ffmpeg / libavutil / sha.c @ 84dc2d8a
History | View | Annotate | Download (12.2 KB)
1 |
/*
|
---|---|
2 |
* Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
|
3 |
* Copyright (C) 2009 Konstantin Shishkov
|
4 |
* based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
|
5 |
* and on BSD-licensed SHA-2 code by Aaron D. Gifford
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
#include "common.h" |
25 |
#include "avutil.h" |
26 |
#include "bswap.h" |
27 |
#include "sha.h" |
28 |
#include "sha1.h" |
29 |
#include "intreadwrite.h" |
30 |
|
31 |
/** hash context */
|
32 |
typedef struct AVSHA { |
33 |
uint8_t digest_len; ///< digest length in 32-bit words
|
34 |
uint64_t count; ///< number of bytes in buffer
|
35 |
uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating |
36 |
uint32_t state[8]; ///< current hash value |
37 |
/** function used to update hash for 512-bit input block */
|
38 |
void (*transform)(uint32_t *state, const uint8_t buffer[64]); |
39 |
} AVSHA; |
40 |
|
41 |
const int av_sha_size = sizeof(AVSHA); |
42 |
|
43 |
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
44 |
|
45 |
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
|
46 |
#define blk0(i) (block[i] = be2me_32(((const uint32_t*)buffer)[i])) |
47 |
#define blk(i) (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1)) |
48 |
|
49 |
#define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30); |
50 |
#define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30); |
51 |
#define R2(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30); |
52 |
#define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30); |
53 |
#define R4(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30); |
54 |
|
55 |
/* Hash a single 512-bit block. This is the core of the algorithm. */
|
56 |
|
57 |
static void sha1_transform(uint32_t state[5], const uint8_t buffer[64]) |
58 |
{ |
59 |
uint32_t block[80];
|
60 |
unsigned int i, a, b, c, d, e; |
61 |
|
62 |
a = state[0];
|
63 |
b = state[1];
|
64 |
c = state[2];
|
65 |
d = state[3];
|
66 |
e = state[4];
|
67 |
#if CONFIG_SMALL
|
68 |
for (i = 0; i < 80; i++) { |
69 |
int t;
|
70 |
if (i < 16) |
71 |
t = be2me_32(((uint32_t*)buffer)[i]); |
72 |
else
|
73 |
t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1); |
74 |
block[i] = t; |
75 |
t += e + rol(a, 5);
|
76 |
if (i < 40) { |
77 |
if (i < 20) |
78 |
t += ((b&(c^d))^d) + 0x5A827999;
|
79 |
else
|
80 |
t += ( b^c ^d) + 0x6ED9EBA1;
|
81 |
} else {
|
82 |
if (i < 60) |
83 |
t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
|
84 |
else
|
85 |
t += ( b^c ^d) + 0xCA62C1D6;
|
86 |
} |
87 |
e = d; |
88 |
d = c; |
89 |
c = rol(b, 30);
|
90 |
b = a; |
91 |
a = t; |
92 |
} |
93 |
#else
|
94 |
for (i = 0; i < 15; i += 5) { |
95 |
R0(a, b, c, d, e, 0 + i);
|
96 |
R0(e, a, b, c, d, 1 + i);
|
97 |
R0(d, e, a, b, c, 2 + i);
|
98 |
R0(c, d, e, a, b, 3 + i);
|
99 |
R0(b, c, d, e, a, 4 + i);
|
100 |
} |
101 |
R0(a, b, c, d, e, 15);
|
102 |
R1(e, a, b, c, d, 16);
|
103 |
R1(d, e, a, b, c, 17);
|
104 |
R1(c, d, e, a, b, 18);
|
105 |
R1(b, c, d, e, a, 19);
|
106 |
for (i = 20; i < 40; i += 5) { |
107 |
R2(a, b, c, d, e, 0 + i);
|
108 |
