ffmpeg / libavcodec / h264.h @ 8a3b9068
History | View | Annotate | Download (55.7 KB)
1 |
/*
|
---|---|
2 |
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
|
3 |
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file libavcodec/h264.h
|
24 |
* H.264 / AVC / MPEG4 part10 codec.
|
25 |
* @author Michael Niedermayer <michaelni@gmx.at>
|
26 |
*/
|
27 |
|
28 |
#ifndef AVCODEC_H264_H
|
29 |
#define AVCODEC_H264_H
|
30 |
|
31 |
#include "dsputil.h" |
32 |
#include "cabac.h" |
33 |
#include "mpegvideo.h" |
34 |
#include "h264pred.h" |
35 |
#include "rectangle.h" |
36 |
|
37 |
#define interlaced_dct interlaced_dct_is_a_bad_name
|
38 |
#define mb_intra mb_intra_is_not_initialized_see_mb_type
|
39 |
|
40 |
#define LUMA_DC_BLOCK_INDEX 25 |
41 |
#define CHROMA_DC_BLOCK_INDEX 26 |
42 |
|
43 |
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 |
44 |
#define COEFF_TOKEN_VLC_BITS 8 |
45 |
#define TOTAL_ZEROS_VLC_BITS 9 |
46 |
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 |
47 |
#define RUN_VLC_BITS 3 |
48 |
#define RUN7_VLC_BITS 6 |
49 |
|
50 |
#define MAX_SPS_COUNT 32 |
51 |
#define MAX_PPS_COUNT 256 |
52 |
|
53 |
#define MAX_MMCO_COUNT 66 |
54 |
|
55 |
#define MAX_DELAYED_PIC_COUNT 16 |
56 |
|
57 |
/* Compiling in interlaced support reduces the speed
|
58 |
* of progressive decoding by about 2%. */
|
59 |
#define ALLOW_INTERLACE
|
60 |
|
61 |
#define ALLOW_NOCHROMA
|
62 |
|
63 |
/**
|
64 |
* The maximum number of slices supported by the decoder.
|
65 |
* must be a power of 2
|
66 |
*/
|
67 |
#define MAX_SLICES 16 |
68 |
|
69 |
#ifdef ALLOW_INTERLACE
|
70 |
#define MB_MBAFF h->mb_mbaff
|
71 |
#define MB_FIELD h->mb_field_decoding_flag
|
72 |
#define FRAME_MBAFF h->mb_aff_frame
|
73 |
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
|
74 |
#else
|
75 |
#define MB_MBAFF 0 |
76 |
#define MB_FIELD 0 |
77 |
#define FRAME_MBAFF 0 |
78 |
#define FIELD_PICTURE 0 |
79 |
#undef IS_INTERLACED
|
80 |
#define IS_INTERLACED(mb_type) 0 |
81 |
#endif
|
82 |
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
|
83 |
|
84 |
#ifdef ALLOW_NOCHROMA
|
85 |
#define CHROMA h->sps.chroma_format_idc
|
86 |
#else
|
87 |
#define CHROMA 1 |
88 |
#endif
|
89 |
|
90 |
#ifndef CABAC
|
91 |
#define CABAC h->pps.cabac
|
92 |
#endif
|
93 |
|
94 |
#define EXTENDED_SAR 255 |
95 |
|
96 |
#define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit |
97 |
#define MB_TYPE_8x8DCT 0x01000000 |
98 |
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
|
99 |
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
|
100 |
|
101 |
/**
|
102 |
* Value of Picture.reference when Picture is not a reference picture, but
|
103 |
* is held for delayed output.
|
104 |
*/
|
105 |
#define DELAYED_PIC_REF 4 |
106 |
|
107 |
|
108 |
/* NAL unit types */
|
109 |
enum {
|
110 |
NAL_SLICE=1,
|
111 |
NAL_DPA, |
112 |
NAL_DPB, |
113 |
NAL_DPC, |
114 |
NAL_IDR_SLICE, |
115 |
NAL_SEI, |
116 |
NAL_SPS, |
117 |
NAL_PPS, |
118 |
NAL_AUD, |
119 |
NAL_END_SEQUENCE, |
120 |
NAL_END_STREAM, |
121 |
NAL_FILLER_DATA, |
122 |
NAL_SPS_EXT, |
123 |
NAL_AUXILIARY_SLICE=19
|
124 |
}; |
125 |
|
126 |
/**
|
127 |
* SEI message types
|
128 |
*/
|
129 |
typedef enum { |
130 |
SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1) |
131 |
SEI_TYPE_PIC_TIMING = 1, ///< picture timing |
132 |
SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data |
133 |
SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync) |
134 |
} SEI_Type; |
135 |
|
136 |
/**
|
137 |
* pic_struct in picture timing SEI message
|
138 |
*/
|
139 |
typedef enum { |
140 |
SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame |
141 |
SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field |
142 |
SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field |
143 |
SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order |
144 |
SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order |
145 |
SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order |
146 |
SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order |
147 |
SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling |
148 |
SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling |
149 |
} SEI_PicStructType; |
150 |
|
151 |
/**
|
152 |
* Sequence parameter set
|
153 |
*/
|
154 |
typedef struct SPS{ |
155 |
|
156 |
int profile_idc;
|
157 |
int level_idc;
|
158 |
int chroma_format_idc;
|
159 |
int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag |
160 |
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 |
161 |
int poc_type; ///< pic_order_cnt_type |
162 |
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 |
163 |
int delta_pic_order_always_zero_flag;
|
164 |
int offset_for_non_ref_pic;
|
165 |
int offset_for_top_to_bottom_field;
|
166 |
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle |
167 |
int ref_frame_count; ///< num_ref_frames |
168 |
int gaps_in_frame_num_allowed_flag;
|
169 |
int mb_width; ///< pic_width_in_mbs_minus1 + 1 |
170 |
int mb_height; ///< pic_height_in_map_units_minus1 + 1 |
171 |
int frame_mbs_only_flag;
|
172 |
int mb_aff; ///<mb_adaptive_frame_field_flag |
173 |
int direct_8x8_inference_flag;
|
174 |
int crop; ///< frame_cropping_flag |
175 |
unsigned int crop_left; ///< frame_cropping_rect_left_offset |
176 |
unsigned int crop_right; ///< frame_cropping_rect_right_offset |
177 |
unsigned int crop_top; ///< frame_cropping_rect_top_offset |
178 |
unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset |
179 |
int vui_parameters_present_flag;
|
180 |
AVRational sar; |
181 |
int video_signal_type_present_flag;
|
182 |
int full_range;
|
183 |
int colour_description_present_flag;
|
184 |
enum AVColorPrimaries color_primaries;
|
185 |
enum AVColorTransferCharacteristic color_trc;
|
186 |
enum AVColorSpace colorspace;
|
187 |
int timing_info_present_flag;
|
188 |
uint32_t num_units_in_tick; |
189 |
uint32_t time_scale; |
190 |
int fixed_frame_rate_flag;
|
191 |
short offset_for_ref_frame[256]; //FIXME dyn aloc? |
192 |
int bitstream_restriction_flag;
|
193 |
int num_reorder_frames;
|
194 |
int scaling_matrix_present;
|
195 |
uint8_t scaling_matrix4[6][16]; |
196 |
uint8_t scaling_matrix8[2][64]; |
197 |
int nal_hrd_parameters_present_flag;
|
198 |
int vcl_hrd_parameters_present_flag;
|
199 |
int pic_struct_present_flag;
|
200 |
int time_offset_length;
|
201 |
int cpb_cnt; ///< See H.264 E.1.2 |
202 |
