ffmpeg / libavcodec / aac.c @ 9106a698
History | View | Annotate | Download (63.6 KB)
1 |
/*
|
---|---|
2 |
* AAC decoder
|
3 |
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
|
4 |
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
|
5 |
*
|
6 |
* This file is part of FFmpeg.
|
7 |
*
|
8 |
* FFmpeg is free software; you can redistribute it and/or
|
9 |
* modify it under the terms of the GNU Lesser General Public
|
10 |
* License as published by the Free Software Foundation; either
|
11 |
* version 2.1 of the License, or (at your option) any later version.
|
12 |
*
|
13 |
* FFmpeg is distributed in the hope that it will be useful,
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
16 |
* Lesser General Public License for more details.
|
17 |
*
|
18 |
* You should have received a copy of the GNU Lesser General Public
|
19 |
* License along with FFmpeg; if not, write to the Free Software
|
20 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
21 |
*/
|
22 |
|
23 |
/**
|
24 |
* @file libavcodec/aac.c
|
25 |
* AAC decoder
|
26 |
* @author Oded Shimon ( ods15 ods15 dyndns org )
|
27 |
* @author Maxim Gavrilov ( maxim.gavrilov gmail com )
|
28 |
*/
|
29 |
|
30 |
/*
|
31 |
* supported tools
|
32 |
*
|
33 |
* Support? Name
|
34 |
* N (code in SoC repo) gain control
|
35 |
* Y block switching
|
36 |
* Y window shapes - standard
|
37 |
* N window shapes - Low Delay
|
38 |
* Y filterbank - standard
|
39 |
* N (code in SoC repo) filterbank - Scalable Sample Rate
|
40 |
* Y Temporal Noise Shaping
|
41 |
* N (code in SoC repo) Long Term Prediction
|
42 |
* Y intensity stereo
|
43 |
* Y channel coupling
|
44 |
* Y frequency domain prediction
|
45 |
* Y Perceptual Noise Substitution
|
46 |
* Y Mid/Side stereo
|
47 |
* N Scalable Inverse AAC Quantization
|
48 |
* N Frequency Selective Switch
|
49 |
* N upsampling filter
|
50 |
* Y quantization & coding - AAC
|
51 |
* N quantization & coding - TwinVQ
|
52 |
* N quantization & coding - BSAC
|
53 |
* N AAC Error Resilience tools
|
54 |
* N Error Resilience payload syntax
|
55 |
* N Error Protection tool
|
56 |
* N CELP
|
57 |
* N Silence Compression
|
58 |
* N HVXC
|
59 |
* N HVXC 4kbits/s VR
|
60 |
* N Structured Audio tools
|
61 |
* N Structured Audio Sample Bank Format
|
62 |
* N MIDI
|
63 |
* N Harmonic and Individual Lines plus Noise
|
64 |
* N Text-To-Speech Interface
|
65 |
* N (in progress) Spectral Band Replication
|
66 |
* Y (not in this code) Layer-1
|
67 |
* Y (not in this code) Layer-2
|
68 |
* Y (not in this code) Layer-3
|
69 |
* N SinuSoidal Coding (Transient, Sinusoid, Noise)
|
70 |
* N (planned) Parametric Stereo
|
71 |
* N Direct Stream Transfer
|
72 |
*
|
73 |
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
|
74 |
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and
|
75 |
Parametric Stereo.
|
76 |
*/
|
77 |
|
78 |
|
79 |
#include "avcodec.h" |
80 |
#include "internal.h" |
81 |
#include "get_bits.h" |
82 |
#include "dsputil.h" |
83 |
#include "lpc.h" |
84 |
|
85 |
#include "aac.h" |
86 |
#include "aactab.h" |
87 |
#include "aacdectab.h" |
88 |
#include "mpeg4audio.h" |
89 |
#include "aac_parser.h" |
90 |
|
91 |
#include <assert.h> |
92 |
#include <errno.h> |
93 |
#include <math.h> |
94 |
#include <string.h> |
95 |
|
96 |
union float754 { float f; uint32_t i; }; |
97 |
|
98 |
static VLC vlc_scalefactors;
|
99 |
static VLC vlc_spectral[11]; |
100 |
|
101 |
|
102 |
static ChannelElement* get_che(AACContext *ac, int type, int elem_id) { |
103 |
static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 }; |
104 |
if (ac->tag_che_map[type][elem_id]) {
|
105 |
return ac->tag_che_map[type][elem_id];
|
106 |
} |
107 |
if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
|
108 |
return NULL; |
109 |
} |
110 |
switch (ac->m4ac.chan_config) {
|
111 |
case 7: |
112 |
if (ac->tags_mapped == 3 && type == TYPE_CPE) { |
113 |
ac->tags_mapped++; |
114 |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; |
115 |
} |
116 |
case 6: |
117 |
/* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
|
118 |
instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
|
119 |
encountered such a stream, transfer the LFE[0] element to SCE[1] */
|
120 |
if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
121 |
ac->tags_mapped++; |
122 |
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; |
123 |
} |
124 |
case 5: |
125 |
if (ac->tags_mapped == 2 && type == TYPE_CPE) { |
126 |
ac->tags_mapped++; |
127 |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; |
128 |
} |
129 |
case 4: |
130 |
if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) { |
131 |
ac->tags_mapped++; |
132 |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
133 |
} |
134 |
case 3: |
135 |
case 2: |
136 |
if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) { |
137 |
ac->tags_mapped++; |
138 |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; |
139 |
} else if (ac->m4ac.chan_config == 2) { |
140 |
return NULL; |
141 |
} |
142 |
case 1: |
143 |
if (!ac->tags_mapped && type == TYPE_SCE) {
|
144 |
ac->tags_mapped++; |
145 |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; |
146 |
} |
147 |
default:
|
148 |
return NULL; |
149 |
} |
150 |
} |
151 |
|
152 |
/**
|
153 |
* Configure output channel order based on the current program configuration element.
|
154 |
*
|
155 |
* @param che_pos current channel position configuration
|
156 |
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
|
157 |
*
|
158 |
* @return Returns error status. 0 - OK, !0 - error
|
159 |
*/
|
160 |
static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID], |
161 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) { |
162 |
AVCodecContext *avctx = ac->avccontext; |
163 |
int i, type, channels = 0; |
164 |
|
165 |
if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]))) |
166 |
return 0; /* no change */ |
167 |
|
168 |
memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
169 |
|
170 |
/* Allocate or free elements depending on if they are in the
|
171 |
* current program configuration.
|
172 |
*
|
173 |
* Set up default 1:1 output mapping.
|
174 |
*
|
175 |
* For a 5.1 stream the output order will be:
|
176 |
* [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
|
177 |
*/
|
178 |
|
179 |
for(i = 0; i < MAX_ELEM_ID; i++) { |
180 |
for(type = 0; type < 4; type++) { |
181 |
if(che_pos[type][i]) {
|
182 |
if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement)))) |
183 |
return AVERROR(ENOMEM);
|
184 |
if(type != TYPE_CCE) {
|
185 |
ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
|
186 |
if(type == TYPE_CPE) {
|
187 |
ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
|
188 |
} |
189 |
} |
190 |
} else
|
191 |
av_freep(&ac->che[type][i]); |
192 |
} |
193 |
} |
194 |
|
195 |
if (channel_config) {
|
196 |
memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); |
197 |
ac->tags_mapped = 0;
|
198 |
} else {
|
199 |
memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); |
200 |
ac->tags_mapped = 4*MAX_ELEM_ID;
|
201 |
} |
202 |
|
203 |
avctx->channels = channels; |
204 |
|
205 |
return 0; |
206 |
} |
207 |
|
208 |
/**
|
209 |
* Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
|
210 |
*
|
211 |
* @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
|
212 |
* @param sce_map mono (Single Channel Element) map
|
213 |
* @param type speaker type/position for these channels
|
214 |
*/
|
215 |
static void decode_channel_map(enum ChannelPosition *cpe_map, |
216 |
enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) { |
217 |
while(n--) {
|
218 |
enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map |
219 |
map[get_bits(gb, 4)] = type;
|
220 |
} |
221 |
} |
222 |
|
223 |
/**
|
224 |
* Decode program configuration element; reference: table 4.2.
