Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 89150098

History | View | Annotate | Download (61.1 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23
#include "bytestream.h"
24

    
25
/**
26
 * @file adpcm.c
27
 * ADPCM codecs.
28
 * First version by Francois Revol (revol@free.fr)
29
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30
 *   by Mike Melanson (melanson@pcisys.net)
31
 * CD-ROM XA ADPCM codec by BERO
32
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
39
 *
40
 * Features and limitations:
41
 *
42
 * Reference documents:
43
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45
 * http://openquicktime.sourceforge.net/plugins.htm
46
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
49
 *
50
 * CD-ROM XA:
51
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53
 * readstr http://www.geocities.co.jp/Playtown/2004/
54
 */
55

    
56
#define BLKSIZE 1024
57

    
58
/* step_table[] and index_table[] are from the ADPCM reference source */
59
/* This is the index table: */
60
static const int index_table[16] = {
61
    -1, -1, -1, -1, 2, 4, 6, 8,
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
};
64

    
65
/**
66
 * This is the step table. Note that many programs use slight deviations from
67
 * this table, but such deviations are negligible:
68
 */
69
static const int step_table[89] = {
70
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
79
};
80

    
81
/* These are for MS-ADPCM */
82
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83
static const int AdaptationTable[] = {
84
        230, 230, 230, 230, 307, 409, 512, 614,
85
        768, 614, 512, 409, 307, 230, 230, 230
86
};
87

    
88
static const uint8_t AdaptCoeff1[] = {
89
        64, 128, 0, 48, 60, 115, 98
90
};
91

    
92
static const int8_t AdaptCoeff2[] = {
93
        0, -64, 0, 16, 0, -52, -58
94
};
95

    
96
/* These are for CD-ROM XA ADPCM */
97
static const int xa_adpcm_table[5][2] = {
98
   {   0,   0 },
99
   {  60,   0 },
100
   { 115, -52 },
101
   {  98, -55 },
102
   { 122, -60 }
103
};
104

    
105
static const int ea_adpcm_table[] = {
106
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
108
};
109

    
110
// padded to zero where table size is less then 16
111
static const int swf_index_tables[4][16] = {
112
    /*2*/ { -1, 2 },
113
    /*3*/ { -1, -1, 2, 4 },
114
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
115
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
116
};
117

    
118
static const int yamaha_indexscale[] = {
119
    230, 230, 230, 230, 307, 409, 512, 614,
120
    230, 230, 230, 230, 307, 409, 512, 614
121
};
122

    
123
static const int yamaha_difflookup[] = {
124
    1, 3, 5, 7, 9, 11, 13, 15,
125
    -1, -3, -5, -7, -9, -11, -13, -15
126
};
127

    
128
/* end of tables */
129

    
130
typedef struct ADPCMChannelStatus {
131
    int predictor;
132
    short int step_index;
133
    int step;
134
    /* for encoding */
135
    int prev_sample;
136

    
137
    /* MS version */
138
    short sample1;
139
    short sample2;
140
    int coeff1;
141
    int coeff2;
142
    int idelta;
143
} ADPCMChannelStatus;
144

    
145
typedef struct ADPCMContext {
146
    ADPCMChannelStatus status[6];
147
} ADPCMContext;
148

    
149
/* XXX: implement encoding */
150

    
151
#if CONFIG_ENCODERS
152
static int adpcm_encode_init(AVCodecContext *avctx)
153
{
154
    if (avctx->channels > 2)
155
        return -1; /* only stereo or mono =) */
156

    
157
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
158
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
159
        return -1;
160
    }
161

    
162
    switch(avctx->codec->id) {
163
    case CODEC_ID_ADPCM_IMA_WAV:
164
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
165
                                                             /* and we have 4 bytes per channel overhead */
166
        avctx->block_align = BLKSIZE;
167
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
168
        break;
169
    case CODEC_ID_ADPCM_IMA_QT:
170
        avctx->frame_size = 64;
171
        avctx->block_align = 34 * avctx->channels;
172
        break;
173
    case CODEC_ID_ADPCM_MS:
174
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
175
                                                             /* and we have 7 bytes per channel overhead */
176
        avctx->block_align = BLKSIZE;
177
        break;
178
    case CODEC_ID_ADPCM_YAMAHA:
179
        avctx->frame_size = BLKSIZE * avctx->channels;
180
        avctx->block_align = BLKSIZE;
181
        break;
182
    case CODEC_ID_ADPCM_SWF:
183
        if (avctx->sample_rate != 11025 &&
184
            avctx->sample_rate != 22050 &&
185
            avctx->sample_rate != 44100) {
186
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
187
            return -1;
188
        }
189
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
190
        break;
191
    default:
192
        return -1;
193
        break;
194
    }
195

    
196
    avctx->coded_frame= avcodec_alloc_frame();
197
    avctx->coded_frame->key_frame= 1;
198

    
199
    return 0;
200
}
201

    
202
static int adpcm_encode_close(AVCodecContext *avctx)
203
{
204
    av_freep(&avctx->coded_frame);
205

    
206
    return 0;
207
}
208

    
209

    
210
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
211
{
212
    int delta = sample - c->prev_sample;
213
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
214
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
215
    c->prev_sample = av_clip_int16(c->prev_sample);
216
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
217
    return nibble;
218
}
219

    
220
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
221
{
222
    int predictor, nibble, bias;
223

    
224
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
225

    
226
    nibble= sample - predictor;
227
    if(nibble>=0) bias= c->idelta/2;
228
    else          bias=-c->idelta/2;
229

    
230
    nibble= (nibble + bias) / c->idelta;
231
    nibble= av_clip(nibble, -8, 7)&0x0F;
232

    
233
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
234

    
235
    c->sample2 = c->sample1;
236
    c->sample1 = av_clip_int16(predictor);
237

    
238
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
239
    if (c->idelta < 16) c->idelta = 16;
240

    
241
    return nibble;
242
}
243

    
244
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
245
{
246
    int nibble, delta;
247

    
248
    if(!c->step) {
249
        c->predictor = 0;
250
        c->step = 127;
251
    }
252

    
253
    delta = sample - c->predictor;
254

    
255
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
256

    
257
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
258
    c->predictor = av_clip_int16(c->predictor);
259
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
260
    c->step = av_clip(c->step, 127, 24567);
261

