ffmpeg / libavcodec / g726.c @ 9106a698
History | View | Annotate | Download (12.1 KB)
1 |
/*
|
---|---|
2 |
* G.726 ADPCM audio codec
|
3 |
* Copyright (c) 2004 Roman Shaposhnik
|
4 |
*
|
5 |
* This is a very straightforward rendition of the G.726
|
6 |
* Section 4 "Computational Details".
|
7 |
*
|
8 |
* This file is part of FFmpeg.
|
9 |
*
|
10 |
* FFmpeg is free software; you can redistribute it and/or
|
11 |
* modify it under the terms of the GNU Lesser General Public
|
12 |
* License as published by the Free Software Foundation; either
|
13 |
* version 2.1 of the License, or (at your option) any later version.
|
14 |
*
|
15 |
* FFmpeg is distributed in the hope that it will be useful,
|
16 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
18 |
* Lesser General Public License for more details.
|
19 |
*
|
20 |
* You should have received a copy of the GNU Lesser General Public
|
21 |
* License along with FFmpeg; if not, write to the Free Software
|
22 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
23 |
*/
|
24 |
#include <limits.h> |
25 |
#include "avcodec.h" |
26 |
#include "get_bits.h" |
27 |
#include "put_bits.h" |
28 |
|
29 |
/**
|
30 |
* G.726 11bit float.
|
31 |
* G.726 Standard uses rather odd 11bit floating point arithmentic for
|
32 |
* numerous occasions. It's a mistery to me why they did it this way
|
33 |
* instead of simply using 32bit integer arithmetic.
|
34 |
*/
|
35 |
typedef struct Float11 { |
36 |
uint8_t sign; /**< 1bit sign */
|
37 |
uint8_t exp; /**< 4bit exponent */
|
38 |
uint8_t mant; /**< 6bit mantissa */
|
39 |
} Float11; |
40 |
|
41 |
static inline Float11* i2f(int i, Float11* f) |
42 |
{ |
43 |
f->sign = (i < 0);
|
44 |
if (f->sign)
|
45 |
i = -i; |
46 |
f->exp = av_log2_16bit(i) + !!i; |
47 |
f->mant = i? (i<<6) >> f->exp : 1<<5; |
48 |
return f;
|
49 |
} |
50 |
|
51 |
static inline int16_t mult(Float11* f1, Float11* f2) |
52 |
{ |
53 |
int res, exp;
|
54 |
|
55 |
exp = f1->exp + f2->exp; |
56 |
res = (((f1->mant * f2->mant) + 0x30) >> 4); |
57 |
res = exp > 19 ? res << (exp - 19) : res >> (19 - exp); |
58 |
return (f1->sign ^ f2->sign) ? -res : res;
|
59 |
} |
60 |
|
61 |
static inline int sgn(int value) |
62 |
{ |
63 |
return (value < 0) ? -1 : 1; |
64 |
} |
65 |
|
66 |
typedef struct G726Tables { |
67 |
const int* quant; /**< quantization table */ |
68 |
const int16_t* iquant; /**< inverse quantization table */ |
69 |
const int16_t* W; /**< special table #1 ;-) */ |
70 |
const uint8_t* F; /**< special table #2 */ |
71 |
} G726Tables; |
72 |
|
73 |
typedef struct G726Context { |
74 |
G726Tables tbls; /**< static tables needed for computation */
|
75 |
|
76 |
Float11 sr[2]; /**< prev. reconstructed samples */ |
77 |
Float11 dq[6]; /**< prev. difference */ |
78 |
int a[2]; /**< second order predictor coeffs */ |
79 |
int b[6]; /**< sixth order predictor coeffs */ |
80 |
int pk[2]; /**< signs of prev. 2 sez + dq */ |
81 |
|
82 |
