual requantization of the timedomain samples

678 
*

679 
* @param q pointer to the COOKContext

680 
* @param buffer pointer to the timedomain buffer

681 
* @param gain_index index for the block multiplier

682 
* @param gain_index_next index for the next block multiplier

683 
*/

684  
685 
static void interpolate_float(COOKContext *q, float* buffer, 
686 
int gain_index, int gain_index_next){ 
687 
int i;

688 
float fc1, fc2;

689 
fc1 = pow2tab[gain_index+63];

690  
691 
if(gain_index == gain_index_next){ //static gain 
692 
for(i=0 ; i<q>gain_size_factor ; i++){ 
693 
buffer[i]*=fc1; 
694 
} 
695 
return;

696 
} else { //smooth gain 
697 
fc2 = q>gain_table[11 + (gain_index_nextgain_index)];

698 
for(i=0 ; i<q>gain_size_factor ; i++){ 
699 
buffer[i]*=fc1; 
700 
fc1*=fc2; 
701 
} 
702 
return;

703 
} 
704 
} 
705  
706 
/**

707 
* Apply transform window, overlap buffers.

708 
*

709 
* @param q pointer to the COOKContext

710 
* @param inbuffer pointer to the mltcoefficients

711 
* @param gains_ptr current and previous gains

712 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

713 
*/

714  
715 
static void imlt_window_float (COOKContext *q, float *buffer1, 
716 
cook_gains *gains_ptr, float *previous_buffer)

717 
{ 
718 
const float fc = pow2tab[gains_ptr>previous[0] + 63]; 
719 
int i;

720 
/* The weird thing here, is that the two halves of the time domain

721 
* buffer are swapped. Also, the newest data, that we save away for

722 
* next frame, has the wrong sign. Hence the subtraction below.

723 
* Almost sounds like a complex conjugate/reverse data/FFT effect.

724 
*/

725  
726 
/* Apply window and overlap */

727 
for(i = 0; i < q>samples_per_channel; i++){ 
728 
buffer1[i] = buffer1[i] * fc * q>mlt_window[i]  
729 
previous_buffer[i] * q>mlt_window[q>samples_per_channel  1  i];

730 
} 
731 
} 
732  
733 
/**

734 
* The modulated lapped transform, this takes transform coefficients

735 
* and transforms them into timedomain samples.

736 
* Apply transform window, overlap buffers, apply gain profile

737 
* and buffer management.

738 
*

739 
* @param q pointer to the COOKContext

740 
* @param inbuffer pointer to the mltcoefficients

741 
* @param gains_ptr current and previous gains

742 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

743 
*/

744  
745 
static void imlt_gain(COOKContext *q, float *inbuffer, 
746 
cook_gains *gains_ptr, float* previous_buffer)

747 
{ 
748 
float *buffer0 = q>mono_mdct_output;

749 
float *buffer1 = q>mono_mdct_output + q>samples_per_channel;

750 
int i;

751  
752 
/* Inverse modified discrete cosine transform */

753 
ff_imdct_calc(&q>mdct_ctx, q>mono_mdct_output, inbuffer); 
754  
755 
q>imlt_window (q, buffer1, gains_ptr, previous_buffer); 
756  
757 
/* Apply gain profile */

758 
for (i = 0; i < 8; i++) { 
759 
if (gains_ptr>now[i]  gains_ptr>now[i + 1]) 
760 
q>interpolate(q, &buffer1[q>gain_size_factor * i], 
761 
gains_ptr>now[i], gains_ptr>now[i + 1]);

762 
} 
763  
764 
/* Save away the current to be previous block. */

765 
memcpy(previous_buffer, buffer0, sizeof(float)*q>samples_per_channel); 
766 
} 
767  
768  
769 
/**

770 
* function for getting the jointstereo coupling information

771 
*

772 
* @param q pointer to the COOKContext

773 
* @param decouple_tab decoupling array

774 
*

775 
*/

776  
777 
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){ 
778 
int length, i;

779  
780 
if(get_bits1(&q>gb)) {

781 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
782  
783 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
784 
for (i=0 ; i<length ; i++) { 
785 
decouple_tab[cplband[p>js_subband_start] + i] = get_vlc2(&q>gb, p>ccpl.table, p>ccpl.bits, 2);

786 
} 
787 
return;

788 
} 
789  
790 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
791  
792 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
793 
for (i=0 ; i<length ; i++) { 
794 
decouple_tab[cplband[p>js_subband_start] + i] = get_bits(&q>gb, p>js_vlc_bits); 
795 
} 
796 
return;

797 
} 
798  
799 
/*

800 
* function decouples a pair of signals from a single signal via multiplication.