|
225 |
*
|
226 |
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
|
227 |
*
|
228 |
* @return Returns error status. 0 - OK, !0 - error
|
229 |
*/
|
230 |
static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], |
231 |
GetBitContext * gb) { |
232 |
int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
|
233 |
|
234 |
skip_bits(gb, 2); // object_type |
235 |
|
236 |
sampling_index = get_bits(gb, 4);
|
237 |
if(sampling_index > 12) { |
238 |
av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
|
239 |
return -1; |
240 |
} |
241 |
ac->m4ac.sampling_index = sampling_index; |
242 |
ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index]; |
243 |
num_front = get_bits(gb, 4);
|
244 |
num_side = get_bits(gb, 4);
|
245 |
num_back = get_bits(gb, 4);
|
246 |
num_lfe = get_bits(gb, 2);
|
247 |
num_assoc_data = get_bits(gb, 3);
|
248 |
num_cc = get_bits(gb, 4);
|
249 |
|
250 |
if (get_bits1(gb))
|
251 |
skip_bits(gb, 4); // mono_mixdown_tag |
252 |
if (get_bits1(gb))
|
253 |
skip_bits(gb, 4); // stereo_mixdown_tag |
254 |
|
255 |
if (get_bits1(gb))
|
256 |
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround |
257 |
|
258 |
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front); |
259 |
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side ); |
260 |
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back ); |
261 |
decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
|
262 |
|
263 |
skip_bits_long(gb, 4 * num_assoc_data);
|
264 |
|
265 |
decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc ); |
266 |
|
267 |
align_get_bits(gb); |
268 |
|
269 |
/* comment field, first byte is length */
|
270 |
skip_bits_long(gb, 8 * get_bits(gb, 8)); |
271 |
return 0; |
272 |
} |
273 |
|
274 |
/**
|
275 |
* Set up channel positions based on a default channel configuration
|
276 |
* as specified in table 1.17.
|
277 |
*
|
278 |
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
|
279 |
*
|
280 |
* @return Returns error status. 0 - OK, !0 - error
|
281 |
*/
|
282 |
static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], |
283 |
int channel_config)
|
284 |
{ |
285 |
if(channel_config < 1 || channel_config > 7) { |
286 |
av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
|
287 |
channel_config); |
288 |
return -1; |
289 |
} |
290 |
|
291 |
/* default channel configurations:
|
292 |
*
|
293 |
* 1ch : front center (mono)
|
294 |
* 2ch : L + R (stereo)
|
295 |
* 3ch : front center + L + R
|
296 |
* 4ch : front center + L + R + back center
|
297 |
* 5ch : front center + L + R + back stereo
|
298 |
* 6ch : front center + L + R + back stereo + LFE
|
299 |
* 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
|
300 |
*/
|
301 |
|
302 |
if(channel_config != 2) |
303 |
new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono) |
304 |
if(channel_config > 1) |
305 |
new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo) |
306 |
if(channel_config == 4) |
307 |
new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center |
308 |
if(channel_config > 4) |
309 |
new_che_pos[TYPE_CPE][(channel_config == 7) + 1] |
310 |
= AAC_CHANNEL_BACK; // back stereo
|
311 |
if(channel_config > 5) |
312 |
new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE |
313 |
if(channel_config == 7) |
314 |
new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right |
315 |
|
316 |
return 0; |
317 |
} |
318 |
|
319 |
/**
|
320 |
* Decode GA "General Audio" specific configuration; reference: table 4.1.
|
321 |
*
|
322 |
* @return Returns error status. 0 - OK, !0 - error
|
323 |
*/
|
324 |
static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) { |
325 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
326 |
int extension_flag, ret;
|
327 |
|
328 |
if(get_bits1(gb)) { // frameLengthFlag |
329 |
ff_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1); |
330 |
return -1; |
331 |
} |
332 |
|
333 |
if (get_bits1(gb)) // dependsOnCoreCoder |
334 |
skip_bits(gb, 14); // coreCoderDelay |
335 |
extension_flag = get_bits1(gb); |
336 |
|
337 |
if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
|
338 |
ac->m4ac.object_type == AOT_ER_AAC_SCALABLE) |
339 |
skip_bits(gb, 3); // layerNr |
340 |
|
341 |
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
342 |
if (channel_config == 0) { |
343 |
skip_bits(gb, 4); // element_instance_tag |
344 |
if((ret = decode_pce(ac, new_che_pos, gb)))
|
345 |
return ret;
|
346 |
} else {
|
347 |
if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
|
348 |
return ret;
|
349 |
} |
350 |
if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
|
351 |
return ret;
|
352 |
|
353 |
if (extension_flag) {
|
354 |
switch (ac->m4ac.object_type) {
|
355 |
case AOT_ER_BSAC:
|
356 |
skip_bits(gb, 5); // numOfSubFrame |
357 |
skip_bits(gb, 11); // layer_length |
358 |
break;
|
359 |
case AOT_ER_AAC_LC:
|
360 |
case AOT_ER_AAC_LTP:
|
361 |
case AOT_ER_AAC_SCALABLE:
|
362 |
case AOT_ER_AAC_LD:
|
363 |
skip_bits(gb, 3); /* aacSectionDataResilienceFlag |
364 |
* aacScalefactorDataResilienceFlag
|
365 |
* aacSpectralDataResilienceFlag
|
366 |
*/
|
367 |
break;
|
368 |
} |
369 |
skip_bits1(gb); // extensionFlag3 (TBD in version 3)
|
370 |
} |
371 |
return 0; |
372 |
} |
373 |
|
374 |
/**
|
375 |
* Decode audio specific configuration; reference: table 1.13.
|
376 |
*
|
377 |
* @param data pointer to AVCodecContext extradata
|
378 |
* @param data_size size of AVCCodecContext extradata
|
379 |
*
|
380 |
* @return Returns error status. 0 - OK, !0 - error
|
381 |
*/
|
382 |
static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) { |
383 |
GetBitContext gb; |
384 |
int i;
|
385 |
|
386 |
init_get_bits(&gb, data, data_size * 8);
|
387 |
|
388 |
if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0) |
389 |
return -1; |
390 |
if(ac->m4ac.sampling_index > 12) { |
391 |
av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
|
392 |
return -1; |
393 |
} |
394 |
|
395 |
skip_bits_long(&gb, i); |
396 |
|
397 |
switch (ac->m4ac.object_type) {
|
398 |
case AOT_AAC_MAIN:
|
399 |
case AOT_AAC_LC:
|
400 |
if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
|
401 |
return -1; |
402 |
break;
|
403 |
default:
|
404 |
av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
|
405 |
ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type); |
406 |
return -1; |
407 |
} |
408 |
return 0; |
409 |
} |
410 |
|
411 |
/**
|
412 |
* linear congruential pseudorandom number generator
|
413 |
*
|
414 |
* @param previous_val pointer to the current state of the generator
|
415 |
*
|
416 |
* @return Returns a 32-bit pseudorandom integer
|
417 |
*/
|
418 |
static av_always_inline int lcg_random(int previous_val) { |
419 |
return previous_val * 1664525 + 1013904223; |
420 |
} |
421 |
|
422 |
static void reset_predict_state(PredictorState * ps) { |
423 |
ps->r0 = 0.0f; |
424 |
ps->r1 = 0.0f; |
425 |
ps->cor0 = 0.0f; |
426 |
ps->cor1 = 0.0f; |
427 |
ps->var0 = 1.0f; |
428 |
ps->var1 = 1.0f; |
429 |
} |
430 |
|
431 |
static void reset_all_predictors(PredictorState * ps) { |
432 |
int i;
|
433 |
for (i = 0; i < MAX_PREDICTORS; i++) |
434 |
reset_predict_state(&ps[i]); |
435 |
} |
436 |
|
437 |
static void reset_predictor_group(PredictorState * ps, int group_num) { |
438 |
int i;
|
439 |
for (i = group_num-1; i < MAX_PREDICTORS; i+=30) |
440 |
reset_predict_state(&ps[i]); |
441 |
} |
442 |
|
443 |
static av_cold int aac_decode_init(AVCodecContext * avccontext) { |
444 |
AACContext * ac = avccontext->priv_data; |
445 |
int i;
|
446 |
|
447 |
ac->avccontext = avccontext; |
448 |
|
449 |
if (avccontext->extradata_size > 0) { |
450 |
if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
|
451 |
return -1; |
452 |
avccontext->sample_rate = ac->m4ac.sample_rate; |
453 |
} else if (avccontext->channels > 0) { |
454 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
455 |
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
456 |
if(set_default_channel_config(ac, new_che_pos, avccontext->channels - (avccontext->channels == 8))) |
457 |
return -1; |
458 |
if(output_configure(ac, ac->che_pos, new_che_pos, 1)) |
459 |
return -1; |
460 |
ac->m4ac.sample_rate = avccontext->sample_rate; |
461 |
} else {
|
462 |
ff_log_missing_feature(ac->avccontext, "Implicit channel configuration is", 0); |
463 |
return -1; |
464 |
} |
465 |
|
466 |
avccontext->sample_fmt = SAMPLE_FMT_S16; |
467 |
avccontext->frame_size = 1024;
|
468 |
|
469 |
AAC_INIT_VLC_STATIC( 0, 144); |
470 |
AAC_INIT_VLC_STATIC( 1, 114); |
471 |
AAC_INIT_VLC_STATIC( 2, 188); |
472 |
AAC_INIT_VLC_STATIC( 3, 180); |
473 |
AAC_INIT_VLC_STATIC( 4, 172); |
474 |
AAC_INIT_VLC_STATIC( 5, 140); |
475 |
AAC_INIT_VLC_STATIC( 6, 168); |
476 |
AAC_INIT_VLC_STATIC( 7, 114); |
477 |
AAC_INIT_VLC_STATIC( 8, 262); |
478 |
AAC_INIT_VLC_STATIC( 9, 248); |
479 |
AAC_INIT_VLC_STATIC(10, 384); |
480 |
|
481 |
dsputil_init(&ac->dsp, avccontext); |
482 |
|
483 |
ac->random_state = 0x1f2e3d4c;
|
484 |
|
485 |
// -1024 - Compensate wrong IMDCT method.