    
262
    return nibble;
263
}
264

    
265
typedef struct TrellisPath {
266
    int nibble;
267
    int prev;
268
} TrellisPath;
269

    
270
typedef struct TrellisNode {
271
    uint32_t ssd;
272
    int path;
273
    int sample1;
274
    int sample2;
275
    int step;
276
} TrellisNode;
277

    
278
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
279
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
280
{
281
#define FREEZE_INTERVAL 128
282
    //FIXME 6% faster if frontier is a compile-time constant
283
    const int frontier = 1 << avctx->trellis;
284
    const int stride = avctx->channels;
285
    const int version = avctx->codec->id;
286
    const int max_paths = frontier*FREEZE_INTERVAL;
287
    TrellisPath paths[max_paths], *p;
288
    TrellisNode node_buf[2][frontier];
289
    TrellisNode *nodep_buf[2][frontier];
290
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
291
    TrellisNode **nodes_next = nodep_buf[1];
292
    int pathn = 0, froze = -1, i, j, k;
293

    
294
    assert(!(max_paths&(max_paths-1)));
295

    
296
    memset(nodep_buf, 0, sizeof(nodep_buf));
297
    nodes[0] = &node_buf[1][0];
298
    nodes[0]->ssd = 0;
299
    nodes[0]->path = 0;
300
    nodes[0]->step = c->step_index;
301
    nodes[0]->sample1 = c->sample1;
302
    nodes[0]->sample2 = c->sample2;
303
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
304
        nodes[0]->sample1 = c->prev_sample;
305
    if(version == CODEC_ID_ADPCM_MS)
306
        nodes[0]->step = c->idelta;
307
    if(version == CODEC_ID_ADPCM_YAMAHA) {
308
        if(c->step == 0) {
309
            nodes[0]->step = 127;
310
            nodes[0]->sample1 = 0;
311
        } else {
312
            nodes[0]->step = c->step;
313
            nodes[0]->sample1 = c->predictor;
314
        }
315
    }
316

    
317
    for(i=0; i<n; i++) {
318
        TrellisNode *t = node_buf[i&1];
319
        TrellisNode **u;
320
        int sample = samples[i*stride];
321
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
322
        for(j=0; j<frontier && nodes[j]; j++) {
323
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
324
            const int range = (j < frontier/2) ? 1 : 0;
325
            const int step = nodes[j]->step;
326
            int nidx;
327
            if(version == CODEC_ID_ADPCM_MS) {
328
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
329
                const int div = (sample - predictor) / step;
330
                const int nmin = av_clip(div-range, -8, 6);
331
                const int nmax = av_clip(div+range, -7, 7);
332
                for(nidx=nmin; nidx<=nmax; nidx++) {
333
                    const int nibble = nidx & 0xf;
334
                    int dec_sample = predictor + nidx * step;
335
#define STORE_NODE(NAME, STEP_INDEX)\
336
                    int d;\
337
                    uint32_t ssd;\
338
                    dec_sample = av_clip_int16(dec_sample);\
339
                    d = sample - dec_sample;\
340
                    ssd = nodes[j]->ssd + d*d;\
341
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
342
                        continue;\
343
                    /* Collapse any two states with the same previous sample value. \
344
                     * One could also distinguish states by step and by 2nd to last
345
                     * sample, but the effects of that are negligible. */\
346
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
347
                        if(dec_sample == nodes_next[k]->sample1) {\
348
                            assert(ssd >= nodes_next[k]->ssd);\
349
                            goto next_##NAME;\
350
                        }\
351
                    }\
352
                    for(k=0; k<frontier; k++) {\
353
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
354
                            TrellisNode *u = nodes_next[frontier-1];\
355
                            if(!u) {\
356
                                assert(pathn < max_paths);\
357
                                u = t++;\
358
                                u->path = pathn++;\
359
                            }\
360
                            u->ssd = ssd;\
361
                            u->step = STEP_INDEX;\
362
                            u->sample2 = nodes[j]->sample1;\
363
                            u->sample1 = dec_sample;\
364
                            paths[u->path].nibble = nibble;\
365
                            paths[u->path].prev = nodes[j]->path;\
366
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
367
                            nodes_next[k] = u;\
368
                            break;\
369
                        }\
370
                    }\
371
                    next_##NAME:;
372
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
373
                }
374
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
375
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
376
                const int predictor = nodes[j]->sample1;\
377
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
378
                int nmin = av_clip(div-range, -7, 6);\
379
                int nmax = av_clip(div+range, -6, 7);\
380
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
381
                if(nmax<0) nmax--;\
382
                for(nidx=nmin; nidx<=nmax; nidx++) {\
383
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
384
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
385
                    STORE_NODE(NAME, STEP_INDEX);\
386
                }
387
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
388
            } else { //CODEC_ID_ADPCM_YAMAHA
389
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
390
#undef LOOP_NODES
391
#undef STORE_NODE
392
            }
393
        }
394

    
395
        u = nodes;
396
        nodes = nodes_next;
397
        nodes_next = u;
398

    
399
        // prevent overflow
400
        if(nodes[0]->ssd > (1<<28)) {
401
            for(j=1; j<frontier && nodes[j]; j++)
402
                nodes[j]->ssd -= nodes[0]->ssd;
403
            nodes[0]->ssd = 0;
404
        }
405

    
406
        // merge old paths to save memory
407
        if(i == froze + FREEZE_INTERVAL) {
408
            p = &paths[nodes[0]->path];
409
            for(k=i; k>froze; k--) {
410
                dst[k] = p->nibble;
411
                p = &paths[p->prev];
412
            }
413
            froze = i;
414
            pathn = 0;
415
            // other nodes might use paths that don't coincide with the frozen one.
416
            // checking which nodes do so is too slow, so just kill them all.
417
            // this also slightly improves quality, but I don't know why.
418
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
419
        }
420
    }
421

    
422
    p = &paths[nodes[0]->path];
423
    for(i=n-1; i>froze; i--) {
424
        dst[i] = p->nibble;
425
        p = &paths[p->prev];
426
    }
427

    
428
    c->predictor = nodes[0]->sample1;
429
    c->sample1 = nodes[0]->sample1;
430
    c->sample2 = nodes[0]->sample2;
431
    c->step_index = nodes[0]->step;
432
    c->step = nodes[0]->step;
433
    c->idelta = nodes[0]->step;
434
}
435

