ffmpeg / libavcodec / ppc / mpegvideo_altivec.c @ 84dc2d8a
History  View  Annotate  Download (24.8 KB)
1 
/*


2 
* Copyright (c) 2002 Dieter Shirley

3 
*

4 
* dct_unquantize_h263_altivec:

5 
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>

6 
*

7 
* This file is part of FFmpeg.

8 
*

9 
* FFmpeg is free software; you can redistribute it and/or

10 
* modify it under the terms of the GNU Lesser General Public

11 
* License as published by the Free Software Foundation; either

12 
* version 2.1 of the License, or (at your option) any later version.

13 
*

14 
* FFmpeg is distributed in the hope that it will be useful,

15 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

16 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

17 
* Lesser General Public License for more details.

18 
*

19 
* You should have received a copy of the GNU Lesser General Public

20 
* License along with FFmpeg; if not, write to the Free Software

21 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

22 
*/

23  
24 
#include <stdlib.h> 
25 
#include <stdio.h> 
26 
#include "libavcodec/dsputil.h" 
27 
#include "libavcodec/mpegvideo.h" 
28  
29 
#include "dsputil_ppc.h" 
30 
#include "util_altivec.h" 
31 
#include "types_altivec.h" 
32  
33 
// Swaps two variables (used for altivec registers)

34 
#define SWAP(a,b) \

35 
do { \

36 
__typeof__(a) swap_temp=a; \ 
37 
a=b; \ 
38 
b=swap_temp; \ 
39 
} while (0) 
40  
41 
// transposes a matrix consisting of four vectors with four elements each

42 
#define TRANSPOSE4(a,b,c,d) \

43 
do { \

44 
__typeof__(a) _trans_ach = vec_mergeh(a, c); \ 
45 
__typeof__(a) _trans_acl = vec_mergel(a, c); \ 
46 
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \ 
47 
__typeof__(a) _trans_bdl = vec_mergel(b, d); \ 
48 
\ 
49 
a = vec_mergeh(_trans_ach, _trans_bdh); \ 
50 
b = vec_mergel(_trans_ach, _trans_bdh); \ 
51 
c = vec_mergeh(_trans_acl, _trans_bdl); \ 
52 
d = vec_mergel(_trans_acl, _trans_bdl); \ 
53 
} while (0) 
54  
55  
56 
// Loads a fourbyte value (int or float) from the target address

57 
// into every element in the target vector. Only works if the

58 
// target address is fourbyte aligned (which should be always).

59 
#define LOAD4(vec, address) \

60 
{ \ 
61 
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ 
62 
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ 
63 
vec = vec_ld(0, _load_addr); \

64 
vec = vec_perm(vec, vec, _perm_vec); \ 
65 
vec = vec_splat(vec, 0); \

66 
} 
67  
68  
69 
#define FOUROF(a) {a,a,a,a}

70  
71 
int dct_quantize_altivec(MpegEncContext* s,

72 
DCTELEM* data, int n,

73 
int qscale, int* overflow) 
74 
{ 
75 
int lastNonZero;

76 
vector float row0, row1, row2, row3, row4, row5, row6, row7;

77 
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;

78 
const vector float zero = (const vector float)FOUROF(0.); 
79 
// used after quantize step

80 
int oldBaseValue = 0; 
81  
82 
// Load the data into the row/alt vectors

83 
{ 
84 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
85  
86 
data0 = vec_ld(0, data);

87 
data1 = vec_ld(16, data);

88 
data2 = vec_ld(32, data);

89 
data3 = vec_ld(48, data);

90 
data4 = vec_ld(64, data);

91 
data5 = vec_ld(80, data);

92 
data6 = vec_ld(96, data);

93 
data7 = vec_ld(112, data);

94  
95 
// Transpose the data before we start

96 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
97  
98 
// load the data into floating point vectors. We load

99 
// the high half of each row into the main row vectors

100 
// and the low half into the alt vectors.

