ffmpeg / libavcodec / imc.c @ 9106a698
History | View | Annotate | Download (24.7 KB)
1 |
/*
|
---|---|
2 |
* IMC compatible decoder
|
3 |
* Copyright (c) 2002-2004 Maxim Poliakovski
|
4 |
* Copyright (c) 2006 Benjamin Larsson
|
5 |
* Copyright (c) 2006 Konstantin Shishkov
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
/**
|
25 |
* @file libavcodec/imc.c IMC - Intel Music Coder
|
26 |
* A mdct based codec using a 256 points large transform
|
27 |
* divied into 32 bands with some mix of scale factors.
|
28 |
* Only mono is supported.
|
29 |
*
|
30 |
*/
|
31 |
|
32 |
|
33 |
#include <math.h> |
34 |
#include <stddef.h> |
35 |
#include <stdio.h> |
36 |
|
37 |
#define ALT_BITSTREAM_READER
|
38 |
#include "avcodec.h" |
39 |
#include "get_bits.h" |
40 |
#include "dsputil.h" |
41 |
|
42 |
#include "imcdata.h" |
43 |
|
44 |
#define IMC_BLOCK_SIZE 64 |
45 |
#define IMC_FRAME_ID 0x21 |
46 |
#define BANDS 32 |
47 |
#define COEFFS 256 |
48 |
|
49 |
typedef struct { |
50 |
float old_floor[BANDS];
|
51 |
float flcoeffs1[BANDS];
|
52 |
float flcoeffs2[BANDS];
|
53 |
float flcoeffs3[BANDS];
|
54 |
float flcoeffs4[BANDS];
|
55 |
float flcoeffs5[BANDS];
|
56 |
float flcoeffs6[BANDS];
|
57 |
float CWdecoded[COEFFS];
|
58 |
|
59 |
/** MDCT tables */
|
60 |
//@{
|
61 |
float mdct_sine_window[COEFFS];
|
62 |
float post_cos[COEFFS];
|
63 |
float post_sin[COEFFS];
|
64 |
float pre_coef1[COEFFS];
|
65 |
float pre_coef2[COEFFS];
|
66 |
float last_fft_im[COEFFS];
|
67 |
//@}
|
68 |
|
69 |
int bandWidthT[BANDS]; ///< codewords per band |
70 |
int bitsBandT[BANDS]; ///< how many bits per codeword in band |
71 |
int CWlengthT[COEFFS]; ///< how many bits in each codeword |
72 |
int levlCoeffBuf[BANDS];
|
73 |
int bandFlagsBuf[BANDS]; ///< flags for each band |
74 |
int sumLenArr[BANDS]; ///< bits for all coeffs in band |
75 |
int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not |
76 |
int skipFlagBits[BANDS]; ///< bits used to code skip flags |
77 |
int skipFlagCount[BANDS]; ///< skipped coeffients per band |
78 |
int skipFlags[COEFFS]; ///< skip coefficient decoding or not |
79 |
int codewords[COEFFS]; ///< raw codewords read from bitstream |
80 |
float sqrt_tab[30]; |
81 |
GetBitContext gb; |
82 |
int decoder_reset;
|
83 |
float one_div_log2;
|
84 |
|
85 |
DSPContext dsp; |
86 |
FFTContext fft; |
87 |
DECLARE_ALIGNED_16(FFTComplex, samples[COEFFS/2]);
|
88 |
DECLARE_ALIGNED_16(float, out_samples[COEFFS]);
|
89 |
} IMCContext; |
90 |
|
91 |
static VLC huffman_vlc[4][4]; |
92 |
|
93 |
#define VLC_TABLES_SIZE 9512 |
94 |
|
95 |
static const int vlc_offsets[17] = { |
96 |
0, 640, 1156, 1732, 2308, 2852, 3396, 3924, |
97 |
4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE}; |
98 |
|
99 |
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]; |
100 |
|
101 |
static av_cold int imc_decode_init(AVCodecContext * avctx) |
102 |
{ |
103 |
int i, j;
|
104 |
IMCContext *q = avctx->priv_data; |
105 |
double r1, r2;
|
106 |
|
107 |
q->decoder_reset = 1;
|
108 |
|
109 |
for(i = 0; i < BANDS; i++) |
110 |
q->old_floor[i] = 1.0; |
111 |
|
112 |