    
436
static int adpcm_encode_frame(AVCodecContext *avctx,
437
                            unsigned char *frame, int buf_size, void *data)
438
{
439
    int n, i, st;
440
    short *samples;
441
    unsigned char *dst;
442
    ADPCMContext *c = avctx->priv_data;
443

    
444
    dst = frame;
445
    samples = (short *)data;
446
    st= avctx->channels == 2;
447
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
448

    
449
    switch(avctx->codec->id) {
450
    case CODEC_ID_ADPCM_IMA_WAV:
451
        n = avctx->frame_size / 8;
452
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
453
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
454
            bytestream_put_le16(&dst, c->status[0].prev_sample);
455
            *dst++ = (unsigned char)c->status[0].step_index;
456
            *dst++ = 0; /* unknown */
457
            samples++;
458
            if (avctx->channels == 2) {
459
                c->status[1].prev_sample = (signed short)samples[0];
460
/*                c->status[1].step_index = 0; */
461
                bytestream_put_le16(&dst, c->status[1].prev_sample);
462
                *dst++ = (unsigned char)c->status[1].step_index;
463
                *dst++ = 0;
464
                samples++;
465
            }
466

    
467
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
468
            if(avctx->trellis > 0) {
469
                uint8_t buf[2][n*8];
470
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
471
                if(avctx->channels == 2)
472
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
473
                for(i=0; i<n; i++) {
474
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
475
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
476
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
477
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
478
                    if (avctx->channels == 2) {
479
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
480
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
481
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
482
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
483
                    }
484
                }
485
            } else
486
            for (; n>0; n--) {
487
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
488
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
489
                dst++;
490
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
491
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
492
                dst++;
493
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
494
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
495
                dst++;
496
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
497
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
498
                dst++;
499
                /* right channel */
500
                if (avctx->channels == 2) {
501
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
502
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
503
                    dst++;
504
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
505
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
506
                    dst++;
507
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
508
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
509
                    dst++;
510
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
511
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
512
                    dst++;
513
                }
514
                samples += 8 * avctx->channels;
515
            }
516
        break;
517
    case CODEC_ID_ADPCM_IMA_QT:
518
    {
519
        int ch, i;
520
        PutBitContext pb;
521
        init_put_bits(&pb, dst, buf_size*8);
522

    
523
        for(ch=0; ch<avctx->channels; ch++){
524
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
525
            put_bits(&pb, 7, c->status[ch].step_index);
526
            if(avctx->trellis > 0) {
527
                uint8_t buf[64];
528
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
529
                for(i=0; i<64; i++)
530
                    put_bits(&pb, 4, buf[i^1]);
531
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
532
            } else {
533
                for (i=0; i<64; i+=2){
534
                    int t1, t2;
535
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
536
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
537
                    put_bits(&pb, 4, t2);
538
                    put_bits(&pb, 4, t1);
539
                }
540
                c->status[ch].prev_sample &= ~0x7F;
541
            }
542
        }
543

    
544
        dst += put_bits_count(&pb)>>3;
545
        break;
546
    }
547
    case CODEC_ID_ADPCM_SWF:
548
    {
549
        int i;
550
        PutBitContext pb;
551
        init_put_bits(&pb, dst, buf_size*8);
552

    
553
        n = avctx->frame_size-1;
554

    
555
        //Store AdpcmCodeSize
556
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
557

    
558
        //Init the encoder state
559
        for(i=0; i<avctx->channels; i++){
560
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
561
            put_sbits(&pb, 16, samples[i]);
562
            put_bits(&pb, 6, c->status[i].step_index);
563
            c->status[i].prev_sample = (signed short)samples[i];
564
        }
565

    
566
        if(avctx->trellis > 0) {
567
            uint8_t buf[2][n];
568
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
569
            if (avctx->channels == 2)
570
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
571
            for(i=0; i<n; i++) {
572
                put_bits(&pb, 4, buf[0][i]);
573
                if (avctx->channels == 2)
574
                    put_bits(&pb, 4, buf[1][i]);
575
            }
576
        } else {
577
            for (i=1; i<avctx->frame_size; i++) {
578
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
579
                if (avctx->channels == 2)
580
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
581
            }
582
        }
583
        flush_put_bits(&pb);
584
        dst += put_bits_count(&pb)>>3;
585
        break;
586
    }
587
    case CODEC_ID_ADPCM_MS:
588
        for(i=0; i<avctx->channels; i++){
589
            int predictor=0;
590

    
591
            *dst++ = predictor;
592
            c->status[i].coeff1 = AdaptCoeff1[predictor];
593
            c->status[i].coeff2 = AdaptCoeff2[predictor];
594
        }
595
        for(i=0; i<avctx->channels; i++){
596
            if (c->status[i].idelta < 16)
597
                c->status[i].idelta = 16;
598

    
599
            bytestream_put_le16(&dst, c->status[i].idelta);
600
        }
601
        for(i=0; i<avctx->channels; i++){
602
            c->status[i].sample2= *samples++;
603
        }
604
        for(i=0; i<avctx->channels; i++){
605
            c->status[i].sample1= *samples++;
606

    
607
            bytestream_put_le16(&dst, c->status[i].sample1);
608
        }
609
        for(i=0; i<avctx->channels; i++)
610
            bytestream_put_le16(&dst, c->status[i].sample2);
611

    
612
        if(avctx->trellis > 0) {
613
            int n = avctx->block_align - 7*avctx->channels;
614
            uint8_t buf[2][n];
615
            if(avctx->channels == 1) {
616
                n *= 2;
617
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
618
                for(i=0; i<n; i+=2)
619
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
620
            } else {
621
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
622
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
623
                for(i=0; i<n; i++)
624
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
625
            }
626
        } else
627
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
628
            int nibble;
629
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
630
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
631
            *dst++ = nibble;
632
        }
633
        break;
634
    case CODEC_ID_ADPCM_YAMAHA:
635
        n = avctx->frame_size / 2;
636
        if(avctx->trellis > 0) {
637
            uint8_t buf[2][n*2];
638
            n *= 2;
639
            if(avctx->channels == 1) {
640
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
641
                for(i=0; i<n; i+=2)
642
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
643
            } else {
644
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
645
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
646
                for(i=0; i<n; i++)
647
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
648
            }
649
        } else
650
        for (; n>0; n--) {
651
            for(i = 0; i < avctx->channels; i++) {
652
                int nibble;
653
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
654
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
655
                *dst++ = nibble;
656
            }
657
            samples += 2 * avctx->channels;
658
        }
659
        break;
660
    default:
661
        return -1;
662
    }
663
    return dst - frame;
664
}
665
#endif //CONFIG_ENCODERS
666