801 
*

802 
* @param q pointer to the COOKContext

803 
* @param subband index of the current subband

804 
* @param f1 multiplier for channel 1 extraction

805 
* @param f2 multiplier for channel 2 extraction

806 
* @param decode_buffer input buffer

807 
* @param mlt_buffer1 pointer to left channel mlt coefficients

808 
* @param mlt_buffer2 pointer to right channel mlt coefficients

809 
*/

810 
static void decouple_float (COOKContext *q, 
811 
COOKSubpacket *p, 
812 
int subband,

813 
float f1, float f2, 
814 
float *decode_buffer,

815 
float *mlt_buffer1, float *mlt_buffer2) 
816 
{ 
817 
int j, tmp_idx;

818 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
819 
tmp_idx = ((p>js_subband_start + subband)*SUBBAND_SIZE)+j; 
820 
mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx]; 
821 
mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx]; 
822 
} 
823 
} 
824  
825 
/**

826 
* function for decoding joint stereo data

827 
*

828 
* @param q pointer to the COOKContext

829 
* @param mlt_buffer1 pointer to left channel mlt coefficients

830 
* @param mlt_buffer2 pointer to right channel mlt coefficients

831 
*/

832  
833 
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1, 
834 
float* mlt_buffer2) {

835 
int i,j;

836 
int decouple_tab[SUBBAND_SIZE];

837 
float *decode_buffer = q>decode_buffer_0;

838 
int idx, cpl_tmp;

839 
float f1,f2;

840 
const float* cplscale; 
841  
842 
memset(decouple_tab, 0, sizeof(decouple_tab)); 
843 
memset(decode_buffer, 0, sizeof(decode_buffer)); 
844  
845 
/* Make sure the buffers are zeroed out. */

846 
memset(mlt_buffer1,0, 1024*sizeof(float)); 
847 
memset(mlt_buffer2,0, 1024*sizeof(float)); 
848 
decouple_info(q, p, decouple_tab); 
849 
mono_decode(q, p, decode_buffer); 
850  
851 
/* The two channels are stored interleaved in decode_buffer. */

852 
for (i=0 ; i<p>js_subband_start ; i++) { 
853 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
854 
mlt_buffer1[i*20+j] = decode_buffer[i*40+j]; 
855 
mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j]; 
856 
} 
857 
} 
858  
859 
/* When we reach js_subband_start (the higher frequencies)

860 
the coefficients are stored in a coupling scheme. */

861 
idx = (1 << p>js_vlc_bits)  1; 
862 
for (i=p>js_subband_start ; i<p>subbands ; i++) {

863 
cpl_tmp = cplband[i]; 
864 
idx =decouple_tab[cpl_tmp]; 
865 
cplscale = q>cplscales[p>js_vlc_bits2]; //choose decoupler table 
866 
f1 = cplscale[decouple_tab[cpl_tmp]]; 
867 
f2 = cplscale[idx1];

868 
q>decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2); 
869 
idx = (1 << p>js_vlc_bits)  1; 
870 
} 
871 
} 
872  
873 
/**

874 
* First part of subpacket decoding:

875 
* decode raw stream bytes and read gain info.

876 
*

877 
* @param q pointer to the COOKContext

878 
* @param inbuffer pointer to raw stream data

879 
* @param gain_ptr array of current/prev gain pointers

880 
*/

881  
882 
static inline void 
883 
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,

884 
cook_gains *gains_ptr) 
885 
{ 
886 
int offset;

887  
888 
offset = decode_bytes(inbuffer, q>decoded_bytes_buffer, 
889 
p>bits_per_subpacket/8);

890 
init_get_bits(&q>gb, q>decoded_bytes_buffer + offset, 
891 
p>bits_per_subpacket); 
892 
decode_gain_info(&q>gb, gains_ptr>now); 
893  
894 
/* Swap current and previous gains */

895 
FFSWAP(int *, gains_ptr>now, gains_ptr>previous);

896 
} 
897  
898 
/**

899 
* Saturate the output signal to signed 16bit integers.