/* Build mdct window, a simple sine window normalized with sqrt(2) */
|
113 |
ff_sine_window_init(q->mdct_sine_window, COEFFS); |
114 |
for(i = 0; i < COEFFS; i++) |
115 |
q->mdct_sine_window[i] *= sqrt(2.0); |
116 |
for(i = 0; i < COEFFS/2; i++){ |
117 |
q->post_cos[i] = cos(i / 256.0 * M_PI); |
118 |
q->post_sin[i] = sin(i / 256.0 * M_PI); |
119 |
|
120 |
r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI); |
121 |
r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI); |
122 |
|
123 |
if (i & 0x1) |
124 |
{ |
125 |
q->pre_coef1[i] = (r1 + r2) * sqrt(2.0); |
126 |
q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0); |
127 |
} |
128 |
else
|
129 |
{ |
130 |
q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0); |
131 |
q->pre_coef2[i] = (r1 - r2) * sqrt(2.0); |
132 |
} |
133 |
|
134 |
q->last_fft_im[i] = 0;
|
135 |
} |
136 |
|
137 |
/* Generate a square root table */
|
138 |
|
139 |
for(i = 0; i < 30; i++) { |
140 |
q->sqrt_tab[i] = sqrt(i); |
141 |
} |
142 |
|
143 |
/* initialize the VLC tables */
|
144 |
for(i = 0; i < 4 ; i++) { |
145 |
for(j = 0; j < 4; j++) { |
146 |
huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
|
147 |
huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j]; |
148 |
init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
|
149 |
imc_huffman_lens[i][j], 1, 1, |
150 |
imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC); |
151 |
} |
152 |
} |
153 |
q->one_div_log2 = 1/log(2); |
154 |
|
155 |
ff_fft_init(&q->fft, 7, 1); |
156 |
dsputil_init(&q->dsp, avctx); |
157 |
avctx->sample_fmt = SAMPLE_FMT_S16; |
158 |
avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
|
159 |
return 0; |
160 |
} |
161 |
|
162 |
static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT, |
163 |
float* flcoeffs3, float* flcoeffs5) |
164 |
{ |
165 |
float workT1[BANDS];
|
166 |
float workT2[BANDS];
|
167 |
float workT3[BANDS];
|
168 |
float snr_limit = 1.e-30; |
169 |
float accum = 0.0; |
170 |
int i, cnt2;
|
171 |
|
172 |
for(i = 0; i < BANDS; i++) { |
173 |
flcoeffs5[i] = workT2[i] = 0.0; |
174 |
if (bandWidthT[i]){
|
175 |
workT1[i] = flcoeffs1[i] * flcoeffs1[i]; |
176 |
flcoeffs3[i] = 2.0 * flcoeffs2[i]; |
177 |
} else {
|
178 |
workT1[i] = 0.0; |
179 |
flcoeffs3[i] = -30000.0; |
180 |
} |
181 |
workT3[i] = bandWidthT[i] * workT1[i] * 0.01; |
182 |
if (workT3[i] <= snr_limit)
|
183 |
workT3[i] = 0.0; |
184 |
} |
185 |
|
186 |
for(i = 0; i < BANDS; i++) { |
187 |
for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
|
188 |
flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i]; |
189 |
workT2[cnt2-1] = workT2[cnt2-1] + workT3[i]; |
190 |
} |
191 |
|
192 |
for(i = 1; i < BANDS; i++) { |
193 |
accum = (workT2[i-1] + accum) * imc_weights1[i-1]; |
194 |
flcoeffs5[i] += accum; |
195 |
} |
196 |
|
197 |
for(i = 0; i < BANDS; i++) |
198 |
workT2[i] = 0.0; |
199 |
|
200 |
for(i = 0; i < BANDS; i++) { |
201 |
for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--) |
202 |
flcoeffs5[cnt2] += workT3[i]; |
203 |
workT2[cnt2+1] += workT3[i];
|
204 |
} |
205 |
|
206 |
accum = 0.0; |