|
486 |
// 32768 - Required to scale values to the correct range for the bias method
|
487 |
// for float to int16 conversion.
|
488 |
|
489 |
if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
|
490 |
ac->add_bias = 385.0f; |
491 |
ac->sf_scale = 1. / (-1024. * 32768.); |
492 |
ac->sf_offset = 0;
|
493 |
} else {
|
494 |
ac->add_bias = 0.0f; |
495 |
ac->sf_scale = 1. / -1024.; |
496 |
ac->sf_offset = 60;
|
497 |
} |
498 |
|
499 |
#if !CONFIG_HARDCODED_TABLES
|
500 |
for (i = 0; i < 428; i++) |
501 |
ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.); |
502 |
#endif /* CONFIG_HARDCODED_TABLES */ |
503 |
|
504 |
INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
|
505 |
ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]), |
506 |
ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]), |
507 |
352);
|
508 |
|
509 |
ff_mdct_init(&ac->mdct, 11, 1); |
510 |
ff_mdct_init(&ac->mdct_small, 8, 1); |
511 |
// window initialization
|
512 |
ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024); |
513 |
ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128); |
514 |
ff_sine_window_init(ff_sine_1024, 1024);
|
515 |
ff_sine_window_init(ff_sine_128, 128);
|
516 |
|
517 |
return 0; |
518 |
} |
519 |
|
520 |
/**
|
521 |
* Skip data_stream_element; reference: table 4.10.
|
522 |
*/
|
523 |
static void skip_data_stream_element(GetBitContext * gb) { |
524 |
int byte_align = get_bits1(gb);
|
525 |
int count = get_bits(gb, 8); |
526 |
if (count == 255) |
527 |
count += get_bits(gb, 8);
|
528 |
if (byte_align)
|
529 |
align_get_bits(gb); |
530 |
skip_bits_long(gb, 8 * count);
|
531 |
} |
532 |
|
533 |
static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) { |
534 |
int sfb;
|
535 |
if (get_bits1(gb)) {
|
536 |
ics->predictor_reset_group = get_bits(gb, 5);
|
537 |
if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) { |
538 |
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
|
539 |
return -1; |
540 |
} |
541 |
} |
542 |
for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) { |
543 |
ics->prediction_used[sfb] = get_bits1(gb); |
544 |
} |
545 |
return 0; |
546 |
} |
547 |
|
548 |
/**
|
549 |
* Decode Individual Channel Stream info; reference: table 4.6.
|
550 |
*
|
551 |
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
|
552 |
*/
|
553 |
static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) { |
554 |
if (get_bits1(gb)) {
|
555 |
av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
|
556 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
557 |
return -1; |
558 |
} |
559 |
ics->window_sequence[1] = ics->window_sequence[0]; |
560 |
ics->window_sequence[0] = get_bits(gb, 2); |
561 |
ics->use_kb_window[1] = ics->use_kb_window[0]; |
562 |
ics->use_kb_window[0] = get_bits1(gb);
|
563 |
ics->num_window_groups = 1;
|
564 |
ics->group_len[0] = 1; |
565 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
566 |
int i;
|
567 |
ics->max_sfb = get_bits(gb, 4);
|
568 |
for (i = 0; i < 7; i++) { |
569 |
if (get_bits1(gb)) {
|
570 |
ics->group_len[ics->num_window_groups-1]++;
|
571 |
} else {
|
572 |
ics->num_window_groups++; |
573 |
ics->group_len[ics->num_window_groups-1] = 1; |
574 |
} |
575 |
} |
576 |
ics->num_windows = 8;
|
577 |
ics->swb_offset = swb_offset_128[ac->m4ac.sampling_index]; |
578 |
ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index]; |
579 |
ics->tns_max_bands = tns_max_bands_128[ac->m4ac.sampling_index]; |
580 |
ics->predictor_present = 0;
|
581 |
} else {
|
582 |
ics->max_sfb = get_bits(gb, 6);
|
583 |
ics->num_windows = 1;
|
584 |
ics->swb_offset = swb_offset_1024[ac->m4ac.sampling_index]; |
585 |
ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index]; |
586 |
ics->tns_max_bands = tns_max_bands_1024[ac->m4ac.sampling_index]; |
587 |
ics->predictor_present = get_bits1(gb); |
588 |
ics->predictor_reset_group = 0;
|
589 |
if (ics->predictor_present) {
|
590 |
if (ac->m4ac.object_type == AOT_AAC_MAIN) {
|
591 |
if (decode_prediction(ac, ics, gb)) {
|
592 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
593 |
return -1; |
594 |
} |
595 |
} else if (ac->m4ac.object_type == AOT_AAC_LC) { |
596 |
av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
|
597 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
598 |
return -1; |
599 |
} else {
|
600 |
ff_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1); |
601 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
602 |
return -1; |
603 |
} |
604 |
} |
605 |
} |
606 |
|
607 |
if(ics->max_sfb > ics->num_swb) {
|
608 |
av_log(ac->avccontext, AV_LOG_ERROR, |
609 |
"Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
|
610 |
ics->max_sfb, ics->num_swb); |
611 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
612 |
return -1; |
613 |
} |
614 |
|
615 |
return 0; |
616 |
} |
617 |
|
618 |
/**
|
619 |
* Decode band types (section_data payload); reference: table 4.46.
|
620 |
*
|
621 |
* @param band_type array of the used band type
|
622 |
* @param band_type_run_end array of the last scalefactor band of a band type run
|
623 |
*
|
624 |
* @return Returns error status. 0 - OK, !0 - error
|
625 |
*/
|
626 |
static int decode_band_types(AACContext * ac, enum BandType band_type[120], |
627 |
int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) { |
628 |
int g, idx = 0; |
629 |
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; |
630 |
for (g = 0; g < ics->num_window_groups; g++) { |
631 |
int k = 0; |
632 |
while (k < ics->max_sfb) {
|
633 |
uint8_t sect_len = k; |
634 |
int sect_len_incr;
|
635 |
int sect_band_type = get_bits(gb, 4); |
636 |
if (sect_band_type == 12) { |
637 |
av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
|
638 |
return -1; |
639 |
} |
640 |
while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1) |
641 |
sect_len += sect_len_incr; |
642 |
sect_len += sect_len_incr; |
643 |
if (sect_len > ics->max_sfb) {
|
644 |
av_log(ac->avccontext, AV_LOG_ERROR, |
645 |
"Number of bands (%d) exceeds limit (%d).\n",
|
646 |
sect_len, ics->max_sfb); |
647 |
return -1; |
648 |
} |
649 |
for (; k < sect_len; k++) {
|
650 |
band_type [idx] = sect_band_type; |
651 |
band_type_run_end[idx++] = sect_len; |
652 |
} |
653 |
} |
654 |
} |
655 |
return 0; |
656 |
} |
657 |
|
658 |
/**
|
659 |
* Decode scalefactors; reference: table 4.47.
