Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ 84dc2d8a

History | View | Annotate | Download (43.3 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavcodec/cook.c
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44

    
45
#include <math.h>
46
#include <stddef.h>
47
#include <stdio.h>
48

    
49
#include "libavutil/lfg.h"
50
#include "libavutil/random_seed.h"
51
#include "avcodec.h"
52
#include "get_bits.h"
53
#include "dsputil.h"
54
#include "bytestream.h"
55

    
56
#include "cookdata.h"
57

    
58
/* the different Cook versions */
59
#define MONO            0x1000001
60
#define STEREO          0x1000002
61
#define JOINT_STEREO    0x1000003
62
#define MC_COOK         0x2000000   //multichannel Cook, not supported
63

    
64
#define SUBBAND_SIZE    20
65
#define MAX_SUBPACKETS   5
66
//#define COOKDEBUG
67

    
68
typedef struct {
69
    int *now;
70
    int *previous;
71
} cook_gains;
72

    
73
typedef struct {
74
    int                 ch_idx;
75
    int                 size;
76
    int                 num_channels;
77
    int                 cookversion;
78
    int                 samples_per_frame;
79
    int                 subbands;
80
    int                 js_subband_start;
81
    int                 js_vlc_bits;
82
    int                 samples_per_channel;
83
    int                 log2_numvector_size;
84
    unsigned int        channel_mask;
85
    VLC                 ccpl;                 ///< channel coupling
86
    int                 joint_stereo;
87
    int                 bits_per_subpacket;
88
    int                 bits_per_subpdiv;
89
    int                 total_subbands;
90
    int                 numvector_size;       ///< 1 << log2_numvector_size;
91

    
92
    float               mono_previous_buffer1[1024];
93
    float               mono_previous_buffer2[1024];
94
    /** gain buffers */
95
    cook_gains          gains1;
96
    cook_gains          gains2;
97
    int                 gain_1[9];
98
    int                 gain_2[9];
99
    int                 gain_3[9];
100
    int                 gain_4[9];
101
} COOKSubpacket;
102

    
103
typedef struct cook {
104
    /*
105
     * The following 5 functions provide the lowlevel arithmetic on
106
     * the internal audio buffers.
107
     */
108
    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
109
                            int* subband_coef_index, int* subband_coef_sign,
110
                            float* mlt_p);
111

    
112
    void (* decouple) (struct cook *q,
113
                       COOKSubpacket *p,
114
                       int subband,
115
                       float f1, float f2,
116
                       float *decode_buffer,
117
                       float *mlt_buffer1, float *mlt_buffer2);
118

    
119
    void (* imlt_window) (struct cook *q, float *buffer1,
120
                          cook_gains *gains_ptr, float *previous_buffer);
121

    
122
    void (* interpolate) (struct cook *q, float* buffer,
123
                          int gain_index, int gain_index_next);
124

    
125
    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
126

    
127
    AVCodecContext*     avctx;
128
    GetBitContext       gb;
129
    /* stream data */
130
    int                 nb_channels;
131
    int                 bit_rate;
132
    int                 sample_rate;
133
    int                 num_vectors;
134
    int                 samples_per_channel;
135
    /* states */
136
    AVLFG               random_state;
137

    
138
    /* transform data */
139
    FFTContext          mdct_ctx;
140
    float*              mlt_window;
141

    
142
    /* VLC data */
143
    VLC                 envelope_quant_index[13];
144
    VLC                 sqvh[7];          //scalar quantization
145

    
146
    /* generatable tables and related variables */
147
    int                 gain_size_factor;
148
    float               gain_table[23];
149

    
150
    /* data buffers */
151

    
152
    uint8_t*            decoded_bytes_buffer;
153
    DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
154
    float               decode_buffer_1[1024];
155
    float               decode_buffer_2[1024];
156
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
157

    
158
    const float         *cplscales[5];
159
    int                 num_subpackets;
160
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
161
} COOKContext;
162

    
163
static float     pow2tab[127];
164
static float rootpow2tab[127];
165

    
166
/* debug functions */
167

    
168
#ifdef COOKDEBUG
169
static void dump_float_table(float* table, int size, int delimiter) {
170
    int i=0;
171
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
172
    for (i=0 ; i<size ; i++) {
173
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
174
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
175
    }
176
}
177

    
178
static void dump_int_table(int* table, int size, int delimiter) {
179
    int i=0;
180
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
181
    for (i=0 ; i<size ; i++) {
182
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
183
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
184
    }
185
}
186

    
187
static void dump_short_table(short* table, int size, int delimiter) {
188
    int i=0;
189
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
190
    for (i=0 ; i<size ; i++) {
191
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
192
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
193
    }
194
}
195