207 |
|
208 |
for(i = BANDS-2; i >= 0; i--) { |
209 |
accum = (workT2[i+1] + accum) * imc_weights2[i];
|
210 |
flcoeffs5[i] += accum; |
211 |
//there is missing code here, but it seems to never be triggered
|
212 |
} |
213 |
} |
214 |
|
215 |
|
216 |
static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs) |
217 |
{ |
218 |
int i;
|
219 |
VLC *hufftab[4];
|
220 |
int start = 0; |
221 |
const uint8_t *cb_sel;
|
222 |
int s;
|
223 |
|
224 |
s = stream_format_code >> 1;
|
225 |
hufftab[0] = &huffman_vlc[s][0]; |
226 |
hufftab[1] = &huffman_vlc[s][1]; |
227 |
hufftab[2] = &huffman_vlc[s][2]; |
228 |
hufftab[3] = &huffman_vlc[s][3]; |
229 |
cb_sel = imc_cb_select[s]; |
230 |
|
231 |
if(stream_format_code & 4) |
232 |
start = 1;
|
233 |
if(start)
|
234 |
levlCoeffs[0] = get_bits(&q->gb, 7); |
235 |
for(i = start; i < BANDS; i++){
|
236 |
levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
|
237 |
if(levlCoeffs[i] == 17) |
238 |
levlCoeffs[i] += get_bits(&q->gb, 4);
|
239 |
} |
240 |
} |
241 |
|
242 |
static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1, |
243 |
float* flcoeffs2)
|
244 |
{ |
245 |
int i, level;
|
246 |
float tmp, tmp2;
|
247 |
//maybe some frequency division thingy
|
248 |
|
249 |
flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125 |
250 |
flcoeffs2[0] = log(flcoeffs1[0])/log(2); |
251 |
tmp = flcoeffs1[0];
|
252 |
tmp2 = flcoeffs2[0];
|
253 |
|
254 |
for(i = 1; i < BANDS; i++) { |
255 |
level = levlCoeffBuf[i]; |
256 |
if (level == 16) { |
257 |
flcoeffs1[i] = 1.0; |
258 |
flcoeffs2[i] = 0.0; |
259 |
} else {
|
260 |
if (level < 17) |
261 |
level -=7;
|
262 |
else if (level <= 24) |
263 |
level -=32;
|
264 |
else
|
265 |
level -=16;
|
266 |
|
267 |
tmp *= imc_exp_tab[15 + level];
|
268 |
tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25 |
269 |
flcoeffs1[i] = tmp; |
270 |
flcoeffs2[i] = tmp2; |
271 |
} |
272 |
} |
273 |
} |
274 |
|
275 |
|
276 |
static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1, |
277 |
float* flcoeffs2) {
|
278 |
int i;
|
279 |
//FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
|
280 |
// and flcoeffs2 old scale factors
|
281 |
// might be incomplete due to a missing table that is in the binary code
|
282 |
for(i = 0; i < BANDS; i++) { |
283 |
flcoeffs1[i] = 0;
|
284 |
if(levlCoeffBuf[i] < 16) { |
285 |
flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i]; |
286 |
flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25 |
287 |
} else {
|
288 |
flcoeffs1[i] = old_floor[i]; |
289 |
} |
290 |
} |
291 |
} |
292 |
|
293 |
/**
|
294 |
* Perform bit allocation depending on bits available
|
295 |
*/
|
296 |
static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) { |
297 |
int i, j;
|
298 |
const float limit = -1.e20; |
299 |
float highest = 0.0; |
300 |
int indx;
|
301 |
int t1 = 0; |
302 |
int t2 = 1; |
303 |
float summa = 0.0; |
304 |
int iacc = 0; |
305 |
int summer = 0; |
306 |
int rres, cwlen;
|
307 |
float lowest = 1.e10; |
308 |
int low_indx = 0; |
309 |
float workT[32]; |
310 |
int flg;
|
311 |
int found_indx = 0; |
312 |
|
313 |