900 
*

901 
* @param q pointer to the COOKContext

902 
* @param chan channel to saturate

903 
* @param out pointer to the output vector

904 
*/

905 
static void 
906 
saturate_output_float (COOKContext *q, int chan, int16_t *out)

907 
{ 
908 
int j;

909 
float *output = q>mono_mdct_output + q>samples_per_channel;

910 
/* Clip and convert floats to 16 bits.

911 
*/

912 
for (j = 0; j < q>samples_per_channel; j++) { 
913 
out[chan + q>nb_channels * j] = 
914 
av_clip_int16(lrintf(output[j])); 
915 
} 
916 
} 
917  
918 
/**

919 
* Final part of subpacket decoding:

920 
* Apply modulated lapped transform, gain compensation,

921 
* clip and convert to integer.

922 
*

923 
* @param q pointer to the COOKContext

924 
* @param decode_buffer pointer to the mlt coefficients

925 
* @param gain_ptr array of current/prev gain pointers

926 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

927 
* @param out pointer to the output buffer

928 
* @param chan 0: left or single channel, 1: right channel

929 
*/

930  
931 
static inline void 
932 
mlt_compensate_output(COOKContext *q, float *decode_buffer,

933 
cook_gains *gains, float *previous_buffer,

934 
int16_t *out, int chan)

935 
{ 
936 
imlt_gain(q, decode_buffer, gains, previous_buffer); 
937 
q>saturate_output (q, chan, out); 
938 
} 
939  
940  
941 
/**

942 
* Cook subpacket decoding. This function returns one decoded subpacket,

943 
* usually 1024 samples per channel.

944 
*

945 
* @param q pointer to the COOKContext

946 
* @param inbuffer pointer to the inbuffer

947 
* @param sub_packet_size subpacket size

948 
* @param outbuffer pointer to the outbuffer

949 
*/

950  
951  
952 
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) { 
953 
int sub_packet_size = p>size;

954 
/* packet dump */

955 
// for (i=0 ; i<sub_packet_size ; i++) {

956 
// av_log(q>avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);

957 
// }

958 
// av_log(q>avctx, AV_LOG_ERROR, "\n");

959 
memset(q>decode_buffer_1,0,sizeof(q>decode_buffer_1)); 
960 
decode_bytes_and_gain(q, p, inbuffer, &p>gains1); 
961  
962 
if (p>joint_stereo) {

963 
joint_decode(q, p, q>decode_buffer_1, q>decode_buffer_2); 
964 
} else {

965 
mono_decode(q, p, q>decode_buffer_1); 
966  
967 
if (p>num_channels == 2) { 
968 
decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p>gains2);

969 
mono_decode(q, p, q>decode_buffer_2); 
970 
} 
971 
} 
972  
973 
mlt_compensate_output(q, q>decode_buffer_1, &p>gains1, 
974 
p>mono_previous_buffer1, outbuffer, p>ch_idx); 
975  
976 
if (p>num_channels == 2) { 
977 
if (p>joint_stereo) {

978 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains1, 
979 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

980 
} else {

981 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains2, 
982 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

983 
} 
984 
} 
985  
986 
} 
987  
988  
989 
/**

990 
* Cook frame decoding

991 
*

992 
* @param avctx pointer to the AVCodecContext

993 
*/

994  
995 
static int cook_decode_frame(AVCodecContext *avctx, 
996 
void *data, int *data_size, 
997 
AVPacket *avpkt) { 
998 
const uint8_t *buf = avpkt>data;

999 
int buf_size = avpkt>size;

1000 
COOKContext *q = avctx>priv_data; 
1001 
int i;

1002 
int offset = 0; 
1003 
int chidx = 0; 
1004  
1005 
if (buf_size < avctx>block_align)