101 
row0 = vec_ctf(vec_unpackh(data0), 0);

102 
alt0 = vec_ctf(vec_unpackl(data0), 0);

103 
row1 = vec_ctf(vec_unpackh(data1), 0);

104 
alt1 = vec_ctf(vec_unpackl(data1), 0);

105 
row2 = vec_ctf(vec_unpackh(data2), 0);

106 
alt2 = vec_ctf(vec_unpackl(data2), 0);

107 
row3 = vec_ctf(vec_unpackh(data3), 0);

108 
alt3 = vec_ctf(vec_unpackl(data3), 0);

109 
row4 = vec_ctf(vec_unpackh(data4), 0);

110 
alt4 = vec_ctf(vec_unpackl(data4), 0);

111 
row5 = vec_ctf(vec_unpackh(data5), 0);

112 
alt5 = vec_ctf(vec_unpackl(data5), 0);

113 
row6 = vec_ctf(vec_unpackh(data6), 0);

114 
alt6 = vec_ctf(vec_unpackl(data6), 0);

115 
row7 = vec_ctf(vec_unpackh(data7), 0);

116 
alt7 = vec_ctf(vec_unpackl(data7), 0);

117 
} 
118  
119 
// The following block could exist as a separate an altivec dct

120 
// function. However, if we put it inline, the DCT data can remain

121 
// in the vector local variables, as floats, which we'll use during the

122 
// quantize step...

123 
{ 
124 
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f); 
125 
const vector float vec_0_390180644 = (vector float)FOUROF(0.390180644f); 
126 
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f); 
127 
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f); 
128 
const vector float vec_0_899976223 = (vector float)FOUROF(0.899976223f); 
129 
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f); 
130 
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f); 
131 
const vector float vec_1_847759065 = (vector float)FOUROF(1.847759065f); 
132 
const vector float vec_1_961570560 = (vector float)FOUROF(1.961570560f); 
133 
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f); 
134 
const vector float vec_2_562915447 = (vector float)FOUROF(2.562915447f); 
135 
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f); 
136  
137  
138 
int whichPass, whichHalf;

139  
140 
for(whichPass = 1; whichPass<=2; whichPass++) { 
141 
for(whichHalf = 1; whichHalf<=2; whichHalf++) { 
142 
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;

143 
vector float tmp10, tmp11, tmp12, tmp13;

144 
vector float z1, z2, z3, z4, z5;

145  
146 
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];

147 
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0]  dataptr[7];

148 
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];

149 
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3]  dataptr[4];

150 
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];

151 
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1]  dataptr[6];

152 
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];

153 
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2]  dataptr[5];

154  
155 
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;

156 
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0  tmp3;

157 
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;

158 
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1  tmp2;

159  
160  
161 
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);

162 
row0 = vec_add(tmp10, tmp11); 
163  
164 
// dataptr[4] = (DCTELEM) ((tmp10  tmp11) << PASS1_BITS);

165 
row4 = vec_sub(tmp10, tmp11); 
166  
167  
168 
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);

169 
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

170  
171 
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

172 
// CONST_BITSPASS1_BITS);

173 
row2 = vec_madd(tmp13, vec_0_765366865, z1); 
174  
175 
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

176 
// CONST_BITSPASS1_BITS);

177 
row6 = vec_madd(tmp12, vec_1_847759065, z1); 
178  
179 
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;

180 
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;

181 
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;

182 
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

183  
184 
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

185 
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

186  
187 
// z3 = MULTIPLY(z3,  FIX_1_961570560); /* sqrt(2) * (c3c5) */

188 
z3 = vec_madd(z3, vec_1_961570560, z5); 
189  
190 
// z4 = MULTIPLY(z4,  FIX_0_390180644); /* sqrt(2) * (c5c3) */

191 
z4 = vec_madd(z4, vec_0_390180644, z5); 
192  
193 
// The following adds are rolled into the multiplies above

194 
// z3 = vec_add(z3, z5); // z3 += z5;

195 
// z4 = vec_add(z4, z5); // z4 += z5;

196  
197 
// z2 = MULTIPLY(z2,  FIX_2_562915447); /* sqrt(2) * (c1c3) */

198 
// Wow! It's actually more efficient to roll this multiply

199 
// into the adds below, even thought the multiply gets done twice!