for(i = 0; i < BANDS; i++) |
314 |
highest = FFMAX(highest, q->flcoeffs1[i]); |
315 |
|
316 |
for(i = 0; i < BANDS-1; i++) { |
317 |
q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
|
318 |
} |
319 |
q->flcoeffs4[BANDS - 1] = limit;
|
320 |
|
321 |
highest = highest * 0.25; |
322 |
|
323 |
for(i = 0; i < BANDS; i++) { |
324 |
indx = -1;
|
325 |
if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i]) |
326 |
indx = 0;
|
327 |
|
328 |
if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i]) |
329 |
indx = 1;
|
330 |
|
331 |
if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i]) |
332 |
indx = 2;
|
333 |
|
334 |
if (indx == -1) |
335 |
return -1; |
336 |
|
337 |
q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag]; |
338 |
} |
339 |
|
340 |
if (stream_format_code & 0x2) { |
341 |
q->flcoeffs4[0] = limit;
|
342 |
q->flcoeffs4[1] = limit;
|
343 |
q->flcoeffs4[2] = limit;
|
344 |
q->flcoeffs4[3] = limit;
|
345 |
} |
346 |
|
347 |
for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) { |
348 |
iacc += q->bandWidthT[i]; |
349 |
summa += q->bandWidthT[i] * q->flcoeffs4[i]; |
350 |
} |
351 |
q->bandWidthT[BANDS-1] = 0; |
352 |
summa = (summa * 0.5 - freebits) / iacc; |
353 |
|
354 |
|
355 |
for(i = 0; i < BANDS/2; i++) { |
356 |
rres = summer - freebits; |
357 |
if((rres >= -8) && (rres <= 8)) break; |
358 |
|
359 |
summer = 0;
|
360 |
iacc = 0;
|
361 |
|
362 |
for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) { |
363 |
cwlen = av_clip((int)((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6); |
364 |
|
365 |
q->bitsBandT[j] = cwlen; |
366 |
summer += q->bandWidthT[j] * cwlen; |
367 |
|
368 |
if (cwlen > 0) |
369 |
iacc += q->bandWidthT[j]; |
370 |
} |
371 |
|
372 |
flg = t2; |
373 |
t2 = 1;
|
374 |
if (freebits < summer)
|
375 |
t2 = -1;
|
376 |
if (i == 0) |
377 |
flg = t2; |
378 |
if(flg != t2)
|
379 |
t1++; |
380 |
|
381 |
summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa; |
382 |
} |
383 |
|
384 |
for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) { |
385 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) |
386 |
q->CWlengthT[j] = q->bitsBandT[i]; |
387 |
} |
388 |
|
389 |
if (freebits > summer) {
|
390 |
for(i = 0; i < BANDS; i++) { |
391 |
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); |
392 |
} |
393 |
|
394 |
highest = 0.0; |
395 |
|
396 |
do{
|
397 |
if (highest <= -1.e20) |
398 |
break;
|
399 |
|
400 |
found_indx = 0;
|
401 |
highest = -1.e20;
|
402 |
|
403 |
for(i = 0; i < BANDS; i++) { |
404 |
if (workT[i] > highest) {
|
405 |
highest = workT[i]; |
406 |
found_indx = i; |
407 |
} |
408 |
} |
409 |
|
410 |
if (highest > -1.e20) { |
411 |
workT[found_indx] -= 2.0; |
412 |
if (++(q->bitsBandT[found_indx]) == 6) |
413 |
workT[found_indx] = -1.e20;
|
414 |
|
415 |
for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){ |
416 |
q->CWlengthT[j]++; |
417 |
summer++; |
418 |
} |
419 |
} |
420 |
}while (freebits > summer);
|
421 |
} |
422 |
if (freebits < summer) {
|
423 |
for(i = 0; i < BANDS; i++) { |
424 |
workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20; |