    
196
#endif
197

    
198
/*************** init functions ***************/
199

    
200
/* table generator */
201
static av_cold void init_pow2table(void){
202
    int i;
203
    for (i=-63 ; i<64 ; i++){
204
            pow2tab[63+i]=     pow(2, i);
205
        rootpow2tab[63+i]=sqrt(pow(2, i));
206
    }
207
}
208

    
209
/* table generator */
210
static av_cold void init_gain_table(COOKContext *q) {
211
    int i;
212
    q->gain_size_factor = q->samples_per_channel/8;
213
    for (i=0 ; i<23 ; i++) {
214
        q->gain_table[i] = pow(pow2tab[i+52] ,
215
                               (1.0/(double)q->gain_size_factor));
216
    }
217
}
218

    
219

    
220
static av_cold int init_cook_vlc_tables(COOKContext *q) {
221
    int i, result;
222

    
223
    result = 0;
224
    for (i=0 ; i<13 ; i++) {
225
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
226
            envelope_quant_index_huffbits[i], 1, 1,
227
            envelope_quant_index_huffcodes[i], 2, 2, 0);
228
    }
229
    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
230
    for (i=0 ; i<7 ; i++) {
231
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
232
            cvh_huffbits[i], 1, 1,
233
            cvh_huffcodes[i], 2, 2, 0);
234
    }
235

    
236
    for(i=0;i<q->num_subpackets;i++){
237
        if (q->subpacket[i].joint_stereo==1){
238
            result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
239
                ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
240
                ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
241
            av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
242
        }
243
    }
244

    
245
    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
246
    return result;
247
}
248

    
249
static av_cold int init_cook_mlt(COOKContext *q) {
250
    int j;
251
    int mlt_size = q->samples_per_channel;
252

    
253
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
254
      return -1;
255

    
256
    /* Initialize the MLT window: simple sine window. */
257
    ff_sine_window_init(q->mlt_window, mlt_size);
258
    for(j=0 ; j<mlt_size ; j++)
259
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
260

    
261
    /* Initialize the MDCT. */
262
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
263
      av_free(q->mlt_window);
264
      return -1;
265
    }
266
    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
267
           av_log2(mlt_size)+1);
268

    
269
    return 0;
270
}
271

    
272
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
273
{
274
    if (1)
275
        return ptr;
276
}
277

    
278
static av_cold void init_cplscales_table (COOKContext *q) {
279
    int i;
280
    for (i=0;i<5;i++)
281
        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
282
}
283

    
284
/*************** init functions end ***********/
285

    
286
/**
287
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
288
 * Why? No idea, some checksum/error detection method maybe.
289
 *
290
 * Out buffer size: extra bytes are needed to cope with
291
 * padding/misalignment.
292
 * Subpackets passed to the decoder can contain two, consecutive
293
 * half-subpackets, of identical but arbitrary size.
294
 *          1234 1234 1234 1234  extraA extraB
295
 * Case 1:  AAAA BBBB              0      0
296
 * Case 2:  AAAA ABBB BB--         3      3
297
 * Case 3:  AAAA AABB BBBB         2      2
298
 * Case 4:  AAAA AAAB BBBB BB--    1      5
299
 *
300
 * Nice way to waste CPU cycles.
301
 *
302
 * @param inbuffer  pointer to byte array of indata
303
 * @param out       pointer to byte array of outdata
304
 * @param bytes     number of bytes
305
 */
306
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
307
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
308

    
309
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
310
    int i, off;
311
    uint32_t c;
312
    const uint32_t* buf;
313
    uint32_t* obuf = (uint32_t*) out;
314
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
315
     * I'm too lazy though, should be something like
316
     * for(i=0 ; i<bitamount/64 ; i++)
317
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
318
     * Buffer alignment needs to be checked. */
319

    
320
    off = (intptr_t)inbuffer & 3;
321
    buf = (const uint32_t*) (inbuffer - off);
322
    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
323
    bytes += 3 + off;
324
    for (i = 0; i < bytes/4; i++)
325
        obuf[i] = c ^ buf[i];
326

    
327
    return off;
328
}
329

    
330
/**
331
 * Cook uninit
332
 */
333

    
334
static av_cold int cook_decode_close(AVCodecContext *avctx)
335
{
336
    int i;
337
    COOKContext *q = avctx->priv_data;
338
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
339

    
340
    /* Free allocated memory buffers. */
341
    av_free(q->mlt_window);
342
    av_free(q->decoded_bytes_buffer);
343

    
344
    /* Free the transform. */
345
    ff_mdct_end(&q->mdct_ctx);
346

    
347
    /* Free the VLC tables. */
348
    for (i=0 ; i<13 ; i++) {
349
        free_vlc(&q->envelope_quant_index[i]);
350
    }
351
    for (i=0 ; i<7 ; i++) {
352
        free_vlc(&q->sqvh[i]);
353
    }
354
    for (i=0 ; i<q->num_subpackets ; i++) {
355
        free_vlc(&q->subpacket[i].ccpl);
356
    }
357

