Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ 9106a698

History | View | Annotate | Download (38.8 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavcodec/cook.c
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44

    
45
#include <math.h>
46
#include <stddef.h>
47
#include <stdio.h>
48

    
49
#include "libavutil/lfg.h"
50
#include "libavutil/random_seed.h"
51
#include "avcodec.h"
52
#include "get_bits.h"
53
#include "dsputil.h"
54
#include "bytestream.h"
55

    
56
#include "cookdata.h"
57

    
58
/* the different Cook versions */
59
#define MONO            0x1000001
60
#define STEREO          0x1000002
61
#define JOINT_STEREO    0x1000003
62
#define MC_COOK         0x2000000   //multichannel Cook, not supported
63

    
64
#define SUBBAND_SIZE    20
65
#define MAX_SUBPACKETS   5
66
//#define COOKDEBUG
67

    
68
typedef struct {
69
    int *now;
70
    int *previous;
71
} cook_gains;
72

    
73
typedef struct cook {
74
    /*
75
     * The following 5 functions provide the lowlevel arithmetic on
76
     * the internal audio buffers.
77
     */
78
    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
79
                            int* subband_coef_index, int* subband_coef_sign,
80
                            float* mlt_p);
81

    
82
    void (* decouple) (struct cook *q,
83
                       int subband,
84
                       float f1, float f2,
85
                       float *decode_buffer,
86
                       float *mlt_buffer1, float *mlt_buffer2);
87

    
88
    void (* imlt_window) (struct cook *q, float *buffer1,
89
                          cook_gains *gains_ptr, float *previous_buffer);
90

    
91
    void (* interpolate) (struct cook *q, float* buffer,
92
                          int gain_index, int gain_index_next);
93

    
94
    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
95

    
96
    AVCodecContext*     avctx;
97
    GetBitContext       gb;
98
    /* stream data */
99
    int                 nb_channels;
100
    int                 joint_stereo;
101
    int                 bit_rate;
102
    int                 sample_rate;
103
    int                 samples_per_channel;
104
    int                 samples_per_frame;
105
    int                 subbands;
106
    int                 log2_numvector_size;
107
    int                 numvector_size;                //1 << log2_numvector_size;
108
    int                 js_subband_start;
109
    int                 total_subbands;
110
    int                 num_vectors;
111
    int                 bits_per_subpacket;
112
    int                 cookversion;
113
    /* states */
114
    AVLFG               random_state;
115

    
116
    /* transform data */
117
    MDCTContext         mdct_ctx;
118
    float*              mlt_window;
119

    
120
    /* gain buffers */
121
    cook_gains          gains1;
122
    cook_gains          gains2;
123
    int                 gain_1[9];
124
    int                 gain_2[9];
125
    int                 gain_3[9];
126
    int                 gain_4[9];
127

    
128
    /* VLC data */
129
    int                 js_vlc_bits;
130
    VLC                 envelope_quant_index[13];
131
    VLC                 sqvh[7];          //scalar quantization
132
    VLC                 ccpl;             //channel coupling
133

    
134
    /* generatable tables and related variables */
135
    int                 gain_size_factor;
136
    float               gain_table[23];
137

    
138
    /* data buffers */
139

    
140
    uint8_t*            decoded_bytes_buffer;
141
    DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
142
    float               mono_previous_buffer1[1024];
143
    float               mono_previous_buffer2[1024];
144
    float               decode_buffer_1[1024];
145
    float               decode_buffer_2[1024];
146
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
147

    
148
    const float         *cplscales[5];
149
} COOKContext;
150

    
151
static float     pow2tab[127];
152
static float rootpow2tab[127];
153

    
154
/* debug functions */
155

    
156
#ifdef COOKDEBUG
157
static void dump_float_table(float* table, int size, int delimiter) {
158
    int i=0;
159
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
160
    for (i=0 ; i<size ; i++) {
161
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
162
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
163
    }
164
}
165

    
166
static void dump_int_table(int* table, int size, int delimiter) {
167
    int i=0;
168
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
169
    for (i=0 ; i<size ; i++) {
170
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
171
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
172
    }
173
}
174

    
175
static void dump_short_table(short* table, int size, int delimiter) {
176
    int i=0;
177
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
178
    for (i=0 ; i<size ; i++) {
179
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
180
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
181
    }
182
}
183

    
184
#endif
185

    
186
/*************** init functions ***************/
187

    
188
/* table generator */
189
static av_cold void init_pow2table(void){
190
    int i;
191
    for (i=-63 ; i<64 ; i++){
192
            pow2tab[63+i]=     pow(2, i);
193
        rootpow2tab[63+i]=sqrt(pow(2, i));
194
    }
195
}
196