    
667
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
668
{
669
    ADPCMContext *c = avctx->priv_data;
670
    unsigned int max_channels = 2;
671

    
672
    switch(avctx->codec->id) {
673
    case CODEC_ID_ADPCM_EA_R1:
674
    case CODEC_ID_ADPCM_EA_R2:
675
    case CODEC_ID_ADPCM_EA_R3:
676
        max_channels = 6;
677
        break;
678
    }
679
    if(avctx->channels > max_channels){
680
        return -1;
681
    }
682

    
683
    switch(avctx->codec->id) {
684
    case CODEC_ID_ADPCM_CT:
685
        c->status[0].step = c->status[1].step = 511;
686
        break;
687
    case CODEC_ID_ADPCM_IMA_WS:
688
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
689
            c->status[0].predictor = AV_RL32(avctx->extradata);
690
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
691
        }
692
        break;
693
    default:
694
        break;
695
    }
696
    avctx->sample_fmt = SAMPLE_FMT_S16;
697
    return 0;
698
}
699

    
700
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
701
{
702
    int step_index;
703
    int predictor;
704
    int sign, delta, diff, step;
705

    
706
    step = step_table[c->step_index];
707
    step_index = c->step_index + index_table[(unsigned)nibble];
708
    if (step_index < 0) step_index = 0;
709
    else if (step_index > 88) step_index = 88;
710

    
711
    sign = nibble & 8;
712
    delta = nibble & 7;
713
    /* perform direct multiplication instead of series of jumps proposed by
714
     * the reference ADPCM implementation since modern CPUs can do the mults
715
     * quickly enough */
716
    diff = ((2 * delta + 1) * step) >> shift;
717
    predictor = c->predictor;
718
    if (sign) predictor -= diff;
719
    else predictor += diff;
720

    
721
    c->predictor = av_clip_int16(predictor);
722
    c->step_index = step_index;
723

    
724
    return (short)c->predictor;
725
}
726

    
727
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
728
{
729
    int predictor;
730

    
731
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
732
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
733

    
734
    c->sample2 = c->sample1;
735
    c->sample1 = av_clip_int16(predictor);
736
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
737
    if (c->idelta < 16) c->idelta = 16;
738

    
739
    return c->sample1;
740
}
741

    
742
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
743
{
744
    int sign, delta, diff;
745
    int new_step;
746

    
747
    sign = nibble & 8;
748
    delta = nibble & 7;
749
    /* perform direct multiplication instead of series of jumps proposed by
750
     * the reference ADPCM implementation since modern CPUs can do the mults
751
     * quickly enough */
752
    diff = ((2 * delta + 1) * c->step) >> 3;
753
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
754
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
755
    c->predictor = av_clip_int16(c->predictor);
756
    /* calculate new step and clamp it to range 511..32767 */
757
    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
758
    c->step = av_clip(new_step, 511, 32767);
759

    
760
    return (short)c->predictor;
761
}
762

    
763
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
764
{
765
    int sign, delta, diff;
766

    
767
    sign = nibble & (1<<(size-1));
768
    delta = nibble & ((1<<(size-1))-1);
769
    diff = delta << (7 + c->step + shift);
770

    
771
    /* clamp result */
772
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
773

    
774
    /* calculate new step */
775
    if (delta >= (2*size - 3) && c->step < 3)
776
        c->step++;
777
    else if (delta == 0 && c->step > 0)
778
        c->step--;
779

    
780
    return (short) c->predictor;
781
}
782

    
783
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
784
{
785
    if(!c->step) {
786
        c->predictor = 0;
787
        c->step = 127;
788
    }
789

    
790
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
791
    c->predictor = av_clip_int16(c->predictor);
792
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
793
    c->step = av_clip(c->step, 127, 24567);
794
    return c->predictor;
795
}
796

    
797
static void xa_decode(short *out, const unsigned char *in,
798
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
799
{
800
    int i, j;
801
    int shift,filter,f0,f1;
802
    int s_1,s_2;
803
    int d,s,t;
804

    
805
    for(i=0;i<4;i++) {
806

    
807
        shift  = 12 - (in[4+i*2] & 15);
808
        filter = in[4+i*2] >> 4;
809
        f0 = xa_adpcm_table[filter][0];
810
        f1 = xa_adpcm_table[filter][1];
811

    
812
        s_1 = left->sample1;
813
        s_2 = left->sample2;
814

    
815
        for(j=0;j<28;j++) {
816
            d = in[16+i+j*4];
817

    
818
            t = (signed char)(d<<4)>>4;
819
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
820
            s_2 = s_1;
821
            s_1 = av_clip_int16(s);
822
            *out = s_1;
823
            out += inc;
824
        }
825

    
826
        if (inc==2) { /* stereo */
827
            left->sample1 = s_1;
828
            left->sample2 = s_2;
829
            s_1 = right->sample1;
830
            s_2 = right->sample2;
831
            out = out + 1 - 28*2;
832
        }
833

    
834
        shift  = 12 - (in[5+i*2] & 15);
835
        filter = in[5+i*2] >> 4;
836

    
837
        f0 = xa_adpcm_table[filter][0];
838
        f1 = xa_adpcm_table[filter][1];
839

    
840
        for(j=0;j<28;j++) {
841
            d = in[16+i+j*4];
842

    
843
            t = (signed char)d >> 4;
844
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
845
            s_2 = s_1;
846
            s_1 = av_clip_int16(s);
847
            *out = s_1;
848
            out += inc;
849
        }
850

    
851
        if (inc==2) { /* stereo */
852
            right->sample1 = s_1;
853
            right->sample2 = s_2;
854
            out -= 1;
855
        } else {
856
            left->sample1 = s_1;
857
            left->sample2 = s_2;
858
        }
859
    }
860
}
861