|
660 |
*
|
661 |
* @param global_gain first scalefactor value as scalefactors are differentially coded
|
662 |
* @param band_type array of the used band type
|
663 |
* @param band_type_run_end array of the last scalefactor band of a band type run
|
664 |
* @param sf array of scalefactors or intensity stereo positions
|
665 |
*
|
666 |
* @return Returns error status. 0 - OK, !0 - error
|
667 |
*/
|
668 |
static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb, |
669 |
unsigned int global_gain, IndividualChannelStream * ics, |
670 |
enum BandType band_type[120], int band_type_run_end[120]) { |
671 |
const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0); |
672 |
int g, i, idx = 0; |
673 |
int offset[3] = { global_gain, global_gain - 90, 100 }; |
674 |
int noise_flag = 1; |
675 |
static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" }; |
676 |
for (g = 0; g < ics->num_window_groups; g++) { |
677 |
for (i = 0; i < ics->max_sfb;) { |
678 |
int run_end = band_type_run_end[idx];
|
679 |
if (band_type[idx] == ZERO_BT) {
|
680 |
for(; i < run_end; i++, idx++)
|
681 |
sf[idx] = 0.;
|
682 |
}else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) { |
683 |
for(; i < run_end; i++, idx++) {
|
684 |
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
685 |
if(offset[2] > 255U) { |
686 |
av_log(ac->avccontext, AV_LOG_ERROR, |
687 |
"%s (%d) out of range.\n", sf_str[2], offset[2]); |
688 |
return -1; |
689 |
} |
690 |
sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300]; |
691 |
} |
692 |
}else if(band_type[idx] == NOISE_BT) { |
693 |
for(; i < run_end; i++, idx++) {
|
694 |
if(noise_flag-- > 0) |
695 |
offset[1] += get_bits(gb, 9) - 256; |
696 |
else
|
697 |
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
698 |
if(offset[1] > 255U) { |
699 |
av_log(ac->avccontext, AV_LOG_ERROR, |
700 |
"%s (%d) out of range.\n", sf_str[1], offset[1]); |
701 |
return -1; |
702 |
} |
703 |
sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100]; |
704 |
} |
705 |
}else {
|
706 |
for(; i < run_end; i++, idx++) {
|
707 |
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
708 |
if(offset[0] > 255U) { |
709 |
av_log(ac->avccontext, AV_LOG_ERROR, |
710 |
"%s (%d) out of range.\n", sf_str[0], offset[0]); |
711 |
return -1; |
712 |
} |
713 |
sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
|
714 |
} |
715 |
} |
716 |
} |
717 |
} |
718 |
return 0; |
719 |
} |
720 |
|
721 |
/**
|
722 |
* Decode pulse data; reference: table 4.7.
|
723 |
*/
|
724 |
static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) { |
725 |
int i, pulse_swb;
|
726 |
pulse->num_pulse = get_bits(gb, 2) + 1; |
727 |
pulse_swb = get_bits(gb, 6);
|
728 |
if (pulse_swb >= num_swb)
|
729 |
return -1; |
730 |
pulse->pos[0] = swb_offset[pulse_swb];
|
731 |
pulse->pos[0] += get_bits(gb, 5); |
732 |
if (pulse->pos[0] > 1023) |
733 |
return -1; |
734 |
pulse->amp[0] = get_bits(gb, 4); |
735 |
for (i = 1; i < pulse->num_pulse; i++) { |
736 |
pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1]; |
737 |
if (pulse->pos[i] > 1023) |
738 |
return -1; |
739 |
pulse->amp[i] = get_bits(gb, 4);
|
740 |
} |
741 |
return 0; |
742 |
} |
743 |
|
744 |
/**
|
745 |
* Decode Temporal Noise Shaping data; reference: table 4.48.
|
746 |
*
|
747 |
* @return Returns error status. 0 - OK, !0 - error
|
748 |
*/
|
749 |
static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns, |
750 |
GetBitContext * gb, const IndividualChannelStream * ics) {
|
751 |
int w, filt, i, coef_len, coef_res, coef_compress;
|
752 |
const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; |
753 |
const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; |
754 |
for (w = 0; w < ics->num_windows; w++) { |
755 |
if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { |
756 |
coef_res = get_bits1(gb); |
757 |
|
758 |
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
759 |
int tmp2_idx;
|
760 |
tns->length[w][filt] = get_bits(gb, 6 - 2*is8); |
761 |
|
762 |
if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) { |
763 |
av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
|
764 |
tns->order[w][filt], tns_max_order); |
765 |
tns->order[w][filt] = 0;
|
766 |
return -1; |
767 |
} |
768 |
if (tns->order[w][filt]) {
|
769 |
tns->direction[w][filt] = get_bits1(gb); |
770 |
coef_compress = get_bits1(gb); |
771 |
coef_len = coef_res + 3 - coef_compress;
|
772 |
tmp2_idx = 2*coef_compress + coef_res;
|
773 |
|
774 |
for (i = 0; i < tns->order[w][filt]; i++) |
775 |
tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; |
776 |
} |
777 |
} |
778 |
} |
779 |
} |
780 |
return 0; |
781 |
} |
782 |
|
783 |
/**
|
784 |
* Decode Mid/Side data; reference: table 4.54.
|
785 |
*
|
786 |
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
|
787 |
* [1] mask is decoded from bitstream; [2] mask is all 1s;
|
788 |
* [3] reserved for scalable AAC
|
789 |
*/
|
790 |
static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb, |
791 |
int ms_present) {
|
792 |
int idx;
|
793 |
if (ms_present == 1) { |
794 |
for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++) |
795 |
cpe->ms_mask[idx] = get_bits1(gb); |
796 |
} else if (ms_present == 2) { |
797 |
memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0])); |
798 |
} |
799 |
} |
800 |
|
801 |
/**
|
802 |
* Decode spectral data; reference: table 4.50.
|
803 |
* Dequantize and scale spectral data; reference: 4.6.3.3.
|
804 |
*
|
805 |
* @param coef array of dequantized, scaled spectral data
|
806 |
* @param sf array of scalefactors or intensity stereo positions
|
807 |
* @param pulse_present set if pulses are present
|
808 |
* @param pulse pointer to pulse data struct
|
809 |
* @param band_type array of the used band type
|
810 |
*
|
811 |
* @return Returns error status. 0 - OK, !0 - error
|
812 |
*/
|
813 |
static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120], |
814 |
int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) { |
815 |
int i, k, g, idx = 0; |
816 |
const int c = 1024/ics->num_windows; |
817 |
const uint16_t * offsets = ics->swb_offset;
|
818 |
float *coef_base = coef;
|
819 |
static const float sign_lookup[] = { 1.0f, -1.0f }; |
820 |
|
821 |
for (g = 0; g < ics->num_windows; g++) |
822 |
memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb])); |
823 |
|
824 |
for (g = 0; g < ics->num_window_groups; g++) { |
825 |
for (i = 0; i < ics->max_sfb; i++, idx++) { |
826 |
const int cur_band_type = band_type[idx]; |
827 |
const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4; |
828 |
const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type); |
829 |
int group;
|
830 |
if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
|
831 |
for (group = 0; group < ics->group_len[g]; group++) { |
832 |
memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float)); |
833 |
} |
834 |
}else if (cur_band_type == NOISE_BT) { |
835 |
for (group = 0; group < ics->group_len[g]; group++) { |
836 |
float scale;
|
837 |
float band_energy = 0; |
838 |
for (k = offsets[i]; k < offsets[i+1]; k++) { |
839 |
ac->random_state = lcg_random(ac->random_state); |
840 |
coef[group*128+k] = ac->random_state;
|
841 |
band_energy += coef[group*128+k]*coef[group*128+k]; |
842 |
} |
843 |
scale = sf[idx] / sqrtf(band_energy); |
844 |
for (k = offsets[i]; k < offsets[i+1]; k++) { |
845 |
coef[group*128+k] *= scale;
|
846 |
} |
847 |
} |
848 |
}else {
|
849 |
for (group = 0; group < ics->group_len[g]; group++) { |
850 |
for (k = offsets[i]; k < offsets[i+1]; k += dim) { |
851 |
const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3); |
852 |
const int coef_tmp_idx = (group << 7) + k; |
853 |
const float *vq_ptr; |
854 |
int j;
|
855 |
if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) { |
856 |
av_log(ac->avccontext, AV_LOG_ERROR, |
857 |
"Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
|
858 |
cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]); |
859 |
return -1; |
860 |
} |
861 |
vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
|
862 |
if (is_cb_unsigned) {
|
863 |
if (vq_ptr[0]) coef[coef_tmp_idx ] = sign_lookup[get_bits1(gb)]; |
864 |
if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)]; |
865 |
if (dim == 4) { |
866 |
if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)]; |
867 |
if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)]; |
868 |
} |
869 |
if (cur_band_type == ESC_BT) {
|
870 |
for (j = 0; j < 2; j++) { |
871 |
if (vq_ptr[j] == 64.0f) { |
872 |
int n = 4; |
873 |
/* The total length of escape_sequence must be < 22 bits according
|
874 |
to the specification (i.e. max is 11111111110xxxxxxxxxx). */
|
875 |
while (get_bits1(gb) && n < 15) n++; |
876 |
if(n == 15) { |
877 |
av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