    
197
/* table generator */
198
static av_cold void init_gain_table(COOKContext *q) {
199
    int i;
200
    q->gain_size_factor = q->samples_per_channel/8;
201
    for (i=0 ; i<23 ; i++) {
202
        q->gain_table[i] = pow(pow2tab[i+52] ,
203
                               (1.0/(double)q->gain_size_factor));
204
    }
205
}
206

    
207

    
208
static av_cold int init_cook_vlc_tables(COOKContext *q) {
209
    int i, result;
210

    
211
    result = 0;
212
    for (i=0 ; i<13 ; i++) {
213
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
214
            envelope_quant_index_huffbits[i], 1, 1,
215
            envelope_quant_index_huffcodes[i], 2, 2, 0);
216
    }
217
    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
218
    for (i=0 ; i<7 ; i++) {
219
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
220
            cvh_huffbits[i], 1, 1,
221
            cvh_huffcodes[i], 2, 2, 0);
222
    }
223

    
224
    if (q->nb_channels==2 && q->joint_stereo==1){
225
        result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
226
            ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
227
            ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
228
        av_log(q->avctx,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
229
    }
230

    
231
    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
232
    return result;
233
}
234

    
235
static av_cold int init_cook_mlt(COOKContext *q) {
236
    int j;
237
    int mlt_size = q->samples_per_channel;
238

    
239
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
240
      return -1;
241

    
242
    /* Initialize the MLT window: simple sine window. */
243
    ff_sine_window_init(q->mlt_window, mlt_size);
244
    for(j=0 ; j<mlt_size ; j++)
245
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
246

    
247
    /* Initialize the MDCT. */
248
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
249
      av_free(q->mlt_window);
250
      return -1;
251
    }
252
    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
253
           av_log2(mlt_size)+1);
254

    
255
    return 0;
256
}
257

    
258
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
259
{
260
    if (1)
261
        return ptr;
262
}
263

    
264
static av_cold void init_cplscales_table (COOKContext *q) {
265
    int i;
266
    for (i=0;i<5;i++)
267
        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
268
}
269

    
270
/*************** init functions end ***********/
271

    
272
/**
273
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
274
 * Why? No idea, some checksum/error detection method maybe.
275
 *
276
 * Out buffer size: extra bytes are needed to cope with
277
 * padding/misalignment.
278
 * Subpackets passed to the decoder can contain two, consecutive
279
 * half-subpackets, of identical but arbitrary size.
280
 *          1234 1234 1234 1234  extraA extraB
281
 * Case 1:  AAAA BBBB              0      0
282
 * Case 2:  AAAA ABBB BB--         3      3
283
 * Case 3:  AAAA AABB BBBB         2      2
284
 * Case 4:  AAAA AAAB BBBB BB--    1      5
285
 *
286
 * Nice way to waste CPU cycles.
287
 *
288
 * @param inbuffer  pointer to byte array of indata
289
 * @param out       pointer to byte array of outdata
290
 * @param bytes     number of bytes
291
 */
292
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
293
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
294

    
295
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
296
    int i, off;
297
    uint32_t c;
298
    const uint32_t* buf;
299
    uint32_t* obuf = (uint32_t*) out;
300
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
301
     * I'm too lazy though, should be something like
302
     * for(i=0 ; i<bitamount/64 ; i++)
303
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
304
     * Buffer alignment needs to be checked. */
305

    
306
    off = (intptr_t)inbuffer & 3;
307
    buf = (const uint32_t*) (inbuffer - off);
308
    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
309
    bytes += 3 + off;
310
    for (i = 0; i < bytes/4; i++)
311
        obuf[i] = c ^ buf[i];
312

    
313
    return off;
314
}
315

    
316
/**
317
 * Cook uninit
318
 */
319

    
320
static av_cold int cook_decode_close(AVCodecContext *avctx)
321
{
322
    int i;
323
    COOKContext *q = avctx->priv_data;
324
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
325

    
326
    /* Free allocated memory buffers. */
327
    av_free(q->mlt_window);
328
    av_free(q->decoded_bytes_buffer);
329

    
330
    /* Free the transform. */
331
    ff_mdct_end(&q->mdct_ctx);
332

    
333
    /* Free the VLC tables. */
334
    for (i=0 ; i<13 ; i++) {
335
        free_vlc(&q->envelope_quant_index[i]);
336
    }
337
    for (i=0 ; i<7 ; i++) {
338
        free_vlc(&q->sqvh[i]);
339
    }
340
    if(q->nb_channels==2 && q->joint_stereo==1 ){
341
        free_vlc(&q->ccpl);
342
    }
343