R2(e, a, b, c, d, 1 + i);
|
109 |
R2(d, e, a, b, c, 2 + i);
|
110 |
R2(c, d, e, a, b, 3 + i);
|
111 |
R2(b, c, d, e, a, 4 + i);
|
112 |
} |
113 |
for (; i < 60; i += 5) { |
114 |
R3(a, b, c, d, e, 0 + i);
|
115 |
R3(e, a, b, c, d, 1 + i);
|
116 |
R3(d, e, a, b, c, 2 + i);
|
117 |
R3(c, d, e, a, b, 3 + i);
|
118 |
R3(b, c, d, e, a, 4 + i);
|
119 |
} |
120 |
for (; i < 80; i += 5) { |
121 |
R4(a, b, c, d, e, 0 + i);
|
122 |
R4(e, a, b, c, d, 1 + i);
|
123 |
R4(d, e, a, b, c, 2 + i);
|
124 |
R4(c, d, e, a, b, 3 + i);
|
125 |
R4(b, c, d, e, a, 4 + i);
|
126 |
} |
127 |
#endif
|
128 |
state[0] += a;
|
129 |
state[1] += b;
|
130 |
state[2] += c;
|
131 |
state[3] += d;
|
132 |
state[4] += e;
|
133 |
} |
134 |
|
135 |
static const uint32_t K256[64] = { |
136 |
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
137 |
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
138 |
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
139 |
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
140 |
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
141 |
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
142 |
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
143 |
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
144 |
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
145 |
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
146 |
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
147 |
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
148 |
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
149 |
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
150 |
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
151 |
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
152 |
}; |
153 |
|
154 |
|
155 |
#define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z))
|
156 |
#define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
|
157 |
|
158 |
#define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10)) |
159 |
#define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7)) |
160 |
#define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3)) |
161 |
#define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10)) |
162 |
|
163 |
#undef blk
|
164 |
#define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \ |
165 |
sigma1_256(block[i - 2]) + block[i - 7]) |
166 |
|
167 |
#define ROUND256(a,b,c,d,e,f,g,h) \
|
168 |
T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \ |
169 |
(d) += T1; \ |
170 |
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
171 |
i++ |
172 |
|
173 |
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
174 |
T1 = blk0(i); \ |
175 |
ROUND256(a,b,c,d,e,f,g,h) |
176 |
|
177 |
#define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \
|
178 |
T1 = blk(i); \ |
179 |
ROUND256(a,b,c,d,e,f,g,h) |
180 |
|
181 |
static void sha256_transform(uint32_t *state, const uint8_t buffer[64]) |
182 |
{ |
183 |
unsigned int i, a, b, c, d, e, f, g, h; |
184 |
uint32_t block[64];
|
185 |
uint32_t T1, av_unused(T2); |
186 |
|
187 |
a = state[0];
|
188 |
b = state[1];
|
189 |
c = state[2];
|
190 |
d = state[3];
|
191 |
e = state[4];
|
192 |
f = state[5];
|
193 |
g = state[6];
|
194 |