    
358
    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
359

    
360
    return 0;
361
}
362

    
363
/**
364
 * Fill the gain array for the timedomain quantization.
365
 *
366
 * @param q                 pointer to the COOKContext
367
 * @param gaininfo[9]       array of gain indexes
368
 */
369

    
370
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
371
{
372
    int i, n;
373

    
374
    while (get_bits1(gb)) {}
375
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
376

    
377
    i = 0;
378
    while (n--) {
379
        int index = get_bits(gb, 3);
380
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
381

    
382
        while (i <= index) gaininfo[i++] = gain;
383
    }
384
    while (i <= 8) gaininfo[i++] = 0;
385
}
386

    
387
/**
388
 * Create the quant index table needed for the envelope.
389
 *
390
 * @param q                 pointer to the COOKContext
391
 * @param quant_index_table pointer to the array
392
 */
393

    
394
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
395
    int i,j, vlc_index;
396

    
397
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
398

    
399
    for (i=1 ; i < p->total_subbands ; i++){
400
        vlc_index=i;
401
        if (i >= p->js_subband_start * 2) {
402
            vlc_index-=p->js_subband_start;
403
        } else {
404
            vlc_index/=2;
405
            if(vlc_index < 1) vlc_index = 1;
406
        }
407
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
408

    
409
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
410
                     q->envelope_quant_index[vlc_index-1].bits,2);
411
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
412
    }
413
}
414

    
415
/**
416
 * Calculate the category and category_index vector.
417
 *
418
 * @param q                     pointer to the COOKContext
419
 * @param quant_index_table     pointer to the array
420
 * @param category              pointer to the category array
421
 * @param category_index        pointer to the category_index array
422
 */
423

    
424
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
425
                       int* category, int* category_index){
426
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
427
    int exp_index2[102];
428
    int exp_index1[102];
429

    
430
    int tmp_categorize_array[128*2];
431
    int tmp_categorize_array1_idx=p->numvector_size;
432
    int tmp_categorize_array2_idx=p->numvector_size;
433

    
434
    bits_left =  p->bits_per_subpacket - get_bits_count(&q->gb);
435

    
436
    if(bits_left > q->samples_per_channel) {
437
        bits_left = q->samples_per_channel +
438
                    ((bits_left - q->samples_per_channel)*5)/8;
439
        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
440
    }
441

    
442
    memset(&exp_index1,0,102*sizeof(int));
443
    memset(&exp_index2,0,102*sizeof(int));
444
    memset(&tmp_categorize_array,0,128*2*sizeof(int));
445

    
446
    bias=-32;
447

    
448
    /* Estimate bias. */
449
    for (i=32 ; i>0 ; i=i/2){
450
        num_bits = 0;
451
        index = 0;
452
        for (j=p->total_subbands ; j>0 ; j--){
453
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
454
            index++;
455
            num_bits+=expbits_tab[exp_idx];
456
        }
457
        if(num_bits >= bits_left - 32){
458
            bias+=i;
459
        }
460
    }
461

    
462
    /* Calculate total number of bits. */
463
    num_bits=0;
464
    for (i=0 ; i<p->total_subbands ; i++) {
465
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
466
        num_bits += expbits_tab[exp_idx];
467
        exp_index1[i] = exp_idx;
468
        exp_index2[i] = exp_idx;
469
    }
470
    tmpbias1 = tmpbias2 = num_bits;
471

    
472
    for (j = 1 ; j < p->numvector_size ; j++) {
473
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
474
            int max = -999999;
475
            index=-1;
476
            for (i=0 ; i<p->total_subbands ; i++){
477
                if (exp_index1[i] < 7) {
478
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
479
                    if ( v >= max) {
480
                        max = v;
481
                        index = i;
482
                    }
483
                }
484
            }
485
            if(index==-1)break;
486
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
487
            tmpbias1 -= expbits_tab[exp_index1[index]] -
488
                        expbits_tab[exp_index1[index]+1];
489
            ++exp_index1[index];
490
        } else {  /* <--- */
491
            int min = 999999;
492
            index=-1;
493
            for (i=0 ; i<p->total_subbands ; i++){
494
                if(exp_index2[i] > 0){
495
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
496
                    if ( v < min) {
497
                        min = v;
498
                        index = i;
499
                    }
500
                }
501
            }
502
            if(index == -1)break;
503
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
504
            tmpbias2 -= expbits_tab[exp_index2[index]] -
505
                        expbits_tab[exp_index2[index]-1];
506
            --exp_index2[index];
507
        }
508
    }
509

    
510
    for(i=0 ; i<p->total_subbands ; i++)
511
        category[i] = exp_index2[i];
512

    
513
    for(i=0 ; i<p->numvector_size-1 ; i++)
514
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
515