int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1 |
203 |
int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1 |
204 |
int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1 |
205 |
int bit_depth_luma; ///< bit_depth_luma_minus8 + 8 |
206 |
int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8 |
207 |
int residual_color_transform_flag; ///< residual_colour_transform_flag |
208 |
}SPS; |
209 |
|
210 |
/**
|
211 |
* Picture parameter set
|
212 |
*/
|
213 |
typedef struct PPS{ |
214 |
unsigned int sps_id; |
215 |
int cabac; ///< entropy_coding_mode_flag |
216 |
int pic_order_present; ///< pic_order_present_flag |
217 |
int slice_group_count; ///< num_slice_groups_minus1 + 1 |
218 |
int mb_slice_group_map_type;
|
219 |
unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1 |
220 |
int weighted_pred; ///< weighted_pred_flag |
221 |
int weighted_bipred_idc;
|
222 |
int init_qp; ///< pic_init_qp_minus26 + 26 |
223 |
int init_qs; ///< pic_init_qs_minus26 + 26 |
224 |
int chroma_qp_index_offset[2]; |
225 |
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag |
226 |
int constrained_intra_pred; ///< constrained_intra_pred_flag |
227 |
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag |
228 |
int transform_8x8_mode; ///< transform_8x8_mode_flag |
229 |
uint8_t scaling_matrix4[6][16]; |
230 |
uint8_t scaling_matrix8[2][64]; |
231 |
uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table |
232 |
int chroma_qp_diff;
|
233 |
}PPS; |
234 |
|
235 |
/**
|
236 |
* Memory management control operation opcode.
|
237 |
*/
|
238 |
typedef enum MMCOOpcode{ |
239 |
MMCO_END=0,
|
240 |
MMCO_SHORT2UNUSED, |
241 |
MMCO_LONG2UNUSED, |
242 |
MMCO_SHORT2LONG, |
243 |
MMCO_SET_MAX_LONG, |
244 |
MMCO_RESET, |
245 |
MMCO_LONG, |
246 |
} MMCOOpcode; |
247 |
|
248 |
/**
|
249 |
* Memory management control operation.
|
250 |
*/
|
251 |
typedef struct MMCO{ |
252 |
MMCOOpcode opcode; |
253 |
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num) |
254 |
int long_arg; ///< index, pic_num, or num long refs depending on opcode |
255 |
} MMCO; |
256 |
|
257 |
/**
|
258 |
* H264Context
|
259 |
*/
|
260 |
typedef struct H264Context{ |
261 |
MpegEncContext s; |
262 |
int nal_ref_idc;
|
263 |
int nal_unit_type;
|
264 |
uint8_t *rbsp_buffer[2];
|
265 |
unsigned int rbsp_buffer_size[2]; |
266 |
|
267 |
/**
|
268 |
* Used to parse AVC variant of h264
|
269 |
*/
|
270 |
int is_avc; ///< this flag is != 0 if codec is avc1 |
271 |
int got_avcC; ///< flag used to parse avcC data only once |
272 |
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) |
273 |
|
274 |
int chroma_qp[2]; //QPc |
275 |
|
276 |
int qp_thresh; ///< QP threshold to skip loopfilter |
277 |
|
278 |
int prev_mb_skipped;
|
279 |
int next_mb_skipped;
|
280 |
|
281 |
//prediction stuff
|
282 |
int chroma_pred_mode;
|
283 |
int intra16x16_pred_mode;
|
284 |
|
285 |
int top_mb_xy;
|
286 |
int left_mb_xy[2]; |
287 |
|
288 |
int top_type;
|
289 |
int left_type[2]; |
290 |
|
291 |
int8_t intra4x4_pred_mode_cache[5*8]; |
292 |
int8_t (*intra4x4_pred_mode)[8];
|
293 |
H264PredContext hpc; |
294 |
unsigned int topleft_samples_available; |
295 |
unsigned int top_samples_available; |
296 |
unsigned int topright_samples_available; |
297 |
unsigned int left_samples_available; |
298 |
uint8_t (*top_borders[2])[16+2*8]; |
299 |
uint8_t left_border[2*(17+2*9)]; |
300 |
|
301 |
/**
|
302 |
* non zero coeff count cache.
|
303 |
* is 64 if not available.
|
304 |
*/
|
305 |
DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8]; |
306 |
|
307 |
/*
|
308 |
.UU.YYYY
|
309 |
.UU.YYYY
|
310 |
.vv.YYYY
|
311 |
.VV.YYYY
|
312 |
*/
|
313 |
uint8_t (*non_zero_count)[32];
|
314 |
|
315 |
/**
|
316 |
* Motion vector cache.
|
317 |
*/
|
318 |
DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2]; |
319 |
DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8]; |
320 |
#define LIST_NOT_USED -1 //FIXME rename? |
321 |
#define PART_NOT_AVAILABLE -2 |
322 |
|
323 |
/**
|
324 |
* is 1 if the specific list MV&references are set to 0,0,-2.
|
325 |
*/
|
326 |
int mv_cache_clean[2]; |
327 |
|
328 |
/**
|
329 |
* number of neighbors (top and/or left) that used 8x8 dct
|
330 |
*/
|
331 |
int neighbor_transform_size;
|
332 |
|
333 |
/**
|
334 |
* block_offset[ 0..23] for frame macroblocks
|
335 |
* block_offset[24..47] for field macroblocks
|
336 |
*/
|
337 |
int block_offset[2*(16+8)]; |
338 |
|
339 |
uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
|
340 |
uint32_t *mb2b8_xy; |
341 |
int b_stride; //FIXME use s->b4_stride |
342 |
int b8_stride;
|
343 |
|
344 |
int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff |
345 |
int mb_uvlinesize;
|
346 |
|
347 |
int emu_edge_width;
|
348 |
int emu_edge_height;
|
349 |
|
350 |
int halfpel_flag;
|
351 |
int thirdpel_flag;
|
352 |
|
353 |
int unknown_svq3_flag;
|
354 |
int next_slice_index;
|
355 |
|
356 |
SPS *sps_buffers[MAX_SPS_COUNT]; |
357 |
SPS sps; ///< current sps
|
358 |
|
359 |
PPS *pps_buffers[MAX_PPS_COUNT]; |
360 |
/**
|
361 |
* current pps
|
362 |
*/
|
363 |
PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
|
364 |
|
365 |
uint32_t dequant4_buffer[6][52][16]; |
366 |
uint32_t dequant8_buffer[2][52][64]; |
367 |
uint32_t (*dequant4_coeff[6])[16]; |
368 |
uint32_t (*dequant8_coeff[2])[64]; |
369 |
int dequant_coeff_pps; ///< reinit tables when pps changes |
370 |
|
371 |
int slice_num;
|
372 |
uint16_t *slice_table_base; |
373 |
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
|
374 |
int slice_type;
|
375 |
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) |
376 |
int slice_type_fixed;
|
377 |
|
378 |
//interlacing specific flags
|
379 |
int mb_aff_frame;
|
380 |
int mb_field_decoding_flag;
|
381 |
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag |
382 |
|
383 |
DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
|
384 |
|
385 |
//POC stuff
|
386 |
int poc_lsb;
|
387 |
int poc_msb;
|
388 |
int delta_poc_bottom;
|
389 |
int delta_poc[2]; |
390 |
int frame_num;
|
391 |
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 |
392 |
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 |
393 |
int frame_num_offset; ///< for POC type 2 |
394 |
int prev_frame_num_offset; ///< for POC type 2 |
395 |
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 |
396 |
|
397 |
/**
|
398 |
* frame_num for frames or 2*frame_num+1 for field pics.