1006 
return buf_size;

1007  
1008 
/* estimate subpacket sizes */

1009 
q>subpacket[0].size = avctx>block_align;

1010  
1011 
for(i=1;i<q>num_subpackets;i++){ 
1012 
q>subpacket[i].size = 2 * buf[avctx>block_align  q>num_subpackets + i];

1013 
q>subpacket[0].size = q>subpacket[i].size + 1; 
1014 
if (q>subpacket[0].size < 0) { 
1015 
av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx>block_align!\n");

1016 
return 1; 
1017 
} 
1018 
} 
1019  
1020 
/* decode supbackets */

1021 
*data_size = 0;

1022 
for(i=0;i<q>num_subpackets;i++){ 
1023 
q>subpacket[i].bits_per_subpacket = (q>subpacket[i].size*8)>>q>subpacket[i].bits_per_subpdiv;

1024 
q>subpacket[i].ch_idx = chidx; 
1025 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q>subpacket[i].size,q>subpacket[i].joint_stereo,offset,avctx>block_align);

1026 
decode_subpacket(q, &q>subpacket[i], buf + offset, (int16_t*)data); 
1027 
offset += q>subpacket[i].size; 
1028 
chidx += q>subpacket[i].num_channels; 
1029 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q>subpacket[i].size * 8,get_bits_count(&q>gb)); 
1030 
} 
1031 
*data_size = sizeof(int16_t) * q>nb_channels * q>samples_per_channel;

1032  
1033 
/* Discard the first two frames: no valid audio. */

1034 
if (avctx>frame_number < 2) *data_size = 0; 
1035  
1036 
return avctx>block_align;

1037 
} 
1038  
1039 
#ifdef COOKDEBUG

1040 
static void dump_cook_context(COOKContext *q) 
1041 
{ 
1042 
//int i=0;

1043 
#define PRINT(a,b) av_log(q>avctx,AV_LOG_ERROR," %s = %d\n", a, b); 
1044 
av_log(q>avctx,AV_LOG_ERROR,"COOKextradata\n");

1045 
av_log(q>avctx,AV_LOG_ERROR,"cookversion=%x\n",q>subpacket[0].cookversion); 
1046 
if (q>subpacket[0].cookversion > STEREO) { 
1047 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1048 
PRINT("js_vlc_bits",q>subpacket[0].js_vlc_bits); 
1049 
} 
1050 
av_log(q>avctx,AV_LOG_ERROR,"COOKContext\n");

1051 
PRINT("nb_channels",q>nb_channels);

1052 
PRINT("bit_rate",q>bit_rate);

1053 
PRINT("sample_rate",q>sample_rate);

1054 
PRINT("samples_per_channel",q>subpacket[0].samples_per_channel); 
1055 
PRINT("samples_per_frame",q>subpacket[0].samples_per_frame); 
1056 
PRINT("subbands",q>subpacket[0].subbands); 
1057 
PRINT("random_state",q>random_state);

1058 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1059 
PRINT("log2_numvector_size",q>subpacket[0].log2_numvector_size); 
1060 
PRINT("numvector_size",q>subpacket[0].numvector_size); 
1061 
PRINT("total_subbands",q>subpacket[0].total_subbands); 
1062 
} 
1063 
#endif

1064  
1065 
static av_cold int cook_count_channels(unsigned int mask){ 
1066 
int i;

1067 
int channels = 0; 
1068 
for(i = 0;i<32;i++){ 
1069 
if(mask & (1<<i)) 
1070 
++channels; 
1071 
} 
1072 
return channels;

1073 
} 
1074  
1075 
/**

1076 
* Cook initialization

1077 
*

1078 
* @param avctx pointer to the AVCodecContext

1079 
*/

1080  
1081 
static av_cold int cook_decode_init(AVCodecContext *avctx) 
1082 
{ 
1083 
COOKContext *q = avctx>priv_data; 
1084 
const uint8_t *edata_ptr = avctx>extradata;

1085 
const uint8_t *edata_ptr_end = edata_ptr + avctx>extradata_size;

1086 
int extradata_size = avctx>extradata_size;