    
516
}
517

    
518

    
519
/**
520
 * Expand the category vector.
521
 *
522
 * @param q                     pointer to the COOKContext
523
 * @param category              pointer to the category array
524
 * @param category_index        pointer to the category_index array
525
 */
526

    
527
static inline void expand_category(COOKContext *q, int* category,
528
                                   int* category_index){
529
    int i;
530
    for(i=0 ; i<q->num_vectors ; i++){
531
        ++category[category_index[i]];
532
    }
533
}
534

    
535
/**
536
 * The real requantization of the mltcoefs
537
 *
538
 * @param q                     pointer to the COOKContext
539
 * @param index                 index
540
 * @param quant_index           quantisation index
541
 * @param subband_coef_index    array of indexes to quant_centroid_tab
542
 * @param subband_coef_sign     signs of coefficients
543
 * @param mlt_p                 pointer into the mlt buffer
544
 */
545

    
546
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
547
                           int* subband_coef_index, int* subband_coef_sign,
548
                           float* mlt_p){
549
    int i;
550
    float f1;
551

    
552
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
553
        if (subband_coef_index[i]) {
554
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
555
            if (subband_coef_sign[i]) f1 = -f1;
556
        } else {
557
            /* noise coding if subband_coef_index[i] == 0 */
558
            f1 = dither_tab[index];
559
            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
560
        }
561
        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
562
    }
563
}
564
/**
565
 * Unpack the subband_coef_index and subband_coef_sign vectors.
566
 *
567
 * @param q                     pointer to the COOKContext
568
 * @param category              pointer to the category array
569
 * @param subband_coef_index    array of indexes to quant_centroid_tab
570
 * @param subband_coef_sign     signs of coefficients
571
 */
572

    
573
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
574
                       int* subband_coef_sign) {
575
    int i,j;
576
    int vlc, vd ,tmp, result;
577

    
578
    vd = vd_tab[category];
579
    result = 0;
580
    for(i=0 ; i<vpr_tab[category] ; i++){
581
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
582
        if (p->bits_per_subpacket < get_bits_count(&q->gb)){
583
            vlc = 0;
584
            result = 1;
585
        }
586
        for(j=vd-1 ; j>=0 ; j--){
587
            tmp = (vlc * invradix_tab[category])/0x100000;
588
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
589
            vlc = tmp;
590
        }
591
        for(j=0 ; j<vd ; j++){
592
            if (subband_coef_index[i*vd + j]) {
593
                if(get_bits_count(&q->gb) < p->bits_per_subpacket){
594
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
595
                } else {
596
                    result=1;
597
                    subband_coef_sign[i*vd+j]=0;
598
                }
599
            } else {
600
                subband_coef_sign[i*vd+j]=0;
601
            }
602
        }
603
    }
604
    return result;
605
}
606

    
607

    
608
/**
609
 * Fill the mlt_buffer with mlt coefficients.
610
 *
611
 * @param q                 pointer to the COOKContext
612
 * @param category          pointer to the category array
613
 * @param quant_index_table pointer to the array
614
 * @param mlt_buffer        pointer to mlt coefficients
615
 */
616

    
617

    
618
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
619
                           int *quant_index_table, float* mlt_buffer){
620
    /* A zero in this table means that the subband coefficient is
621
       random noise coded. */
622
    int subband_coef_index[SUBBAND_SIZE];
623
    /* A zero in this table means that the subband coefficient is a
624
       positive multiplicator. */
625
    int subband_coef_sign[SUBBAND_SIZE];
626
    int band, j;
627
    int index=0;
628

    
629
    for(band=0 ; band<p->total_subbands ; band++){
630
        index = category[band];
631
        if(category[band] < 7){
632
            if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
633
                index=7;
634
                for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
635
            }
636
        }
637
        if(index>=7) {
638
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
639
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
640
        }
641
        q->scalar_dequant(q, index, quant_index_table[band],
642
                          subband_coef_index, subband_coef_sign,
643
                          &mlt_buffer[band * SUBBAND_SIZE]);
644
    }
645

    
646
    if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
647
        return;
648
    } /* FIXME: should this be removed, or moved into loop above? */
649
}
650

    
651

    
652
/**
653
 * function for decoding mono data
654
 *
655
 * @param q                 pointer to the COOKContext
656
 * @param mlt_buffer        pointer to mlt coefficients
657
 */
658

    
659
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
660

    
661
    int category_index[128];
662
    int quant_index_table[102];
663
    int category[128];
664

    
665
    memset(&category, 0, 128*sizeof(int));
666
    memset(&category_index, 0, 128*sizeof(int));
667

    
668
    decode_envelope(q, p, quant_index_table);
669
    q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
670
    categorize(q, p, quant_index_table, category, category_index);
671
    expand_category(q, category, category_index);
672
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
673
}
674

