Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 861c63a2

History | View | Annotate | Download (59.7 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23
#include "bytestream.h"
24

    
25
/**
26
 * @file adpcm.c
27
 * ADPCM codecs.
28
 * First version by Francois Revol (revol@free.fr)
29
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30
 *   by Mike Melanson (melanson@pcisys.net)
31
 * CD-ROM XA ADPCM codec by BERO
32
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
39
 *
40
 * Features and limitations:
41
 *
42
 * Reference documents:
43
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45
 * http://openquicktime.sourceforge.net/plugins.htm
46
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
49
 *
50
 * CD-ROM XA:
51
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53
 * readstr http://www.geocities.co.jp/Playtown/2004/
54
 */
55

    
56
#define BLKSIZE 1024
57

    
58
/* step_table[] and index_table[] are from the ADPCM reference source */
59
/* This is the index table: */
60
static const int index_table[16] = {
61
    -1, -1, -1, -1, 2, 4, 6, 8,
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
};
64

    
65
/**
66
 * This is the step table. Note that many programs use slight deviations from
67
 * this table, but such deviations are negligible:
68
 */
69
static const int step_table[89] = {
70
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
79
};
80

    
81
/* These are for MS-ADPCM */
82
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83
static const int AdaptationTable[] = {
84
        230, 230, 230, 230, 307, 409, 512, 614,
85
        768, 614, 512, 409, 307, 230, 230, 230
86
};
87

    
88
static const int AdaptCoeff1[] = {
89
        256, 512, 0, 192, 240, 460, 392
90
};
91

    
92
static const int AdaptCoeff2[] = {
93
        0, -256, 0, 64, 0, -208, -232
94
};
95

    
96
/* These are for CD-ROM XA ADPCM */
97
static const int xa_adpcm_table[5][2] = {
98
   {   0,   0 },
99
   {  60,   0 },
100
   { 115, -52 },
101
   {  98, -55 },
102
   { 122, -60 }
103
};
104

    
105
static const int ea_adpcm_table[] = {
106
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
108
};
109

    
110
static const int ct_adpcm_table[8] = {
111
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
112
    0x0133, 0x0199, 0x0200, 0x0266
113
};
114

    
115
// padded to zero where table size is less then 16
116
static const int swf_index_tables[4][16] = {
117
    /*2*/ { -1, 2 },
118
    /*3*/ { -1, -1, 2, 4 },
119
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
121
};
122

    
123
static const int yamaha_indexscale[] = {
124
    230, 230, 230, 230, 307, 409, 512, 614,
125
    230, 230, 230, 230, 307, 409, 512, 614
126
};
127

    
128
static const int yamaha_difflookup[] = {
129
    1, 3, 5, 7, 9, 11, 13, 15,
130
    -1, -3, -5, -7, -9, -11, -13, -15
131
};
132

    
133
/* end of tables */
134

    
135
typedef struct ADPCMChannelStatus {
136
    int predictor;
137
    short int step_index;
138
    int step;
139
    /* for encoding */
140
    int prev_sample;
141

    
142
    /* MS version */
143
    short sample1;
144
    short sample2;
145
    int coeff1;
146
    int coeff2;
147
    int idelta;
148
} ADPCMChannelStatus;
149

    
150
typedef struct ADPCMContext {
151
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
152
    ADPCMChannelStatus status[6];
153
} ADPCMContext;
154

    
155
/* XXX: implement encoding */
156

    
157
#ifdef CONFIG_ENCODERS
158
static int adpcm_encode_init(AVCodecContext *avctx)
159
{
160
    if (avctx->channels > 2)
161
        return -1; /* only stereo or mono =) */
162
    switch(avctx->codec->id) {
163
    case CODEC_ID_ADPCM_IMA_WAV:
164
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
165
                                                             /* and we have 4 bytes per channel overhead */
166
        avctx->block_align = BLKSIZE;
167
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
168
        break;
169
    case CODEC_ID_ADPCM_IMA_QT:
170
        avctx->frame_size = 64;
171
        avctx->block_align = 34 * avctx->channels;
172
        break;
173
    case CODEC_ID_ADPCM_MS:
174
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
175
                                                             /* and we have 7 bytes per channel overhead */
176
        avctx->block_align = BLKSIZE;
177
        break;
178
    case CODEC_ID_ADPCM_YAMAHA:
179
        avctx->frame_size = BLKSIZE * avctx->channels;
180
        avctx->block_align = BLKSIZE;
181
        break;
182
    case CODEC_ID_ADPCM_SWF:
183
        if (avctx->sample_rate != 11025 &&
184
            avctx->sample_rate != 22050 &&
185
            avctx->sample_rate != 44100) {
186
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
187
            return -1;
188
        }
189
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
190
        break;
191
    default:
192
        return -1;
193
        break;
194
    }
195

    
196
    avctx->coded_frame= avcodec_alloc_frame();
197
    avctx->coded_frame->key_frame= 1;
198

    
199
    return 0;
200
}
201

    
202
static int adpcm_encode_close(AVCodecContext *avctx)
203
{
204
    av_freep(&avctx->coded_frame);
205

    
206
    return 0;
207
}
208

    
209

    
210
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
211
{
212
    int delta = sample - c->prev_sample;
213
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
214
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
215
    c->prev_sample = av_clip_int16(c->prev_sample);
216
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
217
    return nibble;
218
}
219

    
220
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
221
{
222
    int predictor, nibble, bias;
223

    
224
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
225

    
226
    nibble= sample - predictor;
227
    if(nibble>=0) bias= c->idelta/2;
228
    else          bias=-c->idelta/2;
229

    
230
    nibble= (nibble + bias) / c->idelta;
231
    nibble= av_clip(nibble, -8, 7)&0x0F;
232

    
233
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
234

    
235
    c->sample2 = c->sample1;
236
    c->sample1 = av_clip_int16(predictor);
237

    
238
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
239
    if (c->idelta < 16) c->idelta = 16;
240

    
241
    return nibble;
242
}
243

    
244
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
245
{
246
    int nibble, delta;
247

    
248
    if(!c->step) {
249
        c->predictor = 0;
250
        c->step = 127;
251
    }
252