|
878 |
return -1; |
879 |
} |
880 |
n = (1<<n) + get_bits(gb, n);
|
881 |
coef[coef_tmp_idx + j] *= cbrtf(n) * n; |
882 |
}else
|
883 |
coef[coef_tmp_idx + j] *= vq_ptr[j]; |
884 |
} |
885 |
}else
|
886 |
{ |
887 |
coef[coef_tmp_idx ] *= vq_ptr[0];
|
888 |
coef[coef_tmp_idx + 1] *= vq_ptr[1]; |
889 |
if (dim == 4) { |
890 |
coef[coef_tmp_idx + 2] *= vq_ptr[2]; |
891 |
coef[coef_tmp_idx + 3] *= vq_ptr[3]; |
892 |
} |
893 |
} |
894 |
}else {
|
895 |
coef[coef_tmp_idx ] = vq_ptr[0];
|
896 |
coef[coef_tmp_idx + 1] = vq_ptr[1]; |
897 |
if (dim == 4) { |
898 |
coef[coef_tmp_idx + 2] = vq_ptr[2]; |
899 |
coef[coef_tmp_idx + 3] = vq_ptr[3]; |
900 |
} |
901 |
} |
902 |
coef[coef_tmp_idx ] *= sf[idx]; |
903 |
coef[coef_tmp_idx + 1] *= sf[idx];
|
904 |
if (dim == 4) { |
905 |
coef[coef_tmp_idx + 2] *= sf[idx];
|
906 |
coef[coef_tmp_idx + 3] *= sf[idx];
|
907 |
} |
908 |
} |
909 |
} |
910 |
} |
911 |
} |
912 |
coef += ics->group_len[g]<<7;
|
913 |
} |
914 |
|
915 |
if (pulse_present) {
|
916 |
idx = 0;
|
917 |
for(i = 0; i < pulse->num_pulse; i++){ |
918 |
float co = coef_base[ pulse->pos[i] ];
|
919 |
while(offsets[idx + 1] <= pulse->pos[i]) |
920 |
idx++; |
921 |
if (band_type[idx] != NOISE_BT && sf[idx]) {
|
922 |
float ico = -pulse->amp[i];
|
923 |
if (co) {
|
924 |
co /= sf[idx]; |
925 |
ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
|
926 |
} |
927 |
coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; |
928 |
} |
929 |
} |
930 |
} |
931 |
return 0; |
932 |
} |
933 |
|
934 |
static av_always_inline float flt16_round(float pf) { |
935 |
union float754 tmp;
|
936 |
tmp.f = pf; |
937 |
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U; |
938 |
return tmp.f;
|
939 |
} |
940 |
|
941 |
static av_always_inline float flt16_even(float pf) { |
942 |
union float754 tmp;
|
943 |
tmp.f = pf; |
944 |
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U>>16)) & 0xFFFF0000U; |
945 |
return tmp.f;
|
946 |
} |
947 |
|
948 |
static av_always_inline float flt16_trunc(float pf) { |
949 |
union float754 pun;
|
950 |
pun.f = pf; |
951 |
pun.i &= 0xFFFF0000U;
|
952 |
return pun.f;
|
953 |
} |
954 |
|
955 |
static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) { |
956 |
const float a = 0.953125; // 61.0/64 |
957 |
const float alpha = 0.90625; // 29.0/32 |
958 |
float e0, e1;
|
959 |
float pv;
|
960 |
float k1, k2;
|
961 |
|
962 |
k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0; |
963 |
k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0; |
964 |
|
965 |
pv = flt16_round(k1 * ps->r0 + k2 * ps->r1); |
966 |
if (output_enable)
|
967 |
*coef += pv * ac->sf_scale; |
968 |
|
969 |
e0 = *coef / ac->sf_scale; |
970 |
e1 = e0 - k1 * ps->r0; |
971 |
|
972 |
ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1); |
973 |
ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1)); |
974 |
ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0); |
975 |
ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0)); |
976 |
|
977 |
ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0)); |
978 |
ps->r0 = flt16_trunc(a * e0); |
979 |
} |
980 |
|
981 |
/**
|
982 |
* Apply AAC-Main style frequency domain prediction.
|
983 |
*/
|
984 |
static void apply_prediction(AACContext * ac, SingleChannelElement * sce) { |
985 |
int sfb, k;
|
986 |
|
987 |
if (!sce->ics.predictor_initialized) {
|
988 |
reset_all_predictors(sce->predictor_state); |
989 |
sce->ics.predictor_initialized = 1;
|
990 |
} |
991 |
|
992 |
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { |
993 |
for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) { |
994 |
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) { |
995 |
predict(ac, &sce->predictor_state[k], &sce->coeffs[k], |
996 |
sce->ics.predictor_present && sce->ics.prediction_used[sfb]); |
997 |
} |
998 |
} |
999 |
if (sce->ics.predictor_reset_group)
|
1000 |
reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group); |
1001 |
} else
|
1002 |
reset_all_predictors(sce->predictor_state); |
1003 |
} |
1004 |
|
1005 |
/**
|
1006 |
* Decode an individual_channel_stream payload; reference: table 4.44.
|
1007 |
*
|
1008 |
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
|
1009 |
* @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
|
1010 |
*
|
1011 |
* @return Returns error status. 0 - OK, !0 - error
|
1012 |
*/
|
1013 |
static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) { |
1014 |
Pulse pulse; |
1015 |
TemporalNoiseShaping * tns = &sce->tns; |
1016 |
IndividualChannelStream * ics = &sce->ics; |
1017 |
float * out = sce->coeffs;
|
1018 |
int global_gain, pulse_present = 0; |
1019 |
|
1020 |
/* This assignment is to silence a GCC warning about the variable being used
|
1021 |
* uninitialized when in fact it always is.
|
1022 |
*/
|
1023 |
pulse.num_pulse = 0;
|
1024 |
|
1025 |
global_gain = get_bits(gb, 8);
|
1026 |
|
1027 |
if (!common_window && !scale_flag) {
|
1028 |
if (decode_ics_info(ac, ics, gb, 0) < 0) |
1029 |
return -1; |
1030 |
} |
1031 |
|
1032 |
if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0) |
1033 |
return -1; |
1034 |
if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0) |
1035 |
return -1; |
1036 |
|
1037 |
pulse_present = 0;
|
1038 |
if (!scale_flag) {
|
1039 |
if ((pulse_present = get_bits1(gb))) {
|
1040 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1041 |
av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
|
1042 |
return -1; |
1043 |
} |
1044 |
if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
|
1045 |
av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
|
1046 |
return -1; |
1047 |
} |
1048 |
} |
1049 |
if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
|
1050 |
return -1; |
1051 |
if (get_bits1(gb)) {
|
1052 |
ff_log_missing_feature(ac->avccontext, "SSR", 1); |
1053 |
return -1; |
1054 |
} |
1055 |
} |
1056 |
|
1057 |
if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0) |
1058 |
return -1; |
1059 |
|
1060 |
if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
|
1061 |
apply_prediction(ac, sce); |
1062 |
|
1063 |
return 0; |
1064 |
} |
1065 |
|
1066 |
/**
|
1067 |
* Mid/Side stereo decoding; reference: 4.6.8.1.3.
|
1068 |
*/
|
1069 |
static void apply_mid_side_stereo(ChannelElement * cpe) { |
1070 |
const IndividualChannelStream * ics = &cpe->ch[0].ics; |
1071 |
float *ch0 = cpe->ch[0].coeffs; |
1072 |
float *ch1 = cpe->ch[1].coeffs; |
1073 |
int g, i, k, group, idx = 0; |
1074 |
const uint16_t * offsets = ics->swb_offset;
|
1075 |
for (g = 0; g < ics->num_window_groups; g++) { |
1076 |
for (i = 0; i < ics->max_sfb; i++, idx++) { |
1077 |
if (cpe->ms_mask[idx] &&
|
1078 |
cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) { |
1079 |
for (group = 0; group < ics->group_len[g]; group++) { |
1080 |
for (k = offsets[i]; k < offsets[i+1]; k++) { |
1081 |
float tmp = ch0[group*128 + k] - ch1[group*128 + k]; |
1082 |
ch0[group*128 + k] += ch1[group*128 + k]; |
1083 |
ch1[group*128 + k] = tmp;
|
1084 |
} |
1085 |
} |
1086 |
} |
1087 |
} |
1088 |
ch0 += ics->group_len[g]*128;
|
1089 |
ch1 += ics->group_len[g]*128;
|
1090 |
} |
1091 |
} |
1092 |
|
1093 |
/**
|
1094 |
* intensity stereo decoding; reference: 4.6.8.2.3
|
1095 |
*
|
1096 |
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
|
1097 |
* [1] mask is decoded from bitstream; [2] mask is all 1s;
|
1098 |
* [3] reserved for scalable AAC
|
1099 |
*/
|
1100 |
static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) { |
1101 |
const IndividualChannelStream * ics = &cpe->ch[1].ics; |
1102 |
SingleChannelElement * sce1 = &cpe->ch[1];
|
1103 |
float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; |
1104 |
const uint16_t * offsets = ics->swb_offset;
|
1105 |
int g, group, i, k, idx = 0; |
1106 |
int c;
|
1107 |
float scale;
|
1108 |
for (g = 0; g < ics->num_window_groups; g++) { |
1109 |
for (i = 0; i < ics->max_sfb;) { |
1110 |
if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
|
1111 |
const int bt_run_end = sce1->band_type_run_end[idx]; |
1112 |
for (; i < bt_run_end; i++, idx++) {
|
1113 |
c = -1 + 2 * (sce1->band_type[idx] - 14); |
1114 |
if (ms_present)
|
1115 |
c *= 1 - 2 * cpe->ms_mask[idx]; |
1116 |
scale = c * sce1->sf[idx]; |
1117 |
for (group = 0; group < ics->group_len[g]; group++) |
1118 |
for (k = offsets[i]; k < offsets[i+1]; k++) |
1119 |
coef1[group*128 + k] = scale * coef0[group*128 + k]; |
1120 |
} |
1121 |
} else {
|
1122 |
int bt_run_end = sce1->band_type_run_end[idx];
|
1123 |
idx += bt_run_end - i; |
1124 |
i = bt_run_end; |
1125 |
} |
1126 |
} |
1127 |
coef0 += ics->group_len[g]*128;
|
1128 |
coef1 += ics->group_len[g]*128;
|
1129 |
} |
1130 |
} |
1131 |
|
1132 |
/**
|
1133 |
* Decode a channel_pair_element; reference: table 4.4.