    
675

    
676
/**
677
 * the actual requantization of the timedomain samples
678
 *
679
 * @param q                 pointer to the COOKContext
680
 * @param buffer            pointer to the timedomain buffer
681
 * @param gain_index        index for the block multiplier
682
 * @param gain_index_next   index for the next block multiplier
683
 */
684

    
685
static void interpolate_float(COOKContext *q, float* buffer,
686
                        int gain_index, int gain_index_next){
687
    int i;
688
    float fc1, fc2;
689
    fc1 = pow2tab[gain_index+63];
690

    
691
    if(gain_index == gain_index_next){              //static gain
692
        for(i=0 ; i<q->gain_size_factor ; i++){
693
            buffer[i]*=fc1;
694
        }
695
        return;
696
    } else {                                        //smooth gain
697
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
698
        for(i=0 ; i<q->gain_size_factor ; i++){
699
            buffer[i]*=fc1;
700
            fc1*=fc2;
701
        }
702
        return;
703
    }
704
}
705

    
706
/**
707
 * Apply transform window, overlap buffers.
708
 *
709
 * @param q                 pointer to the COOKContext
710
 * @param inbuffer          pointer to the mltcoefficients
711
 * @param gains_ptr         current and previous gains
712
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
713
 */
714

    
715
static void imlt_window_float (COOKContext *q, float *buffer1,
716
                               cook_gains *gains_ptr, float *previous_buffer)
717
{
718
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
719
    int i;
720
    /* The weird thing here, is that the two halves of the time domain
721
     * buffer are swapped. Also, the newest data, that we save away for
722
     * next frame, has the wrong sign. Hence the subtraction below.
723
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
724
     */
725

    
726
    /* Apply window and overlap */
727
    for(i = 0; i < q->samples_per_channel; i++){
728
        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
729
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
730
    }
731
}
732

    
733
/**
734
 * The modulated lapped transform, this takes transform coefficients
735
 * and transforms them into timedomain samples.
736
 * Apply transform window, overlap buffers, apply gain profile
737
 * and buffer management.
738
 *
739
 * @param q                 pointer to the COOKContext
740
 * @param inbuffer          pointer to the mltcoefficients
741
 * @param gains_ptr         current and previous gains
742
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
743
 */
744

    
745
static void imlt_gain(COOKContext *q, float *inbuffer,
746
                      cook_gains *gains_ptr, float* previous_buffer)
747
{
748
    float *buffer0 = q->mono_mdct_output;
749
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
750
    int i;
751

    
752
    /* Inverse modified discrete cosine transform */
753
    ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
754

    
755
    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
756

    
757
    /* Apply gain profile */
758
    for (i = 0; i < 8; i++) {
759
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
760
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
761
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
762
    }
763

    
764
    /* Save away the current to be previous block. */
765
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
766
}
767

    
768

    
769
/**
770
 * function for getting the jointstereo coupling information
771
 *
772
 * @param q                 pointer to the COOKContext
773
 * @param decouple_tab      decoupling array
774
 *
775
 */
776

    
777
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
778
    int length, i;
779

    
780
    if(get_bits1(&q->gb)) {
781
        if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
782

    
783
        length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
784
        for (i=0 ; i<length ; i++) {
785
            decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
786
        }
787
        return;
788
    }
789

    
790
    if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
791

    
792
    length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
793
    for (i=0 ; i<length ; i++) {
794
       decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
795
    }
796
    return;
797
}
798

    
799
/*
800
 * function decouples a pair of signals from a single signal via multiplication.
801
 *
802
 * @param q                 pointer to the COOKContext
803
 * @param subband           index of the current subband
804
 * @param f1                multiplier for channel 1 extraction
805
 * @param f2                multiplier for channel 2 extraction
806
 * @param decode_buffer     input buffer
807
 * @param mlt_buffer1       pointer to left channel mlt coefficients
808
 * @param mlt_buffer2       pointer to right channel mlt coefficients
809
 */
810
static void decouple_float (COOKContext *q,
811
                            COOKSubpacket *p,
812
                            int subband,
813
                            float f1, float f2,
814
                            float *decode_buffer,
815
                            float *mlt_buffer1, float *mlt_buffer2)
816
{
817
    int j, tmp_idx;
818
    for (j=0 ; j<SUBBAND_SIZE ; j++) {
819
        tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
820
        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
821
        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
822
    }
823
}
824

    
825
/**
826
 * function for decoding joint stereo data
827
 *
828
 * @param q                 pointer to the COOKContext
829
 * @param mlt_buffer1       pointer to left channel mlt coefficients
830
 * @param mlt_buffer2       pointer to right channel mlt coefficients
831
 */
832

    
833
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
834
                         float* mlt_buffer2) {
835
    int i,j;
836
    int decouple_tab[SUBBAND_SIZE];
837
    float *decode_buffer = q->decode_buffer_0;
838
    int idx, cpl_tmp;
839
    float f1,f2;
840
    const float* cplscale;
841