    
253
    delta = sample - c->predictor;
254

    
255
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
256

    
257
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
258
    c->predictor = av_clip_int16(c->predictor);
259
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
260
    c->step = av_clip(c->step, 127, 24567);
261

    
262
    return nibble;
263
}
264

    
265
typedef struct TrellisPath {
266
    int nibble;
267
    int prev;
268
} TrellisPath;
269

    
270
typedef struct TrellisNode {
271
    uint32_t ssd;
272
    int path;
273
    int sample1;
274
    int sample2;
275
    int step;
276
} TrellisNode;
277

    
278
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
279
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
280
{
281
#define FREEZE_INTERVAL 128
282
    //FIXME 6% faster if frontier is a compile-time constant
283
    const int frontier = 1 << avctx->trellis;
284
    const int stride = avctx->channels;
285
    const int version = avctx->codec->id;
286
    const int max_paths = frontier*FREEZE_INTERVAL;
287
    TrellisPath paths[max_paths], *p;
288
    TrellisNode node_buf[2][frontier];
289
    TrellisNode *nodep_buf[2][frontier];
290
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
291
    TrellisNode **nodes_next = nodep_buf[1];
292
    int pathn = 0, froze = -1, i, j, k;
293

    
294
    assert(!(max_paths&(max_paths-1)));
295

    
296
    memset(nodep_buf, 0, sizeof(nodep_buf));
297
    nodes[0] = &node_buf[1][0];
298
    nodes[0]->ssd = 0;
299
    nodes[0]->path = 0;
300
    nodes[0]->step = c->step_index;
301
    nodes[0]->sample1 = c->sample1;
302
    nodes[0]->sample2 = c->sample2;
303
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
304
        nodes[0]->sample1 = c->prev_sample;
305
    if(version == CODEC_ID_ADPCM_MS)
306
        nodes[0]->step = c->idelta;
307
    if(version == CODEC_ID_ADPCM_YAMAHA) {
308
        if(c->step == 0) {
309
            nodes[0]->step = 127;
310
            nodes[0]->sample1 = 0;
311
        } else {
312
            nodes[0]->step = c->step;
313
            nodes[0]->sample1 = c->predictor;
314
        }
315
    }
316

    
317
    for(i=0; i<n; i++) {
318
        TrellisNode *t = node_buf[i&1];
319
        TrellisNode **u;
320
        int sample = samples[i*stride];
321
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
322
        for(j=0; j<frontier && nodes[j]; j++) {
323
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
324
            const int range = (j < frontier/2) ? 1 : 0;
325
            const int step = nodes[j]->step;
326
            int nidx;
327
            if(version == CODEC_ID_ADPCM_MS) {
328
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
329
                const int div = (sample - predictor) / step;
330
                const int nmin = av_clip(div-range, -8, 6);
331
                const int nmax = av_clip(div+range, -7, 7);
332
                for(nidx=nmin; nidx<=nmax; nidx++) {
333
                    const int nibble = nidx & 0xf;
334
                    int dec_sample = predictor + nidx * step;
335
#define STORE_NODE(NAME, STEP_INDEX)\
336
                    int d;\
337
                    uint32_t ssd;\
338
                    dec_sample = av_clip_int16(dec_sample);\
339
                    d = sample - dec_sample;\
340
                    ssd = nodes[j]->ssd + d*d;\
341
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
342
                        continue;\
343
                    /* Collapse any two states with the same previous sample value. \
344
                     * One could also distinguish states by step and by 2nd to last
345
                     * sample, but the effects of that are negligible. */\
346
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
347
                        if(dec_sample == nodes_next[k]->sample1) {\
348
                            assert(ssd >= nodes_next[k]->ssd);\
349
                            goto next_##NAME;\
350
                        }\
351
                    }\
352
                    for(k=0; k<frontier; k++) {\
353
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
354
                            TrellisNode *u = nodes_next[frontier-1];\
355
                            if(!u) {\
356
                                assert(pathn < max_paths);\
357
                                u = t++;\
358
                                u->path = pathn++;\
359
                            }\
360
                            u->ssd = ssd;\
361
                            u->step = STEP_INDEX;\
362
                            u->sample2 = nodes[j]->sample1;\
363
                            u->sample1 = dec_sample;\
364
                            paths[u->path].nibble = nibble;\
365
                            paths[u->path].prev = nodes[j]->path;\
366
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
367
                            nodes_next[k] = u;\
368
                            break;\
369
                        }\
370
                    }\
371
                    next_##NAME:;
372
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
373
                }
374
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
375
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
376
                const int predictor = nodes[j]->sample1;\
377
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
378
                int nmin = av_clip(div-range, -7, 6);\
379
                int nmax = av_clip(div+range, -6, 7);\
380
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
381
                if(nmax<0) nmax--;\
382
                for(nidx=nmin; nidx<=nmax; nidx++) {\
383
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
384
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
385
                    STORE_NODE(NAME, STEP_INDEX);\
386
                }
387
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
388
            } else { //CODEC_ID_ADPCM_YAMAHA
389
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
390
#undef LOOP_NODES
391
#undef STORE_NODE
392
            }
393
        }
394

    
395
        u = nodes;
396
        nodes = nodes_next;
397
        nodes_next = u;
398

    
399
        // prevent overflow
400
        if(nodes[0]->ssd > (1<<28)) {
401
            for(j=1; j<frontier && nodes[j]; j++)
402
                nodes[j]->ssd -= nodes[0]->ssd;
403
            nodes[0]->ssd = 0;
404
        }
405

    
406
        // merge old paths to save memory
407
        if(i == froze + FREEZE_INTERVAL) {
408
            p = &paths[nodes[0]->path];
409
            for(k=i; k>froze; k--) {
410
                dst[k] = p->nibble;
411
                p = &paths[p->prev];
412
            }
413
            froze = i;
414
            pathn = 0;
415
            // other nodes might use paths that don't coincide with the frozen one.
416
            // checking which nodes do so is too slow, so just kill them all.
417
            // this also slightly improves quality, but I don't know why.
418
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
419
        }
420
    }
421