int ap; /**< scale factor control */ |
83 |
int yu; /**< fast scale factor */ |
84 |
int yl; /**< slow scale factor */ |
85 |
int dms; /**< short average magnitude of F[i] */ |
86 |
int dml; /**< long average magnitude of F[i] */ |
87 |
int td; /**< tone detect */ |
88 |
|
89 |
int se; /**< estimated signal for the next iteration */ |
90 |
int sez; /**< estimated second order prediction */ |
91 |
int y; /**< quantizer scaling factor for the next iteration */ |
92 |
int code_size;
|
93 |
} G726Context; |
94 |
|
95 |
static const int quant_tbl16[] = /**< 16kbit/s 2bits per sample */ |
96 |
{ 260, INT_MAX };
|
97 |
static const int16_t iquant_tbl16[] = |
98 |
{ 116, 365, 365, 116 }; |
99 |
static const int16_t W_tbl16[] = |
100 |
{ -22, 439, 439, -22 }; |
101 |
static const uint8_t F_tbl16[] = |
102 |
{ 0, 7, 7, 0 }; |
103 |
|
104 |
static const int quant_tbl24[] = /**< 24kbit/s 3bits per sample */ |
105 |
{ 7, 217, 330, INT_MAX }; |
106 |
static const int16_t iquant_tbl24[] = |
107 |
{ INT16_MIN, 135, 273, 373, 373, 273, 135, INT16_MIN }; |
108 |
static const int16_t W_tbl24[] = |
109 |
{ -4, 30, 137, 582, 582, 137, 30, -4 }; |
110 |
static const uint8_t F_tbl24[] = |
111 |
{ 0, 1, 2, 7, 7, 2, 1, 0 }; |
112 |
|
113 |
static const int quant_tbl32[] = /**< 32kbit/s 4bits per sample */ |
114 |
{ -125, 79, 177, 245, 299, 348, 399, INT_MAX }; |
115 |
static const int16_t iquant_tbl32[] = |
116 |
{ INT16_MIN, 4, 135, 213, 273, 323, 373, 425, |
117 |
425, 373, 323, 273, 213, 135, 4, INT16_MIN }; |
118 |
static const int16_t W_tbl32[] = |
119 |
{ -12, 18, 41, 64, 112, 198, 355, 1122, |
120 |
1122, 355, 198, 112, 64, 41, 18, -12}; |
121 |
static const uint8_t F_tbl32[] = |
122 |
{ 0, 0, 0, 1, 1, 1, 3, 7, 7, 3, 1, 1, 1, 0, 0, 0 }; |
123 |
|
124 |
static const int quant_tbl40[] = /**< 40kbit/s 5bits per sample */ |
125 |
{ -122, -16, 67, 138, 197, 249, 297, 338, |
126 |
377, 412, 444, 474, 501, 527, 552, INT_MAX }; |
127 |
static const int16_t iquant_tbl40[] = |
128 |
{ INT16_MIN, -66, 28, 104, 169, 224, 274, 318, |
129 |
358, 395, 429, 459, 488, 514, 539, 566, |
130 |
566, 539, 514, 488, 459, 429, 395, 358, |
131 |
318, 274, 224, 169, 104, 28, -66, INT16_MIN }; |
132 |
static const int16_t W_tbl40[] = |
133 |
{ 14, 14, 24, 39, 40, 41, 58, 100, |
134 |
141, 179, 219, 280, 358, 440, 529, 696, |
135 |
696, 529, 440, 358, 280, 219, 179, 141, |
136 |
100, 58, 41, 40, 39, 24, 14, 14 }; |
137 |
static const uint8_t F_tbl40[] = |
138 |
{ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, |
139 |
6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; |
140 |
|
141 |
static const G726Tables G726Tables_pool[] = |
142 |
{{ quant_tbl16, iquant_tbl16, W_tbl16, F_tbl16 }, |
143 |
{ quant_tbl24, iquant_tbl24, W_tbl24, F_tbl24 }, |
144 |
{ quant_tbl32, iquant_tbl32, W_tbl32, F_tbl32 }, |
145 |
{ quant_tbl40, iquant_tbl40, W_tbl40, F_tbl40 }}; |
146 |
|
147 |
|
148 |
/**
|
149 |
* Para 4.2.2 page 18: Adaptive quantizer.