    
842
    memset(decouple_tab, 0, sizeof(decouple_tab));
843
    memset(decode_buffer, 0, sizeof(decode_buffer));
844

    
845
    /* Make sure the buffers are zeroed out. */
846
    memset(mlt_buffer1,0, 1024*sizeof(float));
847
    memset(mlt_buffer2,0, 1024*sizeof(float));
848
    decouple_info(q, p, decouple_tab);
849
    mono_decode(q, p, decode_buffer);
850

    
851
    /* The two channels are stored interleaved in decode_buffer. */
852
    for (i=0 ; i<p->js_subband_start ; i++) {
853
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
854
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
855
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
856
        }
857
    }
858

    
859
    /* When we reach js_subband_start (the higher frequencies)
860
       the coefficients are stored in a coupling scheme. */
861
    idx = (1 << p->js_vlc_bits) - 1;
862
    for (i=p->js_subband_start ; i<p->subbands ; i++) {
863
        cpl_tmp = cplband[i];
864
        idx -=decouple_tab[cpl_tmp];
865
        cplscale = q->cplscales[p->js_vlc_bits-2];  //choose decoupler table
866
        f1 = cplscale[decouple_tab[cpl_tmp]];
867
        f2 = cplscale[idx-1];
868
        q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
869
        idx = (1 << p->js_vlc_bits) - 1;
870
    }
871
}
872

    
873
/**
874
 * First part of subpacket decoding:
875
 *  decode raw stream bytes and read gain info.
876
 *
877
 * @param q                 pointer to the COOKContext
878
 * @param inbuffer          pointer to raw stream data
879
 * @param gain_ptr          array of current/prev gain pointers
880
 */
881

    
882
static inline void
883
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
884
                      cook_gains *gains_ptr)
885
{
886
    int offset;
887

    
888
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
889
                          p->bits_per_subpacket/8);
890
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
891
                  p->bits_per_subpacket);
892
    decode_gain_info(&q->gb, gains_ptr->now);
893

    
894
    /* Swap current and previous gains */
895
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
896
}
897

    
898
 /**
899
 * Saturate the output signal to signed 16bit integers.
900
 *
901
 * @param q                 pointer to the COOKContext
902
 * @param chan              channel to saturate
903
 * @param out               pointer to the output vector
904
 */
905
static void
906
saturate_output_float (COOKContext *q, int chan, int16_t *out)
907
{
908
    int j;
909
    float *output = q->mono_mdct_output + q->samples_per_channel;
910
    /* Clip and convert floats to 16 bits.
911
     */
912
    for (j = 0; j < q->samples_per_channel; j++) {
913
        out[chan + q->nb_channels * j] =
914
          av_clip_int16(lrintf(output[j]));
915
    }
916
}
917

    
918
/**
919
 * Final part of subpacket decoding:
920
 *  Apply modulated lapped transform, gain compensation,
921
 *  clip and convert to integer.
922
 *
923
 * @param q                 pointer to the COOKContext
924
 * @param decode_buffer     pointer to the mlt coefficients
925
 * @param gain_ptr          array of current/prev gain pointers
926
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
927
 * @param out               pointer to the output buffer
928
 * @param chan              0: left or single channel, 1: right channel
929
 */
930

    
931
static inline void
932
mlt_compensate_output(COOKContext *q, float *decode_buffer,
933
                      cook_gains *gains, float *previous_buffer,
934
                      int16_t *out, int chan)
935
{
936
    imlt_gain(q, decode_buffer, gains, previous_buffer);
937
    q->saturate_output (q, chan, out);
938
}
939

    
940

    
941
/**
942
 * Cook subpacket decoding. This function returns one decoded subpacket,
943
 * usually 1024 samples per channel.
944
 *
945
 * @param q                 pointer to the COOKContext
946
 * @param inbuffer          pointer to the inbuffer
947
 * @param sub_packet_size   subpacket size
948
 * @param outbuffer         pointer to the outbuffer
949
 */
950

    
951

    
952
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
953
    int sub_packet_size = p->size;
954
    /* packet dump */
955
//    for (i=0 ; i<sub_packet_size ; i++) {
956
//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
957
//    }
958
//    av_log(q->avctx, AV_LOG_ERROR, "\n");
959
    memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
960
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
961

    
962
    if (p->joint_stereo) {
963
        joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
964
    } else {
965
        mono_decode(q, p, q->decode_buffer_1);
966

    
967
        if (p->num_channels == 2) {
968
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
969
            mono_decode(q, p, q->decode_buffer_2);
970
        }
971
    }
972

    
973
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
974
                          p->mono_previous_buffer1, outbuffer, p->ch_idx);
975

    
976
    if (p->num_channels == 2) {
977
        if (p->joint_stereo) {
978
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
979
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
980
         } else {
981
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
982
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
983
         }
984
     }
985