    
422
    p = &paths[nodes[0]->path];
423
    for(i=n-1; i>froze; i--) {
424
        dst[i] = p->nibble;
425
        p = &paths[p->prev];
426
    }
427

    
428
    c->predictor = nodes[0]->sample1;
429
    c->sample1 = nodes[0]->sample1;
430
    c->sample2 = nodes[0]->sample2;
431
    c->step_index = nodes[0]->step;
432
    c->step = nodes[0]->step;
433
    c->idelta = nodes[0]->step;
434
}
435

    
436
static int adpcm_encode_frame(AVCodecContext *avctx,
437
                            unsigned char *frame, int buf_size, void *data)
438
{
439
    int n, i, st;
440
    short *samples;
441
    unsigned char *dst;
442
    ADPCMContext *c = avctx->priv_data;
443

    
444
    dst = frame;
445
    samples = (short *)data;
446
    st= avctx->channels == 2;
447
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
448

    
449
    switch(avctx->codec->id) {
450
    case CODEC_ID_ADPCM_IMA_WAV:
451
        n = avctx->frame_size / 8;
452
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
453
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
454
            bytestream_put_le16(&dst, c->status[0].prev_sample);
455
            *dst++ = (unsigned char)c->status[0].step_index;
456
            *dst++ = 0; /* unknown */
457
            samples++;
458
            if (avctx->channels == 2) {
459
                c->status[1].prev_sample = (signed short)samples[0];
460
/*                c->status[1].step_index = 0; */
461
                bytestream_put_le16(&dst, c->status[1].prev_sample);
462
                *dst++ = (unsigned char)c->status[1].step_index;
463
                *dst++ = 0;
464
                samples++;
465
            }
466

    
467
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
468
            if(avctx->trellis > 0) {
469
                uint8_t buf[2][n*8];
470
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
471
                if(avctx->channels == 2)
472
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
473
                for(i=0; i<n; i++) {
474
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
475
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
476
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
477
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
478
                    if (avctx->channels == 2) {
479
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
480
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
481
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
482
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
483
                    }
484
                }
485
            } else
486
            for (; n>0; n--) {
487
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
488
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
489
                dst++;
490
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
491
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
492
                dst++;
493
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
494
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
495
                dst++;
496
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
497
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
498
                dst++;
499
                /* right channel */
500
                if (avctx->channels == 2) {
501
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
502
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
503
                    dst++;
504
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
505
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
506
                    dst++;
507
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
508
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
509
                    dst++;
510
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
511
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
512
                    dst++;
513
                }
514
                samples += 8 * avctx->channels;
515
            }
516
        break;
517
    case CODEC_ID_ADPCM_IMA_QT:
518
    {
519
        int ch, i;
520
        PutBitContext pb;
521
        init_put_bits(&pb, dst, buf_size*8);
522

    
523
        for(ch=0; ch<avctx->channels; ch++){
524
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
525
            put_bits(&pb, 7, c->status[ch].step_index);
526
            if(avctx->trellis > 0) {
527
                uint8_t buf[64];
528
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
529
                for(i=0; i<64; i++)
530
                    put_bits(&pb, 4, buf[i^1]);
531
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
532
            } else {
533
                for (i=0; i<64; i+=2){
534
                    int t1, t2;
535
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
536
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
537
                    put_bits(&pb, 4, t2);
538
                    put_bits(&pb, 4, t1);
539
                }
540
                c->status[ch].prev_sample &= ~0x7F;
541
            }
542
        }
543

    
544
        dst += put_bits_count(&pb)>>3;
545
        break;
546
    }
547
    case CODEC_ID_ADPCM_SWF:
548
    {
549
        int i;
550
        PutBitContext pb;
551
        init_put_bits(&pb, dst, buf_size*8);
552

    
553
        n = avctx->frame_size-1;
554

    
555
        //Store AdpcmCodeSize
556
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
557

    
558
        //Init the encoder state
559
        for(i=0; i<avctx->channels; i++){
560
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
561
            put_bits(&pb, 16, samples[i] & 0xFFFF);
562
            put_bits(&pb, 6, c->status[i].step_index);
563
            c->status[i].prev_sample = (signed short)samples[i];
564
        }
565

    
566
        if(avctx->trellis > 0) {
567
            uint8_t buf[2][n];
568
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
569
            if (avctx->channels == 2)
570
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
571
            for(i=0; i<n; i++) {
572
                put_bits(&pb, 4, buf[0][i]);
573
                if (avctx->channels == 2)
574
                    put_bits(&pb, 4, buf[1][i]);
575
            }
576
        } else {
577
            for (i=1; i<avctx->frame_size; i++) {
578
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
579
                if (avctx->channels == 2)
580
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
581
            }
582
        }
583
        flush_put_bits(&pb);
584
        dst += put_bits_count(&pb)>>3;
585
        break;
586
    }
587
    case CODEC_ID_ADPCM_MS:
588
        for(i=0; i<avctx->channels; i++){
589
            int predictor=0;
590

    
591
            *dst++ = predictor;
592
            c->status[i].coeff1 = AdaptCoeff1[predictor];
593
            c->status[i].coeff2 = AdaptCoeff2[predictor];
594
        }
595
        for(i=0; i<avctx->channels; i++){
596
            if (c->status[i].idelta < 16)
597
                c->status[i].idelta = 16;
598

    
599
            bytestream_put_le16(&dst, c->status[i].idelta);
600
        }
601
        for(i=0; i<avctx->channels; i++){
602
            c->status[i].sample1= *samples++;
603

    
604
            bytestream_put_le16(&dst, c->status[i].sample1);
605
        }
606
        for(i=0; i<avctx->channels; i++){
607
            c->status[i].sample2= *samples++;
608

    
609
            bytestream_put_le16(&dst, c->status[i].sample2);
610
        }
611

