Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 84dc2d8a

History | View | Annotate | Download (55.8 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "libavutil/intreadwrite.h"
32
#include "dsputil.h"
33
#include "cabac.h"
34
#include "mpegvideo.h"
35
#include "h264pred.h"
36
#include "rectangle.h"
37

    
38
#define interlaced_dct interlaced_dct_is_a_bad_name
39
#define mb_intra mb_intra_is_not_initialized_see_mb_type
40

    
41
#define LUMA_DC_BLOCK_INDEX   25
42
#define CHROMA_DC_BLOCK_INDEX 26
43

    
44
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
45
#define COEFF_TOKEN_VLC_BITS           8
46
#define TOTAL_ZEROS_VLC_BITS           9
47
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
48
#define RUN_VLC_BITS                   3
49
#define RUN7_VLC_BITS                  6
50

    
51
#define MAX_SPS_COUNT 32
52
#define MAX_PPS_COUNT 256
53

    
54
#define MAX_MMCO_COUNT 66
55

    
56
#define MAX_DELAYED_PIC_COUNT 16
57

    
58
/* Compiling in interlaced support reduces the speed
59
 * of progressive decoding by about 2%. */
60
#define ALLOW_INTERLACE
61

    
62
#define ALLOW_NOCHROMA
63

    
64
#define FMO 0
65

    
66
/**
67
 * The maximum number of slices supported by the decoder.
68
 * must be a power of 2
69
 */
70
#define MAX_SLICES 16
71

    
72
#ifdef ALLOW_INTERLACE
73
#define MB_MBAFF h->mb_mbaff
74
#define MB_FIELD h->mb_field_decoding_flag
75
#define FRAME_MBAFF h->mb_aff_frame
76
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
77
#else
78
#define MB_MBAFF 0
79
#define MB_FIELD 0
80
#define FRAME_MBAFF 0
81
#define FIELD_PICTURE 0
82
#undef  IS_INTERLACED
83
#define IS_INTERLACED(mb_type) 0
84
#endif
85
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
86

    
87
#ifdef ALLOW_NOCHROMA
88
#define CHROMA h->sps.chroma_format_idc
89
#else
90
#define CHROMA 1
91
#endif
92

    
93
#ifndef CABAC
94
#define CABAC h->pps.cabac
95
#endif
96

    
97
#define EXTENDED_SAR          255
98

    
99
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
100
#define MB_TYPE_8x8DCT     0x01000000
101
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
102
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
103

    
104
/**
105
 * Value of Picture.reference when Picture is not a reference picture, but
106
 * is held for delayed output.
107
 */
108
#define DELAYED_PIC_REF 4
109

    
110

    
111
/* NAL unit types */
112
enum {
113
    NAL_SLICE=1,
114
    NAL_DPA,
115
    NAL_DPB,
116
    NAL_DPC,
117
    NAL_IDR_SLICE,
118
    NAL_SEI,
119
    NAL_SPS,
120
    NAL_PPS,
121
    NAL_AUD,
122
    NAL_END_SEQUENCE,
123
    NAL_END_STREAM,
124
    NAL_FILLER_DATA,
125
    NAL_SPS_EXT,
126
    NAL_AUXILIARY_SLICE=19
127
};
128

    
129
/**
130
 * SEI message types
131
 */
132
typedef enum {
133
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
134
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
135
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
136
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
137
} SEI_Type;
138

    
139
/**
140
 * pic_struct in picture timing SEI message
141
 */
142
typedef enum {
143
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
144
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
145
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
146
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
147
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
148
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
149
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
150
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
151
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
152
} SEI_PicStructType;
153

    
154
/**
155
 * Sequence parameter set
156
 */
157
typedef struct SPS{
158

    
159
    int profile_idc;
160
    int level_idc;
161
    int chroma_format_idc;
162
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
163
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
164
    int poc_type;                      ///< pic_order_cnt_type
165
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
166
    int delta_pic_order_always_zero_flag;
167
    int offset_for_non_ref_pic;
168
    int offset_for_top_to_bottom_field;
169
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
170
    int ref_frame_count;               ///< num_ref_frames
171
    int gaps_in_frame_num_allowed_flag;
172
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
173
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
174
    int frame_mbs_only_flag;
175
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
176
    int direct_8x8_inference_flag;
177
    int crop;                   ///< frame_cropping_flag
178
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
179
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
180
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
181
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
182
    int vui_parameters_present_flag;
183
    AVRational sar;
184
    int video_signal_type_present_flag;
185
    int full_range;
186
    int colour_description_present_flag;
187
    enum AVColorPrimaries color_primaries;
188
    enum AVColorTransferCharacteristic color_trc;
189
    enum AVColorSpace colorspace;
190
    int timing_info_present_flag;
191
    uint32_t num_units_in_tick;
192
    uint32_t time_scale;
193
    int fixed_frame_rate_flag;
194
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
195
    int bitstream_restriction_flag;
196
    int num_reorder_frames;
197
    int scaling_matrix_present;
198
    uint8_t scaling_matrix4[6][16];
199
    uint8_t scaling_matrix8[2][64];
200
    int nal_hrd_parameters_present_flag;
201
    int vcl_hrd_parameters_present_flag;
202
    int pic_struct_present_flag;
203
    int time_offset_length;
204
    int cpb_cnt;                       ///< See H.264 E.1.2
205
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
206
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
207
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
208
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
209
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
210
    int residual_color_transform_flag; ///< residual_colour_transform_flag
211
}SPS;
212