    
986
}
987

    
988

    
989
/**
990
 * Cook frame decoding
991
 *
992
 * @param avctx     pointer to the AVCodecContext
993
 */
994

    
995
static int cook_decode_frame(AVCodecContext *avctx,
996
            void *data, int *data_size,
997
            AVPacket *avpkt) {
998
    const uint8_t *buf = avpkt->data;
999
    int buf_size = avpkt->size;
1000
    COOKContext *q = avctx->priv_data;
1001
    int i;
1002
    int offset = 0;
1003
    int chidx = 0;
1004

    
1005
    if (buf_size < avctx->block_align)
1006
        return buf_size;
1007

    
1008
    /* estimate subpacket sizes */
1009
    q->subpacket[0].size = avctx->block_align;
1010

    
1011
    for(i=1;i<q->num_subpackets;i++){
1012
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1013
        q->subpacket[0].size -= q->subpacket[i].size + 1;
1014
        if (q->subpacket[0].size < 0) {
1015
            av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1016
            return -1;
1017
        }
1018
    }
1019

    
1020
    /* decode supbackets */
1021
    *data_size = 0;
1022
    for(i=0;i<q->num_subpackets;i++){
1023
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1024
        q->subpacket[i].ch_idx = chidx;
1025
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1026
        decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1027
        offset += q->subpacket[i].size;
1028
        chidx += q->subpacket[i].num_channels;
1029
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1030
    }
1031
    *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1032

    
1033
    /* Discard the first two frames: no valid audio. */
1034
    if (avctx->frame_number < 2) *data_size = 0;
1035

    
1036
    return avctx->block_align;
1037
}
1038

    
1039
#ifdef COOKDEBUG
1040
static void dump_cook_context(COOKContext *q)
1041
{
1042
    //int i=0;
1043
#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1044
    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1045
    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1046
    if (q->subpacket[0].cookversion > STEREO) {
1047
        PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1048
        PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1049
    }
1050
    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1051
    PRINT("nb_channels",q->nb_channels);
1052
    PRINT("bit_rate",q->bit_rate);
1053
    PRINT("sample_rate",q->sample_rate);
1054
    PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1055
    PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1056
    PRINT("subbands",q->subpacket[0].subbands);
1057
    PRINT("random_state",q->random_state);
1058
    PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1059
    PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1060
    PRINT("numvector_size",q->subpacket[0].numvector_size);
1061
    PRINT("total_subbands",q->subpacket[0].total_subbands);
1062
}
1063
#endif
1064

    
1065
static av_cold int cook_count_channels(unsigned int mask){
1066
    int i;
1067
    int channels = 0;
1068
    for(i = 0;i<32;i++){
1069
        if(mask & (1<<i))
1070
            ++channels;
1071
    }
1072
    return channels;
1073
}
1074

    
1075
/**
1076
 * Cook initialization
1077
 *
1078
 * @param avctx     pointer to the AVCodecContext
1079
 */
1080

    
1081
static av_cold int cook_decode_init(AVCodecContext *avctx)
1082
{
1083
    COOKContext *q = avctx->priv_data;
1084
    const uint8_t *edata_ptr = avctx->extradata;
1085
    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1086
    int extradata_size = avctx->extradata_size;
1087
    int s = 0;
1088
    unsigned int channel_mask = 0;
1089
    q->avctx = avctx;
1090

    
1091
    /* Take care of the codec specific extradata. */
1092
    if (extradata_size <= 0) {
1093
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1094
        return -1;
1095
    }
1096
    av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1097

    
1098
    /* Take data from the AVCodecContext (RM container). */
1099
    q->sample_rate = avctx->sample_rate;
1100
    q->nb_channels = avctx->channels;
1101
    q->bit_rate = avctx->bit_rate;
1102

    
1103
    /* Initialize RNG. */
1104
    av_lfg_init(&q->random_state, 0);
1105

    
1106
    while(edata_ptr < edata_ptr_end){
1107
        /* 8 for mono, 16 for stereo, ? for multichannel
1108
           Swap to right endianness so we don't need to care later on. */
1109
        if (extradata_size >= 8){
1110
            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1111
            q->subpacket[s].samples_per_frame =  bytestream_get_be16(&edata_ptr);
1112
            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1113
            extradata_size -= 8;
1114
        }
1115
        if (avctx->extradata_size >= 8){
1116
            bytestream_get_be32(&edata_ptr);    //Unknown unused
1117
            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1118
            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1119
            extradata_size -= 8;
1120
        }
1121

    
1122
        /* Initialize extradata related variables. */
1123
        q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1124
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1125

    
1126
        /* Initialize default data states. */
1127
        q->subpacket[s].log2_numvector_size = 5;
1128
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1129
        q->subpacket[s].num_channels = 1;
1130