    
612
        if(avctx->trellis > 0) {
613
            int n = avctx->block_align - 7*avctx->channels;
614
            uint8_t buf[2][n];
615
            if(avctx->channels == 1) {
616
                n *= 2;
617
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
618
                for(i=0; i<n; i+=2)
619
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
620
            } else {
621
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
622
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
623
                for(i=0; i<n; i++)
624
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
625
            }
626
        } else
627
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
628
            int nibble;
629
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
630
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
631
            *dst++ = nibble;
632
        }
633
        break;
634
    case CODEC_ID_ADPCM_YAMAHA:
635
        n = avctx->frame_size / 2;
636
        if(avctx->trellis > 0) {
637
            uint8_t buf[2][n*2];
638
            n *= 2;
639
            if(avctx->channels == 1) {
640
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
641
                for(i=0; i<n; i+=2)
642
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
643
            } else {
644
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
645
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
646
                for(i=0; i<n; i++)
647
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
648
            }
649
        } else
650
        for (; n>0; n--) {
651
            for(i = 0; i < avctx->channels; i++) {
652
                int nibble;
653
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
654
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
655
                *dst++ = nibble;
656
            }
657
            samples += 2 * avctx->channels;
658
        }
659
        break;
660
    default:
661
        return -1;
662
    }
663
    return dst - frame;
664
}
665
#endif //CONFIG_ENCODERS
666

    
667
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
668
{
669
    ADPCMContext *c = avctx->priv_data;
670
    unsigned int max_channels = 2, channel;
671

    
672
    switch(avctx->codec->id) {
673
    case CODEC_ID_ADPCM_EA_R1:
674
    case CODEC_ID_ADPCM_EA_R2:
675
    case CODEC_ID_ADPCM_EA_R3:
676
        max_channels = 6;
677
        break;
678
    }
679
    if(avctx->channels > max_channels){
680
        return -1;
681
    }
682

    
683
    switch(avctx->codec->id) {
684
    case CODEC_ID_ADPCM_CT:
685
        c->status[0].step = c->status[1].step = 511;
686
        break;
687
    case CODEC_ID_ADPCM_IMA_WS:
688
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
689
            c->status[0].predictor = AV_RL32(avctx->extradata);
690
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
691
        }
692
        break;
693
    default:
694
        break;
695
    }
696
    return 0;
697
}
698

    
699
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
700
{
701
    int step_index;
702
    int predictor;
703
    int sign, delta, diff, step;
704

    
705
    step = step_table[c->step_index];
706
    step_index = c->step_index + index_table[(unsigned)nibble];
707
    if (step_index < 0) step_index = 0;
708
    else if (step_index > 88) step_index = 88;
709

    
710
    sign = nibble & 8;
711
    delta = nibble & 7;
712
    /* perform direct multiplication instead of series of jumps proposed by
713
     * the reference ADPCM implementation since modern CPUs can do the mults
714
     * quickly enough */
715
    diff = ((2 * delta + 1) * step) >> shift;
716
    predictor = c->predictor;
717
    if (sign) predictor -= diff;
718
    else predictor += diff;
719

    
720
    c->predictor = av_clip_int16(predictor);
721
    c->step_index = step_index;
722

    
723
    return (short)c->predictor;
724
}
725

    
726
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
727
{
728
    int predictor;
729

    
730
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
731
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
732

    
733
    c->sample2 = c->sample1;
734
    c->sample1 = av_clip_int16(predictor);
735
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
736
    if (c->idelta < 16) c->idelta = 16;
737

    
738
    return c->sample1;
739
}
740

    
741
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
742
{
743
    int sign, delta, diff;
744
    int new_step;
745

    
746
    sign = nibble & 8;
747
    delta = nibble & 7;
748
    /* perform direct multiplication instead of series of jumps proposed by
749
     * the reference ADPCM implementation since modern CPUs can do the mults
750
     * quickly enough */
751
    diff = ((2 * delta + 1) * c->step) >> 3;
752
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
753
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
754
    c->predictor = av_clip_int16(c->predictor);
755
    /* calculate new step and clamp it to range 511..32767 */
756
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
757
    c->step = av_clip(new_step, 511, 32767);
758

    
759
    return (short)c->predictor;
760
}
761

    
762
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
763
{
764
    int sign, delta, diff;
765

    
766
    sign = nibble & (1<<(size-1));
767
    delta = nibble & ((1<<(size-1))-1);
768
    diff = delta << (7 + c->step + shift);
769

    
770
    /* clamp result */
771
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
772

    
773
    /* calculate new step */
774
    if (delta >= (2*size - 3) && c->step < 3)
775
        c->step++;
776
    else if (delta == 0 && c->step > 0)
777
        c->step--;
778

    
779
    return (short) c->predictor;
780
}
781

    
782
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
783
{
784
    if(!c->step) {
785
        c->predictor = 0;
786
        c->step = 127;
787
    }
788

    
789
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
790
    c->predictor = av_clip_int16(c->predictor);
791
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
792
    c->step = av_clip(c->step, 127, 24567);
793
    return c->predictor;
794
}
795

    
796
static void xa_decode(short *out, const unsigned char *in,
797
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
798
{
799
    int i, j;
800
    int shift,filter,f0,f1;
801
    int s_1,s_2;
802
    int d,s,t;
803

    
804
    for(i=0;i<4;i++) {
805

    
806
        shift  = 12 - (in[4+i*2] & 15);
807
        filter = in[4+i*2] >> 4;
808
        f0 = xa_adpcm_table[filter][0];
809
        f1 = xa_adpcm_table[filter][1];
810

    
811
        s_1 = left->sample1;
812
        s_2 = left->sample2;
813

    
814
        for(j=0;j<28;j++) {
815
            d = in[16+i+j*4];
816

    
817
            t = (signed char)(d<<4)>>4;
818
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
819
            s_2 = s_1;
820
            s_1 = av_clip_int16(s);
821
            *out = s_1;
822
            out += inc;
823
        }
824

    
825
        if (inc==2) { /* stereo */
826
            left->sample1 = s_1;
827
            left->sample2 = s_2;
828
            s_1 = right->sample1;
829
            s_2 = right->sample2;
830
            out = out + 1 - 28*2;
831
        }
832

    
833
        shift  = 12 - (in[5+i*2] & 15);
834
        filter = in[5+i*2] >> 4;
835

    
836
        f0 = xa_adpcm_table[filter][0];
837
        f1 = xa_adpcm_table[filter][1];
838