    
213
/**
214
 * Picture parameter set
215
 */
216
typedef struct PPS{
217
    unsigned int sps_id;
218
    int cabac;                  ///< entropy_coding_mode_flag
219
    int pic_order_present;      ///< pic_order_present_flag
220
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
221
    int mb_slice_group_map_type;
222
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
223
    int weighted_pred;          ///< weighted_pred_flag
224
    int weighted_bipred_idc;
225
    int init_qp;                ///< pic_init_qp_minus26 + 26
226
    int init_qs;                ///< pic_init_qs_minus26 + 26
227
    int chroma_qp_index_offset[2];
228
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
229
    int constrained_intra_pred; ///< constrained_intra_pred_flag
230
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
231
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
232
    uint8_t scaling_matrix4[6][16];
233
    uint8_t scaling_matrix8[2][64];
234
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
235
    int chroma_qp_diff;
236
}PPS;
237

    
238
/**
239
 * Memory management control operation opcode.
240
 */
241
typedef enum MMCOOpcode{
242
    MMCO_END=0,
243
    MMCO_SHORT2UNUSED,
244
    MMCO_LONG2UNUSED,
245
    MMCO_SHORT2LONG,
246
    MMCO_SET_MAX_LONG,
247
    MMCO_RESET,
248
    MMCO_LONG,
249
} MMCOOpcode;
250

    
251
/**
252
 * Memory management control operation.
253
 */
254
typedef struct MMCO{
255
    MMCOOpcode opcode;
256
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
257
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
258
} MMCO;
259

    
260
/**
261
 * H264Context
262
 */
263
typedef struct H264Context{
264
    MpegEncContext s;
265
    int chroma_qp[2]; //QPc
266

    
267
    int qp_thresh;      ///< QP threshold to skip loopfilter
268

    
269
    int prev_mb_skipped;
270
    int next_mb_skipped;
271

    
272
    //prediction stuff
273
    int chroma_pred_mode;
274
    int intra16x16_pred_mode;
275

    
276
    int topleft_mb_xy;
277
    int top_mb_xy;
278
    int topright_mb_xy;
279
    int left_mb_xy[2];
280

    
281
    int topleft_type;
282
    int top_type;
283
    int topright_type;
284
    int left_type[2];
285

    
286
    const uint8_t * left_block;
287
    int topleft_partition;
288

    
289
    int8_t intra4x4_pred_mode_cache[5*8];
290
    int8_t (*intra4x4_pred_mode);
291
    H264PredContext hpc;
292
    unsigned int topleft_samples_available;
293
    unsigned int top_samples_available;
294
    unsigned int topright_samples_available;
295
    unsigned int left_samples_available;
296
    uint8_t (*top_borders[2])[16+2*8];
297

    
298
    /**
299
     * non zero coeff count cache.
300
     * is 64 if not available.
301
     */
302
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
303

    
304
    /*
305
    .UU.YYYY
306
    .UU.YYYY
307
    .vv.YYYY
308
    .VV.YYYY
309
    */
310
    uint8_t (*non_zero_count)[32];
311

    
312
    /**
313
     * Motion vector cache.
314
     */
315
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
316
    DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
317
#define LIST_NOT_USED -1 //FIXME rename?
318
#define PART_NOT_AVAILABLE -2
319

    
320
    /**
321
     * is 1 if the specific list MV&references are set to 0,0,-2.
322
     */
323
    int mv_cache_clean[2];
324

    
325
    /**
326
     * number of neighbors (top and/or left) that used 8x8 dct
327
     */
328
    int neighbor_transform_size;
329

    
330
    /**
331
     * block_offset[ 0..23] for frame macroblocks
332
     * block_offset[24..47] for field macroblocks
333
     */
334
    int block_offset[2*(16+8)];
335

    
336
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
337
    uint32_t *mb2br_xy;
338
    int b_stride; //FIXME use s->b4_stride
339

    
340
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
341
    int mb_uvlinesize;
342

    
343
    int emu_edge_width;
344
    int emu_edge_height;
345

    
346
    SPS sps; ///< current sps
347

    
348
    /**
349
     * current pps
350
     */
351
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
352

    
353
    uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
354
    uint32_t dequant8_buffer[2][52][64];
355
    uint32_t (*dequant4_coeff[6])[16];
356
    uint32_t (*dequant8_coeff[2])[64];
357

    
358
    int slice_num;
359
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
360
    int slice_type;
361
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
362
    int slice_type_fixed;
363

    
364
    //interlacing specific flags
365
    int mb_aff_frame;
366
    int mb_field_decoding_flag;
367
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
368

    
369
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
370

    
371
    //Weighted pred stuff
372
    int use_weight;
373
    int use_weight_chroma;
374
    int luma_log2_weight_denom;
375
    int chroma_log2_weight_denom;
376
    //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
377
    int luma_weight[48][2][2];
378
    int chroma_weight[48][2][2][2];
379
    int implicit_weight[48][48];
380

    
381
    int direct_spatial_mv_pred;
382
    int col_parity;
383
    int col_fieldoff;
384
    int dist_scale_factor[16];
385
    int dist_scale_factor_field[2][32];
386
    int map_col_to_list0[2][16+32];
387
    int map_col_to_list0_field[2][2][16+32];
388

    
389
    /**
390
     * num_ref_idx_l0/1_active_minus1 + 1
391
     */
392
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
393
    unsigned int list_count;
394
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
395
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
396
                                          Reordered version of default_ref_list
397
                                          according to picture reordering in slice header */
398
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
399