|
150 |
*/
|
151 |
static inline uint8_t quant(G726Context* c, int d) |
152 |
{ |
153 |
int sign, exp, i, dln;
|
154 |
|
155 |
sign = i = 0;
|
156 |
if (d < 0) { |
157 |
sign = 1;
|
158 |
d = -d; |
159 |
} |
160 |
exp = av_log2_16bit(d); |
161 |
dln = ((exp<<7) + (((d<<7)>>exp)&0x7f)) - (c->y>>2); |
162 |
|
163 |
while (c->tbls.quant[i] < INT_MAX && c->tbls.quant[i] < dln)
|
164 |
++i; |
165 |
|
166 |
if (sign)
|
167 |
i = ~i; |
168 |
if (c->code_size != 2 && i == 0) /* I'm not sure this is a good idea */ |
169 |
i = 0xff;
|
170 |
|
171 |
return i;
|
172 |
} |
173 |
|
174 |
/**
|
175 |
* Para 4.2.3 page 22: Inverse adaptive quantizer.
|
176 |
*/
|
177 |
static inline int16_t inverse_quant(G726Context* c, int i) |
178 |
{ |
179 |
int dql, dex, dqt;
|
180 |
|
181 |
dql = c->tbls.iquant[i] + (c->y >> 2);
|
182 |
dex = (dql>>7) & 0xf; /* 4bit exponent */ |
183 |
dqt = (1<<7) + (dql & 0x7f); /* log2 -> linear */ |
184 |
return (dql < 0) ? 0 : ((dqt<<dex) >> 7); |
185 |
} |
186 |
|
187 |
static int16_t g726_decode(G726Context* c, int I) |
188 |
{ |
189 |
int dq, re_signal, pk0, fa1, i, tr, ylint, ylfrac, thr2, al, dq0;
|
190 |
Float11 f; |
191 |
int I_sig= I >> (c->code_size - 1); |
192 |
|
193 |
dq = inverse_quant(c, I); |
194 |
|
195 |
/* Transition detect */
|
196 |
ylint = (c->yl >> 15);
|
197 |
ylfrac = (c->yl >> 10) & 0x1f; |
198 |
thr2 = (ylint > 9) ? 0x1f << 10 : (0x20 + ylfrac) << ylint; |
199 |
tr= (c->td == 1 && dq > ((3*thr2)>>2)); |
200 |
|
201 |
if (I_sig) /* get the sign */ |
202 |
dq = -dq; |
203 |
re_signal = c->se + dq; |
204 |
|
205 |
/* Update second order predictor coefficient A2 and A1 */
|
206 |
pk0 = (c->sez + dq) ? sgn(c->sez + dq) : 0;
|
207 |
dq0 = dq ? sgn(dq) : 0;
|
208 |
if (tr) {
|
209 |
c->a[0] = 0; |
210 |
c->a[1] = 0; |
211 |
for (i=0; i<6; i++) |
212 |
c->b[i] = 0;
|
213 |
} else {
|
214 |
/* This is a bit crazy, but it really is +255 not +256 */
|
215 |
fa1 = av_clip((-c->a[0]*c->pk[0]*pk0)>>5, -256, 255); |
216 |
|
217 |
c->a[1] += 128*pk0*c->pk[1] + fa1 - (c->a[1]>>7); |
218 |
c->a[1] = av_clip(c->a[1], -12288, 12288); |
219 |
c->a[0] += 64*3*pk0*c->pk[0] - (c->a[0] >> 8); |
220 |
c->a[0] = av_clip(c->a[0], -(15360 - c->a[1]), 15360 - c->a[1]); |
221 |
|
222 |
for (i=0; i<6; i++) |
223 |
c->b[i] += 128*dq0*sgn(-c->dq[i].sign) - (c->b[i]>>8); |
224 |
} |
225 |
|
226 |
/* Update Dq and Sr and Pk */
|
227 |
c->pk[1] = c->pk[0]; |
228 |
c->pk[0] = pk0 ? pk0 : 1; |
229 |
c->sr[1] = c->sr[0]; |
230 |
i2f(re_signal, &c->sr[0]);
|
231 |
for (i=5; i>0; i--) |
232 |
c->dq[i] = c->dq[i-1];
|
233 |
i2f(dq, &c->dq[0]);
|
234 |