    
839
        for(j=0;j<28;j++) {
840
            d = in[16+i+j*4];
841

    
842
            t = (signed char)d >> 4;
843
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
844
            s_2 = s_1;
845
            s_1 = av_clip_int16(s);
846
            *out = s_1;
847
            out += inc;
848
        }
849

    
850
        if (inc==2) { /* stereo */
851
            right->sample1 = s_1;
852
            right->sample2 = s_2;
853
            out -= 1;
854
        } else {
855
            left->sample1 = s_1;
856
            left->sample2 = s_2;
857
        }
858
    }
859
}
860

    
861

    
862
/* DK3 ADPCM support macro */
863
#define DK3_GET_NEXT_NIBBLE() \
864
    if (decode_top_nibble_next) \
865
    { \
866
        nibble = last_byte >> 4; \
867
        decode_top_nibble_next = 0; \
868
    } \
869
    else \
870
    { \
871
        last_byte = *src++; \
872
        if (src >= buf + buf_size) break; \
873
        nibble = last_byte & 0x0F; \
874
        decode_top_nibble_next = 1; \
875
    }
876

    
877
static int adpcm_decode_frame(AVCodecContext *avctx,
878
                            void *data, int *data_size,
879
                            const uint8_t *buf, int buf_size)
880
{
881
    ADPCMContext *c = avctx->priv_data;
882
    ADPCMChannelStatus *cs;
883
    int n, m, channel, i;
884
    int block_predictor[2];
885
    short *samples;
886
    short *samples_end;
887
    const uint8_t *src;
888
    int st; /* stereo */
889

    
890
    /* DK3 ADPCM accounting variables */
891
    unsigned char last_byte = 0;
892
    unsigned char nibble;
893
    int decode_top_nibble_next = 0;
894
    int diff_channel;
895

    
896
    /* EA ADPCM state variables */
897
    uint32_t samples_in_chunk;
898
    int32_t previous_left_sample, previous_right_sample;
899
    int32_t current_left_sample, current_right_sample;
900
    int32_t next_left_sample, next_right_sample;
901
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
902
    uint8_t shift_left, shift_right;
903
    int count1, count2;
904
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
905

    
906
    if (!buf_size)
907
        return 0;
908

    
909
    //should protect all 4bit ADPCM variants
910
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
911
    //
912
    if(*data_size/4 < buf_size + 8)
913
        return -1;
914

    
915
    samples = data;
916
    samples_end= samples + *data_size/2;
917
    *data_size= 0;
918
    src = buf;
919

    
920
    st = avctx->channels == 2 ? 1 : 0;
921

    
922
    switch(avctx->codec->id) {
923
    case CODEC_ID_ADPCM_IMA_QT:
924
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
925
        channel = c->channel;
926
        cs = &(c->status[channel]);
927
        /* (pppppp) (piiiiiii) */
928

    
929
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
930
        cs->predictor = (*src++) << 8;
931
        cs->predictor |= (*src & 0x80);
932
        cs->predictor &= 0xFF80;
933

    
934
        /* sign extension */
935
        if(cs->predictor & 0x8000)
936
            cs->predictor -= 0x10000;
937

    
938
        cs->predictor = av_clip_int16(cs->predictor);
939

    
940
        cs->step_index = (*src++) & 0x7F;
941

    
942
        if (cs->step_index > 88){
943
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
944
            cs->step_index = 88;
945
        }
946

    
947
        cs->step = step_table[cs->step_index];
948

    
949
        if (st && channel)
950
            samples++;
951

    
952
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
953
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
954
            samples += avctx->channels;
955
            *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
956
            samples += avctx->channels;
957
            src ++;
958
        }
959

    
960
        if(st) { /* handle stereo interlacing */
961
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
962
            if(channel == 1) { /* wait for the other packet before outputing anything */
963
                return src - buf;
964
            }
965
        }
966
        break;
967
    case CODEC_ID_ADPCM_IMA_WAV:
968
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
969
            buf_size = avctx->block_align;
970

    
971
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
972

    
973
        for(i=0; i<avctx->channels; i++){
974
            cs = &(c->status[i]);
975
            cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8));
976
            src+=2;
977

    
978
            cs->step_index = *src++;
979
            if (cs->step_index > 88){
980
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
981
                cs->step_index = 88;
982
            }
983
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
984
        }
985

    
986
        while(src < buf + buf_size){
987
            for(m=0; m<4; m++){
988
                for(i=0; i<=st; i++)
989
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
990
                for(i=0; i<=st; i++)
991
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
992
                src++;
993
            }
994
            src += 4*st;
995
        }
996
        break;
997
    case CODEC_ID_ADPCM_4XM:
998
        cs = &(c->status[0]);
999
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
1000
        if(st){
1001
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
1002
        }
1003
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
1004
        if(st){
1005
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
1006
        }
1007
        if (cs->step_index < 0) cs->step_index = 0;
1008
        if (cs->step_index > 88) cs->step_index = 88;
1009

    
1010
        m= (buf_size - (src - buf))>>st;
1011
        for(i=0; i<m; i++) {
1012
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1013
            if (st)
1014
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1015
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1016
            if (st)
1017
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1018
        }
1019

    
1020
        src += m<<st;
1021

    
1022
        break;
1023
    case CODEC_ID_ADPCM_MS:
1024
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1025
            buf_size = avctx->block_align;
1026
        n = buf_size - 7 * avctx->channels;
1027
        if (n < 0)
1028
            return -1;
1029
        block_predictor[0] = av_clip(*src++, 0, 7);
1030
        block_predictor[1] = 0;
1031
        if (st)
1032
            block_predictor[1] = av_clip(*src++, 0, 7);
1033
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1034
        src+=2;
1035
        if (st){
1036
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1037
            src+=2;
1038
        }
1039
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1040
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1041
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1042
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1043

    
1044
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1045
        src+=2;
1046
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1047
        if (st) src+=2;
1048
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1049
        src+=2;
1050
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1051
        if (st) src+=2;
1052