    
344
    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
345

    
346
    return 0;
347
}
348

    
349
/**
350
 * Fill the gain array for the timedomain quantization.
351
 *
352
 * @param q                 pointer to the COOKContext
353
 * @param gaininfo[9]       array of gain indexes
354
 */
355

    
356
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
357
{
358
    int i, n;
359

    
360
    while (get_bits1(gb)) {}
361
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
362

    
363
    i = 0;
364
    while (n--) {
365
        int index = get_bits(gb, 3);
366
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
367

    
368
        while (i <= index) gaininfo[i++] = gain;
369
    }
370
    while (i <= 8) gaininfo[i++] = 0;
371
}
372

    
373
/**
374
 * Create the quant index table needed for the envelope.
375
 *
376
 * @param q                 pointer to the COOKContext
377
 * @param quant_index_table pointer to the array
378
 */
379

    
380
static void decode_envelope(COOKContext *q, int* quant_index_table) {
381
    int i,j, vlc_index;
382

    
383
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
384

    
385
    for (i=1 ; i < q->total_subbands ; i++){
386
        vlc_index=i;
387
        if (i >= q->js_subband_start * 2) {
388
            vlc_index-=q->js_subband_start;
389
        } else {
390
            vlc_index/=2;
391
            if(vlc_index < 1) vlc_index = 1;
392
        }
393
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
394

    
395
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
396
                     q->envelope_quant_index[vlc_index-1].bits,2);
397
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
398
    }
399
}
400

    
401
/**
402
 * Calculate the category and category_index vector.
403
 *
404
 * @param q                     pointer to the COOKContext
405
 * @param quant_index_table     pointer to the array
406
 * @param category              pointer to the category array
407
 * @param category_index        pointer to the category_index array
408
 */
409

    
410
static void categorize(COOKContext *q, int* quant_index_table,
411
                       int* category, int* category_index){
412
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
413
    int exp_index2[102];
414
    int exp_index1[102];
415

    
416
    int tmp_categorize_array[128*2];
417
    int tmp_categorize_array1_idx=q->numvector_size;
418
    int tmp_categorize_array2_idx=q->numvector_size;
419

    
420
    bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
421

    
422
    if(bits_left > q->samples_per_channel) {
423
        bits_left = q->samples_per_channel +
424
                    ((bits_left - q->samples_per_channel)*5)/8;
425
        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
426
    }
427

    
428
    memset(&exp_index1,0,102*sizeof(int));
429
    memset(&exp_index2,0,102*sizeof(int));
430
    memset(&tmp_categorize_array,0,128*2*sizeof(int));
431

    
432
    bias=-32;
433

    
434
    /* Estimate bias. */
435
    for (i=32 ; i>0 ; i=i/2){
436
        num_bits = 0;
437
        index = 0;
438
        for (j=q->total_subbands ; j>0 ; j--){
439
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
440
            index++;
441
            num_bits+=expbits_tab[exp_idx];
442
        }
443
        if(num_bits >= bits_left - 32){
444
            bias+=i;
445
        }
446
    }
447

    
448
    /* Calculate total number of bits. */
449
    num_bits=0;
450
    for (i=0 ; i<q->total_subbands ; i++) {
451
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
452
        num_bits += expbits_tab[exp_idx];
453
        exp_index1[i] = exp_idx;
454
        exp_index2[i] = exp_idx;
455
    }
456
    tmpbias1 = tmpbias2 = num_bits;
457

    
458
    for (j = 1 ; j < q->numvector_size ; j++) {
459
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
460
            int max = -999999;
461
            index=-1;
462
            for (i=0 ; i<q->total_subbands ; i++){
463
                if (exp_index1[i] < 7) {
464
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
465
                    if ( v >= max) {
466
                        max = v;
467
                        index = i;
468
                    }
469
                }
470
            }
471
            if(index==-1)break;
472
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
473
            tmpbias1 -= expbits_tab[exp_index1[index]] -
474
                        expbits_tab[exp_index1[index]+1];
475
            ++exp_index1[index];
476
        } else {  /* <--- */
477
            int min = 999999;
478
            index=-1;
479
            for (i=0 ; i<q->total_subbands ; i++){
480
                if(exp_index2[i] > 0){
481
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
482
                    if ( v < min) {
483
                        min = v;
484
                        index = i;
485
                    }
486
                }
487
            }
488
            if(index == -1)break;
489
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
490
            tmpbias2 -= expbits_tab[exp_index2[index]] -
491
                        expbits_tab[exp_index2[index]-1];
492
            --exp_index2[index];
493
        }
494
    }
495

    
496
    for(i=0 ; i<q->total_subbands ; i++)
497
        category[i] = exp_index2[i];
498

    
499
    for(i=0 ; i<q->numvector_size-1 ; i++)
500
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
501