    
400
    //data partitioning
401
    GetBitContext intra_gb;
402
    GetBitContext inter_gb;
403
    GetBitContext *intra_gb_ptr;
404
    GetBitContext *inter_gb_ptr;
405

    
406
    DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
407
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
408

    
409
    /**
410
     * Cabac
411
     */
412
    CABACContext cabac;
413
    uint8_t      cabac_state[460];
414

    
415
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
416
    uint16_t     *cbp_table;
417
    int cbp;
418
    int top_cbp;
419
    int left_cbp;
420
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
421
    uint8_t     *chroma_pred_mode_table;
422
    int         last_qscale_diff;
423
    uint8_t     (*mvd_table[2])[2];
424
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
425
    uint8_t     *direct_table;
426
    uint8_t     direct_cache[5*8];
427

    
428
    uint8_t zigzag_scan[16];
429
    uint8_t zigzag_scan8x8[64];
430
    uint8_t zigzag_scan8x8_cavlc[64];
431
    uint8_t field_scan[16];
432
    uint8_t field_scan8x8[64];
433
    uint8_t field_scan8x8_cavlc[64];
434
    const uint8_t *zigzag_scan_q0;
435
    const uint8_t *zigzag_scan8x8_q0;
436
    const uint8_t *zigzag_scan8x8_cavlc_q0;
437
    const uint8_t *field_scan_q0;
438
    const uint8_t *field_scan8x8_q0;
439
    const uint8_t *field_scan8x8_cavlc_q0;
440

    
441
    int x264_build;
442

    
443
    int mb_xy;
444

    
445
    int is_complex;
446

    
447
    //deblock
448
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
449
    int slice_alpha_c0_offset;
450
    int slice_beta_offset;
451

    
452
//=============================================================
453
    //Things below are not used in the MB or more inner code
454

    
455
    int nal_ref_idc;
456
    int nal_unit_type;
457
    uint8_t *rbsp_buffer[2];
458
    unsigned int rbsp_buffer_size[2];
459

    
460
    /**
461
     * Used to parse AVC variant of h264
462
     */
463
    int is_avc; ///< this flag is != 0 if codec is avc1
464
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
465

    
466
    SPS *sps_buffers[MAX_SPS_COUNT];
467
    PPS *pps_buffers[MAX_PPS_COUNT];
468

    
469
    int dequant_coeff_pps;     ///< reinit tables when pps changes
470

    
471
    uint16_t *slice_table_base;
472

    
473

    
474
    //POC stuff
475
    int poc_lsb;
476
    int poc_msb;
477
    int delta_poc_bottom;
478
    int delta_poc[2];
479
    int frame_num;
480
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
481
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
482
    int frame_num_offset;         ///< for POC type 2
483
    int prev_frame_num_offset;    ///< for POC type 2
484
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
485

    
486
    /**
487
     * frame_num for frames or 2*frame_num+1 for field pics.
488
     */
489
    int curr_pic_num;
490

    
491
    /**
492
     * max_frame_num or 2*max_frame_num for field pics.
493
     */
494
    int max_pic_num;
495

    
496
    int redundant_pic_count;
497

    
498
    Picture *short_ref[32];
499
    Picture *long_ref[32];
500
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
501
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
502
    int outputed_poc;
503

    
504
    /**
505
     * memory management control operations buffer.
506
     */
507
    MMCO mmco[MAX_MMCO_COUNT];
508
    int mmco_index;
509

    
510
    int long_ref_count;  ///< number of actual long term references
511
    int short_ref_count; ///< number of actual short term references
512

    
513
    int          cabac_init_idc;
514

    
515
    /**
516
     * @defgroup multithreading Members for slice based multithreading
517
     * @{
518
     */
519
    struct H264Context *thread_context[MAX_THREADS];
520

    
521
    /**
522
     * current slice number, used to initalize slice_num of each thread/context
523
     */
524
    int current_slice;
525

    
526
    /**
527
     * Max number of threads / contexts.
528
     * This is equal to AVCodecContext.thread_count unless
529
     * multithreaded decoding is impossible, in which case it is
530
     * reduced to 1.
531
     */
532
    int max_contexts;
533

    
534
    /**
535
     *  1 if the single thread fallback warning has already been
536
     *  displayed, 0 otherwise.
537
     */
538
    int single_decode_warning;
539

    
540
    int last_slice_type;
541
    /** @} */
542

    
543
    /**
544
     * pic_struct in picture timing SEI message
545
     */
546
    SEI_PicStructType sei_pic_struct;
547

    
548
    /**
549
     * Complement sei_pic_struct
550
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
551
     * However, soft telecined frames may have these values.
552
     * This is used in an attempt to flag soft telecine progressive.
553
     */
554
    int prev_interlaced_frame;
555

    
556
    /**
557
     * Bit set of clock types for fields/frames in picture timing SEI message.
558
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
559
     * interlaced).
560
     */
561
    int sei_ct_type;
562

    
563
    /**
564
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
565
     */
566
    int sei_dpb_output_delay;
567

    
568
    /**
569
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
570
     */
571
    int sei_cpb_removal_delay;
572

    
573
    /**
574
     * recovery_frame_cnt from SEI message
575
     *
576
     * Set to -1 if no recovery point SEI message found or to number of frames
577
     * before playback synchronizes. Frames having recovery point are key
578
     * frames.
579
     */
580
    int sei_recovery_frame_cnt;
581

    
582
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
583
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
584