h = state[7];
|
195 |
#if CONFIG_SMALL
|
196 |
for (i = 0; i < 64; i++) { |
197 |
if (i < 16) |
198 |
T1 = blk0(i); |
199 |
else
|
200 |
T1 = blk(i); |
201 |
T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i]; |
202 |
T2 = Sigma0_256(a) + Maj(a, b, c); |
203 |
h = g; |
204 |
g = f; |
205 |
f = e; |
206 |
e = d + T1; |
207 |
d = c; |
208 |
c = b; |
209 |
b = a; |
210 |
a = T1 + T2; |
211 |
} |
212 |
#else
|
213 |
for (i = 0; i < 16;) { |
214 |
ROUND256_0_TO_15(a, b, c, d, e, f, g, h); |
215 |
ROUND256_0_TO_15(h, a, b, c, d, e, f, g); |
216 |
ROUND256_0_TO_15(g, h, a, b, c, d, e, f); |
217 |
ROUND256_0_TO_15(f, g, h, a, b, c, d, e); |
218 |
ROUND256_0_TO_15(e, f, g, h, a, b, c, d); |
219 |
ROUND256_0_TO_15(d, e, f, g, h, a, b, c); |
220 |
ROUND256_0_TO_15(c, d, e, f, g, h, a, b); |
221 |
ROUND256_0_TO_15(b, c, d, e, f, g, h, a); |
222 |
} |
223 |
|
224 |
for (; i < 64;) { |
225 |
ROUND256_16_TO_63(a, b, c, d, e, f, g, h); |
226 |
ROUND256_16_TO_63(h, a, b, c, d, e, f, g); |
227 |
ROUND256_16_TO_63(g, h, a, b, c, d, e, f); |
228 |
ROUND256_16_TO_63(f, g, h, a, b, c, d, e); |
229 |
ROUND256_16_TO_63(e, f, g, h, a, b, c, d); |
230 |
ROUND256_16_TO_63(d, e, f, g, h, a, b, c); |
231 |
ROUND256_16_TO_63(c, d, e, f, g, h, a, b); |
232 |
ROUND256_16_TO_63(b, c, d, e, f, g, h, a); |
233 |
} |
234 |
#endif
|
235 |
state[0] += a;
|
236 |
state[1] += b;
|
237 |
state[2] += c;
|
238 |
state[3] += d;
|
239 |
state[4] += e;
|
240 |
state[5] += f;
|
241 |
state[6] += g;
|
242 |
state[7] += h;
|
243 |
} |
244 |
|
245 |
|
246 |
int av_sha_init(AVSHA* ctx, int bits) |
247 |
{ |
248 |
ctx->digest_len = bits >> 5;
|
249 |
switch (bits) {
|
250 |
case 160: // SHA-1 |
251 |
ctx->state[0] = 0x67452301; |
252 |
ctx->state[1] = 0xEFCDAB89; |
253 |
ctx->state[2] = 0x98BADCFE; |
254 |
ctx->state[3] = 0x10325476; |
255 |
ctx->state[4] = 0xC3D2E1F0; |
256 |
ctx->transform = sha1_transform; |
257 |
break;
|
258 |
case 224: // SHA-224 |
259 |
ctx->state[0] = 0xC1059ED8; |
260 |
ctx->state[1] = 0x367CD507; |
261 |
ctx->state[2] = 0x3070DD17; |
262 |
ctx->state[3] = 0xF70E5939; |
263 |
ctx->state[4] = 0xFFC00B31; |
264 |
ctx->state[5] = 0x68581511; |
265 |
ctx->state[6] = 0x64F98FA7; |
266 |
ctx->state[7] = 0xBEFA4FA4; |
267 |
ctx->transform = sha256_transform; |
268 |
break;
|
269 |
case 256: // SHA-256 |
270 |
ctx->state[0] = 0x6A09E667; |
271 |
ctx->state[1] = 0xBB67AE85; |
272 |
ctx->state[2] = 0x3C6EF372; |
273 |
ctx->state[3] = 0xA54FF53A; |
274 |
ctx->state[4] = 0x510E527F; |
275 |
ctx->state[5] = 0x9B05688C; |
276 |
ctx->state[6] = 0x1F83D9AB; |
277 |
ctx->state[7] = 0x5BE0CD19; |
278 |
ctx->transform = sha256_transform; |
279 |
break;
|
280 |
default:
|
281 |
return -1; |
282 |
} |
283 |
ctx->count = 0;
|
284 |
return 0; |
285 |
} |
286 |
|
287 |
void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len) |
288 |
{ |
289 |
unsigned int i, j; |
290 |
|
291 |
j = ctx->count & 63;
|
292 |
ctx->count += len; |
293 |
#if CONFIG_SMALL
|
294 |
for (i = 0; i < len; i++) { |
295 |
ctx->buffer[j++] = data[i]; |
296 |
if (64 == j) { |
297 |
ctx->transform(ctx->state, ctx->buffer); |
298 |
j = 0;
|
299 |
} |
300 |
} |
301 |
#else
|
302 |