    
502
}
503

    
504

    
505
/**
506
 * Expand the category vector.
507
 *
508
 * @param q                     pointer to the COOKContext
509
 * @param category              pointer to the category array
510
 * @param category_index        pointer to the category_index array
511
 */
512

    
513
static inline void expand_category(COOKContext *q, int* category,
514
                                   int* category_index){
515
    int i;
516
    for(i=0 ; i<q->num_vectors ; i++){
517
        ++category[category_index[i]];
518
    }
519
}
520

    
521
/**
522
 * The real requantization of the mltcoefs
523
 *
524
 * @param q                     pointer to the COOKContext
525
 * @param index                 index
526
 * @param quant_index           quantisation index
527
 * @param subband_coef_index    array of indexes to quant_centroid_tab
528
 * @param subband_coef_sign     signs of coefficients
529
 * @param mlt_p                 pointer into the mlt buffer
530
 */
531

    
532
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
533
                           int* subband_coef_index, int* subband_coef_sign,
534
                           float* mlt_p){
535
    int i;
536
    float f1;
537

    
538
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
539
        if (subband_coef_index[i]) {
540
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
541
            if (subband_coef_sign[i]) f1 = -f1;
542
        } else {
543
            /* noise coding if subband_coef_index[i] == 0 */
544
            f1 = dither_tab[index];
545
            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
546
        }
547
        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
548
    }
549
}
550
/**
551
 * Unpack the subband_coef_index and subband_coef_sign vectors.
552
 *
553
 * @param q                     pointer to the COOKContext
554
 * @param category              pointer to the category array
555
 * @param subband_coef_index    array of indexes to quant_centroid_tab
556
 * @param subband_coef_sign     signs of coefficients
557
 */
558

    
559
static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
560
                       int* subband_coef_sign) {
561
    int i,j;
562
    int vlc, vd ,tmp, result;
563

    
564
    vd = vd_tab[category];
565
    result = 0;
566
    for(i=0 ; i<vpr_tab[category] ; i++){
567
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
568
        if (q->bits_per_subpacket < get_bits_count(&q->gb)){
569
            vlc = 0;
570
            result = 1;
571
        }
572
        for(j=vd-1 ; j>=0 ; j--){
573
            tmp = (vlc * invradix_tab[category])/0x100000;
574
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
575
            vlc = tmp;
576
        }
577
        for(j=0 ; j<vd ; j++){
578
            if (subband_coef_index[i*vd + j]) {
579
                if(get_bits_count(&q->gb) < q->bits_per_subpacket){
580
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
581
                } else {
582
                    result=1;
583
                    subband_coef_sign[i*vd+j]=0;
584
                }
585
            } else {
586
                subband_coef_sign[i*vd+j]=0;
587
            }
588
        }
589
    }
590
    return result;
591
}
592

    
593

    
594
/**
595
 * Fill the mlt_buffer with mlt coefficients.
596
 *
597
 * @param q                 pointer to the COOKContext
598
 * @param category          pointer to the category array
599
 * @param quant_index_table pointer to the array
600
 * @param mlt_buffer        pointer to mlt coefficients
601
 */
602

    
603

    
604
static void decode_vectors(COOKContext* q, int* category,
605
                           int *quant_index_table, float* mlt_buffer){
606
    /* A zero in this table means that the subband coefficient is
607
       random noise coded. */
608
    int subband_coef_index[SUBBAND_SIZE];
609
    /* A zero in this table means that the subband coefficient is a
610
       positive multiplicator. */
611
    int subband_coef_sign[SUBBAND_SIZE];
612
    int band, j;
613
    int index=0;
614

    
615
    for(band=0 ; band<q->total_subbands ; band++){
616
        index = category[band];
617
        if(category[band] < 7){
618
            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
619
                index=7;
620
                for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
621
            }
622
        }
623
        if(index>=7) {
624
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
625
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
626
        }
627
        q->scalar_dequant(q, index, quant_index_table[band],
628
                          subband_coef_index, subband_coef_sign,
629
                          &mlt_buffer[band * SUBBAND_SIZE]);
630
    }
631

    
632
    if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
633
        return;
634
    } /* FIXME: should this be removed, or moved into loop above? */
635
}
636

    
637

    
638
/**
639
 * function for decoding mono data
640
 *
641
 * @param q                 pointer to the COOKContext
642
 * @param mlt_buffer        pointer to mlt coefficients
643
 */
644

    
645
static void mono_decode(COOKContext *q, float* mlt_buffer) {
646

    
647
    int category_index[128];
648
    int quant_index_table[102];
649
    int category[128];
650

    
651
    memset(&category, 0, 128*sizeof(int));
652
    memset(&category_index, 0, 128*sizeof(int));
653