    
585
    // Timestamp stuff
586
    int sei_buffering_period_present;  ///< Buffering period SEI flag
587
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
588

    
589
    //SVQ3 specific fields
590
    int halfpel_flag;
591
    int thirdpel_flag;
592
    int unknown_svq3_flag;
593
    int next_slice_index;
594
    uint32_t svq3_watermark_key;
595
}H264Context;
596

    
597

    
598
extern const uint8_t ff_h264_chroma_qp[52];
599

    
600
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
601

    
602
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
603

    
604
/**
605
 * Decode SEI
606
 */
607
int ff_h264_decode_sei(H264Context *h);
608

    
609
/**
610
 * Decode SPS
611
 */
612
int ff_h264_decode_seq_parameter_set(H264Context *h);
613

    
614
/**
615
 * Decode PPS
616
 */
617
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
618

    
619
/**
620
 * Decodes a network abstraction layer unit.
621
 * @param consumed is the number of bytes used as input
622
 * @param length is the length of the array
623
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
624
 * @returns decoded bytes, might be src+1 if no escapes
625
 */
626
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
627

    
628
/**
629
 * identifies the exact end of the bitstream
630
 * @return the length of the trailing, or 0 if damaged
631
 */
632
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
633

    
634
/**
635
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
636
 */
637
av_cold void ff_h264_free_context(H264Context *h);
638

    
639
/**
640
 * reconstructs bitstream slice_type.
641
 */
642
int ff_h264_get_slice_type(const H264Context *h);
643

    
644
/**
645
 * allocates tables.
646
 * needs width/height
647
 */
648
int ff_h264_alloc_tables(H264Context *h);
649

    
650
/**
651
 * fills the default_ref_list.
652
 */
653
int ff_h264_fill_default_ref_list(H264Context *h);
654

    
655
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
656
void ff_h264_fill_mbaff_ref_list(H264Context *h);
657
void ff_h264_remove_all_refs(H264Context *h);
658

    
659
/**
660
 * Executes the reference picture marking (memory management control operations).
661
 */
662
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
663

    
664
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
665

    
666

    
667
/**
668
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
669
 */
670
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
671

    
672
/**
673
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
674
 */
675
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
676

    
677
void ff_h264_write_back_intra_pred_mode(H264Context *h);
678
void ff_h264_hl_decode_mb(H264Context *h);
679
int ff_h264_frame_start(H264Context *h);
680
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
681
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
682
av_cold void ff_h264_decode_init_vlc(void);
683

    
684
/**
685
 * decodes a macroblock
686
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
687
 */
688
int ff_h264_decode_mb_cavlc(H264Context *h);
689

    
690
/**
691
 * decodes a CABAC coded macroblock
692
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
693
 */
694
int ff_h264_decode_mb_cabac(H264Context *h);
695

    
696
void ff_h264_init_cabac_states(H264Context *h);
697

    
698
void ff_h264_direct_dist_scale_factor(H264Context * const h);
699
void ff_h264_direct_ref_list_init(H264Context * const h);
700
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
701

    
702
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
703
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
704

    
705
/**
706
 * Reset SEI values at the beginning of the frame.
707
 *
708
 * @param h H.264 context.
709
 */
710
void ff_h264_reset_sei(H264Context *h);
711

    
712

    
713
/*
714
o-o o-o
715
 / / /
716
o-o o-o
717
 ,---'
718
o-o o-o
719
 / / /
720
o-o o-o
721
*/
722
//This table must be here because scan8[constant] must be known at compiletime
723
static const uint8_t scan8[16 + 2*4]={
724
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
725
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
726
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
727
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
728
 1+1*8, 2+1*8,
729
 1+2*8, 2+2*8,
730
 1+4*8, 2+4*8,
731
 1+5*8, 2+5*8,
732
};
733

    
734
static av_always_inline uint32_t pack16to32(int a, int b){
735
#if HAVE_BIGENDIAN
736
   return (b&0xFFFF) + (a<<16);
737
#else
738
   return (a&0xFFFF) + (b<<16);
739
#endif
740
}
741

    
742
static av_always_inline uint16_t pack8to16(int a, int b){
743
#if HAVE_BIGENDIAN
744
   return (b&0xFF) + (a<<8);
745
#else
746
   return (a&0xFF) + (b<<8);
747
#endif
748
}
749

    
750
/**
751
 * gets the chroma qp.
752
 */
753
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
754
    return h->pps.chroma_qp_table[t][qscale];
755
}
756

    
757
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
758

    
759
static void fill_decode_neighbors(H264Context *h, int mb_type){
760
    MpegEncContext * const s = &h->s;
761
    const int mb_xy= h->mb_xy;
762
    int topleft_xy, top_xy, topright_xy, left_xy[2];
763
    static const uint8_t left_block_options[4][16]={
764
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
765
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
766
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
767
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
768
    };
769

    
770
    h->topleft_partition= -1;
771

    
772
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
773

    
774
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
775
     * stuff, I can't imagine that these complex rules are worth it. */
776