425 |
} |
426 |
if (stream_format_code & 0x2) { |
427 |
workT[0] = 1.e20; |
428 |
workT[1] = 1.e20; |
429 |
workT[2] = 1.e20; |
430 |
workT[3] = 1.e20; |
431 |
} |
432 |
while (freebits < summer){
|
433 |
lowest = 1.e10;
|
434 |
low_indx = 0;
|
435 |
for(i = 0; i < BANDS; i++) { |
436 |
if (workT[i] < lowest) {
|
437 |
lowest = workT[i]; |
438 |
low_indx = i; |
439 |
} |
440 |
} |
441 |
//if(lowest >= 1.e10) break;
|
442 |
workT[low_indx] = lowest + 2.0; |
443 |
|
444 |
if (!(--q->bitsBandT[low_indx]))
|
445 |
workT[low_indx] = 1.e20;
|
446 |
|
447 |
for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){ |
448 |
if(q->CWlengthT[j] > 0){ |
449 |
q->CWlengthT[j]--; |
450 |
summer--; |
451 |
} |
452 |
} |
453 |
} |
454 |
} |
455 |
return 0; |
456 |
} |
457 |
|
458 |
static void imc_get_skip_coeff(IMCContext* q) { |
459 |
int i, j;
|
460 |
|
461 |
memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits)); |
462 |
memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount)); |
463 |
for(i = 0; i < BANDS; i++) { |
464 |
if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
|
465 |
continue;
|
466 |
|
467 |
if (!q->skipFlagRaw[i]) {
|
468 |
q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
|
469 |
|
470 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
471 |
if ((q->skipFlags[j] = get_bits1(&q->gb)))
|
472 |
q->skipFlagCount[i]++; |
473 |
} |
474 |
} else {
|
475 |
for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) { |
476 |
if(!get_bits1(&q->gb)){//0 |
477 |
q->skipFlagBits[i]++; |
478 |
q->skipFlags[j]=1;
|
479 |
q->skipFlags[j+1]=1; |
480 |
q->skipFlagCount[i] += 2;
|
481 |
}else{
|
482 |
if(get_bits1(&q->gb)){//11 |
483 |
q->skipFlagBits[i] +=2;
|
484 |
q->skipFlags[j]=0;
|
485 |
q->skipFlags[j+1]=1; |
486 |
q->skipFlagCount[i]++; |
487 |
}else{
|
488 |
q->skipFlagBits[i] +=3;
|
489 |
q->skipFlags[j+1]=0; |
490 |
if(!get_bits1(&q->gb)){//100 |
491 |
q->skipFlags[j]=1;
|
492 |
q->skipFlagCount[i]++; |
493 |
}else{//101 |
494 |
q->skipFlags[j]=0;
|
495 |
} |
496 |
} |
497 |
} |
498 |
} |
499 |
|
500 |
if (j < band_tab[i+1]) { |
501 |
q->skipFlagBits[i]++; |
502 |
if ((q->skipFlags[j] = get_bits1(&q->gb)))
|
503 |
q->skipFlagCount[i]++; |
504 |
} |
505 |
} |
506 |
} |
507 |
} |
508 |
|
509 |
/**
|
510 |
* Increase highest' band coefficient sizes as some bits won't be used
|
511 |
*/
|
512 |
static void imc_adjust_bit_allocation (IMCContext* q, int summer) { |
513 |
float workT[32]; |
514 |
int corrected = 0; |
515 |
int i, j;
|
516 |
float highest = 0; |
517 |
int found_indx=0; |
518 |
|
519 |
for(i = 0; i < BANDS; i++) { |
520 |
workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415); |
521 |
} |
522 |
|
523 |
while (corrected < summer) {
|
524 |
if(highest <= -1.e20) |
525 |
break;
|
526 |
|
527 |
highest = -1.e20;
|
528 |
|
529 |
for(i = 0; i < BANDS; i++) { |
530 |
if (workT[i] > highest) {
|
531 |
highest = workT[i]; |
532 |
found_indx = i; |
533 |
} |
534 |
} |
535 |
|
536 |
if (highest > -1.e20) { |
537 |
workT[found_indx] -= 2.0; |
538 |
if (++(q->bitsBandT[found_indx]) == 6) |