|
399 |
*/
|
400 |
int curr_pic_num;
|
401 |
|
402 |
/**
|
403 |
* max_frame_num or 2*max_frame_num for field pics.
|
404 |
*/
|
405 |
int max_pic_num;
|
406 |
|
407 |
//Weighted pred stuff
|
408 |
int use_weight;
|
409 |
int use_weight_chroma;
|
410 |
int luma_log2_weight_denom;
|
411 |
int chroma_log2_weight_denom;
|
412 |
int luma_weight[2][48]; |
413 |
int luma_offset[2][48]; |
414 |
int chroma_weight[2][48][2]; |
415 |
int chroma_offset[2][48][2]; |
416 |
int implicit_weight[48][48]; |
417 |
|
418 |
//deblock
|
419 |
int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0 |
420 |
int slice_alpha_c0_offset;
|
421 |
int slice_beta_offset;
|
422 |
|
423 |
int redundant_pic_count;
|
424 |
|
425 |
int direct_spatial_mv_pred;
|
426 |
int col_parity;
|
427 |
int col_fieldoff;
|
428 |
int dist_scale_factor[16]; |
429 |
int dist_scale_factor_field[2][32]; |
430 |
int map_col_to_list0[2][16+32]; |
431 |
int map_col_to_list0_field[2][2][16+32]; |
432 |
|
433 |
/**
|
434 |
* num_ref_idx_l0/1_active_minus1 + 1
|
435 |
*/
|
436 |
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode |
437 |
unsigned int list_count; |
438 |
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
|
439 |
Picture *short_ref[32];
|
440 |
Picture *long_ref[32];
|
441 |
Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture |
442 |
Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. |
443 |
Reordered version of default_ref_list
|
444 |
according to picture reordering in slice header */
|
445 |
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 |
446 |
Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size? |
447 |
int outputed_poc;
|
448 |
|
449 |
/**
|
450 |
* memory management control operations buffer.
|
451 |
*/
|
452 |
MMCO mmco[MAX_MMCO_COUNT]; |
453 |
int mmco_index;
|
454 |
|
455 |
int long_ref_count; ///< number of actual long term references |
456 |
int short_ref_count; ///< number of actual short term references |
457 |
|
458 |
//data partitioning
|
459 |
GetBitContext intra_gb; |
460 |
GetBitContext inter_gb; |
461 |
GetBitContext *intra_gb_ptr; |
462 |
GetBitContext *inter_gb_ptr; |
463 |
|
464 |
DECLARE_ALIGNED_16(DCTELEM, mb)[16*24]; |
465 |
DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb |
466 |
|
467 |
/**
|
468 |
* Cabac
|
469 |
*/
|
470 |
CABACContext cabac; |
471 |
uint8_t cabac_state[460];
|
472 |
int cabac_init_idc;
|
473 |
|
474 |
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
|
475 |
uint16_t *cbp_table; |
476 |
int cbp;
|
477 |
int top_cbp;
|
478 |
int left_cbp;
|
479 |
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
|
480 |
uint8_t *chroma_pred_mode_table; |
481 |
int last_qscale_diff;
|
482 |
int16_t (*mvd_table[2])[2]; |
483 |
DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2]; |
484 |
uint8_t *direct_table; |
485 |
uint8_t direct_cache[5*8]; |
486 |
|
487 |
uint8_t zigzag_scan[16];
|
488 |
uint8_t zigzag_scan8x8[64];
|
489 |
uint8_t zigzag_scan8x8_cavlc[64];
|
490 |
uint8_t field_scan[16];
|
491 |
uint8_t field_scan8x8[64];
|
492 |
uint8_t field_scan8x8_cavlc[64];
|
493 |
const uint8_t *zigzag_scan_q0;
|
494 |
const uint8_t *zigzag_scan8x8_q0;
|
495 |
const uint8_t *zigzag_scan8x8_cavlc_q0;
|
496 |
const uint8_t *field_scan_q0;
|
497 |
const uint8_t *field_scan8x8_q0;
|
498 |
const uint8_t *field_scan8x8_cavlc_q0;
|
499 |
|
500 |
int x264_build;
|
501 |
|
502 |
/**
|
503 |
* @defgroup multithreading Members for slice based multithreading
|
504 |
* @{
|
505 |
*/
|
506 |
struct H264Context *thread_context[MAX_THREADS];
|
507 |
|
508 |
/**
|
509 |
* current slice number, used to initalize slice_num of each thread/context
|
510 |
*/
|
511 |
int current_slice;
|
512 |
|
513 |
/**
|
514 |
* Max number of threads / contexts.
|
515 |
* This is equal to AVCodecContext.thread_count unless
|
516 |
* multithreaded decoding is impossible, in which case it is
|
517 |
* reduced to 1.
|
518 |
*/
|
519 |
int max_contexts;
|
520 |
|
521 |
/**
|
522 |
* 1 if the single thread fallback warning has already been
|
523 |
* displayed, 0 otherwise.
|
524 |
*/
|
525 |
int single_decode_warning;
|
526 |
|
527 |
int last_slice_type;
|
528 |
/** @} */
|
529 |
|
530 |
int mb_xy;
|
531 |
|
532 |
uint32_t svq3_watermark_key; |
533 |
|
534 |
/**
|
535 |
* pic_struct in picture timing SEI message
|
536 |
*/
|
537 |
SEI_PicStructType sei_pic_struct; |
538 |
|
539 |
/**
|
540 |
* Complement sei_pic_struct
|
541 |
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
|
542 |
* However, soft telecined frames may have these values.
|
543 |
* This is used in an attempt to flag soft telecine progressive.
|
544 |
*/
|
545 |
int prev_interlaced_frame;
|
546 |
|
547 |
/**
|
548 |
* Bit set of clock types for fields/frames in picture timing SEI message.