    
777
    topleft_xy = top_xy - 1;
778
    topright_xy= top_xy + 1;
779
    left_xy[1] = left_xy[0] = mb_xy-1;
780
    h->left_block = left_block_options[0];
781
    if(FRAME_MBAFF){
782
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
783
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
784
        if(s->mb_y&1){
785
            if (left_mb_field_flag != curr_mb_field_flag) {
786
                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
787
                if (curr_mb_field_flag) {
788
                    left_xy[1] += s->mb_stride;
789
                    h->left_block = left_block_options[3];
790
                } else {
791
                    topleft_xy += s->mb_stride;
792
                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
793
                    h->topleft_partition = 0;
794
                    h->left_block = left_block_options[1];
795
                }
796
            }
797
        }else{
798
            if(curr_mb_field_flag){
799
                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
800
                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
801
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
802
            }
803
            if (left_mb_field_flag != curr_mb_field_flag) {
804
                if (curr_mb_field_flag) {
805
                    left_xy[1] += s->mb_stride;
806
                    h->left_block = left_block_options[3];
807
                } else {
808
                    h->left_block = left_block_options[2];
809
                }
810
            }
811
        }
812
    }
813

    
814
    h->topleft_mb_xy = topleft_xy;
815
    h->top_mb_xy     = top_xy;
816
    h->topright_mb_xy= topright_xy;
817
    h->left_mb_xy[0] = left_xy[0];
818
    h->left_mb_xy[1] = left_xy[1];
819
    //FIXME do we need all in the context?
820

    
821
    h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
822
    h->top_type     = s->current_picture.mb_type[top_xy]     ;
823
    h->topright_type= s->current_picture.mb_type[topright_xy];
824
    h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
825
    h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
826

    
827
    if(FMO){
828
    if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
829
    if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
830
    if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
831
    }else{
832
        if(h->slice_table[topleft_xy ] != h->slice_num){
833
            h->topleft_type = 0;
834
            if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
835
            if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
836
        }
837
    }
838
    if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
839
}
840

    
841
static void fill_decode_caches(H264Context *h, int mb_type){
842
    MpegEncContext * const s = &h->s;
843
    int topleft_xy, top_xy, topright_xy, left_xy[2];
844
    int topleft_type, top_type, topright_type, left_type[2];
845
    const uint8_t * left_block= h->left_block;
846
    int i;
847

    
848
    topleft_xy   = h->topleft_mb_xy ;
849
    top_xy       = h->top_mb_xy     ;
850
    topright_xy  = h->topright_mb_xy;
851
    left_xy[0]   = h->left_mb_xy[0] ;
852
    left_xy[1]   = h->left_mb_xy[1] ;
853
    topleft_type = h->topleft_type  ;
854
    top_type     = h->top_type      ;
855
    topright_type= h->topright_type ;
856
    left_type[0] = h->left_type[0]  ;
857
    left_type[1] = h->left_type[1]  ;
858

    
859
    if(!IS_SKIP(mb_type)){
860
        if(IS_INTRA(mb_type)){
861
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
862
            h->topleft_samples_available=
863
            h->top_samples_available=
864
            h->left_samples_available= 0xFFFF;
865
            h->topright_samples_available= 0xEEEA;
866

    
867
            if(!(top_type & type_mask)){
868
                h->topleft_samples_available= 0xB3FF;
869
                h->top_samples_available= 0x33FF;
870
                h->topright_samples_available= 0x26EA;
871
            }
872
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
873
                if(IS_INTERLACED(mb_type)){
874
                    if(!(left_type[0] & type_mask)){
875
                        h->topleft_samples_available&= 0xDFFF;
876
                        h->left_samples_available&= 0x5FFF;
877
                    }
878
                    if(!(left_type[1] & type_mask)){
879
                        h->topleft_samples_available&= 0xFF5F;
880
                        h->left_samples_available&= 0xFF5F;
881
                    }
882
                }else{
883
                    int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
884

    
885
                    assert(left_xy[0] == left_xy[1]);
886
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
887
                        h->topleft_samples_available&= 0xDF5F;
888
                        h->left_samples_available&= 0x5F5F;
889
                    }
890
                }
891
            }else{
892
                if(!(left_type[0] & type_mask)){
893
                    h->topleft_samples_available&= 0xDF5F;
894
                    h->left_samples_available&= 0x5F5F;
895
                }
896
            }
897

    
898
            if(!(topleft_type & type_mask))
899
                h->topleft_samples_available&= 0x7FFF;
900

    
901
            if(!(topright_type & type_mask))
902
                h->topright_samples_available&= 0xFBFF;
903

    
904
            if(IS_INTRA4x4(mb_type)){
905
                if(IS_INTRA4x4(top_type)){
906
                    AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
907
                }else{
908
                    h->intra4x4_pred_mode_cache[4+8*0]=
909
                    h->intra4x4_pred_mode_cache[5+8*0]=
910
                    h->intra4x4_pred_mode_cache[6+8*0]=
911
                    h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
912
                }
913
                for(i=0; i<2; i++){
914
                    if(IS_INTRA4x4(left_type[i])){
915
                        int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
916
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
917
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
918
                    }else{
919
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
920
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
921
                    }
922
                }
923
            }
924
        }
925

    
926

    
927
/*
928
0 . T T. T T T T
929
1 L . .L . . . .
930
2 L . .L . . . .
931
3 . T TL . . . .
932
4 L . .L . . . .
933
5 L . .. . . . .
934
*/
935
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
936
    if(top_type){
937
        AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
938
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
939
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
940

    
941
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
942
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
943
    }else {
944
            h->non_zero_count_cache[1+8*0]=
945
            h->non_zero_count_cache[2+8*0]=
946

    
947
            h->non_zero_count_cache[1+8*3]=
948
            h->non_zero_count_cache[2+8*3]=
949
            AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
950
    }
951