539 |
workT[found_indx] = -1.e20;
|
540 |
|
541 |
for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) { |
542 |
if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) { |
543 |
q->CWlengthT[j]++; |
544 |
corrected++; |
545 |
} |
546 |
} |
547 |
} |
548 |
} |
549 |
} |
550 |
|
551 |
static void imc_imdct256(IMCContext *q) { |
552 |
int i;
|
553 |
float re, im;
|
554 |
|
555 |
/* prerotation */
|
556 |
for(i=0; i < COEFFS/2; i++){ |
557 |
q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) - |
558 |
(q->pre_coef2[i] * q->CWdecoded[i*2]);
|
559 |
q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) - |
560 |
(q->pre_coef1[i] * q->CWdecoded[i*2]);
|
561 |
} |
562 |
|
563 |
/* FFT */
|
564 |
ff_fft_permute(&q->fft, q->samples); |
565 |
ff_fft_calc (&q->fft, q->samples); |
566 |
|
567 |
/* postrotation, window and reorder */
|
568 |
for(i = 0; i < COEFFS/2; i++){ |
569 |
re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]); |
570 |
im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]); |
571 |
q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re); |
572 |
q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re); |
573 |
q->last_fft_im[i] = im; |
574 |
} |
575 |
} |
576 |
|
577 |
static int inverse_quant_coeff (IMCContext* q, int stream_format_code) { |
578 |
int i, j;
|
579 |
int middle_value, cw_len, max_size;
|
580 |
const float* quantizer; |
581 |
|
582 |
for(i = 0; i < BANDS; i++) { |
583 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
584 |
q->CWdecoded[j] = 0;
|
585 |
cw_len = q->CWlengthT[j]; |
586 |
|
587 |
if (cw_len <= 0 || q->skipFlags[j]) |
588 |
continue;
|
589 |
|
590 |
max_size = 1 << cw_len;
|
591 |
middle_value = max_size >> 1;
|
592 |
|
593 |
if (q->codewords[j] >= max_size || q->codewords[j] < 0) |
594 |
return -1; |
595 |
|
596 |
if (cw_len >= 4){ |
597 |
quantizer = imc_quantizer2[(stream_format_code & 2) >> 1]; |
598 |
if (q->codewords[j] >= middle_value)
|
599 |
q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
|
600 |
else
|
601 |
q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i]; |
602 |
}else{
|
603 |
quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)]; |
604 |
if (q->codewords[j] >= middle_value)
|
605 |
q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
|
606 |
else
|
607 |
q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
|
608 |
} |
609 |
} |
610 |
} |
611 |
return 0; |
612 |
} |
613 |
|
614 |
|
615 |
static int imc_get_coeffs (IMCContext* q) { |
616 |
int i, j, cw_len, cw;
|
617 |
|
618 |
for(i = 0; i < BANDS; i++) { |
619 |
if(!q->sumLenArr[i]) continue; |
620 |
if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
|
621 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
622 |
cw_len = q->CWlengthT[j]; |
623 |
cw = 0;
|
624 |
|
625 |
if (get_bits_count(&q->gb) + cw_len > 512){ |
626 |
//av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
|
627 |
return -1; |
628 |
} |
629 |
|
630 |
if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
|
631 |
cw = get_bits(&q->gb, cw_len); |
632 |
|
633 |
q->codewords[j] = cw; |