|
549 |
* For each found ct_type, appropriate bit is set (e.g., bit 1 for
|
550 |
* interlaced).
|
551 |
*/
|
552 |
int sei_ct_type;
|
553 |
|
554 |
/**
|
555 |
* dpb_output_delay in picture timing SEI message, see H.264 C.2.2
|
556 |
*/
|
557 |
int sei_dpb_output_delay;
|
558 |
|
559 |
/**
|
560 |
* cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
|
561 |
*/
|
562 |
int sei_cpb_removal_delay;
|
563 |
|
564 |
/**
|
565 |
* recovery_frame_cnt from SEI message
|
566 |
*
|
567 |
* Set to -1 if no recovery point SEI message found or to number of frames
|
568 |
* before playback synchronizes. Frames having recovery point are key
|
569 |
* frames.
|
570 |
*/
|
571 |
int sei_recovery_frame_cnt;
|
572 |
|
573 |
int is_complex;
|
574 |
|
575 |
int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag |
576 |
int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag |
577 |
|
578 |
// Timestamp stuff
|
579 |
int sei_buffering_period_present; ///< Buffering period SEI flag |
580 |
int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs |
581 |
}H264Context; |
582 |
|
583 |
|
584 |
extern const uint8_t ff_h264_chroma_qp[52]; |
585 |
|
586 |
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp); |
587 |
|
588 |
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc); |
589 |
|
590 |
/**
|
591 |
* Decode SEI
|
592 |
*/
|
593 |
int ff_h264_decode_sei(H264Context *h);
|
594 |
|
595 |
/**
|
596 |
* Decode SPS
|
597 |
*/
|
598 |
int ff_h264_decode_seq_parameter_set(H264Context *h);
|
599 |
|
600 |
/**
|
601 |
* Decode PPS
|
602 |
*/
|
603 |
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length); |
604 |
|
605 |
/**
|
606 |
* Decodes a network abstraction layer unit.
|
607 |
* @param consumed is the number of bytes used as input
|
608 |
* @param length is the length of the array
|
609 |
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
|
610 |
* @returns decoded bytes, might be src+1 if no escapes
|
611 |
*/
|
612 |
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length); |
613 |
|
614 |
/**
|
615 |
* identifies the exact end of the bitstream
|
616 |
* @return the length of the trailing, or 0 if damaged
|
617 |
*/
|
618 |
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src); |
619 |
|
620 |
/**
|
621 |
* frees any data that may have been allocated in the H264 context like SPS, PPS etc.
|
622 |
*/
|
623 |
av_cold void ff_h264_free_context(H264Context *h);
|
624 |
|
625 |
/**
|
626 |
* reconstructs bitstream slice_type.
|
627 |
*/
|
628 |
int ff_h264_get_slice_type(const H264Context *h); |
629 |
|
630 |
/**
|
631 |
* allocates tables.
|
632 |
* needs width/height
|
633 |
*/
|
634 |
int ff_h264_alloc_tables(H264Context *h);
|
635 |
|
636 |
/**
|
637 |
* fills the default_ref_list.
|
638 |
*/
|
639 |
int ff_h264_fill_default_ref_list(H264Context *h);
|
640 |
|
641 |
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
|
642 |
void ff_h264_fill_mbaff_ref_list(H264Context *h);
|
643 |
void ff_h264_remove_all_refs(H264Context *h);
|
644 |
|
645 |
/**
|
646 |
* Executes the reference picture marking (memory management control operations).
|
647 |
*/
|
648 |
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count); |
649 |
|
650 |
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
|
651 |
|
652 |
|
653 |
/**
|
654 |
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
655 |
*/
|
656 |
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
|
657 |
|
658 |
/**
|
659 |
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
660 |
*/
|
661 |
int ff_h264_check_intra_pred_mode(H264Context *h, int mode); |
662 |
|
663 |
void ff_h264_write_back_intra_pred_mode(H264Context *h);
|
664 |
void ff_h264_hl_decode_mb(H264Context *h);
|
665 |
int ff_h264_frame_start(H264Context *h);
|
666 |
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
|
667 |
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
|
668 |
av_cold void ff_h264_decode_init_vlc(void); |
669 |
|
670 |
/**
|
671 |
* decodes a macroblock
|
672 |
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
673 |
*/
|
674 |
int ff_h264_decode_mb_cavlc(H264Context *h);
|
675 |
|
676 |
/**
|
677 |
* decodes a CABAC coded macroblock
|
678 |
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
679 |
*/
|
680 |
int ff_h264_decode_mb_cabac(H264Context *h);
|
681 |
|
682 |
void ff_h264_init_cabac_states(H264Context *h);
|
683 |
|
684 |
void ff_h264_direct_dist_scale_factor(H264Context * const h); |
685 |
void ff_h264_direct_ref_list_init(H264Context * const h); |
686 |
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type); |
687 |
|
688 |
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
689 |
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
690 |
|
691 |
/**
|
692 |
* Reset SEI values at the beginning of the frame.
|
693 |
*
|
694 |
* @param h H.264 context.
|
695 |
*/
|
696 |
void ff_h264_reset_sei(H264Context *h);
|
697 |
|
698 |
|
699 |
/*
|
700 |
o-o o-o
|
701 |
/ / /
|
702 |
o-o o-o
|
703 |
,---'
|
704 |
o-o o-o
|
705 |
/ / /
|
706 |
o-o o-o
|
707 |
*/
|
708 |
//This table must be here because scan8[constant] must be known at compiletime
|
709 |
static const uint8_t scan8[16 + 2*4]={ |
710 |
4+1*8, 5+1*8, 4+2*8, 5+2*8, |
711 |
6+1*8, 7+1*8, 6+2*8, 7+2*8, |
712 |
4+3*8, 5+3*8, 4+4*8, 5+4*8, |
713 |
6+3*8, 7+3*8, 6+4*8, 7+4*8, |
714 |
1+1*8, 2+1*8, |
715 |
1+2*8, 2+2*8, |
716 |
1+4*8, 2+4*8, |
717 |
1+5*8, 2+5*8, |
718 |
}; |
719 |
|
720 |
static av_always_inline uint32_t pack16to32(int a, int b){ |
721 |
#if HAVE_BIGENDIAN
|
722 |
return (b&0xFFFF) + (a<<16); |
723 |
#else
|
724 |
return (a&0xFFFF) + (b<<16); |
725 |
#endif
|
726 |
} |
727 |
|
728 |
/**
|
729 |
* gets the chroma qp.