1087 
int s = 0; 
1088 
unsigned int channel_mask = 0; 
1089 
q>avctx = avctx; 
1090  
1091 
/* Take care of the codec specific extradata. */

1092 
if (extradata_size <= 0) { 
1093 
av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");

1094 
return 1; 
1095 
} 
1096 
av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx>extradata_size);

1097  
1098 
/* Take data from the AVCodecContext (RM container). */

1099 
q>sample_rate = avctx>sample_rate; 
1100 
q>nb_channels = avctx>channels; 
1101 
q>bit_rate = avctx>bit_rate; 
1102  
1103 
/* Initialize RNG. */

1104 
av_lfg_init(&q>random_state, 0);

1105  
1106 
while(edata_ptr < edata_ptr_end){

1107 
/* 8 for mono, 16 for stereo, ? for multichannel

1108 
Swap to right endianness so we don't need to care later on. */

1109 
if (extradata_size >= 8){ 
1110 
q>subpacket[s].cookversion = bytestream_get_be32(&edata_ptr); 
1111 
q>subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr); 
1112 
q>subpacket[s].subbands = bytestream_get_be16(&edata_ptr); 
1113 
extradata_size = 8;

1114 
} 
1115 
if (avctx>extradata_size >= 8){ 
1116 
bytestream_get_be32(&edata_ptr); //Unknown unused

1117 
q>subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr); 
1118 
q>subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr); 
1119 
extradata_size = 8;

1120 
} 
1121  
1122 
/* Initialize extradata related variables. */

1123 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame / q>nb_channels; 
1124 
q>subpacket[s].bits_per_subpacket = avctx>block_align * 8;

1125  
1126 
/* Initialize default data states. */

1127 
q>subpacket[s].log2_numvector_size = 5;

1128 
q>subpacket[s].total_subbands = q>subpacket[s].subbands; 
1129 
q>subpacket[s].num_channels = 1;

1130  
1131 
/* Initialize versiondependent variables */

1132  
1133 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q>subpacket[s].cookversion);

1134 
q>subpacket[s].joint_stereo = 0;

1135 
switch (q>subpacket[s].cookversion) {

1136 
case MONO:

1137 
if (q>nb_channels != 1) { 
1138 
av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");

1139 
return 1; 
1140 
} 
1141 
av_log(avctx,AV_LOG_DEBUG,"MONO\n");

1142 
break;

1143 
case STEREO:

1144 
if (q>nb_channels != 1) { 
1145 
q>subpacket[s].bits_per_subpdiv = 1;

1146 
q>subpacket[s].num_channels = 2;

1147 
} 
1148 
av_log(avctx,AV_LOG_DEBUG,"STEREO\n");

1149 
break;

1150 
case JOINT_STEREO:

1151 
if (q>nb_channels != 2) { 
1152 
av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");

1153 
return 1; 
1154 
} 
1155 
av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");

1156 
if (avctx>extradata_size >= 16){ 
1157 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1158 
q>subpacket[s].joint_stereo = 1;

1159 
q>subpacket[s].num_channels = 2;

1160 
} 
1161 
if (q>subpacket[s].samples_per_channel > 256) { 
1162 
q>subpacket[s].log2_numvector_size = 6;

1163 
} 
1164 
if (q>subpacket[s].samples_per_channel > 512) { 
1165 
q>subpacket[s].log2_numvector_size = 7;

1166 
} 
1167 
break;

1168 
case MC_COOK:

1169 
av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");

1170 
if(extradata_size >= 4) 
1171 
channel_mask = q>subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr); 
1172  
1173 
if(cook_count_channels(q>subpacket[s].channel_mask) > 1){ 
1174 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1175 
q>subpacket[s].joint_stereo = 1;

1176 
q>subpacket[s].num_channels = 2;

1177 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame >> 1;

1178  
1179 
if (q>subpacket[s].samples_per_channel > 256) { 
1180 
q>subpacket[s].log2_numvector_size = 6;

1181 
} 
1182 
if (q>subpacket[s].samples_per_channel > 512) { 
1183 
q>subpacket[s].log2_numvector_size = 7;

1184 
} 
1185 
}else

1186 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame; 
1187  
1188 
break;

1189 
default:

1190 
av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");

1191 
return 1; 
1192 
break;

1193 
} 
1194  
1195 
if(s > 1 && q>subpacket[s].samples_per_channel != q>samples_per_channel) { 
1196 
av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");

1197 
return 1; 
1198 
} else

1199 
q>samples_per_channel = q>subpacket[0].samples_per_channel;

1200  
1201  
1202 
/* Initialize variable relations */

1203 
q>subpacket[s].numvector_size = (1 << q>subpacket[s].log2_numvector_size);

1204  
1205 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1206 
if (q>subpacket[s].total_subbands > 53) { 
1207 
av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");

1208 
return 1; 
1209 
} 
1210  
1211 
if ((q>subpacket[s].js_vlc_bits > 6)  (q>subpacket[s].js_vlc_bits < 0)) { 
1212 
av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q>subpacket[s].js_vlc_bits);

1213 
return 1; 
1214 
} 
1215  
1216 
if (q>subpacket[s].subbands > 50) { 
1217 
av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");

1218 
return 1; 
1219 
} 
1220 
q>subpacket[s].gains1.now = q>subpacket[s].gain_1; 
1221 
q>subpacket[s].gains1.previous = q>subpacket[s].gain_2; 
1222 
q>subpacket[s].gains2.now = q>subpacket[s].gain_3; 
1223 
q>subpacket[s].gains2.previous = q>subpacket[s].gain_4; 
1224  
1225 
q>num_subpackets++; 
1226 
s++; 
1227 
if (s > MAX_SUBPACKETS) {

1228 
av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");

1229 
return 1; 
1230 
} 
1231 
} 
1232 
/* Generate tables */

1233 
init_pow2table(); 
1234 
init_gain_table(q); 
1235 
init_cplscales_table(q); 
1236  
1237 
if (init_cook_vlc_tables(q) != 0) 
1238 
return 1; 
1239  
1240  
1241 
if(avctx>block_align >= UINT_MAX/2) 
1242 
return 1; 
1243  
1244 
/* Pad the databuffer with:

1245 
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),

1246 
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */

1247 
q>decoded_bytes_buffer = 
1248 
av_mallocz(avctx>block_align 
1249 
+ DECODE_BYTES_PAD1(avctx>block_align) 
1250 
+ FF_INPUT_BUFFER_PADDING_SIZE); 
1251 
if (q>decoded_bytes_buffer == NULL) 
1252 
return 1; 
1253  
1254 
/* Initialize transform. */

1255 
if ( init_cook_mlt(q) != 0 ) 
1256 
return 1; 
1257  
1258 
/* Initialize COOK signal arithmetic handling */

1259 
if (1) { 
1260 
q>scalar_dequant = scalar_dequant_float; 
1261 
q>decouple = decouple_float; 
1262 
q>imlt_window = imlt_window_float; 
1263 
q>interpolate = interpolate_float; 
1264 
q>saturate_output = saturate_output_float; 
1265 
} 
1266  
1267 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1268 
if ((q>samples_per_channel == 256)  (q>samples_per_channel == 512)  (q>samples_per_channel == 1024)) { 
1269 
} else {

1270 
av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q>samples_per_channel);

1271 
return 1; 
1272 
} 
1273  
1274 
avctx>sample_fmt = SAMPLE_FMT_S16; 
1275 
if (channel_mask)

1276 
avctx>channel_layout = channel_mask; 
1277 
else

1278 
avctx>channel_layout = (avctx>channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;

1279  
1280 
#ifdef COOKDEBUG

1281 
dump_cook_context(q); 
1282 
#endif

1283 
return 0; 
1284 
} 
1285  
1286  
1287 
AVCodec cook_decoder = 
1288 
{ 
1289 
.name = "cook",

1290 
.type = CODEC_TYPE_AUDIO, 
1291 
.id = CODEC_ID_COOK, 
1292 
.priv_data_size = sizeof(COOKContext),

1293 
.init = cook_decode_init, 
1294 
.close = cook_decode_close, 
1295 
.decode = cook_decode_frame, 
1296 
.long_name = NULL_IF_CONFIG_SMALL("COOK"),

1297 
}; 