if ((j + len) > 63) { |
303 |
memcpy(&ctx->buffer[j], data, (i = 64 - j));
|
304 |
ctx->transform(ctx->state, ctx->buffer); |
305 |
for (; i + 63 < len; i += 64) |
306 |
ctx->transform(ctx->state, &data[i]); |
307 |
j = 0;
|
308 |
} else
|
309 |
i = 0;
|
310 |
memcpy(&ctx->buffer[j], &data[i], len - i); |
311 |
#endif
|
312 |
} |
313 |
|
314 |
void av_sha_final(AVSHA* ctx, uint8_t *digest)
|
315 |
{ |
316 |
int i;
|
317 |
uint64_t finalcount = be2me_64(ctx->count << 3);
|
318 |
|
319 |
av_sha_update(ctx, "\200", 1); |
320 |
while ((ctx->count & 63) != 56) |
321 |
av_sha_update(ctx, "", 1); |
322 |
av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */ |
323 |
for (i = 0; i < ctx->digest_len; i++) |
324 |
AV_WB32(digest + i*4, ctx->state[i]);
|
325 |
} |
326 |
|
327 |
#if LIBAVUTIL_VERSION_MAJOR < 51 |
328 |
struct AVSHA1 {
|
329 |
AVSHA sha; |
330 |
}; |
331 |
|
332 |
const int av_sha1_size = sizeof(struct AVSHA1); |
333 |
|
334 |
void av_sha1_init(struct AVSHA1* context) |
335 |
{ |
336 |
av_sha_init(&context->sha, 160);
|
337 |
} |
338 |
|
339 |
void av_sha1_update(struct AVSHA1* context, const uint8_t* data, unsigned int len) |
340 |
{ |
341 |
av_sha_update(&context->sha, data, len); |
342 |
} |
343 |
|
344 |
void av_sha1_final(struct AVSHA1* context, uint8_t digest[20]) |
345 |
{ |
346 |
av_sha_final(&context->sha, digest); |
347 |
} |
348 |
#endif
|
349 |
|
350 |
#ifdef TEST
|
351 |
#include <stdio.h> |
352 |
#undef printf
|
353 |
|
354 |
int main(void) |
355 |
{ |
356 |
int i, j, k;
|
357 |
AVSHA ctx; |
358 |
unsigned char digest[32]; |
359 |
const int lengths[3] = { 160, 224, 256 }; |
360 |
|
361 |
for (j = 0; j < 3; j++) { |
362 |
printf("Testing SHA-%d\n", lengths[j]);
|
363 |
for (k = 0; k < 3; k++) { |
364 |
av_sha_init(&ctx, lengths[j]); |
365 |
if (k == 0) |
366 |
av_sha_update(&ctx, "abc", 3); |
367 |
else if (k == 1) |
368 |
av_sha_update(&ctx, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56); |
369 |
else
|
370 |
for (i = 0; i < 1000*1000; i++) |
371 |
av_sha_update(&ctx, "a", 1); |
372 |
av_sha_final(&ctx, digest); |
373 |
for (i = 0; i < lengths[j] >> 3; i++) |
374 |
printf("%02X", digest[i]);
|
375 |
putchar('\n');
|
376 |
} |
377 |
switch (j) {
|
378 |
case 0: |
379 |
//test vectors (from FIPS PUB 180-1)
|
380 |
printf("A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D\n"
|
381 |
"84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1\n"
|
382 |
"34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F\n");
|
383 |
break;
|
384 |
case 1: |
385 |
//test vectors (from FIPS PUB 180-2 Appendix A)
|
386 |
printf("23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7\n"
|
387 |
"75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525\n"
|
388 |
"20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67\n");
|
389 |
break;
|
390 |
case 2: |
391 |
//test vectors (from FIPS PUB 180-2)
|
392 |
printf("ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad\n"
|
393 |
"248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1\n"
|
394 |
"cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0\n");
|
395 |
break;
|
396 |
} |
397 |
} |
398 |
|
399 |
return 0; |
400 |
} |
401 |
#endif
|