    
1131
        /* Initialize version-dependent variables */
1132

    
1133
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1134
        q->subpacket[s].joint_stereo = 0;
1135
        switch (q->subpacket[s].cookversion) {
1136
            case MONO:
1137
                if (q->nb_channels != 1) {
1138
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1139
                    return -1;
1140
                }
1141
                av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1142
                break;
1143
            case STEREO:
1144
                if (q->nb_channels != 1) {
1145
                    q->subpacket[s].bits_per_subpdiv = 1;
1146
                    q->subpacket[s].num_channels = 2;
1147
                }
1148
                av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1149
                break;
1150
            case JOINT_STEREO:
1151
                if (q->nb_channels != 2) {
1152
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1153
                    return -1;
1154
                }
1155
                av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1156
                if (avctx->extradata_size >= 16){
1157
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1158
                    q->subpacket[s].joint_stereo = 1;
1159
                    q->subpacket[s].num_channels = 2;
1160
                }
1161
                if (q->subpacket[s].samples_per_channel > 256) {
1162
                    q->subpacket[s].log2_numvector_size  = 6;
1163
                }
1164
                if (q->subpacket[s].samples_per_channel > 512) {
1165
                    q->subpacket[s].log2_numvector_size  = 7;
1166
                }
1167
                break;
1168
            case MC_COOK:
1169
                av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1170
                if(extradata_size >= 4)
1171
                    channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1172

    
1173
                if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1174
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1175
                    q->subpacket[s].joint_stereo = 1;
1176
                    q->subpacket[s].num_channels = 2;
1177
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1178

    
1179
                    if (q->subpacket[s].samples_per_channel > 256) {
1180
                        q->subpacket[s].log2_numvector_size  = 6;
1181
                    }
1182
                    if (q->subpacket[s].samples_per_channel > 512) {
1183
                        q->subpacket[s].log2_numvector_size  = 7;
1184
                    }
1185
                }else
1186
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1187

    
1188
                break;
1189
            default:
1190
                av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1191
                return -1;
1192
                break;
1193
        }
1194

    
1195
        if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1196
            av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1197
            return -1;
1198
        } else
1199
            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1200

    
1201

    
1202
        /* Initialize variable relations */
1203
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1204

    
1205
        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1206
        if (q->subpacket[s].total_subbands > 53) {
1207
            av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1208
            return -1;
1209
        }
1210

    
1211
        if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1212
            av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1213
            return -1;
1214
        }
1215

    
1216
        if (q->subpacket[s].subbands > 50) {
1217
            av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1218
            return -1;
1219
        }
1220
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1221
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1222
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1223
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1224

    
1225
        q->num_subpackets++;
1226
        s++;
1227
        if (s > MAX_SUBPACKETS) {
1228
            av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1229
            return -1;
1230
        }
1231
    }
1232
    /* Generate tables */
1233
    init_pow2table();
1234
    init_gain_table(q);
1235
    init_cplscales_table(q);
1236

    
1237
    if (init_cook_vlc_tables(q) != 0)
1238
        return -1;
1239

    
1240

    
1241
    if(avctx->block_align >= UINT_MAX/2)
1242
        return -1;
1243

    
1244
    /* Pad the databuffer with:
1245
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1246
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1247
        q->decoded_bytes_buffer =
1248
          av_mallocz(avctx->block_align
1249
                     + DECODE_BYTES_PAD1(avctx->block_align)
1250
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1251
    if (q->decoded_bytes_buffer == NULL)
1252
        return -1;
1253

    
1254
    /* Initialize transform. */
1255
    if ( init_cook_mlt(q) != 0 )
1256
        return -1;
1257

    
1258
    /* Initialize COOK signal arithmetic handling */
1259
    if (1) {
1260
        q->scalar_dequant  = scalar_dequant_float;
1261
        q->decouple        = decouple_float;
1262
        q->imlt_window     = imlt_window_float;
1263
        q->interpolate     = interpolate_float;
1264
        q->saturate_output = saturate_output_float;
1265
    }
1266

    
1267
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1268
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1269
    } else {
1270
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1271
        return -1;
1272
    }
1273

    
1274
    avctx->sample_fmt = SAMPLE_FMT_S16;
1275
    if (channel_mask)
1276
        avctx->channel_layout = channel_mask;
1277
    else
1278
        avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1279

    
1280
#ifdef COOKDEBUG
1281
    dump_cook_context(q);
1282
#endif
1283
    return 0;
1284
}
1285

    
1286

    
1287
AVCodec cook_decoder =
1288
{
1289
    .name = "cook",
1290
    .type = CODEC_TYPE_AUDIO,
1291
    .id = CODEC_ID_COOK,
1292
    .priv_data_size = sizeof(COOKContext),
1293
    .init = cook_decode_init,
1294
    .close = cook_decode_close,
1295
    .decode = cook_decode_frame,
1296
    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1297
};