|
730 |
*/
|
731 |
static inline int get_chroma_qp(H264Context *h, int t, int qscale){ |
732 |
return h->pps.chroma_qp_table[t][qscale];
|
733 |
} |
734 |
|
735 |
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my); |
736 |
|
737 |
static void fill_decode_caches(H264Context *h, int mb_type){ |
738 |
MpegEncContext * const s = &h->s;
|
739 |
const int mb_xy= h->mb_xy; |
740 |
int topleft_xy, top_xy, topright_xy, left_xy[2]; |
741 |
int topleft_type, top_type, topright_type, left_type[2]; |
742 |
const uint8_t * left_block;
|
743 |
int topleft_partition= -1; |
744 |
int i;
|
745 |
static const uint8_t left_block_options[4][16]={ |
746 |
{0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8}, |
747 |
{2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8}, |
748 |
{0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}, |
749 |
{0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8} |
750 |
}; |
751 |
|
752 |
top_xy = mb_xy - (s->mb_stride << MB_FIELD); |
753 |
|
754 |
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
755 |
* stuff, I can't imagine that these complex rules are worth it. */
|
756 |
|
757 |
topleft_xy = top_xy - 1;
|
758 |
topright_xy= top_xy + 1;
|
759 |
left_xy[1] = left_xy[0] = mb_xy-1; |
760 |
left_block = left_block_options[0];
|
761 |
if(FRAME_MBAFF){
|
762 |
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]); |
763 |
const int curr_mb_field_flag = IS_INTERLACED(mb_type); |
764 |
if(s->mb_y&1){ |
765 |
if (left_mb_field_flag != curr_mb_field_flag) {
|
766 |
left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1; |
767 |
if (curr_mb_field_flag) {
|
768 |
left_xy[1] += s->mb_stride;
|
769 |
left_block = left_block_options[3];
|
770 |
} else {
|
771 |
topleft_xy += s->mb_stride; |
772 |
// take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
|
773 |
topleft_partition = 0;
|
774 |
left_block = left_block_options[1];
|
775 |
} |
776 |
} |
777 |
}else{
|
778 |
if(curr_mb_field_flag){
|
779 |
topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1); |
780 |
topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1); |
781 |
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1); |
782 |
} |
783 |
if (left_mb_field_flag != curr_mb_field_flag) {
|
784 |
left_xy[1] = left_xy[0] = mb_xy - 1; |
785 |
if (curr_mb_field_flag) {
|
786 |
left_xy[1] += s->mb_stride;
|
787 |
left_block = left_block_options[3];
|
788 |
} else {
|
789 |
left_block = left_block_options[2];
|
790 |
} |
791 |
} |
792 |
} |
793 |
} |
794 |
|
795 |
h->top_mb_xy = top_xy; |
796 |
h->left_mb_xy[0] = left_xy[0]; |
797 |
h->left_mb_xy[1] = left_xy[1]; |
798 |
topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
|
799 |
top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
|
800 |
topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
|
801 |
left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0; |
802 |
left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0; |
803 |
|
804 |
if(IS_INTRA(mb_type)){
|
805 |
int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1; |
806 |
h->topleft_samples_available= |
807 |
h->top_samples_available= |
808 |
h->left_samples_available= 0xFFFF;
|
809 |
h->topright_samples_available= 0xEEEA;
|
810 |
|
811 |
if(!(top_type & type_mask)){
|
812 |
h->topleft_samples_available= 0xB3FF;
|
813 |
h->top_samples_available= 0x33FF;
|
814 |
h->topright_samples_available= 0x26EA;
|
815 |
} |
816 |
if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){ |
817 |
if(IS_INTERLACED(mb_type)){
|
818 |
if(!(left_type[0] & type_mask)){ |
819 |
h->topleft_samples_available&= 0xDFFF;
|
820 |
h->left_samples_available&= 0x5FFF;
|
821 |
} |
822 |
if(!(left_type[1] & type_mask)){ |
823 |
h->topleft_samples_available&= 0xFF5F;
|
824 |
h->left_samples_available&= 0xFF5F;
|
825 |
} |
826 |
}else{
|
827 |
int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num |
828 |
? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0; |
829 |
assert(left_xy[0] == left_xy[1]); |
830 |
if(!((left_typei & type_mask) && (left_type[0] & type_mask))){ |
831 |
h->topleft_samples_available&= 0xDF5F;
|
832 |
h->left_samples_available&= 0x5F5F;
|
833 |
} |
834 |
} |
835 |
}else{
|
836 |
if(!(left_type[0] & type_mask)){ |
837 |
h->topleft_samples_available&= 0xDF5F;
|
838 |
h->left_samples_available&= 0x5F5F;
|
839 |
} |
840 |
} |
841 |
|
842 |
if(!(topleft_type & type_mask))
|
843 |
h->topleft_samples_available&= 0x7FFF;
|
844 |
|
845 |
if(!(topright_type & type_mask))
|
846 |
h->topright_samples_available&= 0xFBFF;
|
847 |
|
848 |
if(IS_INTRA4x4(mb_type)){
|
849 |
if(IS_INTRA4x4(top_type)){
|
850 |
h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4]; |
851 |
h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5]; |
852 |
h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6]; |
853 |
h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3]; |
854 |
}else{
|
855 |
int pred;
|
856 |
if(!(top_type & type_mask))
|
857 |
pred= -1;
|
858 |
else{
|
859 |
pred= 2;
|
860 |
} |
861 |
h->intra4x4_pred_mode_cache[4+8*0]= |
862 |
h->intra4x4_pred_mode_cache[5+8*0]= |
863 |
h->intra4x4_pred_mode_cache[6+8*0]= |
864 |
h->intra4x4_pred_mode_cache[7+8*0]= pred; |
865 |
} |
866 |
for(i=0; i<2; i++){ |
867 |
if(IS_INTRA4x4(left_type[i])){
|
868 |
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]]; |
869 |
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]]; |
870 |
}else{
|
871 |
int pred;
|
872 |
if(!(left_type[i] & type_mask))
|
873 |
pred= -1;
|
874 |
else{
|
875 |
pred= 2;
|
876 |
} |
877 |
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= |
878 |
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred; |
879 |
} |
880 |
} |
881 |
} |
882 |
} |
883 |
|
884 |
|
885 |
/*
|
886 |
0 . T T. T T T T
|
887 |
1 L . .L . . . .
|
888 |
2 L . .L . . . .
|
889 |
3 . T TL . . . .