c->dq[0].sign = I_sig; /* Isn't it crazy ?!?! */ |
235 |
|
236 |
c->td = c->a[1] < -11776; |
237 |
|
238 |
/* Update Ap */
|
239 |
c->dms += (c->tbls.F[I]<<4) + ((- c->dms) >> 5); |
240 |
c->dml += (c->tbls.F[I]<<4) + ((- c->dml) >> 7); |
241 |
if (tr)
|
242 |
c->ap = 256;
|
243 |
else {
|
244 |
c->ap += (-c->ap) >> 4;
|
245 |
if (c->y <= 1535 || c->td || abs((c->dms << 2) - c->dml) >= (c->dml >> 3)) |
246 |
c->ap += 0x20;
|
247 |
} |
248 |
|
249 |
/* Update Yu and Yl */
|
250 |
c->yu = av_clip(c->y + c->tbls.W[I] + ((-c->y)>>5), 544, 5120); |
251 |
c->yl += c->yu + ((-c->yl)>>6);
|
252 |
|
253 |
/* Next iteration for Y */
|
254 |
al = (c->ap >= 256) ? 1<<6 : c->ap >> 2; |
255 |
c->y = (c->yl + (c->yu - (c->yl>>6))*al) >> 6; |
256 |
|
257 |
/* Next iteration for SE and SEZ */
|
258 |
c->se = 0;
|
259 |
for (i=0; i<6; i++) |
260 |
c->se += mult(i2f(c->b[i] >> 2, &f), &c->dq[i]);
|
261 |
c->sez = c->se >> 1;
|
262 |
for (i=0; i<2; i++) |
263 |
c->se += mult(i2f(c->a[i] >> 2, &f), &c->sr[i]);
|
264 |
c->se >>= 1;
|
265 |
|
266 |
return av_clip(re_signal << 2, -0xffff, 0xffff); |
267 |
} |
268 |
|
269 |
static av_cold int g726_reset(G726Context* c, int index) |
270 |
{ |
271 |
int i;
|
272 |
|
273 |
c->tbls = G726Tables_pool[index]; |
274 |
for (i=0; i<2; i++) { |
275 |
c->sr[i].mant = 1<<5; |
276 |
c->pk[i] = 1;
|
277 |
} |
278 |
for (i=0; i<6; i++) { |
279 |
c->dq[i].mant = 1<<5; |
280 |
} |
281 |
c->yu = 544;
|
282 |
c->yl = 34816;
|
283 |
|
284 |
c->y = 544;
|
285 |
|
286 |
return 0; |
287 |
} |
288 |
|
289 |
#if CONFIG_ADPCM_G726_ENCODER
|
290 |
static int16_t g726_encode(G726Context* c, int16_t sig)
|
291 |
{ |
292 |
uint8_t i; |
293 |
|
294 |
i = quant(c, sig/4 - c->se) & ((1<<c->code_size) - 1); |
295 |
g726_decode(c, i); |
296 |
return i;
|
297 |
} |
298 |
#endif
|
299 |
|
300 |
/* Interfacing to the libavcodec */
|
301 |
|
302 |
static av_cold int g726_init(AVCodecContext * avctx) |
303 |
{ |
304 |
G726Context* c = avctx->priv_data; |
305 |
unsigned int index; |
306 |
|
307 |
if (avctx->sample_rate <= 0) { |
308 |
av_log(avctx, AV_LOG_ERROR, "Samplerate is invalid\n");
|
309 |
return -1; |
310 |
} |
311 |
|
312 |
index = (avctx->bit_rate + avctx->sample_rate/2) / avctx->sample_rate - 2; |
313 |
|
314 |
if (avctx->bit_rate % avctx->sample_rate && avctx->codec->encode) {
|
315 |
av_log(avctx, AV_LOG_ERROR, "Bitrate - Samplerate combination is invalid\n");
|
316 |
return -1; |
317 |
} |
318 |
if(avctx->channels != 1){ |
319 |
av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n");
|
320 |
return -1; |
321 |
} |
322 |
if(index>3){ |
323 |