    
1053
        *samples++ = c->status[0].sample1;
1054
        if (st) *samples++ = c->status[1].sample1;
1055
        *samples++ = c->status[0].sample2;
1056
        if (st) *samples++ = c->status[1].sample2;
1057
        for(;n>0;n--) {
1058
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1059
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1060
            src ++;
1061
        }
1062
        break;
1063
    case CODEC_ID_ADPCM_IMA_DK4:
1064
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1065
            buf_size = avctx->block_align;
1066

    
1067
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1068
        c->status[0].step_index = src[2];
1069
        src += 4;
1070
        *samples++ = c->status[0].predictor;
1071
        if (st) {
1072
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1073
            c->status[1].step_index = src[2];
1074
            src += 4;
1075
            *samples++ = c->status[1].predictor;
1076
        }
1077
        while (src < buf + buf_size) {
1078

    
1079
            /* take care of the top nibble (always left or mono channel) */
1080
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1081
                src[0] >> 4, 3);
1082

    
1083
            /* take care of the bottom nibble, which is right sample for
1084
             * stereo, or another mono sample */
1085
            if (st)
1086
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1087
                    src[0] & 0x0F, 3);
1088
            else
1089
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1090
                    src[0] & 0x0F, 3);
1091

    
1092
            src++;
1093
        }
1094
        break;
1095
    case CODEC_ID_ADPCM_IMA_DK3:
1096
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1097
            buf_size = avctx->block_align;
1098

    
1099
        if(buf_size + 16 > (samples_end - samples)*3/8)
1100
            return -1;
1101

    
1102
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1103
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1104
        c->status[0].step_index = src[14];
1105
        c->status[1].step_index = src[15];
1106
        /* sign extend the predictors */
1107
        src += 16;
1108
        diff_channel = c->status[1].predictor;
1109

    
1110
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1111
         * the buffer is consumed */
1112
        while (1) {
1113

    
1114
            /* for this algorithm, c->status[0] is the sum channel and
1115
             * c->status[1] is the diff channel */
1116

    
1117
            /* process the first predictor of the sum channel */
1118
            DK3_GET_NEXT_NIBBLE();
1119
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1120

    
1121
            /* process the diff channel predictor */
1122
            DK3_GET_NEXT_NIBBLE();
1123
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1124

    
1125
            /* process the first pair of stereo PCM samples */
1126
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1127
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1128
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1129

    
1130
            /* process the second predictor of the sum channel */
1131
            DK3_GET_NEXT_NIBBLE();
1132
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1133

    
1134
            /* process the second pair of stereo PCM samples */
1135
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1136
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1137
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1138
        }
1139
        break;
1140
    case CODEC_ID_ADPCM_IMA_WS:
1141
        /* no per-block initialization; just start decoding the data */
1142
        while (src < buf + buf_size) {
1143

    
1144
            if (st) {
1145
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1146
                    src[0] >> 4  , 3);
1147
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1148
                    src[0] & 0x0F, 3);
1149
            } else {
1150
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1151
                    src[0] >> 4  , 3);
1152
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1153
                    src[0] & 0x0F, 3);
1154
            }
1155

    
1156
            src++;
1157
        }
1158
        break;
1159
    case CODEC_ID_ADPCM_XA:
1160
        while (buf_size >= 128) {
1161
            xa_decode(samples, src, &c->status[0], &c->status[1],
1162
                avctx->channels);
1163
            src += 128;
1164
            samples += 28 * 8;
1165
            buf_size -= 128;
1166
        }
1167
        break;
1168
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1169
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1170

    
1171
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1172
            src += buf_size - 4;
1173
            break;
1174
        }
1175

    
1176
        for (i=0; i<=st; i++)
1177
            c->status[i].step_index = bytestream_get_le32(&src);
1178
        for (i=0; i<=st; i++)
1179
            c->status[i].predictor  = bytestream_get_le32(&src);
1180

    
1181
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1182
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1183
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1184
        }
1185
        break;
1186
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1187
        for (; src < buf+buf_size; src++) {
1188
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1189
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1190
        }
1191
        break;
1192
    case CODEC_ID_ADPCM_EA:
1193
        samples_in_chunk = AV_RL32(src);
1194
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1195
            src += buf_size;
1196
            break;
1197
        }
1198
        src += 4;
1199
        current_left_sample = (int16_t)AV_RL16(src);
1200
        src += 2;
1201
        previous_left_sample = (int16_t)AV_RL16(src);
1202
        src += 2;
1203
        current_right_sample = (int16_t)AV_RL16(src);
1204
        src += 2;
1205
        previous_right_sample = (int16_t)AV_RL16(src);
1206
        src += 2;
1207

    
1208
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1209
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1210
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1211
            coeff1r = ea_adpcm_table[*src & 0x0F];
1212
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1213
            src++;
1214

    
1215
            shift_left  = (*src >> 4  ) + 8;
1216
            shift_right = (*src & 0x0F) + 8;
1217
            src++;
1218

    
1219
            for (count2 = 0; count2 < 28; count2++) {
1220
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1221
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1222
                src++;
1223

    
1224
                next_left_sample = (next_left_sample +
1225
                    (current_left_sample * coeff1l) +
1226
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1227
                next_right_sample = (next_right_sample +
1228
                    (current_right_sample * coeff1r) +
1229
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1230

    
1231
                previous_left_sample = current_left_sample;
1232
                current_left_sample = av_clip_int16(next_left_sample);
1233
                previous_right_sample = current_right_sample;
1234
                current_right_sample = av_clip_int16(next_right_sample);
1235
                *samples++ = (unsigned short)current_left_sample;
1236
                *samples++ = (unsigned short)current_right_sample;
1237
            }
1238
        }
1239
        break;
1240
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1241
        for(channel = 0; channel < avctx->channels; channel++) {
1242
            for (i=0; i<2; i++)
1243
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1244
            shift[channel] = (*src & 0x0F) + 8;
1245
            src++;
1246
        }
1247
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1248
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1249
                for(channel = 0; channel < avctx->channels; channel++) {
1250
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1251
                    sample = (sample +
1252
                             c->status[channel].sample1 * coeff[channel][0] +
1253
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1254
                    c->status[channel].sample2 = c->status[channel].sample1;
1255
                    c->status[channel].sample1 = av_clip_int16(sample);
1256
                    *samples++ = c->status[channel].sample1;
1257
                }
1258
            }
1259
            src+=avctx->channels;
1260
        }
1261
        break;
1262
    case CODEC_ID_ADPCM_EA_R1:
1263
    case CODEC_ID_ADPCM_EA_R2:
1264
    case CODEC_ID_ADPCM_EA_R3: {
1265
        /* channel numbering
1266
           2chan: 0=fl, 1=fr
1267
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1268
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1269
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1270
        int32_t previous_sample, current_sample, next_sample;
1271
        int32_t coeff1, coeff2;
1272
        uint8_t shift;
1273
        unsigned int channel;
1274
        uint16_t *samplesC;
1275
        const uint8_t *srcC;
1276