|
890 |
4 L . .L . . . .
|
891 |
5 L . .. . . . .
|
892 |
*/
|
893 |
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
|
894 |
if(top_type){
|
895 |
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8]; |
896 |
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8]; |
897 |
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8]; |
898 |
|
899 |
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8]; |
900 |
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8]; |
901 |
}else {
|
902 |
h->non_zero_count_cache[1+8*0]= |
903 |
h->non_zero_count_cache[2+8*0]= |
904 |
|
905 |
h->non_zero_count_cache[1+8*3]= |
906 |
h->non_zero_count_cache[2+8*3]= |
907 |
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040; |
908 |
} |
909 |
|
910 |
for (i=0; i<2; i++) { |
911 |
if(left_type[i]){
|
912 |
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]]; |
913 |
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]]; |
914 |
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]]; |
915 |
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]]; |
916 |
}else{
|
917 |
h->non_zero_count_cache[3+8*1 + 2*8*i]= |
918 |
h->non_zero_count_cache[3+8*2 + 2*8*i]= |
919 |
h->non_zero_count_cache[0+8*1 + 8*i]= |
920 |
h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64; |
921 |
} |
922 |
} |
923 |
|
924 |
if( CABAC ) {
|
925 |
// top_cbp
|
926 |
if(top_type) {
|
927 |
h->top_cbp = h->cbp_table[top_xy]; |
928 |
} else if(IS_INTRA(mb_type)) { |
929 |
h->top_cbp = 0x1C0;
|
930 |
} else {
|
931 |
h->top_cbp = 0;
|
932 |
} |
933 |
// left_cbp
|
934 |
if (left_type[0]) { |
935 |
h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0; |
936 |
} else if(IS_INTRA(mb_type)) { |
937 |
h->left_cbp = 0x1C0;
|
938 |
} else {
|
939 |
h->left_cbp = 0;
|
940 |
} |
941 |
if (left_type[0]) { |
942 |
h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1; |
943 |
} |
944 |
if (left_type[1]) { |
945 |
h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3; |
946 |
} |
947 |
} |
948 |
|
949 |
#if 1 |
950 |
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
|
951 |
int list;
|
952 |
for(list=0; list<h->list_count; list++){ |
953 |
if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
|
954 |
/*if(!h->mv_cache_clean[list]){
|
955 |
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
|
956 |
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
|
957 |
h->mv_cache_clean[list]= 1;
|
958 |
}*/
|
959 |
continue;
|
960 |
} |
961 |
h->mv_cache_clean[list]= 0;
|
962 |
|
963 |
if(USES_LIST(top_type, list)){
|
964 |
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
965 |
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride; |
966 |
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]); |
967 |
h->ref_cache[list][scan8[0] + 0 - 1*8]= |
968 |
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0]; |
969 |
h->ref_cache[list][scan8[0] + 2 - 1*8]= |
970 |
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1]; |
971 |
}else{
|
972 |
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]); |
973 |
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101; |
974 |
} |
975 |
|
976 |
for(i=0; i<2; i++){ |
977 |
int cache_idx = scan8[0] - 1 + i*2*8; |
978 |
if(USES_LIST(left_type[i], list)){
|
979 |
const int b_xy= h->mb2b_xy[left_xy[i]] + 3; |
980 |
const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1; |
981 |
*(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]; |
982 |
*(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]; |
983 |
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]; |
984 |
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]; |
985 |
}else{
|
986 |
*(uint32_t*)h->mv_cache [list][cache_idx ]= |
987 |
*(uint32_t*)h->mv_cache [list][cache_idx+8]= 0; |
988 |
h->ref_cache[list][cache_idx ]= |
989 |
h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
990 |
} |
991 |
} |
992 |
|
993 |
if((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred))
|
994 |
continue;
|
995 |
|
996 |
if(USES_LIST(topleft_type, list)){
|
997 |
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride); |
998 |
const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride); |
999 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; |
1000 |
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy]; |
1001 |
}else{
|
1002 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0; |
1003 |
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
1004 |
} |
1005 |
|
1006 |
if(USES_LIST(topright_type, list)){
|
1007 |
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride; |
1008 |
const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride; |
1009 |
*(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; |
1010 |
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy]; |
1011 |
}else{
|
1012 |
*(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0; |
1013 |
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
1014 |
} |
1015 |
|
1016 |
if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
|
1017 |
continue;
|
1018 |
|
1019 |
h->ref_cache[list][scan8[5 ]+1] = |
1020 |
h->ref_cache[list][scan8[7 ]+1] = |
1021 |
h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else) |
1022 |
h->ref_cache[list][scan8[4 ]] =
|
1023 |
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
|
1024 |
*(uint32_t*)h->mv_cache [list][scan8[5 ]+1]= |
1025 |
*(uint32_t*)h->mv_cache [list][scan8[7 ]+1]= |
1026 |
*(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) |
1027 |
*(uint32_t*)h->mv_cache [list][scan8[4 ]]=
|
1028 |
*(uint32_t*)h->mv_cache [list][scan8[12]]= 0; |
1029 |
|
1030 |
if( CABAC ) {
|
1031 |
/* XXX beurk, Load mvd */
|
1032 |
if(USES_LIST(top_type, list)){
|
1033 |
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
1034 |
AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]); |
1035 |
}else{
|
1036 |
AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]); |
1037 |
} |
1038 |
if(USES_LIST(left_type[0], list)){ |
1039 |
const int b_xy= h->mb2b_xy[left_xy[0]] + 3; |
1040 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]]; |
1041 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]]; |
1042 |
}else{
|
1043 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]= |
1044 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0; |
1045 |
} |
1046 |
if(USES_LIST(left_type[1], list)){ |
1047 |
const int b_xy= h->mb2b_xy[left_xy[1]] + 3; |
1048 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]]; |
1049 |
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]]; |
1050 |
}else{
|
1051 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]= |
1052 |
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0; |
1053 |
} |
1054 |
*(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]= |
1055 |
*(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]= |
1056 |
*(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) |
1057 |
*(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
|
1058 |
*(uint32_t*)h->mvd_cache [list][scan8[12]]= 0; |
1059 |
|
1060 |
if(h->slice_type_nos == FF_B_TYPE){
|
1061 |
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1); |
1062 |
|
1063 |
if(IS_DIRECT(top_type)){
|
1064 |
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101; |
1065 |
}else if(IS_8X8(top_type)){ |
1066 |
int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
|
1067 |
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy]; |
1068 |
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1]; |
1069 |
}else{
|
1070 |
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0; |
1071 |
} |
1072 |
|
1073 |
if(IS_DIRECT(left_type[0])) |
1074 |
h->direct_cache[scan8[0] - 1 + 0*8]= 1; |
1075 |
else if(IS_8X8(left_type[0])) |
1076 |
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)]; |
1077 |
else
|
1078 |
h->direct_cache[scan8[0] - 1 + 0*8]= 0; |
1079 |
|
1080 |
if(IS_DIRECT(left_type[1])) |
1081 |
h->direct_cache[scan8[0] - 1 + 2*8]= 1; |
1082 |
else if(IS_8X8(left_type[1])) |
1083 |
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)]; |
1084 |
else
|
1085 |
h->direct_cache[scan8[0] - 1 + 2*8]= 0; |
1086 |
} |
1087 |
} |
1088 |
|
1089 |
if(FRAME_MBAFF){
|
1090 |
#define MAP_MVS\
|
1091 |
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ |
1092 |
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ |
1093 |
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ |
1094 |
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ |
1095 |
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ |
1096 |
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ |
1097 |
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\ |
1098 |
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\ |
1099 |
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\ |
1100 |
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1]) |
1101 |
if(MB_FIELD){
|
1102 |
#define MAP_F2F(idx, mb_type)\
|
1103 |
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
1104 |
h->ref_cache[list][idx] <<= 1;\
|
1105 |
h->mv_cache[list][idx][1] /= 2;\ |
1106 |
h->mvd_cache[list][idx][1] /= 2;\ |
1107 |
} |
1108 |
MAP_MVS |
1109 |
#undef MAP_F2F
|
1110 |
}else{
|
1111 |
#define MAP_F2F(idx, mb_type)\
|
1112 |
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
1113 |
h->ref_cache[list][idx] >>= 1;\
|
1114 |
h->mv_cache[list][idx][1] <<= 1;\ |
1115 |
h->mvd_cache[list][idx][1] <<= 1;\ |
1116 |
} |
1117 |
MAP_MVS |
1118 |
#undef MAP_F2F
|
1119 |
} |
1120 |
} |
1121 |
} |
1122 |
} |
1123 |
#endif
|
1124 |
|
1125 |
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
|
1126 |
} |
1127 |
|
1128 |
/**
|
1129 |
*
|
1130 |
* @returns non zero if the loop filter can be skiped
|
1131 |
*/
|
1132 |
static int fill_filter_caches(H264Context *h, int mb_type){ |
1133 |
MpegEncContext * const s = &h->s;
|
1134 |
const int mb_xy= h->mb_xy; |
1135 |
int top_xy, left_xy[2]; |
1136 |
int top_type, left_type[2]; |
1137 |
int i;
|
1138 |
|
1139 |
top_xy = mb_xy - (s->mb_stride << MB_FIELD); |
1140 |
|
1141 |
//FIXME deblocking could skip the intra and nnz parts.