    
862

    
863
/* DK3 ADPCM support macro */
864
#define DK3_GET_NEXT_NIBBLE() \
865
    if (decode_top_nibble_next) \
866
    { \
867
        nibble = last_byte >> 4; \
868
        decode_top_nibble_next = 0; \
869
    } \
870
    else \
871
    { \
872
        last_byte = *src++; \
873
        if (src >= buf + buf_size) break; \
874
        nibble = last_byte & 0x0F; \
875
        decode_top_nibble_next = 1; \
876
    }
877

    
878
static int adpcm_decode_frame(AVCodecContext *avctx,
879
                            void *data, int *data_size,
880
                            const uint8_t *buf, int buf_size)
881
{
882
    ADPCMContext *c = avctx->priv_data;
883
    ADPCMChannelStatus *cs;
884
    int n, m, channel, i;
885
    int block_predictor[2];
886
    short *samples;
887
    short *samples_end;
888
    const uint8_t *src;
889
    int st; /* stereo */
890

    
891
    /* DK3 ADPCM accounting variables */
892
    unsigned char last_byte = 0;
893
    unsigned char nibble;
894
    int decode_top_nibble_next = 0;
895
    int diff_channel;
896

    
897
    /* EA ADPCM state variables */
898
    uint32_t samples_in_chunk;
899
    int32_t previous_left_sample, previous_right_sample;
900
    int32_t current_left_sample, current_right_sample;
901
    int32_t next_left_sample, next_right_sample;
902
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
903
    uint8_t shift_left, shift_right;
904
    int count1, count2;
905
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
906

    
907
    if (!buf_size)
908
        return 0;
909

    
910
    //should protect all 4bit ADPCM variants
911
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
912
    //
913
    if(*data_size/4 < buf_size + 8)
914
        return -1;
915

    
916
    samples = data;
917
    samples_end= samples + *data_size/2;
918
    *data_size= 0;
919
    src = buf;
920

    
921
    st = avctx->channels == 2 ? 1 : 0;
922

    
923
    switch(avctx->codec->id) {
924
    case CODEC_ID_ADPCM_IMA_QT:
925
        n = buf_size - 2*avctx->channels;
926
        for (channel = 0; channel < avctx->channels; channel++) {
927
            cs = &(c->status[channel]);
928
            /* (pppppp) (piiiiiii) */
929

    
930
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
931
            cs->predictor = (*src++) << 8;
932
            cs->predictor |= (*src & 0x80);
933
            cs->predictor &= 0xFF80;
934

    
935
            /* sign extension */
936
            if(cs->predictor & 0x8000)
937
                cs->predictor -= 0x10000;
938

    
939
            cs->predictor = av_clip_int16(cs->predictor);
940

    
941
            cs->step_index = (*src++) & 0x7F;
942

    
943
            if (cs->step_index > 88){
944
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
945
                cs->step_index = 88;
946
            }
947

    
948
            cs->step = step_table[cs->step_index];
949

    
950
            samples = (short*)data + channel;
951

    
952
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
953
                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
954
                samples += avctx->channels;
955
                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
956
                samples += avctx->channels;
957
                src ++;
958
            }
959
        }
960
        if (st)
961
            samples--;
962
        break;
963
    case CODEC_ID_ADPCM_IMA_WAV:
964
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
965
            buf_size = avctx->block_align;
966

    
967
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
968

    
969
        for(i=0; i<avctx->channels; i++){
970
            cs = &(c->status[i]);
971
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
972

    
973
            cs->step_index = *src++;
974
            if (cs->step_index > 88){
975
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
976
                cs->step_index = 88;
977
            }
978
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
979
        }
980

    
981
        while(src < buf + buf_size){
982
            for(m=0; m<4; m++){
983
                for(i=0; i<=st; i++)
984
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
985
                for(i=0; i<=st; i++)
986
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
987
                src++;
988
            }
989
            src += 4*st;
990
        }
991
        break;
992
    case CODEC_ID_ADPCM_4XM:
993
        cs = &(c->status[0]);
994
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
995
        if(st){
996
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
997
        }
998
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
999
        if(st){
1000
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1001
        }
1002
        if (cs->step_index < 0) cs->step_index = 0;
1003
        if (cs->step_index > 88) cs->step_index = 88;
1004

    
1005
        m= (buf_size - (src - buf))>>st;
1006
        for(i=0; i<m; i++) {
1007
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1008
            if (st)
1009
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1010
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1011
            if (st)
1012
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1013
        }
1014

    
1015
        src += m<<st;
1016

    
1017
        break;
1018
    case CODEC_ID_ADPCM_MS:
1019
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1020
            buf_size = avctx->block_align;
1021
        n = buf_size - 7 * avctx->channels;
1022
        if (n < 0)
1023
            return -1;
1024
        block_predictor[0] = av_clip(*src++, 0, 6);
1025
        block_predictor[1] = 0;
1026
        if (st)
1027
            block_predictor[1] = av_clip(*src++, 0, 6);
1028
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1029
        if (st){
1030
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1031
        }
1032
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1033
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1034
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1035
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1036

    
1037
        c->status[0].sample1 = bytestream_get_le16(&src);
1038
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1039
        c->status[0].sample2 = bytestream_get_le16(&src);
1040
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1041

    
1042
        *samples++ = c->status[0].sample2;
1043
        if (st) *samples++ = c->status[1].sample2;
1044
        *samples++ = c->status[0].sample1;
1045
        if (st) *samples++ = c->status[1].sample1;
1046
        for(;n>0;n--) {
1047
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1048
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1049
            src ++;
1050
        }
1051
        break;
1052
    case CODEC_ID_ADPCM_IMA_DK4:
1053
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1054
            buf_size = avctx->block_align;
1055

    
1056
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1057
        c->status[0].step_index = *src++;
1058
        src++;
1059
        *samples++ = c->status[0].predictor;
1060
        if (st) {
1061
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1062
            c->status[1].step_index = *src++;
1063
            src++;
1064
            *samples++ = c->status[1].predictor;
1065
        }
1066
        while (src < buf + buf_size) {
1067

    
1068
            /* take care of the top nibble (always left or mono channel) */
1069
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1070
                src[0] >> 4, 3);
1071

    
1072
            /* take care of the bottom nibble, which is right sample for
1073
             * stereo, or another mono sample */
1074
            if (st)
1075
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1076
                    src[0] & 0x0F, 3);
1077
            else
1078
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1079
                    src[0] & 0x0F, 3);
1080