av_log(avctx, AV_LOG_ERROR, "Unsupported number of bits %d\n", index+2); |
324 |
return -1; |
325 |
} |
326 |
g726_reset(c, index); |
327 |
c->code_size = index+2;
|
328 |
|
329 |
avctx->coded_frame = avcodec_alloc_frame(); |
330 |
if (!avctx->coded_frame)
|
331 |
return AVERROR(ENOMEM);
|
332 |
avctx->coded_frame->key_frame = 1;
|
333 |
|
334 |
if (avctx->codec->decode)
|
335 |
avctx->sample_fmt = SAMPLE_FMT_S16; |
336 |
|
337 |
return 0; |
338 |
} |
339 |
|
340 |
static av_cold int g726_close(AVCodecContext *avctx) |
341 |
{ |
342 |
av_freep(&avctx->coded_frame); |
343 |
return 0; |
344 |
} |
345 |
|
346 |
#if CONFIG_ADPCM_G726_ENCODER
|
347 |
static int g726_encode_frame(AVCodecContext *avctx, |
348 |
uint8_t *dst, int buf_size, void *data) |
349 |
{ |
350 |
G726Context *c = avctx->priv_data; |
351 |
short *samples = data;
|
352 |
PutBitContext pb; |
353 |
|
354 |
init_put_bits(&pb, dst, 1024*1024); |
355 |
|
356 |
for (; buf_size; buf_size--)
|
357 |
put_bits(&pb, c->code_size, g726_encode(c, *samples++)); |
358 |
|
359 |
flush_put_bits(&pb); |
360 |
|
361 |
return put_bits_count(&pb)>>3; |
362 |
} |
363 |
#endif
|
364 |
|
365 |
static int g726_decode_frame(AVCodecContext *avctx, |
366 |
void *data, int *data_size, |
367 |
AVPacket *avpkt) |
368 |
{ |
369 |
const uint8_t *buf = avpkt->data;
|
370 |
int buf_size = avpkt->size;
|
371 |
G726Context *c = avctx->priv_data; |
372 |
short *samples = data;
|
373 |
GetBitContext gb; |
374 |
|
375 |
init_get_bits(&gb, buf, buf_size * 8);
|
376 |
|
377 |
while (get_bits_count(&gb) + c->code_size <= buf_size*8) |
378 |
*samples++ = g726_decode(c, get_bits(&gb, c->code_size)); |
379 |
|
380 |
if(buf_size*8 != get_bits_count(&gb)) |
381 |
av_log(avctx, AV_LOG_ERROR, "Frame invalidly split, missing parser?\n");
|
382 |
|
383 |
*data_size = (uint8_t*)samples - (uint8_t*)data; |
384 |
return buf_size;
|
385 |
} |
386 |
|
387 |
#if CONFIG_ADPCM_G726_ENCODER
|
388 |
AVCodec adpcm_g726_encoder = { |
389 |
"g726",
|
390 |
CODEC_TYPE_AUDIO, |
391 |
CODEC_ID_ADPCM_G726, |
392 |
sizeof(G726Context),
|
393 |
g726_init, |
394 |
g726_encode_frame, |
395 |
g726_close, |
396 |
NULL,
|
397 |
.sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
|
398 |
.long_name = NULL_IF_CONFIG_SMALL("G.726 ADPCM"),
|
399 |
}; |
400 |
#endif
|
401 |
|
402 |
AVCodec adpcm_g726_decoder = { |
403 |
"g726",
|
404 |
CODEC_TYPE_AUDIO, |
405 |
CODEC_ID_ADPCM_G726, |
406 |
sizeof(G726Context),
|
407 |
g726_init, |
408 |
NULL,
|
409 |
g726_close, |
410 |
g726_decode_frame, |
411 |
.long_name = NULL_IF_CONFIG_SMALL("G.726 ADPCM"),
|
412 |
}; |