    
952
    for (i=0; i<2; i++) {
953
        if(left_type[i]){
954
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
955
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
956
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
957
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
958
        }else{
959
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
960
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
961
                h->non_zero_count_cache[0+8*1 +   8*i]=
962
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
963
        }
964
    }
965

    
966
    if( CABAC ) {
967
        // top_cbp
968
        if(top_type) {
969
            h->top_cbp = h->cbp_table[top_xy];
970
        } else {
971
            h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
972
        }
973
        // left_cbp
974
        if (left_type[0]) {
975
            h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
976
                        |  ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
977
                        | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
978
        } else {
979
            h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
980
        }
981
    }
982
    }
983

    
984
#if 1
985
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
986
        int list;
987
        for(list=0; list<h->list_count; list++){
988
            if(!USES_LIST(mb_type, list)){
989
                /*if(!h->mv_cache_clean[list]){
990
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
991
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
992
                    h->mv_cache_clean[list]= 1;
993
                }*/
994
                continue;
995
            }
996
            assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
997

    
998
            h->mv_cache_clean[list]= 0;
999

    
1000
            if(USES_LIST(top_type, list)){
1001
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1002
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1003
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1004
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
1005
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1006
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
1007
            }else{
1008
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1009
                AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
1010
            }
1011

    
1012
            if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
1013
            for(i=0; i<2; i++){
1014
                int cache_idx = scan8[0] - 1 + i*2*8;
1015
                if(USES_LIST(left_type[i], list)){
1016
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1017
                    const int b8_xy= 4*left_xy[i] + 1;
1018
                    AV_COPY32(h->mv_cache[list][cache_idx  ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
1019
                    AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
1020
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
1021
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
1022
                }else{
1023
                    AV_ZERO32(h->mv_cache [list][cache_idx  ]);
1024
                    AV_ZERO32(h->mv_cache [list][cache_idx+8]);
1025
                    h->ref_cache[list][cache_idx  ]=
1026
                    h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1027
                }
1028
            }
1029
            }else{
1030
                if(USES_LIST(left_type[0], list)){
1031
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1032
                    const int b8_xy= 4*left_xy[0] + 1;
1033
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
1034
                    h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
1035
                }else{
1036
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
1037
                    h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1038
                }
1039
            }
1040

    
1041
            if(USES_LIST(topright_type, list)){
1042
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1043
                AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
1044
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
1045
            }else{
1046
                AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
1047
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1048
            }
1049
            if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
1050
                if(USES_LIST(topleft_type, list)){
1051
                    const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
1052
                    const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
1053
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
1054
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1055
                }else{
1056
                    AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
1057
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1058
                }
1059
            }
1060

    
1061
            if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1062
                continue;
1063

    
1064
            if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1065
            h->ref_cache[list][scan8[4 ]] =
1066
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1067
            AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
1068
            AV_ZERO32(h->mv_cache [list][scan8[12]]);
1069

    
1070
            if( CABAC ) {
1071
                /* XXX beurk, Load mvd */
1072
                if(USES_LIST(top_type, list)){
1073
                    const int b_xy= h->mb2br_xy[top_xy];
1074
                    AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1075
                }else{
1076
                    AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1077
                }
1078
                if(USES_LIST(left_type[0], list)){
1079
                    const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
1080
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
1081
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
1082
                }else{
1083
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
1084
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
1085
                }
1086
                if(USES_LIST(left_type[1], list)){
1087
                    const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
1088
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
1089
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
1090
                }else{
1091
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
1092
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
1093
                }
1094
                AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
1095
                AV_ZERO16(h->mvd_cache [list][scan8[12]]);
1096
                if(h->slice_type_nos == FF_B_TYPE){
1097
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1098

    
1099
                    if(IS_DIRECT(top_type)){
1100
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_DIRECT2>>1));
1101
                    }else if(IS_8X8(top_type)){
1102
                        int b8_xy = 4*top_xy;
1103
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
1104
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
1105
                    }else{
1106
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
1107
                    }
1108

    
1109
                    if(IS_DIRECT(left_type[0]))
1110
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1111
                    else if(IS_8X8(left_type[0]))
1112
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
1113
                    else
1114
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1115

    
1116
                    if(IS_DIRECT(left_type[1]))
1117
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1118
                    else if(IS_8X8(left_type[1]))
1119
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
1120
                    else
1121
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1122
                }
1123
            }
1124
            }
1125
            if(FRAME_MBAFF){
1126
#define MAP_MVS\
1127
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1128
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1129
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1130
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1131
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1132
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1133
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1134
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1135
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1136
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1137
                if(MB_FIELD){
1138
#define MAP_F2F(idx, mb_type)\
1139
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1140
                        h->ref_cache[list][idx] <<= 1;\
1141
                        h->mv_cache[list][idx][1] /= 2;\
1142
                        h->mvd_cache[list][idx][1] >>=1;\
1143
                    }
1144
                    MAP_MVS
1145
#undef MAP_F2F
1146
                }else{
1147
#define MAP_F2F(idx, mb_type)\
1148
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1149
                        h->ref_cache[list][idx] >>= 1;\
1150
                        h->mv_cache[list][idx][1] <<= 1;\
1151
                        h->mvd_cache[list][idx][1] <<= 1;\
1152
                    }
1153
                    MAP_MVS
1154
#undef MAP_F2F
1155
                }
1156
            }
1157
        }
1158
    }
1159
#endif
1160