200 
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

201  
202 
// z1 = MULTIPLY(z1,  FIX_0_899976223); /* sqrt(2) * (c7c3) */

203 
// Same with this one...

204 
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

205  
206 
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (c1+c3+c5c7) */

207 
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITSPASS1_BITS);

208 
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); 
209  
210 
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3c5+c7) */

211 
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITSPASS1_BITS);

212 
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); 
213  
214 
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5c7) */

215 
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITSPASS1_BITS);

216 
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); 
217  
218 
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3c5c7) */

219 
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITSPASS1_BITS);

220 
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); 
221  
222 
// Swap the row values with the alts. If this is the first half,

223 
// this sets up the low values to be acted on in the second half.

224 
// If this is the second half, it puts the high values back in

225 
// the row values where they are expected to be when we're done.

226 
SWAP(row0, alt0); 
227 
SWAP(row1, alt1); 
228 
SWAP(row2, alt2); 
229 
SWAP(row3, alt3); 
230 
SWAP(row4, alt4); 
231 
SWAP(row5, alt5); 
232 
SWAP(row6, alt6); 
233 
SWAP(row7, alt7); 
234 
} 
235  
236 
if (whichPass == 1) { 
237 
// transpose the data for the second pass

238  
239 
// First, block transpose the upper right with lower left.

240 
SWAP(row4, alt0); 
241 
SWAP(row5, alt1); 
242 
SWAP(row6, alt2); 
243 
SWAP(row7, alt3); 
244  
245 
// Now, transpose each block of four

246 
TRANSPOSE4(row0, row1, row2, row3); 
247 
TRANSPOSE4(row4, row5, row6, row7); 
248 
TRANSPOSE4(alt0, alt1, alt2, alt3); 
249 
TRANSPOSE4(alt4, alt5, alt6, alt7); 
250 
} 
251 
} 
252 
} 
253  
254 
// perform the quantize step, using the floating point data

255 
// still in the row/alt registers

256 
{ 
257 
const int* biasAddr; 
258 
const vector signed int* qmat; 
259 
vector float bias, negBias;

260  
261 
if (s>mb_intra) {

262 
vector signed int baseVector; 
263  
264 
// We must cache element 0 in the intra case

265 
// (it needs special handling).

266 
baseVector = vec_cts(vec_splat(row0, 0), 0); 
267 
vec_ste(baseVector, 0, &oldBaseValue);

268  
269 
qmat = (vector signed int*)s>q_intra_matrix[qscale]; 
270 
biasAddr = &(s>intra_quant_bias); 
271 
} else {

272 
qmat = (vector signed int*)s>q_inter_matrix[qscale]; 
273 
biasAddr = &(s>inter_quant_bias); 
274 
} 
275  
276 
// Load the bias vector (We add 0.5 to the bias so that we're

277 
// rounding when we convert to int, instead of flooring.)

278 
{ 
279 
vector signed int biasInt; 
280 
const vector float negOneFloat = (vector float)FOUROF(1.0f); 
281 
LOAD4(biasInt, biasAddr); 
282 
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); 
283 
negBias = vec_madd(bias, negOneFloat, zero); 
284 
} 
285  
286 
{ 
287 
vector float q0, q1, q2, q3, q4, q5, q6, q7;

288  
289 
q0 = vec_ctf(qmat[0], QMAT_SHIFT);

290 
q1 = vec_ctf(qmat[2], QMAT_SHIFT);

291 
q2 = vec_ctf(qmat[4], QMAT_SHIFT);

292 
q3 = vec_ctf(qmat[6], QMAT_SHIFT);

293 
q4 = vec_ctf(qmat[8], QMAT_SHIFT);

294 
q5 = vec_ctf(qmat[10], QMAT_SHIFT);

295 
q6 = vec_ctf(qmat[12], QMAT_SHIFT);

296 
q7 = vec_ctf(qmat[14], QMAT_SHIFT);