    
654
    decode_envelope(q, quant_index_table);
655
    q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
656
    categorize(q, quant_index_table, category, category_index);
657
    expand_category(q, category, category_index);
658
    decode_vectors(q, category, quant_index_table, mlt_buffer);
659
}
660

    
661

    
662
/**
663
 * the actual requantization of the timedomain samples
664
 *
665
 * @param q                 pointer to the COOKContext
666
 * @param buffer            pointer to the timedomain buffer
667
 * @param gain_index        index for the block multiplier
668
 * @param gain_index_next   index for the next block multiplier
669
 */
670

    
671
static void interpolate_float(COOKContext *q, float* buffer,
672
                        int gain_index, int gain_index_next){
673
    int i;
674
    float fc1, fc2;
675
    fc1 = pow2tab[gain_index+63];
676

    
677
    if(gain_index == gain_index_next){              //static gain
678
        for(i=0 ; i<q->gain_size_factor ; i++){
679
            buffer[i]*=fc1;
680
        }
681
        return;
682
    } else {                                        //smooth gain
683
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
684
        for(i=0 ; i<q->gain_size_factor ; i++){
685
            buffer[i]*=fc1;
686
            fc1*=fc2;
687
        }
688
        return;
689
    }
690
}
691

    
692
/**
693
 * Apply transform window, overlap buffers.
694
 *
695
 * @param q                 pointer to the COOKContext
696
 * @param inbuffer          pointer to the mltcoefficients
697
 * @param gains_ptr         current and previous gains
698
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
699
 */
700

    
701
static void imlt_window_float (COOKContext *q, float *buffer1,
702
                               cook_gains *gains_ptr, float *previous_buffer)
703
{
704
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
705
    int i;
706
    /* The weird thing here, is that the two halves of the time domain
707
     * buffer are swapped. Also, the newest data, that we save away for
708
     * next frame, has the wrong sign. Hence the subtraction below.
709
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
710
     */
711

    
712
    /* Apply window and overlap */
713
    for(i = 0; i < q->samples_per_channel; i++){
714
        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
715
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
716
    }
717
}
718

    
719
/**
720
 * The modulated lapped transform, this takes transform coefficients
721
 * and transforms them into timedomain samples.
722
 * Apply transform window, overlap buffers, apply gain profile
723
 * and buffer management.
724
 *
725
 * @param q                 pointer to the COOKContext
726
 * @param inbuffer          pointer to the mltcoefficients
727
 * @param gains_ptr         current and previous gains
728
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
729
 */
730

    
731
static void imlt_gain(COOKContext *q, float *inbuffer,
732
                      cook_gains *gains_ptr, float* previous_buffer)
733
{
734
    float *buffer0 = q->mono_mdct_output;
735
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
736
    int i;
737

    
738
    /* Inverse modified discrete cosine transform */
739
    ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
740

    
741
    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
742

    
743
    /* Apply gain profile */
744
    for (i = 0; i < 8; i++) {
745
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
746
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
747
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
748
    }
749

    
750
    /* Save away the current to be previous block. */
751
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
752
}
753

    
754

    
755
/**
756
 * function for getting the jointstereo coupling information
757
 *
758
 * @param q                 pointer to the COOKContext
759
 * @param decouple_tab      decoupling array
760
 *
761
 */
762

    
763
static void decouple_info(COOKContext *q, int* decouple_tab){
764
    int length, i;
765

    
766
    if(get_bits1(&q->gb)) {
767
        if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
768

    
769
        length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
770
        for (i=0 ; i<length ; i++) {
771
            decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
772
        }
773
        return;
774
    }
775

    
776
    if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
777

    
778
    length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
779
    for (i=0 ; i<length ; i++) {
780
       decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
781
    }
782
    return;
783
}
784

    
785
/*
786
 * function decouples a pair of signals from a single signal via multiplication.
787
 *
788
 * @param q                 pointer to the COOKContext
789
 * @param subband           index of the current subband
790
 * @param f1                multiplier for channel 1 extraction
791
 * @param f2                multiplier for channel 2 extraction
792
 * @param decode_buffer     input buffer
793
 * @param mlt_buffer1       pointer to left channel mlt coefficients
794
 * @param mlt_buffer2       pointer to right channel mlt coefficients
795
 */
796
static void decouple_float (COOKContext *q,
797
                            int subband,
798
                            float f1, float f2,
799
                            float *decode_buffer,
800
                            float *mlt_buffer1, float *mlt_buffer2)
801
{
802
    int j, tmp_idx;
803
    for (j=0 ; j<SUBBAND_SIZE ; j++) {
804
        tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
805
        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
806
        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
807
    }
808
}
809