    
1161
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1162
}
1163

    
1164
/**
1165
 *
1166
 * @returns non zero if the loop filter can be skiped
1167
 */
1168
static int fill_filter_caches(H264Context *h, int mb_type){
1169
    MpegEncContext * const s = &h->s;
1170
    const int mb_xy= h->mb_xy;
1171
    int top_xy, left_xy[2];
1172
    int top_type, left_type[2];
1173

    
1174
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
1175

    
1176
    //FIXME deblocking could skip the intra and nnz parts.
1177

    
1178
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
1179
     * stuff, I can't imagine that these complex rules are worth it. */
1180

    
1181
    left_xy[1] = left_xy[0] = mb_xy-1;
1182
    if(FRAME_MBAFF){
1183
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
1184
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
1185
        if(s->mb_y&1){
1186
            if (left_mb_field_flag != curr_mb_field_flag) {
1187
                left_xy[0] -= s->mb_stride;
1188
            }
1189
        }else{
1190
            if(curr_mb_field_flag){
1191
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
1192
            }
1193
            if (left_mb_field_flag != curr_mb_field_flag) {
1194
                left_xy[1] += s->mb_stride;
1195
            }
1196
        }
1197
    }
1198

    
1199
    h->top_mb_xy = top_xy;
1200
    h->left_mb_xy[0] = left_xy[0];
1201
    h->left_mb_xy[1] = left_xy[1];
1202
    {
1203
        //for sufficiently low qp, filtering wouldn't do anything
1204
        //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
1205
        int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
1206
        int qp = s->current_picture.qscale_table[mb_xy];
1207
        if(qp <= qp_thresh
1208
           && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
1209
           && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy    ] + 1)>>1) <= qp_thresh)){
1210
            if(!FRAME_MBAFF)
1211
                return 1;
1212
            if(   (left_xy[0]< 0            || ((qp + s->current_picture.qscale_table[left_xy[1]             ] + 1)>>1) <= qp_thresh)
1213
               && (top_xy    < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy    -s->mb_stride] + 1)>>1) <= qp_thresh))
1214
                return 1;
1215
        }
1216
    }
1217

    
1218
    top_type     = s->current_picture.mb_type[top_xy]    ;
1219
    left_type[0] = s->current_picture.mb_type[left_xy[0]];
1220
    left_type[1] = s->current_picture.mb_type[left_xy[1]];
1221
    if(h->deblocking_filter == 2){
1222
        if(h->slice_table[top_xy     ] != h->slice_num) top_type= 0;
1223
        if(h->slice_table[left_xy[0] ] != h->slice_num) left_type[0]= left_type[1]= 0;
1224
    }else{
1225
        if(h->slice_table[top_xy     ] == 0xFFFF) top_type= 0;
1226
        if(h->slice_table[left_xy[0] ] == 0xFFFF) left_type[0]= left_type[1] =0;
1227
    }
1228
    h->top_type    = top_type    ;
1229
    h->left_type[0]= left_type[0];
1230
    h->left_type[1]= left_type[1];
1231

    
1232
    if(IS_INTRA(mb_type))
1233
        return 0;
1234

    
1235
    AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
1236
    AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
1237
    AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]);
1238
    AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]);
1239
    AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
1240

    
1241
    h->cbp= h->cbp_table[mb_xy];
1242

    
1243
    {
1244
        int list;
1245
        for(list=0; list<h->list_count; list++){
1246
            int8_t *ref;
1247
            int y, b_stride;
1248
            int16_t (*mv_dst)[2];
1249
            int16_t (*mv_src)[2];
1250

    
1251
            if(!USES_LIST(mb_type, list)){
1252
                fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
1253
                AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1254
                AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1255
                AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1256
                AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1257
                continue;
1258
            }
1259

    
1260
            ref = &s->current_picture.ref_index[list][4*mb_xy];
1261
            {
1262
                int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1263
                AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1264
                AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1265
                ref += 2;
1266
                AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1267
                AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1268
            }
1269

    
1270
            b_stride = h->b_stride;
1271
            mv_dst   = &h->mv_cache[list][scan8[0]];
1272
            mv_src   = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
1273
            for(y=0; y<4; y++){
1274
                AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
1275
            }
1276

    
1277
        }
1278
    }
1279

    
1280

    
1281
/*
1282
0 . T T. T T T T
1283
1 L . .L . . . .
1284
2 L . .L . . . .
1285
3 . T TL . . . .
1286
4 L . .L . . . .
1287
5 L . .. . . . .
1288
*/
1289
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
1290
    if(top_type){
1291
        AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
1292
    }
1293

    
1294
    if(left_type[0]){
1295
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
1296
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
1297
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
1298
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
1299
    }
1300

    
1301
    // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
1302
    if(!CABAC && h->pps.transform_8x8_mode){
1303
        if(IS_8x8DCT(top_type)){
1304
            h->non_zero_count_cache[4+8*0]=
1305
            h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
1306
            h->non_zero_count_cache[6+8*0]=
1307
            h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
1308
        }
1309
        if(IS_8x8DCT(left_type[0])){
1310
            h->non_zero_count_cache[3+8*1]=
1311
            h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1312
        }
1313
        if(IS_8x8DCT(left_type[1])){
1314
            h->non_zero_count_cache[3+8*3]=
1315
            h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1316
        }
1317

    
1318
        if(IS_8x8DCT(mb_type)){
1319
            h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1320
            h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp & 1;
1321

    
1322
            h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1323
            h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1324

    
1325
            h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1326
            h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1327

    
1328
            h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1329
            h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1330
        }
1331
    }
1332