297  
298 
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), 
299 
vec_cmpgt(row0, zero)); 
300 
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), 
301 
vec_cmpgt(row1, zero)); 
302 
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), 
303 
vec_cmpgt(row2, zero)); 
304 
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), 
305 
vec_cmpgt(row3, zero)); 
306 
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), 
307 
vec_cmpgt(row4, zero)); 
308 
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), 
309 
vec_cmpgt(row5, zero)); 
310 
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), 
311 
vec_cmpgt(row6, zero)); 
312 
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), 
313 
vec_cmpgt(row7, zero)); 
314  
315 
q0 = vec_ctf(qmat[1], QMAT_SHIFT);

316 
q1 = vec_ctf(qmat[3], QMAT_SHIFT);

317 
q2 = vec_ctf(qmat[5], QMAT_SHIFT);

318 
q3 = vec_ctf(qmat[7], QMAT_SHIFT);

319 
q4 = vec_ctf(qmat[9], QMAT_SHIFT);

320 
q5 = vec_ctf(qmat[11], QMAT_SHIFT);

321 
q6 = vec_ctf(qmat[13], QMAT_SHIFT);

322 
q7 = vec_ctf(qmat[15], QMAT_SHIFT);

323  
324 
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), 
325 
vec_cmpgt(alt0, zero)); 
326 
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), 
327 
vec_cmpgt(alt1, zero)); 
328 
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), 
329 
vec_cmpgt(alt2, zero)); 
330 
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), 
331 
vec_cmpgt(alt3, zero)); 
332 
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), 
333 
vec_cmpgt(alt4, zero)); 
334 
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), 
335 
vec_cmpgt(alt5, zero)); 
336 
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), 
337 
vec_cmpgt(alt6, zero)); 
338 
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), 
339 
vec_cmpgt(alt7, zero)); 
340 
} 
341  
342  
343 
} 
344  
345 
// Store the data back into the original block

346 
{ 
347 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
348  
349 
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); 
350 
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); 
351 
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); 
352 
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); 
353 
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); 
354 
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); 
355 
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); 
356 
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); 
357  
358 
{ 
359 
// Clamp for overflow

360 
vector signed int max_q_int, min_q_int; 
361 
vector signed short max_q, min_q; 
362  
363 
LOAD4(max_q_int, &(s>max_qcoeff)); 
364 
LOAD4(min_q_int, &(s>min_qcoeff)); 
365  
366 
max_q = vec_pack(max_q_int, max_q_int); 
367 
min_q = vec_pack(min_q_int, min_q_int); 
368  
369 
data0 = vec_max(vec_min(data0, max_q), min_q); 
370 
data1 = vec_max(vec_min(data1, max_q), min_q); 
371 
data2 = vec_max(vec_min(data2, max_q), min_q); 
372 
data4 = vec_max(vec_min(data4, max_q), min_q); 
373 
data5 = vec_max(vec_min(data5, max_q), min_q); 
374 
data6 = vec_max(vec_min(data6, max_q), min_q); 
375 
data7 = vec_max(vec_min(data7, max_q), min_q); 
376 
} 
377  
378 
{ 
379 
vector bool char zero_01, zero_23, zero_45, zero_67; 
380 
vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67; 
381 
vector signed char negOne = vec_splat_s8(1); 
382 
vector signed char* scanPtr = 
383 
(vector signed char*)(s>intra_scantable.inverse); 
384 
signed char lastNonZeroChar; 
385  
386 
// Determine the largest nonzero index.