|
1142 |
|
1143 |
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
1144 |
* stuff, I can't imagine that these complex rules are worth it. */
|
1145 |
|
1146 |
left_xy[1] = left_xy[0] = mb_xy-1; |
1147 |
if(FRAME_MBAFF){
|
1148 |
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]); |
1149 |
const int curr_mb_field_flag = IS_INTERLACED(mb_type); |
1150 |
if(s->mb_y&1){ |
1151 |
if (left_mb_field_flag != curr_mb_field_flag) {
|
1152 |
left_xy[0] -= s->mb_stride;
|
1153 |
} |
1154 |
}else{
|
1155 |
if(curr_mb_field_flag){
|
1156 |
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1); |
1157 |
} |
1158 |
if (left_mb_field_flag != curr_mb_field_flag) {
|
1159 |
left_xy[1] += s->mb_stride;
|
1160 |
} |
1161 |
} |
1162 |
} |
1163 |
|
1164 |
h->top_mb_xy = top_xy; |
1165 |
h->left_mb_xy[0] = left_xy[0]; |
1166 |
h->left_mb_xy[1] = left_xy[1]; |
1167 |
{ |
1168 |
//for sufficiently low qp, filtering wouldn't do anything
|
1169 |
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
|
1170 |
int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice |
1171 |
int qp = s->current_picture.qscale_table[mb_xy];
|
1172 |
if(qp <= qp_thresh
|
1173 |
&& (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh) |
1174 |
&& (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){ |
1175 |
if(!FRAME_MBAFF)
|
1176 |
return 1; |
1177 |
if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh) |
1178 |
&& (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh)) |
1179 |
return 1; |
1180 |
} |
1181 |
} |
1182 |
|
1183 |
if(h->deblocking_filter == 2){ |
1184 |
h->top_type = top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
|
1185 |
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0; |
1186 |
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0; |
1187 |
}else{
|
1188 |
h->top_type = top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0; |
1189 |
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0; |
1190 |
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0; |
1191 |
} |
1192 |
if(IS_INTRA(mb_type))
|
1193 |
return 0; |
1194 |
|
1195 |
AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]); |
1196 |
AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]); |
1197 |
*((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]); |
1198 |
*((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]); |
1199 |
AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]); |
1200 |
|
1201 |
h->cbp= h->cbp_table[mb_xy]; |
1202 |
|
1203 |
{ |
1204 |
int list;
|
1205 |
for(list=0; list<h->list_count; list++){ |
1206 |
int8_t *ref; |
1207 |
int y, b_stride;
|
1208 |
int16_t (*mv_dst)[2];
|
1209 |
int16_t (*mv_src)[2];
|
1210 |
|
1211 |
if(!USES_LIST(mb_type, list)){
|
1212 |
fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4); |
1213 |
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
|
1214 |
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
|
1215 |
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
|
1216 |
*(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101; |
1217 |
continue;
|
1218 |
} |
1219 |
|
1220 |
ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]]; |
1221 |
{ |
1222 |
int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); |
1223 |
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
|
1224 |
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101; |
1225 |
ref += h->b8_stride; |
1226 |
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
|
1227 |
*(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101; |
1228 |
} |
1229 |
|
1230 |
b_stride = h->b_stride; |
1231 |
mv_dst = &h->mv_cache[list][scan8[0]];
|
1232 |
mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride]; |
1233 |
for(y=0; y<4; y++){ |
1234 |
AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
|
1235 |
} |
1236 |
|
1237 |
} |
1238 |
} |
1239 |
|
1240 |
|
1241 |
/*
|
1242 |
0 . T T. T T T T
|
1243 |
1 L . .L . . . .
|
1244 |
2 L . .L . . . .
|
1245 |
3 . T TL . . . .
|
1246 |
4 L . .L . . . .
|
1247 |
5 L . .. . . . .
|
1248 |
*/
|
1249 |
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
|
1250 |
if(top_type){
|
1251 |
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8]; |
1252 |
} |
1253 |
|
1254 |
if(left_type[0]){ |
1255 |
h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8]; |
1256 |
h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8]; |
1257 |
h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8]; |
1258 |
h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8]; |
1259 |
} |
1260 |
|
1261 |
// CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
|
1262 |
if(!CABAC && h->pps.transform_8x8_mode){
|
1263 |
if(IS_8x8DCT(top_type)){
|
1264 |
h->non_zero_count_cache[4+8*0]= |
1265 |
h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4; |
1266 |
h->non_zero_count_cache[6+8*0]= |
1267 |
h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8; |
1268 |
} |
1269 |
if(IS_8x8DCT(left_type[0])){ |
1270 |
h->non_zero_count_cache[3+8*1]= |
1271 |
h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF |
1272 |
} |
1273 |
if(IS_8x8DCT(left_type[1])){ |
1274 |
h->non_zero_count_cache[3+8*3]= |
1275 |
h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF |
1276 |
} |
1277 |
|
1278 |
if(IS_8x8DCT(mb_type)){
|
1279 |
h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]= |
1280 |
h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1; |
1281 |
|
1282 |
h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]= |
1283 |
h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2; |
1284 |
|
1285 |
h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]= |
1286 |
h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4; |
1287 |
|
1288 |
h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]= |
1289 |
h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8; |
1290 |
} |
1291 |
} |
1292 |
|
1293 |
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
|
1294 |
int list;
|
1295 |
for(list=0; list<h->list_count; list++){ |
1296 |
if(USES_LIST(top_type, list)){
|
1297 |
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
1298 |
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride; |
1299 |
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); |
1300 |
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]); |
1301 |
h->ref_cache[list][scan8[0] + 0 - 1*8]= |
1302 |
h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]]; |
1303 |
h->ref_cache[list][scan8[0] + 2 - 1*8]= |
1304 |
h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]]; |
1305 |
}else{
|
1306 |
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]); |
1307 |
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((LIST_NOT_USED)&0xFF)*0x01010101; |
1308 |
} |
1309 |
|
1310 |
if(!IS_INTERLACED(mb_type^left_type[0])){ |
1311 |
if(USES_LIST(left_type[0], list)){ |
1312 |
const int b_xy= h->mb2b_xy[left_xy[0]] + 3; |
1313 |
const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1; |
1314 |
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); |
1315 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*0]; |
1316 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 8 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*1]; |
1317 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 +16 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*2]; |
1318 |
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 +24 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*3]; |
1319 |
h->ref_cache[list][scan8[0] - 1 + 0 ]= |
1320 |
h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]]; |
1321 |
h->ref_cache[list][scan8[0] - 1 +16 ]= |
1322 |
h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]]; |
1323 |
}else{
|
1324 |
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0 ]= |
1325 |
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 8 ]= |
1326 |
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 +16 ]= |
1327 |
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 +24 ]= 0; |
1328 |
h->ref_cache[list][scan8[0] - 1 + 0 ]= |
1329 |
h->ref_cache[list][scan8[0] - 1 + 8 ]= |
1330 |
h->ref_cache[list][scan8[0] - 1 + 16 ]= |
1331 |
h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED; |
1332 |
} |
1333 |
} |
1334 |
} |
1335 |
} |
1336 |
|
1337 |
return 0; |
1338 |
} |
1339 |
|
1340 |
/**
|
1341 |
* gets the predicted intra4x4 prediction mode.
