ffmpeg / libavcodec / dct.c @ 89d7df7c
History | View | Annotate | Download (3.54 KB)
1 |
/*
|
---|---|
2 |
* (I)DCT Transforms
|
3 |
* Copyright (c) 2009 Peter Ross <pross@xvid.org>
|
4 |
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
|
5 |
* Copyright (c) 2010 Vitor Sessak
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
/**
|
25 |
* @file libavcodec/dct.c
|
26 |
* (Inverse) Discrete Cosine Transforms. These are also known as the
|
27 |
* type II and type III DCTs respectively.
|
28 |
*/
|
29 |
|
30 |
#include <math.h> |
31 |
#include "libavutil/mathematics.h" |
32 |
#include "fft.h" |
33 |
|
34 |
/* sin((M_PI * x / (2*n)) */
|
35 |
#define SIN(s,n,x) (s->costab[(n) - (x)])
|
36 |
|
37 |
/* cos((M_PI * x / (2*n)) */
|
38 |
#define COS(s,n,x) (s->costab[x])
|
39 |
|
40 |
static void ff_dct_calc_c(DCTContext *ctx, FFTSample *data) |
41 |
{ |
42 |
int n = 1 << ctx->nbits; |
43 |
int i;
|
44 |
|
45 |
if (ctx->inverse) {
|
46 |
float next = data[n - 1]; |
47 |
float inv_n = 1.0f / n; |
48 |
|
49 |
for (i = n - 2; i >= 2; i -= 2) { |
50 |
float val1 = data[i ];
|
51 |
float val2 = data[i - 1] - data[i + 1]; |
52 |
float c = COS(ctx, n, i);
|
53 |
float s = SIN(ctx, n, i);
|
54 |
|
55 |
data[i ] = c * val1 + s * val2; |
56 |
data[i + 1] = s * val1 - c * val2;
|
57 |
} |
58 |
|
59 |
data[1] = 2 * next; |
60 |
|
61 |
ff_rdft_calc(&ctx->rdft, data); |
62 |
|
63 |
for (i = 0; i < n / 2; i++) { |
64 |
float tmp1 = data[i ] * inv_n;
|
65 |
float tmp2 = data[n - i - 1] * inv_n; |
66 |
float csc = ctx->csc2[i] * (tmp1 - tmp2);
|
67 |
|
68 |
tmp1 += tmp2; |
69 |
data[i ] = tmp1 + csc; |
70 |
data[n - i - 1] = tmp1 - csc;
|
71 |
} |
72 |
} else {
|
73 |
float next;
|
74 |
for (i=0; i < n/2; i++) { |
75 |
float tmp1 = data[i ];
|
76 |
float tmp2 = data[n - i - 1]; |
77 |
float s = SIN(ctx, n, 2*i + 1); |
78 |
|
79 |
s *= tmp1 - tmp2; |
80 |
tmp1 = (tmp1 + tmp2) * 0.5f; |
81 |
|
82 |
data[i ] = tmp1 + s; |
83 |
data[n-i-1] = tmp1 - s;
|
84 |
} |
85 |
|
86 |
ff_rdft_calc(&ctx->rdft, data); |
87 |
|
88 |
next = data[1] * 0.5; |
89 |
data[1] *= -1; |
90 |
|
91 |
for (i = n - 2; i >= 0; i -= 2) { |
92 |
float inr = data[i ];
|
93 |
float ini = data[i + 1]; |
94 |
float c = COS(ctx, n, i);
|
95 |
float s = SIN(ctx, n, i);
|
96 |
|
97 |
data[i ] = c * inr + s * ini; |
98 |
|
99 |
data[i+1] = next;
|
100 |
|
101 |
next += s * inr - c * ini; |
102 |
} |
103 |
} |
104 |
} |
105 |
|
106 |
void ff_dct_calc(DCTContext *s, FFTSample *data)
|
107 |
{ |
108 |
ff_dct_calc_c(s, data); |
109 |
} |
110 |
|
111 |
av_cold int ff_dct_init(DCTContext *s, int nbits, int inverse) |
112 |
{ |
113 |
int n = 1 << nbits; |
114 |
int i;
|
115 |
|
116 |
s->nbits = nbits; |
117 |
s->inverse = inverse; |
118 |
|
119 |
ff_init_ff_cos_tabs(nbits+2);
|
120 |
|
121 |
s->costab = ff_cos_tabs[nbits+2];
|
122 |
|
123 |
s->csc2 = av_malloc(n/2 * sizeof(FFTSample)); |
124 |
|
125 |
if (ff_rdft_init(&s->rdft, nbits, inverse) < 0) { |
126 |
av_free(s->csc2); |
127 |
return -1; |
128 |
} |
129 |
|
130 |
for (i = 0; i < n/2; i++) |
131 |
s->csc2[i] = 0.5 / sin((M_PI / (2*n) * (2*i + 1))); |
132 |
|
133 |
return 0; |
134 |
} |
135 |
|
136 |
av_cold void ff_dct_end(DCTContext *s)
|
137 |
{ |
138 |
ff_rdft_end(&s->rdft); |
139 |
av_free(s->csc2); |
140 |
} |