    
1081
            src++;
1082
        }
1083
        break;
1084
    case CODEC_ID_ADPCM_IMA_DK3:
1085
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1086
            buf_size = avctx->block_align;
1087

    
1088
        if(buf_size + 16 > (samples_end - samples)*3/8)
1089
            return -1;
1090

    
1091
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1092
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1093
        c->status[0].step_index = src[14];
1094
        c->status[1].step_index = src[15];
1095
        /* sign extend the predictors */
1096
        src += 16;
1097
        diff_channel = c->status[1].predictor;
1098

    
1099
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1100
         * the buffer is consumed */
1101
        while (1) {
1102

    
1103
            /* for this algorithm, c->status[0] is the sum channel and
1104
             * c->status[1] is the diff channel */
1105

    
1106
            /* process the first predictor of the sum channel */
1107
            DK3_GET_NEXT_NIBBLE();
1108
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1109

    
1110
            /* process the diff channel predictor */
1111
            DK3_GET_NEXT_NIBBLE();
1112
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1113

    
1114
            /* process the first pair of stereo PCM samples */
1115
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1116
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1117
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1118

    
1119
            /* process the second predictor of the sum channel */
1120
            DK3_GET_NEXT_NIBBLE();
1121
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1122

    
1123
            /* process the second pair of stereo PCM samples */
1124
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1125
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1126
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1127
        }
1128
        break;
1129
    case CODEC_ID_ADPCM_IMA_ISS:
1130
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1131
        c->status[0].step_index = src[2];
1132
        src += 4;
1133
        if(st) {
1134
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1135
            c->status[1].step_index = src[2];
1136
            src += 4;
1137
        }
1138

    
1139
        while (src < buf + buf_size) {
1140

    
1141
            if (st) {
1142
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1143
                    src[0] >> 4  , 3);
1144
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1145
                    src[0] & 0x0F, 3);
1146
            } else {
1147
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1148
                    src[0] & 0x0F, 3);
1149
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1150
                    src[0] >> 4  , 3);
1151
            }
1152

    
1153
            src++;
1154
        }
1155
        break;
1156
    case CODEC_ID_ADPCM_IMA_WS:
1157
        /* no per-block initialization; just start decoding the data */
1158
        while (src < buf + buf_size) {
1159

    
1160
            if (st) {
1161
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1162
                    src[0] >> 4  , 3);
1163
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1164
                    src[0] & 0x0F, 3);
1165
            } else {
1166
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1167
                    src[0] >> 4  , 3);
1168
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1169
                    src[0] & 0x0F, 3);
1170
            }
1171

    
1172
            src++;
1173
        }
1174
        break;
1175
    case CODEC_ID_ADPCM_XA:
1176
        while (buf_size >= 128) {
1177
            xa_decode(samples, src, &c->status[0], &c->status[1],
1178
                avctx->channels);
1179
            src += 128;
1180
            samples += 28 * 8;
1181
            buf_size -= 128;
1182
        }
1183
        break;
1184
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1185
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1186

    
1187
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1188
            src += buf_size - 4;
1189
            break;
1190
        }
1191

    
1192
        for (i=0; i<=st; i++)
1193
            c->status[i].step_index = bytestream_get_le32(&src);
1194
        for (i=0; i<=st; i++)
1195
            c->status[i].predictor  = bytestream_get_le32(&src);
1196

    
1197
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1198
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1199
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1200
        }
1201
        break;
1202
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1203
        for (; src < buf+buf_size; src++) {
1204
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1205
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1206
        }
1207
        break;
1208
    case CODEC_ID_ADPCM_EA:
1209
        samples_in_chunk = AV_RL32(src);
1210
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1211
            src += buf_size;
1212
            break;
1213
        }
1214
        src += 4;
1215
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1216
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1217
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1218
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1219

    
1220
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1221
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1222
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1223
            coeff1r = ea_adpcm_table[*src & 0x0F];
1224
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1225
            src++;
1226

    
1227
            shift_left  = (*src >> 4  ) + 8;
1228
            shift_right = (*src & 0x0F) + 8;
1229
            src++;
1230

    
1231
            for (count2 = 0; count2 < 28; count2++) {
1232
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1233
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1234
                src++;
1235

    
1236
                next_left_sample = (next_left_sample +
1237
                    (current_left_sample * coeff1l) +
1238
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1239
                next_right_sample = (next_right_sample +
1240
                    (current_right_sample * coeff1r) +
1241
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1242

    
1243
                previous_left_sample = current_left_sample;
1244
                current_left_sample = av_clip_int16(next_left_sample);
1245
                previous_right_sample = current_right_sample;
1246
                current_right_sample = av_clip_int16(next_right_sample);
1247
                *samples++ = (unsigned short)current_left_sample;
1248
                *samples++ = (unsigned short)current_right_sample;
1249
            }
1250
        }
1251
        break;
1252
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1253
        for(channel = 0; channel < avctx->channels; channel++) {
1254
            for (i=0; i<2; i++)
1255
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1256
            shift[channel] = (*src & 0x0F) + 8;
1257
            src++;
1258
        }
1259
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1260
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1261
                for(channel = 0; channel < avctx->channels; channel++) {
1262
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1263
                    sample = (sample +
1264
                             c->status[channel].sample1 * coeff[channel][0] +
1265
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1266
                    c->status[channel].sample2 = c->status[channel].sample1;
1267
                    c->status[channel].sample1 = av_clip_int16(sample);
1268
                    *samples++ = c->status[channel].sample1;
1269
                }
1270
            }
1271
            src+=avctx->channels;
1272
        }
1273
        break;
1274
    case CODEC_ID_ADPCM_EA_R1:
1275
    case CODEC_ID_ADPCM_EA_R2:
1276
    case CODEC_ID_ADPCM_EA_R3: {
1277
        /* channel numbering
1278
           2chan: 0=fl, 1=fr
1279
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1280
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1281
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1282
        int32_t previous_sample, current_sample, next_sample;
1283
        int32_t coeff1, coeff2;
1284
        uint8_t shift;
1285
        unsigned int channel;
1286
        uint16_t *samplesC;
1287
        const uint8_t *srcC;
1288

    
1289
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1290
                                       : bytestream_get_le32(&src)) / 28;
1291
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1292
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1293
            src += buf_size - 4;
1294
            break;
1295
        }
1296