    
810
/**
811
 * function for decoding joint stereo data
812
 *
813
 * @param q                 pointer to the COOKContext
814
 * @param mlt_buffer1       pointer to left channel mlt coefficients
815
 * @param mlt_buffer2       pointer to right channel mlt coefficients
816
 */
817

    
818
static void joint_decode(COOKContext *q, float* mlt_buffer1,
819
                         float* mlt_buffer2) {
820
    int i,j;
821
    int decouple_tab[SUBBAND_SIZE];
822
    float *decode_buffer = q->decode_buffer_0;
823
    int idx, cpl_tmp;
824
    float f1,f2;
825
    const float* cplscale;
826

    
827
    memset(decouple_tab, 0, sizeof(decouple_tab));
828
    memset(decode_buffer, 0, sizeof(decode_buffer));
829

    
830
    /* Make sure the buffers are zeroed out. */
831
    memset(mlt_buffer1,0, 1024*sizeof(float));
832
    memset(mlt_buffer2,0, 1024*sizeof(float));
833
    decouple_info(q, decouple_tab);
834
    mono_decode(q, decode_buffer);
835

    
836
    /* The two channels are stored interleaved in decode_buffer. */
837
    for (i=0 ; i<q->js_subband_start ; i++) {
838
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
839
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
840
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
841
        }
842
    }
843

    
844
    /* When we reach js_subband_start (the higher frequencies)
845
       the coefficients are stored in a coupling scheme. */
846
    idx = (1 << q->js_vlc_bits) - 1;
847
    for (i=q->js_subband_start ; i<q->subbands ; i++) {
848
        cpl_tmp = cplband[i];
849
        idx -=decouple_tab[cpl_tmp];
850
        cplscale = q->cplscales[q->js_vlc_bits-2];  //choose decoupler table
851
        f1 = cplscale[decouple_tab[cpl_tmp]];
852
        f2 = cplscale[idx-1];
853
        q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
854
        idx = (1 << q->js_vlc_bits) - 1;
855
    }
856
}
857

    
858
/**
859
 * First part of subpacket decoding:
860
 *  decode raw stream bytes and read gain info.
861
 *
862
 * @param q                 pointer to the COOKContext
863
 * @param inbuffer          pointer to raw stream data
864
 * @param gain_ptr          array of current/prev gain pointers
865
 */
866

    
867
static inline void
868
decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
869
                      cook_gains *gains_ptr)
870
{
871
    int offset;
872

    
873
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
874
                          q->bits_per_subpacket/8);
875
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
876
                  q->bits_per_subpacket);
877
    decode_gain_info(&q->gb, gains_ptr->now);
878

    
879
    /* Swap current and previous gains */
880
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
881
}
882

    
883
 /**
884
 * Saturate the output signal to signed 16bit integers.
885
 *
886
 * @param q                 pointer to the COOKContext
887
 * @param chan              channel to saturate
888
 * @param out               pointer to the output vector
889
 */
890
static void
891
saturate_output_float (COOKContext *q, int chan, int16_t *out)
892
{
893
    int j;
894
    float *output = q->mono_mdct_output + q->samples_per_channel;
895
    /* Clip and convert floats to 16 bits.
896
     */
897
    for (j = 0; j < q->samples_per_channel; j++) {
898
        out[chan + q->nb_channels * j] =
899
          av_clip_int16(lrintf(output[j]));
900
    }
901
}
902

    
903
/**
904
 * Final part of subpacket decoding:
905
 *  Apply modulated lapped transform, gain compensation,
906
 *  clip and convert to integer.
907
 *
908
 * @param q                 pointer to the COOKContext
909
 * @param decode_buffer     pointer to the mlt coefficients
910
 * @param gain_ptr          array of current/prev gain pointers
911
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
912
 * @param out               pointer to the output buffer
913
 * @param chan              0: left or single channel, 1: right channel
914
 */
915

    
916
static inline void
917
mlt_compensate_output(COOKContext *q, float *decode_buffer,
918
                      cook_gains *gains, float *previous_buffer,
919
                      int16_t *out, int chan)
920
{
921
    imlt_gain(q, decode_buffer, gains, previous_buffer);
922
    q->saturate_output (q, chan, out);
923
}
924

    
925

    
926
/**
927
 * Cook subpacket decoding. This function returns one decoded subpacket,
928
 * usually 1024 samples per channel.
929
 *
930
 * @param q                 pointer to the COOKContext
931
 * @param inbuffer          pointer to the inbuffer
932
 * @param sub_packet_size   subpacket size
933
 * @param outbuffer         pointer to the outbuffer
934
 */
935