|
1134 |
*
|
1135 |
* @param elem_id Identifies the instance of a syntax element.
|
1136 |
*
|
1137 |
* @return Returns error status. 0 - OK, !0 - error
|
1138 |
*/
|
1139 |
static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) { |
1140 |
int i, ret, common_window, ms_present = 0; |
1141 |
|
1142 |
common_window = get_bits1(gb); |
1143 |
if (common_window) {
|
1144 |
if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1)) |
1145 |
return -1; |
1146 |
i = cpe->ch[1].ics.use_kb_window[0]; |
1147 |
cpe->ch[1].ics = cpe->ch[0].ics; |
1148 |
cpe->ch[1].ics.use_kb_window[1] = i; |
1149 |
ms_present = get_bits(gb, 2);
|
1150 |
if(ms_present == 3) { |
1151 |
av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
|
1152 |
return -1; |
1153 |
} else if(ms_present) |
1154 |
decode_mid_side_stereo(cpe, gb, ms_present); |
1155 |
} |
1156 |
if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) |
1157 |
return ret;
|
1158 |
if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) |
1159 |
return ret;
|
1160 |
|
1161 |
if (common_window) {
|
1162 |
if (ms_present)
|
1163 |
apply_mid_side_stereo(cpe); |
1164 |
if (ac->m4ac.object_type == AOT_AAC_MAIN) {
|
1165 |
apply_prediction(ac, &cpe->ch[0]);
|
1166 |
apply_prediction(ac, &cpe->ch[1]);
|
1167 |
} |
1168 |
} |
1169 |
|
1170 |
apply_intensity_stereo(cpe, ms_present); |
1171 |
return 0; |
1172 |
} |
1173 |
|
1174 |
/**
|
1175 |
* Decode coupling_channel_element; reference: table 4.8.
|
1176 |
*
|
1177 |
* @param elem_id Identifies the instance of a syntax element.
|
1178 |
*
|
1179 |
* @return Returns error status. 0 - OK, !0 - error
|
1180 |
*/
|
1181 |
static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) { |
1182 |
int num_gain = 0; |
1183 |
int c, g, sfb, ret;
|
1184 |
int sign;
|
1185 |
float scale;
|
1186 |
SingleChannelElement * sce = &che->ch[0];
|
1187 |
ChannelCoupling * coup = &che->coup; |
1188 |
|
1189 |
coup->coupling_point = 2*get_bits1(gb);
|
1190 |
coup->num_coupled = get_bits(gb, 3);
|
1191 |
for (c = 0; c <= coup->num_coupled; c++) { |
1192 |
num_gain++; |
1193 |
coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; |
1194 |
coup->id_select[c] = get_bits(gb, 4);
|
1195 |
if (coup->type[c] == TYPE_CPE) {
|
1196 |
coup->ch_select[c] = get_bits(gb, 2);
|
1197 |
if (coup->ch_select[c] == 3) |
1198 |
num_gain++; |
1199 |
} else
|
1200 |
coup->ch_select[c] = 2;
|
1201 |
} |
1202 |
coup->coupling_point += get_bits1(gb) || (coup->coupling_point>>1);
|
1203 |
|
1204 |
sign = get_bits(gb, 1);
|
1205 |
scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3)); |
1206 |
|
1207 |
if ((ret = decode_ics(ac, sce, gb, 0, 0))) |
1208 |
return ret;
|
1209 |
|
1210 |
for (c = 0; c < num_gain; c++) { |
1211 |
int idx = 0; |
1212 |
int cge = 1; |
1213 |
int gain = 0; |
1214 |
float gain_cache = 1.; |
1215 |
if (c) {
|
1216 |
cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
|
1217 |
gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; |
1218 |
gain_cache = pow(scale, -gain); |
1219 |
} |
1220 |
if (coup->coupling_point == AFTER_IMDCT) {
|
1221 |
coup->gain[c][0] = gain_cache;
|
1222 |
} else {
|
1223 |
for (g = 0; g < sce->ics.num_window_groups; g++) { |
1224 |
for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { |
1225 |
if (sce->band_type[idx] != ZERO_BT) {
|
1226 |
if (!cge) {
|
1227 |
int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
1228 |
if (t) {
|
1229 |
int s = 1; |
1230 |
t = gain += t; |
1231 |
if (sign) {
|
1232 |
s -= 2 * (t & 0x1); |
1233 |
t >>= 1;
|
1234 |
} |
1235 |
gain_cache = pow(scale, -t) * s; |
1236 |
} |
1237 |
} |
1238 |
coup->gain[c][idx] = gain_cache; |
1239 |
} |
1240 |
} |
1241 |
} |
1242 |
} |
1243 |
} |
1244 |
return 0; |
1245 |
} |
1246 |
|
1247 |
/**
|
1248 |
* Decode Spectral Band Replication extension data; reference: table 4.55.
|
1249 |
*
|
1250 |
* @param crc flag indicating the presence of CRC checksum
|
1251 |
* @param cnt length of TYPE_FIL syntactic element in bytes
|
1252 |
*
|
1253 |
* @return Returns number of bytes consumed from the TYPE_FIL element.
|
1254 |
*/
|
1255 |
static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) { |
1256 |
// TODO : sbr_extension implementation
|
1257 |
ff_log_missing_feature(ac->avccontext, "SBR", 0); |
1258 |
skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type |
1259 |
return cnt;
|
1260 |
} |
1261 |
|
1262 |
/**
|
1263 |
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
|
1264 |
*
|
1265 |
* @return Returns number of bytes consumed.
|
1266 |
*/
|
1267 |
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) { |
1268 |
int i;
|
1269 |
int num_excl_chan = 0; |
1270 |
|
1271 |
do {
|
1272 |
for (i = 0; i < 7; i++) |
1273 |
che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); |
1274 |
} while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); |
1275 |
|
1276 |
return num_excl_chan / 7; |
1277 |
} |
1278 |
|
1279 |
/**
|
1280 |
* Decode dynamic range information; reference: table 4.52.
|
1281 |
*
|
1282 |
* @param cnt length of TYPE_FIL syntactic element in bytes
|
1283 |
*
|
1284 |
* @return Returns number of bytes consumed.
|
1285 |
*/
|
1286 |
static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) { |
1287 |
int n = 1; |
1288 |
int drc_num_bands = 1; |
1289 |
int i;
|
1290 |
|
1291 |
/* pce_tag_present? */
|
1292 |
if(get_bits1(gb)) {
|
1293 |
che_drc->pce_instance_tag = get_bits(gb, 4);
|
1294 |
skip_bits(gb, 4); // tag_reserved_bits |
1295 |
n++; |
1296 |
} |
1297 |
|
1298 |
/* excluded_chns_present? */
|
1299 |
if(get_bits1(gb)) {
|
1300 |
n += decode_drc_channel_exclusions(che_drc, gb); |
1301 |
} |
1302 |
|
1303 |
/* drc_bands_present? */
|
1304 |
if (get_bits1(gb)) {
|
1305 |
che_drc->band_incr = get_bits(gb, 4);
|
1306 |
che_drc->interpolation_scheme = get_bits(gb, 4);
|
1307 |
n++; |
1308 |
drc_num_bands += che_drc->band_incr; |
1309 |
for (i = 0; i < drc_num_bands; i++) { |
1310 |
che_drc->band_top[i] = get_bits(gb, 8);
|
1311 |
n++; |
1312 |
} |
1313 |
} |
1314 |
|
1315 |
/* prog_ref_level_present? */
|
1316 |
if (get_bits1(gb)) {
|
1317 |
che_drc->prog_ref_level = get_bits(gb, 7);
|
1318 |
skip_bits1(gb); // prog_ref_level_reserved_bits
|
1319 |
n++; |
1320 |
} |
1321 |
|
1322 |
for (i = 0; i < drc_num_bands; i++) { |
1323 |
che_drc->dyn_rng_sgn[i] = get_bits1(gb); |
1324 |
che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
|
1325 |
n++; |
1326 |
} |
1327 |
|
1328 |
return n;
|
1329 |
} |
1330 |
|
1331 |
/**
|
1332 |
* Decode extension data (incomplete); reference: table 4.51.