634 |
} |
635 |
} |
636 |
} |
637 |
return 0; |
638 |
} |
639 |
|
640 |
static int imc_decode_frame(AVCodecContext * avctx, |
641 |
void *data, int *data_size, |
642 |
AVPacket *avpkt) |
643 |
{ |
644 |
const uint8_t *buf = avpkt->data;
|
645 |
int buf_size = avpkt->size;
|
646 |
|
647 |
IMCContext *q = avctx->priv_data; |
648 |
|
649 |
int stream_format_code;
|
650 |
int imc_hdr, i, j;
|
651 |
int flag;
|
652 |
int bits, summer;
|
653 |
int counter, bitscount;
|
654 |
uint16_t buf16[IMC_BLOCK_SIZE / 2];
|
655 |
|
656 |
if (buf_size < IMC_BLOCK_SIZE) {
|
657 |
av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
|
658 |
return -1; |
659 |
} |
660 |
for(i = 0; i < IMC_BLOCK_SIZE / 2; i++) |
661 |
buf16[i] = bswap_16(((const uint16_t*)buf)[i]);
|
662 |
|
663 |
init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8); |
664 |
|
665 |
/* Check the frame header */
|
666 |
imc_hdr = get_bits(&q->gb, 9);
|
667 |
if (imc_hdr != IMC_FRAME_ID) {
|
668 |
av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
|
669 |
av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
|
670 |
return -1; |
671 |
} |
672 |
stream_format_code = get_bits(&q->gb, 3);
|
673 |
|
674 |
if(stream_format_code & 1){ |
675 |
av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
|
676 |
return -1; |
677 |
} |
678 |
|
679 |
// av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
|
680 |
|
681 |
if (stream_format_code & 0x04) |
682 |
q->decoder_reset = 1;
|
683 |
|
684 |
if(q->decoder_reset) {
|
685 |
memset(q->out_samples, 0, sizeof(q->out_samples)); |
686 |
for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0; |
687 |
for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0; |
688 |
q->decoder_reset = 0;
|
689 |
} |
690 |
|
691 |
flag = get_bits1(&q->gb); |
692 |
imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf); |
693 |
|
694 |
if (stream_format_code & 0x4) |
695 |
imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2); |
696 |
else
|
697 |
imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2); |
698 |
|
699 |
memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float)); |
700 |
|
701 |
counter = 0;
|
702 |
for (i=0 ; i<BANDS ; i++) { |
703 |
if (q->levlCoeffBuf[i] == 16) { |
704 |
q->bandWidthT[i] = 0;
|
705 |
counter++; |
706 |
} else
|
707 |
q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
|
708 |
} |
709 |
memset(q->bandFlagsBuf, 0, BANDS * sizeof(int)); |
710 |
for(i = 0; i < BANDS-1; i++) { |
711 |
if (q->bandWidthT[i])
|
712 |
q->bandFlagsBuf[i] = get_bits1(&q->gb); |
713 |
} |
714 |
|
715 |
imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5); |
716 |
|
717 |
bitscount = 0;
|
718 |
/* first 4 bands will be assigned 5 bits per coefficient */
|
719 |
if (stream_format_code & 0x2) { |
720 |
bitscount += 15;
|
721 |
|
722 |
q->bitsBandT[0] = 5; |
723 |
q->CWlengthT[0] = 5; |
724 |
q->CWlengthT[1] = 5; |
725 |
q->CWlengthT[2] = 5; |
726 |
for(i = 1; i < 4; i++){ |
727 |
bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5; |
728 |
q->bitsBandT[i] = bits; |
729 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