387 
zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero), 
388 
vec_cmpeq(data1, (vector signed short)zero)); 
389 
zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero), 
390 
vec_cmpeq(data3, (vector signed short)zero)); 
391 
zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero), 
392 
vec_cmpeq(data5, (vector signed short)zero)); 
393 
zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero), 
394 
vec_cmpeq(data7, (vector signed short)zero)); 
395  
396 
// 64 biggest values

397 
scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);

398 
scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);

399 
scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);

400 
scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);

401  
402 
// 32 largest values

403 
scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23); 
404 
scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67); 
405  
406 
// 16 largest values

407 
scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45); 
408  
409 
// 8 largest values

410 
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), 
411 
vec_mergel(scanIndexes_01, negOne)); 
412  
413 
// 4 largest values

414 
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), 
415 
vec_mergel(scanIndexes_01, negOne)); 
416  
417 
// 2 largest values

418 
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), 
419 
vec_mergel(scanIndexes_01, negOne)); 
420  
421 
// largest value

422 
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), 
423 
vec_mergel(scanIndexes_01, negOne)); 
424  
425 
scanIndexes_01 = vec_splat(scanIndexes_01, 0);

426  
427  
428 
vec_ste(scanIndexes_01, 0, &lastNonZeroChar);

429  
430 
lastNonZero = lastNonZeroChar; 
431  
432 
// While the data is still in vectors we check for the transpose IDCT permute

433 
// and handle it using the vector unit if we can. This is the permute used

434 
// by the altivec idct, so it is common when using the altivec dct.

435  
436 
if ((lastNonZero > 0) && (s>dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) { 
437 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
438 
} 
439  
440 
vec_st(data0, 0, data);

441 
vec_st(data1, 16, data);

442 
vec_st(data2, 32, data);

443 
vec_st(data3, 48, data);

444 
vec_st(data4, 64, data);

445 
vec_st(data5, 80, data);

446 
vec_st(data6, 96, data);

447 
vec_st(data7, 112, data);

448 
} 
449 
} 
450  
451 
// special handling of block[0]

452 
if (s>mb_intra) {

453 
if (!s>h263_aic) {

454 
if (n < 4) 
455 
oldBaseValue /= s>y_dc_scale; 
456 
else

457 
oldBaseValue /= s>c_dc_scale; 
458 
} 
459  
460 
// Divide by 8, rounding the result

461 
data[0] = (oldBaseValue + 4) >> 3; 
462 
} 
463  
464 
// We handled the transpose permutation above and we don't

465 
// need to permute the "no" permutation case.

466 
if ((lastNonZero > 0) && 
467 
(s>dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && 
468 
(s>dsp.idct_permutation_type != FF_NO_IDCT_PERM)) { 
469 
ff_block_permute(data, s>dsp.idct_permutation, 
470 
s>intra_scantable.scantable, lastNonZero); 
471 
} 
472  
473 
return lastNonZero;

474 
} 
475  
476 
/* AltiVec version of dct_unquantize_h263

477 
this code assumes `block' is 16 bytesaligned */

478 
void dct_unquantize_h263_altivec(MpegEncContext *s,

479 
DCTELEM *block, int n, int qscale) 
480 
{ 
481 
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);

482 
int i, level, qmul, qadd;

483 
int nCoeffs;

484  
485 
assert(s>block_last_index[n]>=0);

486  
487 
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);

488  
489 
qadd = (qscale  1)  1; 
490 
qmul = qscale << 1;

491  
492 
if (s>mb_intra) {

493 
if (!s>h263_aic) {

494 
if (n < 4) 
495 
block[0] = block[0] * s>y_dc_scale; 
496 
else

497 
block[0] = block[0] * s>c_dc_scale; 
498 
}else

499 
qadd = 0;

500 
i = 1;

501 
nCoeffs= 63; //does not always use zigzag table 
502 
} else {

503 
i = 0;

504 
nCoeffs= s>intra_scantable.raster_end[ s>block_last_index[n] ]; 
505 
} 
506  
507 
{ 
508 
register const vector signed short vczero = (const vector signed short)vec_splat_s16(0); 
509 
DECLARE_ALIGNED(16, short, qmul8) = qmul; 
510 
DECLARE_ALIGNED(16, short, qadd8) = qadd; 
511 
register vector signed short blockv, qmulv, qaddv, nqaddv, temp1; 
512 
register vector bool short blockv_null, blockv_neg; 
513 
register short backup_0 = block[0]; 
514 
register int j = 0; 
515  
516 
qmulv = vec_splat((vec_s16)vec_lde(0, &qmul8), 0); 
517 
qaddv = vec_splat((vec_s16)vec_lde(0, &qadd8), 0); 
518 
nqaddv = vec_sub(vczero, qaddv); 
519  
520 
#if 0 // block *is* 16 bytesaligned, it seems.