|
1333 |
*
|
1334 |
* @param cnt length of TYPE_FIL syntactic element in bytes
|
1335 |
*
|
1336 |
* @return Returns number of bytes consumed
|
1337 |
*/
|
1338 |
static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) { |
1339 |
int crc_flag = 0; |
1340 |
int res = cnt;
|
1341 |
switch (get_bits(gb, 4)) { // extension type |
1342 |
case EXT_SBR_DATA_CRC:
|
1343 |
crc_flag++; |
1344 |
case EXT_SBR_DATA:
|
1345 |
res = decode_sbr_extension(ac, gb, crc_flag, cnt); |
1346 |
break;
|
1347 |
case EXT_DYNAMIC_RANGE:
|
1348 |
res = decode_dynamic_range(&ac->che_drc, gb, cnt); |
1349 |
break;
|
1350 |
case EXT_FILL:
|
1351 |
case EXT_FILL_DATA:
|
1352 |
case EXT_DATA_ELEMENT:
|
1353 |
default:
|
1354 |
skip_bits_long(gb, 8*cnt - 4); |
1355 |
break;
|
1356 |
}; |
1357 |
return res;
|
1358 |
} |
1359 |
|
1360 |
/**
|
1361 |
* Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
|
1362 |
*
|
1363 |
* @param decode 1 if tool is used normally, 0 if tool is used in LTP.
|
1364 |
* @param coef spectral coefficients
|
1365 |
*/
|
1366 |
static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) { |
1367 |
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); |
1368 |
int w, filt, m, i;
|
1369 |
int bottom, top, order, start, end, size, inc;
|
1370 |
float lpc[TNS_MAX_ORDER];
|
1371 |
|
1372 |
for (w = 0; w < ics->num_windows; w++) { |
1373 |
bottom = ics->num_swb; |
1374 |
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
1375 |
top = bottom; |
1376 |
bottom = FFMAX(0, top - tns->length[w][filt]);
|
1377 |
order = tns->order[w][filt]; |
1378 |
if (order == 0) |
1379 |
continue;
|
1380 |
|
1381 |
// tns_decode_coef
|
1382 |
compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); |
1383 |
|
1384 |
start = ics->swb_offset[FFMIN(bottom, mmm)]; |
1385 |
end = ics->swb_offset[FFMIN( top, mmm)]; |
1386 |
if ((size = end - start) <= 0) |
1387 |
continue;
|
1388 |
if (tns->direction[w][filt]) {
|
1389 |
inc = -1; start = end - 1; |
1390 |
} else {
|
1391 |
inc = 1;
|
1392 |
} |
1393 |
start += w * 128;
|
1394 |
|
1395 |
// ar filter
|
1396 |
for (m = 0; m < size; m++, start += inc) |
1397 |
for (i = 1; i <= FFMIN(m, order); i++) |
1398 |
coef[start] -= coef[start - i*inc] * lpc[i-1];
|
1399 |
} |
1400 |
} |
1401 |
} |
1402 |
|
1403 |
/**
|
1404 |
* Conduct IMDCT and windowing.
|
1405 |
*/
|
1406 |
static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) { |
1407 |
IndividualChannelStream * ics = &sce->ics; |
1408 |
float * in = sce->coeffs;
|
1409 |
float * out = sce->ret;
|
1410 |
float * saved = sce->saved;
|
1411 |
const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; |
1412 |
const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; |
1413 |
const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; |
1414 |
float * buf = ac->buf_mdct;
|
1415 |
float * temp = ac->temp;
|
1416 |
int i;
|
1417 |
|
1418 |
// imdct
|
1419 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1420 |
if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) |
1421 |
av_log(ac->avccontext, AV_LOG_WARNING, |
1422 |
"Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
|
1423 |
"If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
|
1424 |
for (i = 0; i < 1024; i += 128) |
1425 |
ff_imdct_half(&ac->mdct_small, buf + i, in + i); |
1426 |
} else
|
1427 |
ff_imdct_half(&ac->mdct, buf, in); |
1428 |
|
1429 |
/* window overlapping
|
1430 |
* NOTE: To simplify the overlapping code, all 'meaningless' short to long
|
1431 |
* and long to short transitions are considered to be short to short
|
1432 |
* transitions. This leaves just two cases (long to long and short to short)
|
1433 |
* with a little special sauce for EIGHT_SHORT_SEQUENCE.
|
1434 |
*/
|
1435 |
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && |
1436 |
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { |
1437 |
ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
|
1438 |
} else {
|
1439 |
for (i = 0; i < 448; i++) |
1440 |
out[i] = saved[i] + ac->add_bias; |
1441 |
|
1442 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1443 |
ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64); |
1444 |
ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64); |
1445 |
ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64); |
1446 |
ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64); |
1447 |
ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64); |
1448 |
memcpy( out + 448 + 4*128, temp, 64 * sizeof(float)); |
1449 |
} else {
|
1450 |
ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64); |
1451 |
for (i = 576; i < 1024; i++) |
1452 |
out[i] = buf[i-512] + ac->add_bias;
|
1453 |
} |
1454 |
} |
1455 |
|
1456 |
// buffer update
|
1457 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1458 |
for (i = 0; i < 64; i++) |
1459 |
saved[i] = temp[64 + i] - ac->add_bias;
|
1460 |
ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64); |
1461 |
ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64); |
1462 |
ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64); |
1463 |
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); |
1464 |
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { |
1465 |
memcpy( saved, buf + 512, 448 * sizeof(float)); |
1466 |
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); |
1467 |
} else { // LONG_STOP or ONLY_LONG |
1468 |
memcpy( saved, buf + 512, 512 * sizeof(float)); |
1469 |
} |
1470 |
} |
1471 |
|
1472 |
/**
|
1473 |
* Apply dependent channel coupling (applied before IMDCT).
|
1474 |
*
|
1475 |
* @param index index into coupling gain array
|
1476 |
*/
|
1477 |
static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) { |
1478 |
IndividualChannelStream * ics = &cce->ch[0].ics;
|
1479 |
const uint16_t * offsets = ics->swb_offset;
|
1480 |
float * dest = target->coeffs;
|
1481 |
const float * src = cce->ch[0].coeffs; |
1482 |
int g, i, group, k, idx = 0; |
1483 |
if(ac->m4ac.object_type == AOT_AAC_LTP) {
|
1484 |
av_log(ac->avccontext, AV_LOG_ERROR, |
1485 |
"Dependent coupling is not supported together with LTP\n");
|
1486 |
return;
|
1487 |
} |
1488 |
for (g = 0; g < ics->num_window_groups; g++) { |
1489 |
for (i = 0; i < ics->max_sfb; i++, idx++) { |
1490 |
if (cce->ch[0].band_type[idx] != ZERO_BT) { |
1491 |
const float gain = cce->coup.gain[index][idx]; |
1492 |
for (group = 0; group < ics->group_len[g]; group++) { |
1493 |
for (k = offsets[i]; k < offsets[i+1]; k++) { |
1494 |
// XXX dsputil-ize
|
1495 |
dest[group*128+k] += gain * src[group*128+k]; |
1496 |
} |
1497 |
} |
1498 |
} |
1499 |
} |
1500 |
dest += ics->group_len[g]*128;
|
1501 |
src += ics->group_len[g]*128;
|
1502 |
} |
1503 |
} |
1504 |
|
1505 |
/**
|
1506 |
* Apply independent channel coupling (applied after IMDCT).