    
1297
        for (channel=0; channel<avctx->channels; channel++) {
1298
            srcC  = src + (avctx->channels-channel) * 4;
1299
            srcC += (big_endian ? bytestream_get_be32(&src)
1300
                                : bytestream_get_le32(&src));
1301
            samplesC = samples + channel;
1302

    
1303
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1304
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1305
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1306
            } else {
1307
                current_sample  = c->status[channel].predictor;
1308
                previous_sample = c->status[channel].prev_sample;
1309
            }
1310

    
1311
            for (count1=0; count1<samples_in_chunk; count1++) {
1312
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1313
                    srcC++;
1314
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1315
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1316

    
1317
                    for (count2=0; count2<28; count2++) {
1318
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1319
                        samplesC += avctx->channels;
1320
                    }
1321
                } else {
1322
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1323
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1324
                    shift = (*srcC++ & 0x0F) + 8;
1325

    
1326
                    for (count2=0; count2<28; count2++) {
1327
                        if (count2 & 1)
1328
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1329
                        else
1330
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1331

    
1332
                        next_sample += (current_sample  * coeff1) +
1333
                                       (previous_sample * coeff2);
1334
                        next_sample = av_clip_int16(next_sample >> 8);
1335

    
1336
                        previous_sample = current_sample;
1337
                        current_sample  = next_sample;
1338
                        *samplesC = current_sample;
1339
                        samplesC += avctx->channels;
1340
                    }
1341
                }
1342
            }
1343

    
1344
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1345
                c->status[channel].predictor   = current_sample;
1346
                c->status[channel].prev_sample = previous_sample;
1347
            }
1348
        }
1349

    
1350
        src = src + buf_size - (4 + 4*avctx->channels);
1351
        samples += 28 * samples_in_chunk * avctx->channels;
1352
        break;
1353
    }
1354
    case CODEC_ID_ADPCM_EA_XAS:
1355
        if (samples_end-samples < 32*4*avctx->channels
1356
            || buf_size < (4+15)*4*avctx->channels) {
1357
            src += buf_size;
1358
            break;
1359
        }
1360
        for (channel=0; channel<avctx->channels; channel++) {
1361
            int coeff[2][4], shift[4];
1362
            short *s2, *s = &samples[channel];
1363
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1364
                for (i=0; i<2; i++)
1365
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1366
                shift[n] = (src[2]&0x0F) + 8;
1367
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1368
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1369
            }
1370

    
1371
            for (m=2; m<32; m+=2) {
1372
                s = &samples[m*avctx->channels + channel];
1373
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1374
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1375
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1376
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1377
                                  + s2[-2*avctx->channels] * coeff[1][n];
1378
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1379
                    }
1380
                }
1381
            }
1382
        }
1383
        samples += 32*4*avctx->channels;
1384
        break;
1385
    case CODEC_ID_ADPCM_IMA_AMV:
1386
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1387
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1388
        c->status[0].step_index = bytestream_get_le16(&src);
1389

    
1390
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1391
            src+=4;
1392

    
1393
        while (src < buf + buf_size) {
1394
            char hi, lo;
1395
            lo = *src & 0x0F;
1396
            hi = *src >> 4;
1397

    
1398
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1399
                FFSWAP(char, hi, lo);
1400

    
1401
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1402
                lo, 3);
1403
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1404
                hi, 3);
1405
            src++;
1406
        }
1407
        break;
1408
    case CODEC_ID_ADPCM_CT:
1409
        while (src < buf + buf_size) {
1410
            if (st) {
1411
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1412
                    src[0] >> 4);
1413
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1414
                    src[0] & 0x0F);
1415
            } else {
1416
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1417
                    src[0] >> 4);
1418
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1419
                    src[0] & 0x0F);
1420
            }
1421
            src++;
1422
        }
1423
        break;
1424
    case CODEC_ID_ADPCM_SBPRO_4:
1425
    case CODEC_ID_ADPCM_SBPRO_3:
1426
    case CODEC_ID_ADPCM_SBPRO_2:
1427
        if (!c->status[0].step_index) {
1428
            /* the first byte is a raw sample */
1429
            *samples++ = 128 * (*src++ - 0x80);
1430
            if (st)
1431
              *samples++ = 128 * (*src++ - 0x80);
1432
            c->status[0].step_index = 1;
1433
        }
1434
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1435
            while (src < buf + buf_size) {
1436
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1437
                    src[0] >> 4, 4, 0);
1438
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1439
                    src[0] & 0x0F, 4, 0);
1440
                src++;
1441
            }
1442
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1443
            while (src < buf + buf_size && samples + 2 < samples_end) {
1444
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1445
                     src[0] >> 5        , 3, 0);
1446
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1447
                    (src[0] >> 2) & 0x07, 3, 0);
1448
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1449
                    src[0] & 0x03, 2, 0);
1450
                src++;
1451
            }
1452
        } else {
1453
            while (src < buf + buf_size && samples + 3 < samples_end) {
1454
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1455
                     src[0] >> 6        , 2, 2);
1456
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1457
                    (src[0] >> 4) & 0x03, 2, 2);
1458
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1459
                    (src[0] >> 2) & 0x03, 2, 2);
1460
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1461
                    src[0] & 0x03, 2, 2);
1462
                src++;
1463
            }
1464
        }
1465
        break;
1466
    case CODEC_ID_ADPCM_SWF:
1467
    {
1468
        GetBitContext gb;
1469
        const int *table;
1470
        int k0, signmask, nb_bits, count;
1471
        int size = buf_size*8;
1472

    
1473
        init_get_bits(&gb, buf, size);
1474

    
1475
        //read bits & initial values
1476
        nb_bits = get_bits(&gb, 2)+2;
1477
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1478
        table = swf_index_tables[nb_bits-2];
1479
        k0 = 1 << (nb_bits-2);
1480
        signmask = 1 << (nb_bits-1);
1481

    
1482
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1483
            for (i = 0; i < avctx->channels; i++) {
1484
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1485
                c->status[i].step_index = get_bits(&gb, 6);
1486
            }
1487

    
1488
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1489
                int i;
1490

    
1491
                for (i = 0; i < avctx->channels; i++) {
1492
                    // similar to IMA adpcm
1493
                    int delta = get_bits(&gb, nb_bits);
1494
                    int step = step_table[c->status[i].step_index];
1495
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1496
                    int k = k0;
1497