    
936

    
937
static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
938
                            int sub_packet_size, int16_t *outbuffer) {
939
    /* packet dump */
940
//    for (i=0 ; i<sub_packet_size ; i++) {
941
//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
942
//    }
943
//    av_log(q->avctx, AV_LOG_ERROR, "\n");
944

    
945
    decode_bytes_and_gain(q, inbuffer, &q->gains1);
946

    
947
    if (q->joint_stereo) {
948
        joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
949
    } else {
950
        mono_decode(q, q->decode_buffer_1);
951

    
952
        if (q->nb_channels == 2) {
953
            decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
954
            mono_decode(q, q->decode_buffer_2);
955
        }
956
    }
957

    
958
    mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
959
                          q->mono_previous_buffer1, outbuffer, 0);
960

    
961
    if (q->nb_channels == 2) {
962
        if (q->joint_stereo) {
963
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
964
                                  q->mono_previous_buffer2, outbuffer, 1);
965
        } else {
966
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
967
                                  q->mono_previous_buffer2, outbuffer, 1);
968
        }
969
    }
970
    return q->samples_per_frame * sizeof(int16_t);
971
}
972

    
973

    
974
/**
975
 * Cook frame decoding
976
 *
977
 * @param avctx     pointer to the AVCodecContext
978
 */
979

    
980
static int cook_decode_frame(AVCodecContext *avctx,
981
            void *data, int *data_size,
982
            AVPacket *avpkt) {
983
    const uint8_t *buf = avpkt->data;
984
    int buf_size = avpkt->size;
985
    COOKContext *q = avctx->priv_data;
986

    
987
    if (buf_size < avctx->block_align)
988
        return buf_size;
989

    
990
    *data_size = decode_subpacket(q, buf, avctx->block_align, data);
991

    
992
    /* Discard the first two frames: no valid audio. */
993
    if (avctx->frame_number < 2) *data_size = 0;
994

    
995
    return avctx->block_align;
996
}
997

    
998
#ifdef COOKDEBUG
999
static void dump_cook_context(COOKContext *q)
1000
{
1001
    //int i=0;
1002
#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1003
    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1004
    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
1005
    if (q->cookversion > STEREO) {
1006
        PRINT("js_subband_start",q->js_subband_start);
1007
        PRINT("js_vlc_bits",q->js_vlc_bits);
1008
    }
1009
    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1010
    PRINT("nb_channels",q->nb_channels);
1011
    PRINT("bit_rate",q->bit_rate);
1012
    PRINT("sample_rate",q->sample_rate);
1013
    PRINT("samples_per_channel",q->samples_per_channel);
1014
    PRINT("samples_per_frame",q->samples_per_frame);
1015
    PRINT("subbands",q->subbands);
1016
    PRINT("random_state",q->random_state);
1017
    PRINT("js_subband_start",q->js_subband_start);
1018
    PRINT("log2_numvector_size",q->log2_numvector_size);
1019
    PRINT("numvector_size",q->numvector_size);
1020
    PRINT("total_subbands",q->total_subbands);
1021
}
1022
#endif
1023

    
1024
static av_cold int cook_count_channels(unsigned int mask){
1025
    int i;
1026
    int channels = 0;
1027
    for(i = 0;i<32;i++){
1028
        if(mask & (1<<i))
1029
            ++channels;
1030
    }
1031
    return channels;
1032
}
1033

    
1034
/**
1035
 * Cook initialization
1036
 *
1037
 * @param avctx     pointer to the AVCodecContext
1038
 */
1039

    
1040
static av_cold int cook_decode_init(AVCodecContext *avctx)
1041
{
1042
    COOKContext *q = avctx->priv_data;
1043
    const uint8_t *edata_ptr = avctx->extradata;
1044
    q->avctx = avctx;
1045

    
1046
    /* Take care of the codec specific extradata. */
1047
    if (avctx->extradata_size <= 0) {
1048
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1049
        return -1;
1050
    } else {
1051
        /* 8 for mono, 16 for stereo, ? for multichannel
1052
           Swap to right endianness so we don't need to care later on. */
1053
        av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1054
        if (avctx->extradata_size >= 8){
1055
            q->cookversion = bytestream_get_be32(&edata_ptr);
1056
            q->samples_per_frame =  bytestream_get_be16(&edata_ptr);
1057
            q->subbands = bytestream_get_be16(&edata_ptr);
1058
        }
1059
        if (avctx->extradata_size >= 16){
1060
            bytestream_get_be32(&edata_ptr);    //Unknown unused
1061
            q->js_subband_start = bytestream_get_be16(&edata_ptr);
1062
            q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1063
        }
1064
    }
1065

    
1066
    /* Take data from the AVCodecContext (RM container). */
1067
    q->sample_rate = avctx->sample_rate;
1068
    q->nb_channels = avctx->channels;
1069
    q->bit_rate = avctx->bit_rate;
1070