730 |
q->CWlengthT[j] = bits; |
731 |
bitscount += bits; |
732 |
} |
733 |
} |
734 |
} |
735 |
|
736 |
if(bit_allocation (q, stream_format_code, 512 - bitscount - get_bits_count(&q->gb), flag) < 0) { |
737 |
av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
|
738 |
q->decoder_reset = 1;
|
739 |
return -1; |
740 |
} |
741 |
|
742 |
for(i = 0; i < BANDS; i++) { |
743 |
q->sumLenArr[i] = 0;
|
744 |
q->skipFlagRaw[i] = 0;
|
745 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) |
746 |
q->sumLenArr[i] += q->CWlengthT[j]; |
747 |
if (q->bandFlagsBuf[i])
|
748 |
if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0)) |
749 |
q->skipFlagRaw[i] = 1;
|
750 |
} |
751 |
|
752 |
imc_get_skip_coeff(q); |
753 |
|
754 |
for(i = 0; i < BANDS; i++) { |
755 |
q->flcoeffs6[i] = q->flcoeffs1[i]; |
756 |
/* band has flag set and at least one coded coefficient */
|
757 |
if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){ |
758 |
q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
|
759 |
q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
|
760 |
} |
761 |
} |
762 |
|
763 |
/* calculate bits left, bits needed and adjust bit allocation */
|
764 |
bits = summer = 0;
|
765 |
|
766 |
for(i = 0; i < BANDS; i++) { |
767 |
if (q->bandFlagsBuf[i]) {
|
768 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) { |
769 |
if(q->skipFlags[j]) {
|
770 |
summer += q->CWlengthT[j]; |
771 |
q->CWlengthT[j] = 0;
|
772 |
} |
773 |
} |
774 |
bits += q->skipFlagBits[i]; |
775 |
summer -= q->skipFlagBits[i]; |
776 |
} |
777 |
} |
778 |
imc_adjust_bit_allocation(q, summer); |
779 |
|
780 |
for(i = 0; i < BANDS; i++) { |
781 |
q->sumLenArr[i] = 0;
|
782 |
|
783 |
for(j = band_tab[i]; j < band_tab[i+1]; j++) |
784 |
if (!q->skipFlags[j])
|
785 |
q->sumLenArr[i] += q->CWlengthT[j]; |
786 |
} |
787 |
|
788 |
memset(q->codewords, 0, sizeof(q->codewords)); |
789 |
|
790 |
if(imc_get_coeffs(q) < 0) { |
791 |
av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
|
792 |
q->decoder_reset = 1;
|
793 |
return 0; |
794 |
} |
795 |
|
796 |
if(inverse_quant_coeff(q, stream_format_code) < 0) { |
797 |
av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
|
798 |
q->decoder_reset = 1;
|
799 |
return 0; |
800 |
} |
801 |
|
802 |
memset(q->skipFlags, 0, sizeof(q->skipFlags)); |
803 |
|
804 |
imc_imdct256(q); |
805 |
|
806 |
q->dsp.float_to_int16(data, q->out_samples, COEFFS); |
807 |
|
808 |
*data_size = COEFFS * sizeof(int16_t);
|
809 |
|
810 |
return IMC_BLOCK_SIZE;
|
811 |
} |
812 |
|
813 |
|
814 |
static av_cold int imc_decode_close(AVCodecContext * avctx) |
815 |
{ |
816 |
IMCContext *q = avctx->priv_data; |
817 |
|
818 |
ff_fft_end(&q->fft); |
819 |
return 0; |
820 |
} |
821 |
|
822 |
|
823 |
AVCodec imc_decoder = { |
824 |
.name = "imc",
|
825 |
.type = CODEC_TYPE_AUDIO, |
826 |
.id = CODEC_ID_IMC, |
827 |
.priv_data_size = sizeof(IMCContext),
|
828 |
.init = imc_decode_init, |
829 |
.close = imc_decode_close, |
830 |
.decode = imc_decode_frame, |
831 |
.long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
|
832 |
}; |