    
1498
                    do {
1499
                        if (delta & k)
1500
                            vpdiff += step;
1501
                        step >>= 1;
1502
                        k >>= 1;
1503
                    } while(k);
1504
                    vpdiff += step;
1505

    
1506
                    if (delta & signmask)
1507
                        c->status[i].predictor -= vpdiff;
1508
                    else
1509
                        c->status[i].predictor += vpdiff;
1510

    
1511
                    c->status[i].step_index += table[delta & (~signmask)];
1512

    
1513
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1514
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1515

    
1516
                    *samples++ = c->status[i].predictor;
1517
                    if (samples >= samples_end) {
1518
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1519
                        return -1;
1520
                    }
1521
                }
1522
            }
1523
        }
1524
        src += buf_size;
1525
        break;
1526
    }
1527
    case CODEC_ID_ADPCM_YAMAHA:
1528
        while (src < buf + buf_size) {
1529
            if (st) {
1530
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1531
                        src[0] & 0x0F);
1532
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1533
                        src[0] >> 4  );
1534
            } else {
1535
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1536
                        src[0] & 0x0F);
1537
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1538
                        src[0] >> 4  );
1539
            }
1540
            src++;
1541
        }
1542
        break;
1543
    case CODEC_ID_ADPCM_THP:
1544
    {
1545
        int table[2][16];
1546
        unsigned int samplecnt;
1547
        int prev[2][2];
1548
        int ch;
1549

    
1550
        if (buf_size < 80) {
1551
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1552
            return -1;
1553
        }
1554

    
1555
        src+=4;
1556
        samplecnt = bytestream_get_be32(&src);
1557

    
1558
        for (i = 0; i < 32; i++)
1559
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1560

    
1561
        /* Initialize the previous sample.  */
1562
        for (i = 0; i < 4; i++)
1563
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1564

    
1565
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1566
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1567
            return -1;
1568
        }
1569

    
1570
        for (ch = 0; ch <= st; ch++) {
1571
            samples = (unsigned short *) data + ch;
1572

    
1573
            /* Read in every sample for this channel.  */
1574
            for (i = 0; i < samplecnt / 14; i++) {
1575
                int index = (*src >> 4) & 7;
1576
                unsigned int exp = 28 - (*src++ & 15);
1577
                int factor1 = table[ch][index * 2];
1578
                int factor2 = table[ch][index * 2 + 1];
1579

    
1580
                /* Decode 14 samples.  */
1581
                for (n = 0; n < 14; n++) {
1582
                    int32_t sampledat;
1583
                    if(n&1) sampledat=  *src++    <<28;
1584
                    else    sampledat= (*src&0xF0)<<24;
1585

    
1586
                    sampledat = ((prev[ch][0]*factor1
1587
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1588
                    *samples = av_clip_int16(sampledat);
1589
                    prev[ch][1] = prev[ch][0];
1590
                    prev[ch][0] = *samples++;
1591

    
1592
                    /* In case of stereo, skip one sample, this sample
1593
                       is for the other channel.  */
1594
                    samples += st;
1595
                }
1596
            }
1597
        }
1598

    
1599
        /* In the previous loop, in case stereo is used, samples is
1600
           increased exactly one time too often.  */
1601
        samples -= st;
1602
        break;
1603
    }
1604

    
1605
    default:
1606
        return -1;
1607
    }
1608
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1609
    return src - buf;
1610
}
1611

    
1612

    
1613

    
1614
#if CONFIG_ENCODERS
1615
#define ADPCM_ENCODER(id,name,long_name_)       \
1616
AVCodec name ## _encoder = {                    \
1617
    #name,                                      \
1618
    CODEC_TYPE_AUDIO,                           \
1619
    id,                                         \
1620
    sizeof(ADPCMContext),                       \
1621
    adpcm_encode_init,                          \
1622
    adpcm_encode_frame,                         \
1623
    adpcm_encode_close,                         \
1624
    NULL,                                       \
1625
    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1626
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1627
};
1628
#else
1629
#define ADPCM_ENCODER(id,name,long_name_)
1630
#endif
1631

    
1632
#if CONFIG_DECODERS
1633
#define ADPCM_DECODER(id,name,long_name_)       \
1634
AVCodec name ## _decoder = {                    \
1635
    #name,                                      \
1636
    CODEC_TYPE_AUDIO,                           \
1637
    id,                                         \
1638
    sizeof(ADPCMContext),                       \
1639
    adpcm_decode_init,                          \
1640
    NULL,                                       \
1641
    NULL,                                       \
1642
    adpcm_decode_frame,                         \
1643
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1644
};
1645
#else
1646
#define ADPCM_DECODER(id,name,long_name_)
1647
#endif
1648

    
1649
#define ADPCM_CODEC(id,name,long_name_)         \
1650
    ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1651

    
1652
/* Note: Do not forget to add new entries to the Makefile as well. */
1653
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "4X Movie ADPCM");
1654
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "Creative Technology ADPCM");
1655
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "Electronic Arts ADPCM");
1656
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "Electronic Arts Maxis CDROM XA ADPCM");
1657
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "Electronic Arts R1 ADPCM");
1658
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "Electronic Arts R2 ADPCM");
1659
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "Electronic Arts R3 ADPCM");
1660
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "Electronic Arts XAS ADPCM");
1661
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "IMA AMV ADPCM");
1662
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "IMA Duck DK3 ADPCM");
1663
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "IMA Duck DK4 ADPCM");
1664
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "IMA Electronic Arts EACS ADPCM");
1665
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "IMA Electronic Arts SEAD ADPCM");
1666
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "IMA Funcom ISS ADPCM");
1667
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "IMA QuickTime ADPCM");
1668
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "IMA Loki SDL MJPEG ADPCM");
1669
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "IMA Wav ADPCM");
1670
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "IMA Westwood ADPCM");
1671
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "Microsoft ADPCM");
1672
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "Sound Blaster Pro 2-bit ADPCM");
1673
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "Sound Blaster Pro 2.6-bit ADPCM");
1674
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "Sound Blaster Pro 4-bit ADPCM");
1675
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "Shockwave Flash ADPCM");
1676
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "Nintendo Gamecube THP ADPCM");
1677
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "CDROM XA ADPCM");
1678
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "Yamaha ADPCM");