    
1277
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1278
                                       : bytestream_get_le32(&src)) / 28;
1279
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1280
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1281
            src += buf_size - 4;
1282
            break;
1283
        }
1284

    
1285
        for (channel=0; channel<avctx->channels; channel++) {
1286
            srcC = src + (big_endian ? bytestream_get_be32(&src)
1287
                                     : bytestream_get_le32(&src))
1288
                       + (avctx->channels-channel-1) * 4;
1289
            samplesC = samples + channel;
1290

    
1291
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1292
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1293
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1294
            } else {
1295
                current_sample  = c->status[channel].predictor;
1296
                previous_sample = c->status[channel].prev_sample;
1297
            }
1298

    
1299
            for (count1=0; count1<samples_in_chunk; count1++) {
1300
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1301
                    srcC++;
1302
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1303
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1304

    
1305
                    for (count2=0; count2<28; count2++) {
1306
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1307
                        samplesC += avctx->channels;
1308
                    }
1309
                } else {
1310
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1311
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1312
                    shift = (*srcC++ & 0x0F) + 8;
1313

    
1314
                    for (count2=0; count2<28; count2++) {
1315
                        if (count2 & 1)
1316
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1317
                        else
1318
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1319

    
1320
                        next_sample += (current_sample  * coeff1) +
1321
                                       (previous_sample * coeff2);
1322
                        next_sample = av_clip_int16(next_sample >> 8);
1323

    
1324
                        previous_sample = current_sample;
1325
                        current_sample  = next_sample;
1326
                        *samplesC = current_sample;
1327
                        samplesC += avctx->channels;
1328
                    }
1329
                }
1330
            }
1331

    
1332
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1333
                c->status[channel].predictor   = current_sample;
1334
                c->status[channel].prev_sample = previous_sample;
1335
            }
1336
        }
1337

    
1338
        src = src + buf_size - (4 + 4*avctx->channels);
1339
        samples += 28 * samples_in_chunk * avctx->channels;
1340
        break;
1341
    }
1342
    case CODEC_ID_ADPCM_EA_XAS:
1343
        if (samples_end-samples < 32*4*avctx->channels
1344
            || buf_size < (4+15)*4*avctx->channels) {
1345
            src += buf_size;
1346
            break;
1347
        }
1348
        for (channel=0; channel<avctx->channels; channel++) {
1349
            int coeff[2][4], shift[4];
1350
            short *s2, *s = &samples[channel];
1351
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1352
                for (i=0; i<2; i++)
1353
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1354
                shift[n] = (src[2]&0x0F) + 8;
1355
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1356
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1357
            }
1358

    
1359
            for (m=2; m<32; m+=2) {
1360
                s = &samples[m*avctx->channels + channel];
1361
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1362
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1363
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1364
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1365
                                  + s2[-2*avctx->channels] * coeff[1][n];
1366
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1367
                    }
1368
                }
1369
            }
1370
        }
1371
        samples += 32*4*avctx->channels;
1372
        break;
1373
    case CODEC_ID_ADPCM_IMA_AMV:
1374
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1375
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1376
        c->status[0].step_index = bytestream_get_le16(&src);
1377

    
1378
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1379
            src+=4;
1380

    
1381
        while (src < buf + buf_size) {
1382
            char hi, lo;
1383
            lo = *src & 0x0F;
1384
            hi = *src >> 4;
1385

    
1386
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1387
                FFSWAP(char, hi, lo);
1388

    
1389
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1390
                lo, 3);
1391
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1392
                hi, 3);
1393
            src++;
1394
        }
1395
        break;
1396
    case CODEC_ID_ADPCM_CT:
1397
        while (src < buf + buf_size) {
1398
            if (st) {
1399
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1400
                    src[0] >> 4);
1401
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1402
                    src[0] & 0x0F);
1403
            } else {
1404
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1405
                    src[0] >> 4);
1406
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1407
                    src[0] & 0x0F);
1408
            }
1409
            src++;
1410
        }
1411
        break;
1412
    case CODEC_ID_ADPCM_SBPRO_4:
1413
    case CODEC_ID_ADPCM_SBPRO_3:
1414
    case CODEC_ID_ADPCM_SBPRO_2:
1415
        if (!c->status[0].step_index) {
1416
            /* the first byte is a raw sample */
1417
            *samples++ = 128 * (*src++ - 0x80);
1418
            if (st)
1419
              *samples++ = 128 * (*src++ - 0x80);
1420
            c->status[0].step_index = 1;
1421
        }
1422
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1423
            while (src < buf + buf_size) {
1424
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1425
                    src[0] >> 4, 4, 0);
1426
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1427
                    src[0] & 0x0F, 4, 0);
1428
                src++;
1429
            }
1430
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1431
            while (src < buf + buf_size && samples + 2 < samples_end) {
1432
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1433
                     src[0] >> 5        , 3, 0);
1434
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1435
                    (src[0] >> 2) & 0x07, 3, 0);
1436
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1437
                    src[0] & 0x03, 2, 0);
1438
                src++;
1439
            }
1440
        } else {
1441
            while (src < buf + buf_size && samples + 3 < samples_end) {
1442
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1443
                     src[0] >> 6        , 2, 2);
1444
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1445
                    (src[0] >> 4) & 0x03, 2, 2);
1446
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1447
                    (src[0] >> 2) & 0x03, 2, 2);
1448
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1449
                    src[0] & 0x03, 2, 2);
1450
                src++;
1451
            }
1452
        }
1453
        break;
1454
    case CODEC_ID_ADPCM_SWF:
1455
    {
1456
        GetBitContext gb;
1457
        const int *table;
1458
        int k0, signmask, nb_bits, count;
1459
        int size = buf_size*8;
1460