521 
// first make sure block[j] is 16 bytesaligned

522 
for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {

523 
level = block[j];

524 
if (level) {

525 
if (level < 0) {

526 
level = level * qmul  qadd;

527 
} else {

528 
level = level * qmul + qadd;

529 
}

530 
block[j] = level;

531 
}

532 
}

533 
#endif

534  
535 
// vectorize all the 16 bytesaligned blocks

536 
// of 8 elements

537 
for(; (j + 7) <= nCoeffs ; j+=8) { 
538 
blockv = vec_ld(j << 1, block);

539 
blockv_neg = vec_cmplt(blockv, vczero); 
540 
blockv_null = vec_cmpeq(blockv, vczero); 
541 
// choose between +qadd or qadd as the third operand

542 
temp1 = vec_sel(qaddv, nqaddv, blockv_neg); 
543 
// multiply & add (block{i,i+7} * qmul [+] qadd)

544 
temp1 = vec_mladd(blockv, qmulv, temp1); 
545 
// put 0 where block[{i,i+7} used to have 0

546 
blockv = vec_sel(temp1, blockv, blockv_null); 
547 
vec_st(blockv, j << 1, block);

548 
} 
549  
550 
// if nCoeffs isn't a multiple of 8, finish the job

551 
// using good old scalar units.

552 
// (we could do it using a truncated vector,

553 
// but I'm not sure it's worth the hassle)

554 
for(; j <= nCoeffs ; j++) {

555 
level = block[j]; 
556 
if (level) {

557 
if (level < 0) { 
558 
level = level * qmul  qadd; 
559 
} else {

560 
level = level * qmul + qadd; 
561 
} 
562 
block[j] = level; 
563 
} 
564 
} 
565  
566 
if (i == 1) { 
567 
// cheat. this avoid specialcasing the first iteration

568 
block[0] = backup_0;

569 
} 
570 
} 
571 
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);

572 
} 
573  
574  
575 
void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block); 
576 
void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block); 
577  
578 
void MPV_common_init_altivec(MpegEncContext *s)

579 
{ 
580 
if ((mm_flags & FF_MM_ALTIVEC) == 0) return; 
581  
582 
if (s>avctx>lowres==0) { 
583 
if ((s>avctx>idct_algo == FF_IDCT_AUTO) 

584 
(s>avctx>idct_algo == FF_IDCT_ALTIVEC)) { 
585 
s>dsp.idct_put = idct_put_altivec; 
586 
s>dsp.idct_add = idct_add_altivec; 
587 
s>dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM; 
588 
} 
589 
} 
590  
591 
// Test to make sure that the dct required alignments are met.

592 
if ((((long)(s>q_intra_matrix) & 0x0f) != 0)  
593 
(((long)(s>q_inter_matrix) & 0x0f) != 0)) { 
594 
av_log(s>avctx, AV_LOG_INFO, "Internal Error: qmatrix blocks must be 16byte aligned "

595 
"to use AltiVec DCT. Reverting to nonAltiVec version.\n");

596 
return;

597 
} 
598  
599 
if (((long)(s>intra_scantable.inverse) & 0x0f) != 0) { 
600 
av_log(s>avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16byte aligned "

601 
"to use AltiVec DCT. Reverting to nonAltiVec version.\n");

602 
return;

603 
} 
604  
605  
606 
if ((s>avctx>dct_algo == FF_DCT_AUTO) 

607 
(s>avctx>dct_algo == FF_DCT_ALTIVEC)) { 
608 
#if 0 /* seems to cause trouble under some circumstances */

609 
s>dct_quantize = dct_quantize_altivec;

610 
#endif

611 
s>dct_unquantize_h263_intra = dct_unquantize_h263_altivec; 
612 
s>dct_unquantize_h263_inter = dct_unquantize_h263_altivec; 
613 
} 
614 
} 