|
1342 |
*/
|
1343 |
static inline int pred_intra_mode(H264Context *h, int n){ |
1344 |
const int index8= scan8[n]; |
1345 |
const int left= h->intra4x4_pred_mode_cache[index8 - 1]; |
1346 |
const int top = h->intra4x4_pred_mode_cache[index8 - 8]; |
1347 |
const int min= FFMIN(left, top); |
1348 |
|
1349 |
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
|
1350 |
|
1351 |
if(min<0) return DC_PRED; |
1352 |
else return min; |
1353 |
} |
1354 |
|
1355 |
static inline void write_back_non_zero_count(H264Context *h){ |
1356 |
const int mb_xy= h->mb_xy; |
1357 |
|
1358 |
AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]); |
1359 |
AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]); |
1360 |
*((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]); |
1361 |
*((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]); |
1362 |
AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]); |
1363 |
} |
1364 |
|
1365 |
static inline void write_back_motion(H264Context *h, int mb_type){ |
1366 |
MpegEncContext * const s = &h->s;
|
1367 |
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; |
1368 |
const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride; |
1369 |
int list;
|
1370 |
|
1371 |
if(!USES_LIST(mb_type, 0)) |
1372 |
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1); |
1373 |
|
1374 |
for(list=0; list<h->list_count; list++){ |
1375 |
int y, b_stride;
|
1376 |
int16_t (*mv_dst)[2];
|
1377 |
int16_t (*mv_src)[2];
|
1378 |
|
1379 |
if(!USES_LIST(mb_type, list))
|
1380 |
continue;
|
1381 |
|
1382 |
b_stride = h->b_stride; |
1383 |
mv_dst = &s->current_picture.motion_val[list][b_xy]; |
1384 |
mv_src = &h->mv_cache[list][scan8[0]];
|
1385 |
for(y=0; y<4; y++){ |
1386 |
AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
|
1387 |
} |
1388 |
if( CABAC ) {
|
1389 |
int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
|
1390 |
int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]]; |
1391 |
if(IS_SKIP(mb_type))
|
1392 |
fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4); |
1393 |
else
|
1394 |
for(y=0; y<4; y++){ |
1395 |
AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
|
1396 |
} |
1397 |
} |
1398 |
|
1399 |
{ |
1400 |
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy]; |
1401 |
ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]]; |
1402 |
ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]]; |
1403 |
ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]]; |
1404 |
ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]]; |
1405 |
} |
1406 |
} |
1407 |
|
1408 |
if(h->slice_type_nos == FF_B_TYPE && CABAC){
|
1409 |
if(IS_8X8(mb_type)){
|
1410 |
uint8_t *direct_table = &h->direct_table[b8_xy]; |
1411 |
direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0; |
1412 |
direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0; |
1413 |
direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0; |
1414 |
} |
1415 |
} |
1416 |
} |
1417 |
|
1418 |
static inline int get_dct8x8_allowed(H264Context *h){ |
1419 |
if(h->sps.direct_8x8_inference_flag)
|
1420 |
return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL)); |
1421 |
else
|
1422 |
return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL)); |
1423 |
} |
1424 |
|
1425 |
static void predict_field_decoding_flag(H264Context *h){ |
1426 |
MpegEncContext * const s = &h->s;
|
1427 |
const int mb_xy= h->mb_xy; |
1428 |
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num) |
1429 |
? s->current_picture.mb_type[mb_xy-1]
|
1430 |
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num) |
1431 |
? s->current_picture.mb_type[mb_xy-s->mb_stride] |
1432 |
: 0;
|
1433 |
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; |
1434 |
} |
1435 |
|
1436 |
/**
|
1437 |
* decodes a P_SKIP or B_SKIP macroblock
|
1438 |
*/
|
1439 |
static void decode_mb_skip(H264Context *h){ |
1440 |
MpegEncContext * const s = &h->s;
|
1441 |
const int mb_xy= h->mb_xy; |
1442 |
int mb_type=0; |
1443 |
|
1444 |
memset(h->non_zero_count[mb_xy], 0, 32); |
1445 |
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui |
1446 |
|
1447 |
if(MB_FIELD)
|
1448 |
mb_type|= MB_TYPE_INTERLACED; |
1449 |
|
1450 |
if( h->slice_type_nos == FF_B_TYPE )
|
1451 |
{ |
1452 |
// just for fill_caches. pred_direct_motion will set the real mb_type
|
1453 |
mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; |
1454 |
|
1455 |
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
|
1456 |
ff_h264_pred_direct_motion(h, &mb_type); |
1457 |
mb_type|= MB_TYPE_SKIP; |
1458 |
} |
1459 |
else
|
1460 |
{ |
1461 |
int mx, my;
|
1462 |
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; |
1463 |
|
1464 |
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
|
1465 |
pred_pskip_motion(h, &mx, &my); |
1466 |
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); |
1467 |
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); |
1468 |
} |
1469 |
|
1470 |
write_back_motion(h, mb_type); |
1471 |
s->current_picture.mb_type[mb_xy]= mb_type; |
1472 |
s->current_picture.qscale_table[mb_xy]= s->qscale; |
1473 |
h->slice_table[ mb_xy ]= h->slice_num; |
1474 |
h->prev_mb_skipped= 1;
|
1475 |
} |
1476 |
|
1477 |
#include "h264_mvpred.h" //For pred_pskip_motion() |
1478 |
|
1479 |
#endif /* AVCODEC_H264_H */ |