    
1461
        init_get_bits(&gb, buf, size);
1462

    
1463
        //read bits & initial values
1464
        nb_bits = get_bits(&gb, 2)+2;
1465
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1466
        table = swf_index_tables[nb_bits-2];
1467
        k0 = 1 << (nb_bits-2);
1468
        signmask = 1 << (nb_bits-1);
1469

    
1470
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1471
            for (i = 0; i < avctx->channels; i++) {
1472
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1473
                c->status[i].step_index = get_bits(&gb, 6);
1474
            }
1475

    
1476
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1477
                int i;
1478

    
1479
                for (i = 0; i < avctx->channels; i++) {
1480
                    // similar to IMA adpcm
1481
                    int delta = get_bits(&gb, nb_bits);
1482
                    int step = step_table[c->status[i].step_index];
1483
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1484
                    int k = k0;
1485

    
1486
                    do {
1487
                        if (delta & k)
1488
                            vpdiff += step;
1489
                        step >>= 1;
1490
                        k >>= 1;
1491
                    } while(k);
1492
                    vpdiff += step;
1493

    
1494
                    if (delta & signmask)
1495
                        c->status[i].predictor -= vpdiff;
1496
                    else
1497
                        c->status[i].predictor += vpdiff;
1498

    
1499
                    c->status[i].step_index += table[delta & (~signmask)];
1500

    
1501
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1502
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1503

    
1504
                    *samples++ = c->status[i].predictor;
1505
                    if (samples >= samples_end) {
1506
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1507
                        return -1;
1508
                    }
1509
                }
1510
            }
1511
        }
1512
        src += buf_size;
1513
        break;
1514
    }
1515
    case CODEC_ID_ADPCM_YAMAHA:
1516
        while (src < buf + buf_size) {
1517
            if (st) {
1518
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1519
                        src[0] & 0x0F);
1520
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1521
                        src[0] >> 4  );
1522
            } else {
1523
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1524
                        src[0] & 0x0F);
1525
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1526
                        src[0] >> 4  );
1527
            }
1528
            src++;
1529
        }
1530
        break;
1531
    case CODEC_ID_ADPCM_THP:
1532
    {
1533
        int table[2][16];
1534
        unsigned int samplecnt;
1535
        int prev[2][2];
1536
        int ch;
1537

    
1538
        if (buf_size < 80) {
1539
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1540
            return -1;
1541
        }
1542

    
1543
        src+=4;
1544
        samplecnt = bytestream_get_be32(&src);
1545

    
1546
        for (i = 0; i < 32; i++)
1547
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1548

    
1549
        /* Initialize the previous sample.  */
1550
        for (i = 0; i < 4; i++)
1551
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1552

    
1553
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1554
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1555
            return -1;
1556
        }
1557

    
1558
        for (ch = 0; ch <= st; ch++) {
1559
            samples = (unsigned short *) data + ch;
1560

    
1561
            /* Read in every sample for this channel.  */
1562
            for (i = 0; i < samplecnt / 14; i++) {
1563
                int index = (*src >> 4) & 7;
1564
                unsigned int exp = 28 - (*src++ & 15);
1565
                int factor1 = table[ch][index * 2];
1566
                int factor2 = table[ch][index * 2 + 1];
1567

    
1568
                /* Decode 14 samples.  */
1569
                for (n = 0; n < 14; n++) {
1570
                    int32_t sampledat;
1571
                    if(n&1) sampledat=  *src++    <<28;
1572
                    else    sampledat= (*src&0xF0)<<24;
1573

    
1574
                    sampledat = ((prev[ch][0]*factor1
1575
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1576
                    *samples = av_clip_int16(sampledat);
1577
                    prev[ch][1] = prev[ch][0];
1578
                    prev[ch][0] = *samples++;
1579

    
1580
                    /* In case of stereo, skip one sample, this sample
1581
                       is for the other channel.  */
1582
                    samples += st;
1583
                }
1584
            }
1585
        }
1586

    
1587
        /* In the previous loop, in case stereo is used, samples is
1588
           increased exactly one time too often.  */
1589
        samples -= st;
1590
        break;
1591
    }
1592

    
1593
    default:
1594
        return -1;
1595
    }
1596
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1597
    return src - buf;
1598
}
1599

    
1600

    
1601

    
1602
#ifdef CONFIG_ENCODERS
1603
#define ADPCM_ENCODER(id,name)                  \
1604
AVCodec name ## _encoder = {                    \
1605
    #name,                                      \
1606
    CODEC_TYPE_AUDIO,                           \
1607
    id,                                         \
1608
    sizeof(ADPCMContext),                       \
1609
    adpcm_encode_init,                          \
1610
    adpcm_encode_frame,                         \
1611
    adpcm_encode_close,                         \
1612
    NULL,                                       \
1613
};
1614
#else
1615
#define ADPCM_ENCODER(id,name)
1616
#endif
1617

    
1618
#ifdef CONFIG_DECODERS
1619
#define ADPCM_DECODER(id,name)                  \
1620
AVCodec name ## _decoder = {                    \
1621
    #name,                                      \
1622
    CODEC_TYPE_AUDIO,                           \
1623
    id,                                         \
1624
    sizeof(ADPCMContext),                       \
1625
    adpcm_decode_init,                          \
1626
    NULL,                                       \
1627
    NULL,                                       \
1628
    adpcm_decode_frame,                         \
1629
};
1630
#else
1631
#define ADPCM_DECODER(id,name)
1632
#endif
1633

    
1634
#define ADPCM_CODEC(id, name)                   \
1635
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1636

    
1637
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1638
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct);
1639
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea);
1640
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa);
1641
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1);
1642
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2);
1643
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3);
1644
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas);
1645
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv);
1646
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1647
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1648
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs);
1649
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead);
1650
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1651
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1652
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1653
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1654
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms);
1655
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1656
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1657
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1658
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf);
1659
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp);
1660
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa);
1661
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);