    
1071
    /* Initialize RNG. */
1072
    av_lfg_init(&q->random_state, ff_random_get_seed());
1073

    
1074
    /* Initialize extradata related variables. */
1075
    q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1076
    q->bits_per_subpacket = avctx->block_align * 8;
1077

    
1078
    /* Initialize default data states. */
1079
    q->log2_numvector_size = 5;
1080
    q->total_subbands = q->subbands;
1081

    
1082
    /* Initialize version-dependent variables */
1083
    av_log(avctx,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1084
    q->joint_stereo = 0;
1085
    switch (q->cookversion) {
1086
        case MONO:
1087
            if (q->nb_channels != 1) {
1088
                av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1089
                return -1;
1090
            }
1091
            av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1092
            break;
1093
        case STEREO:
1094
            if (q->nb_channels != 1) {
1095
                q->bits_per_subpacket = q->bits_per_subpacket/2;
1096
            }
1097
            av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1098
            break;
1099
        case JOINT_STEREO:
1100
            if (q->nb_channels != 2) {
1101
                av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1102
                return -1;
1103
            }
1104
            av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1105
            if (avctx->extradata_size >= 16){
1106
                q->total_subbands = q->subbands + q->js_subband_start;
1107
                q->joint_stereo = 1;
1108
            }
1109
            if (q->samples_per_channel > 256) {
1110
                q->log2_numvector_size  = 6;
1111
            }
1112
            if (q->samples_per_channel > 512) {
1113
                q->log2_numvector_size  = 7;
1114
            }
1115
            break;
1116
        case MC_COOK:
1117
            av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1118
            return -1;
1119
            break;
1120
        default:
1121
            av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1122
            return -1;
1123
            break;
1124
    }
1125

    
1126
    /* Initialize variable relations */
1127
    q->numvector_size = (1 << q->log2_numvector_size);
1128

    
1129
    /* Generate tables */
1130
    init_pow2table();
1131
    init_gain_table(q);
1132
    init_cplscales_table(q);
1133

    
1134
    if (init_cook_vlc_tables(q) != 0)
1135
        return -1;
1136

    
1137

    
1138
    if(avctx->block_align >= UINT_MAX/2)
1139
        return -1;
1140

    
1141
    /* Pad the databuffer with:
1142
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1143
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1144
    if (q->nb_channels==2 && q->joint_stereo==0) {
1145
        q->decoded_bytes_buffer =
1146
          av_mallocz(avctx->block_align/2
1147
                     + DECODE_BYTES_PAD2(avctx->block_align/2)
1148
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1149
    } else {
1150
        q->decoded_bytes_buffer =
1151
          av_mallocz(avctx->block_align
1152
                     + DECODE_BYTES_PAD1(avctx->block_align)
1153
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1154
    }
1155
    if (q->decoded_bytes_buffer == NULL)
1156
        return -1;
1157

    
1158
    q->gains1.now      = q->gain_1;
1159
    q->gains1.previous = q->gain_2;
1160
    q->gains2.now      = q->gain_3;
1161
    q->gains2.previous = q->gain_4;
1162

    
1163
    /* Initialize transform. */
1164
    if ( init_cook_mlt(q) != 0 )
1165
        return -1;
1166

    
1167
    /* Initialize COOK signal arithmetic handling */
1168
    if (1) {
1169
        q->scalar_dequant  = scalar_dequant_float;
1170
        q->decouple        = decouple_float;
1171
        q->imlt_window     = imlt_window_float;
1172
        q->interpolate     = interpolate_float;
1173
        q->saturate_output = saturate_output_float;
1174
    }
1175

    
1176
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1177
    if (q->total_subbands > 53) {
1178
        av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1179
        return -1;
1180
    }
1181
    if (q->subbands > 50) {
1182
        av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1183
        return -1;
1184
    }
1185
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1186
    } else {
1187
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1188
        return -1;
1189
    }
1190
    if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1191
        av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1192
        return -1;
1193
    }
1194

    
1195
    avctx->sample_fmt = SAMPLE_FMT_S16;
1196
    avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1197

    
1198
#ifdef COOKDEBUG
1199
    dump_cook_context(q);
1200
#endif
1201
    return 0;
1202
}
1203

    
1204

    
1205
AVCodec cook_decoder =
1206
{
1207
    .name = "cook",
1208
    .type = CODEC_TYPE_AUDIO,
1209
    .id = CODEC_ID_COOK,
1210
    .priv_data_size = sizeof(COOKContext),
1211
    .init = cook_decode_init,
1212
    .close = cook_decode_close,
1213
    .decode = cook_decode_frame,
1214
    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1215
};