|
1507 |
*
|
1508 |
* @param index index into coupling gain array
|
1509 |
*/
|
1510 |
static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) { |
1511 |
int i;
|
1512 |
const float gain = cce->coup.gain[index][0]; |
1513 |
const float bias = ac->add_bias; |
1514 |
const float* src = cce->ch[0].ret; |
1515 |
float* dest = target->ret;
|
1516 |
|
1517 |
for (i = 0; i < 1024; i++) |
1518 |
dest[i] += gain * (src[i] - bias); |
1519 |
} |
1520 |
|
1521 |
/**
|
1522 |
* channel coupling transformation interface
|
1523 |
*
|
1524 |
* @param index index into coupling gain array
|
1525 |
* @param apply_coupling_method pointer to (in)dependent coupling function
|
1526 |
*/
|
1527 |
static void apply_channel_coupling(AACContext * ac, ChannelElement * cc, |
1528 |
enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point, |
1529 |
void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index)) |
1530 |
{ |
1531 |
int i, c;
|
1532 |
|
1533 |
for (i = 0; i < MAX_ELEM_ID; i++) { |
1534 |
ChannelElement *cce = ac->che[TYPE_CCE][i]; |
1535 |
int index = 0; |
1536 |
|
1537 |
if (cce && cce->coup.coupling_point == coupling_point) {
|
1538 |
ChannelCoupling * coup = &cce->coup; |
1539 |
|
1540 |
for (c = 0; c <= coup->num_coupled; c++) { |
1541 |
if (coup->type[c] == type && coup->id_select[c] == elem_id) {
|
1542 |
if (coup->ch_select[c] != 1) { |
1543 |
apply_coupling_method(ac, &cc->ch[0], cce, index);
|
1544 |
if (coup->ch_select[c] != 0) |
1545 |
index++; |
1546 |
} |
1547 |
if (coup->ch_select[c] != 2) |
1548 |
apply_coupling_method(ac, &cc->ch[1], cce, index++);
|
1549 |
} else
|
1550 |
index += 1 + (coup->ch_select[c] == 3); |
1551 |
} |
1552 |
} |
1553 |
} |
1554 |
} |
1555 |
|
1556 |
/**
|
1557 |
* Convert spectral data to float samples, applying all supported tools as appropriate.
|
1558 |
*/
|
1559 |
static void spectral_to_sample(AACContext * ac) { |
1560 |
int i, type;
|
1561 |
for(type = 3; type >= 0; type--) { |
1562 |
for (i = 0; i < MAX_ELEM_ID; i++) { |
1563 |
ChannelElement *che = ac->che[type][i]; |
1564 |
if(che) {
|
1565 |
if(type <= TYPE_CPE)
|
1566 |
apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling); |
1567 |
if(che->ch[0].tns.present) |
1568 |
apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1); |
1569 |
if(che->ch[1].tns.present) |
1570 |
apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1); |
1571 |
if(type <= TYPE_CPE)
|
1572 |
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling); |
1573 |
if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
|
1574 |
imdct_and_windowing(ac, &che->ch[0]);
|
1575 |
if(type == TYPE_CPE)
|
1576 |
imdct_and_windowing(ac, &che->ch[1]);
|
1577 |
if(type <= TYPE_CCE)
|
1578 |
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling); |
1579 |
} |
1580 |
} |
1581 |
} |
1582 |
} |
1583 |
|
1584 |
static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) { |
1585 |
|
1586 |
int size;
|
1587 |
AACADTSHeaderInfo hdr_info; |
1588 |
|
1589 |
size = ff_aac_parse_header(gb, &hdr_info); |
1590 |
if (size > 0) { |
1591 |
if (hdr_info.chan_config)
|
1592 |
ac->m4ac.chan_config = hdr_info.chan_config; |
1593 |
ac->m4ac.sample_rate = hdr_info.sample_rate; |
1594 |
ac->m4ac.sampling_index = hdr_info.sampling_index; |
1595 |
ac->m4ac.object_type = hdr_info.object_type; |
1596 |
if (hdr_info.num_aac_frames == 1) { |
1597 |
if (!hdr_info.crc_absent)
|
1598 |
skip_bits(gb, 16);
|
1599 |
} else {
|
1600 |
ff_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0); |
1601 |
return -1; |
1602 |
} |
1603 |
} |
1604 |
return size;
|
1605 |
} |
1606 |
|
1607 |
static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, AVPacket *avpkt) { |
1608 |
const uint8_t *buf = avpkt->data;
|
1609 |
int buf_size = avpkt->size;
|
1610 |
AACContext * ac = avccontext->priv_data; |
1611 |
ChannelElement * che = NULL;
|
1612 |
GetBitContext gb; |
1613 |
enum RawDataBlockType elem_type;
|
1614 |
int err, elem_id, data_size_tmp;
|
1615 |
|
1616 |
init_get_bits(&gb, buf, buf_size*8);
|
1617 |
|
1618 |
if (show_bits(&gb, 12) == 0xfff) { |
1619 |
if ((err = parse_adts_frame_header(ac, &gb)) < 0) { |
1620 |
av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
|
1621 |
return -1; |
1622 |
} |
1623 |
if (ac->m4ac.sampling_index > 12) { |
1624 |
av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
|
1625 |
return -1; |
1626 |
} |
1627 |
} |
1628 |
|
1629 |
// parse
|
1630 |
while ((elem_type = get_bits(&gb, 3)) != TYPE_END) { |
1631 |
elem_id = get_bits(&gb, 4);
|
1632 |
err = -1;
|
1633 |
|
1634 |
if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
|
1635 |
av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
|
1636 |
return -1; |
1637 |
} |
1638 |
|
1639 |
switch (elem_type) {
|
1640 |
|
1641 |
case TYPE_SCE:
|
1642 |
err = decode_ics(ac, &che->ch[0], &gb, 0, 0); |
1643 |
break;
|
1644 |
|
1645 |
case TYPE_CPE:
|
1646 |
err = decode_cpe(ac, &gb, che); |
1647 |
break;
|
1648 |
|
1649 |
case TYPE_CCE:
|
1650 |
err = decode_cce(ac, &gb, che); |
1651 |
break;
|
1652 |
|
1653 |
case TYPE_LFE:
|
1654 |
err = decode_ics(ac, &che->ch[0], &gb, 0, 0); |
1655 |
break;
|
1656 |
|
1657 |
case TYPE_DSE:
|
1658 |
skip_data_stream_element(&gb); |
1659 |
err = 0;
|
1660 |
break;
|
1661 |
|
1662 |
case TYPE_PCE:
|
1663 |
{ |
1664 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
1665 |
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
1666 |
if((err = decode_pce(ac, new_che_pos, &gb)))
|
1667 |
break;
|
1668 |
err = output_configure(ac, ac->che_pos, new_che_pos, 0);
|
1669 |
break;
|
1670 |
} |
1671 |
|
1672 |
case TYPE_FIL:
|
1673 |
if (elem_id == 15) |
1674 |
elem_id += get_bits(&gb, 8) - 1; |
1675 |
while (elem_id > 0) |
1676 |
elem_id -= decode_extension_payload(ac, &gb, elem_id); |
1677 |
err = 0; /* FIXME */ |
1678 |
break;
|
1679 |
|
1680 |
default:
|
1681 |
err = -1; /* should not happen, but keeps compiler happy */ |
1682 |
break;
|
1683 |
} |
1684 |
|
1685 |
if(err)
|
1686 |
return err;
|
1687 |
} |
1688 |
|
1689 |
spectral_to_sample(ac); |
1690 |
|
1691 |
if (!ac->is_saved) {
|
1692 |
ac->is_saved = 1;
|
1693 |
*data_size = 0;
|
1694 |
return buf_size;
|
1695 |
} |
1696 |
|
1697 |
data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t); |
1698 |
if(*data_size < data_size_tmp) {
|
1699 |
av_log(avccontext, AV_LOG_ERROR, |
1700 |
"Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
|
1701 |
*data_size, data_size_tmp); |
1702 |
return -1; |
1703 |
} |
1704 |
*data_size = data_size_tmp; |
1705 |
|
1706 |
ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels); |
1707 |
|
1708 |
return buf_size;
|
1709 |
} |
1710 |
|
1711 |
static av_cold int aac_decode_close(AVCodecContext * avccontext) { |
1712 |
AACContext * ac = avccontext->priv_data; |
1713 |
int i, type;
|
1714 |
|
1715 |
for (i = 0; i < MAX_ELEM_ID; i++) { |
1716 |
for(type = 0; type < 4; type++) |
1717 |
av_freep(&ac->che[type][i]); |
1718 |
} |
1719 |
|
1720 |
ff_mdct_end(&ac->mdct); |
1721 |
ff_mdct_end(&ac->mdct_small); |
1722 |
return 0 ; |
1723 |
} |
1724 |
|
1725 |
AVCodec aac_decoder = { |
1726 |
"aac",
|
1727 |
CODEC_TYPE_AUDIO, |
1728 |
CODEC_ID_AAC, |
1729 |
sizeof(AACContext),
|
1730 |
aac_decode_init, |
1731 |
NULL,
|
1732 |
aac_decode_close, |
1733 |
aac_decode_frame, |
1734 |
.long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
|
1735 |
.sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
|
1736 |
}; |