    
1333
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1334
        int list;
1335
        for(list=0; list<h->list_count; list++){
1336
            if(USES_LIST(top_type, list)){
1337
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1338
                const int b8_xy= 4*top_xy + 2;
1339
                int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1340
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1341
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
1342
                h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1343
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
1344
                h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1345
            }else{
1346
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1347
                AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1348
            }
1349

    
1350
            if(!IS_INTERLACED(mb_type^left_type[0])){
1351
                if(USES_LIST(left_type[0], list)){
1352
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1353
                    const int b8_xy= 4*left_xy[0] + 1;
1354
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1355
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]);
1356
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]);
1357
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]);
1358
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]);
1359
                    h->ref_cache[list][scan8[0] - 1 + 0 ]=
1360
                    h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]];
1361
                    h->ref_cache[list][scan8[0] - 1 +16 ]=
1362
                    h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]];
1363
                }else{
1364
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]);
1365
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]);
1366
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]);
1367
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]);
1368
                    h->ref_cache[list][scan8[0] - 1 + 0  ]=
1369
                    h->ref_cache[list][scan8[0] - 1 + 8  ]=
1370
                    h->ref_cache[list][scan8[0] - 1 + 16 ]=
1371
                    h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
1372
                }
1373
            }
1374
        }
1375
    }
1376

    
1377
    return 0;
1378
}
1379

    
1380
/**
1381
 * gets the predicted intra4x4 prediction mode.
1382
 */
1383
static inline int pred_intra_mode(H264Context *h, int n){
1384
    const int index8= scan8[n];
1385
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1386
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1387
    const int min= FFMIN(left, top);
1388

    
1389
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1390

    
1391
    if(min<0) return DC_PRED;
1392
    else      return min;
1393
}
1394

    
1395
static inline void write_back_non_zero_count(H264Context *h){
1396
    const int mb_xy= h->mb_xy;
1397

    
1398
    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1399
    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1400
    AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
1401
    AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
1402
    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1403
}
1404

    
1405
static inline void write_back_motion(H264Context *h, int mb_type){
1406
    MpegEncContext * const s = &h->s;
1407
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
1408
    const int b8_xy= 4*h->mb_xy;
1409
    int list;
1410

    
1411
    if(!USES_LIST(mb_type, 0))
1412
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1413

    
1414
    for(list=0; list<h->list_count; list++){
1415
        int y, b_stride;
1416
        int16_t (*mv_dst)[2];
1417
        int16_t (*mv_src)[2];
1418

    
1419
        if(!USES_LIST(mb_type, list))
1420
            continue;
1421

    
1422
        b_stride = h->b_stride;
1423
        mv_dst   = &s->current_picture.motion_val[list][b_xy];
1424
        mv_src   = &h->mv_cache[list][scan8[0]];
1425
        for(y=0; y<4; y++){
1426
            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1427
        }
1428
        if( CABAC ) {
1429
            uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
1430
            uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1431
            if(IS_SKIP(mb_type))
1432
                AV_ZERO128(mvd_dst);
1433
            else{
1434
            AV_COPY64(mvd_dst, mvd_src + 8*3);
1435
                AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
1436
                AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
1437
                AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
1438
            }
1439
        }
1440

    
1441
        {
1442
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1443
            ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
1444
            ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
1445
            ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
1446
            ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
1447
        }
1448
    }
1449

    
1450
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1451
        if(IS_8X8(mb_type)){
1452
            uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
1453
            direct_table[1] = h->sub_mb_type[1]>>1;
1454
            direct_table[2] = h->sub_mb_type[2]>>1;
1455
            direct_table[3] = h->sub_mb_type[3]>>1;
1456
        }
1457
    }
1458
}
1459

    
1460
static inline int get_dct8x8_allowed(H264Context *h){
1461
    if(h->sps.direct_8x8_inference_flag)
1462
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1463
    else
1464
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1465
}
1466

    
1467
/**
1468
 * decodes a P_SKIP or B_SKIP macroblock
1469
 */
1470
static void decode_mb_skip(H264Context *h){
1471
    MpegEncContext * const s = &h->s;
1472
    const int mb_xy= h->mb_xy;
1473
    int mb_type=0;
1474

    
1475
    memset(h->non_zero_count[mb_xy], 0, 32);
1476
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1477

    
1478
    if(MB_FIELD)
1479
        mb_type|= MB_TYPE_INTERLACED;
1480

    
1481
    if( h->slice_type_nos == FF_B_TYPE )
1482
    {
1483
        // just for fill_caches. pred_direct_motion will set the real mb_type
1484
        mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1485
        if(h->direct_spatial_mv_pred){
1486
            fill_decode_neighbors(h, mb_type);
1487
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1488
        }
1489
        ff_h264_pred_direct_motion(h, &mb_type);
1490
        mb_type|= MB_TYPE_SKIP;
1491
    }
1492
    else
1493
    {
1494
        int mx, my;
1495
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1496

    
1497
        fill_decode_neighbors(h, mb_type);
1498
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1499
        pred_pskip_motion(h, &mx, &my);
1500
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1501
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1502
    }
1503

    
1504
    write_back_motion(h, mb_type);
1505
    s->current_picture.mb_type[mb_xy]= mb_type;
1506
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1507
    h->slice_table[ mb_xy ]= h->slice_num;
1508
    h->prev_mb_skipped= 1;
1509
}
1510

    
1511
#include "h264_mvpred.h" //For pred_pskip_motion()
1512

    
1513
#endif /* AVCODEC_H264_H */