Statistics
| Branch: | Revision:

ffmpeg / libavcodec / ra144.c @ 9106a698

History | View | Annotate | Download (9.77 KB)

1
/*
2
 * Real Audio 1.0 (14.4K)
3
 *
4
 * Copyright (c) 2008 Vitor Sessak
5
 * Copyright (c) 2003 Nick Kurshev
6
 *     Based on public domain decoder at http://www.honeypot.net/audio
7
 *
8
 * This file is part of FFmpeg.
9
 *
10
 * FFmpeg is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU Lesser General Public
12
 * License as published by the Free Software Foundation; either
13
 * version 2.1 of the License, or (at your option) any later version.
14
 *
15
 * FFmpeg is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
 * Lesser General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU Lesser General Public
21
 * License along with FFmpeg; if not, write to the Free Software
22
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23
 */
24

    
25
#include "avcodec.h"
26
#include "get_bits.h"
27
#include "ra144.h"
28
#include "celp_filters.h"
29

    
30
#define NBLOCKS         4       ///< number of subblocks within a block
31
#define BLOCKSIZE       40      ///< subblock size in 16-bit words
32
#define BUFFERSIZE      146     ///< the size of the adaptive codebook
33

    
34

    
35
typedef struct {
36
    unsigned int     old_energy;        ///< previous frame energy
37

    
38
    unsigned int     lpc_tables[2][10];
39

    
40
    /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
41
     *  and lpc_coef[1] of the previous one. */
42
    unsigned int    *lpc_coef[2];
43

    
44
    unsigned int     lpc_refl_rms[2];
45

    
46
    /** The current subblock padded by the last 10 values of the previous one. */
47
    int16_t curr_sblock[50];
48

    
49
    /** Adaptive codebook, its size is two units bigger to avoid a
50
     *  buffer overflow. */
51
    uint16_t adapt_cb[146+2];
52
} RA144Context;
53

    
54
static av_cold int ra144_decode_init(AVCodecContext * avctx)
55
{
56
    RA144Context *ractx = avctx->priv_data;
57

    
58
    ractx->lpc_coef[0] = ractx->lpc_tables[0];
59
    ractx->lpc_coef[1] = ractx->lpc_tables[1];
60

    
61
    avctx->sample_fmt = SAMPLE_FMT_S16;
62
    return 0;
63
}
64

    
65
/**
66
 * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
67
 * odd way to make the output identical to the binary decoder.
68
 */
69
static int t_sqrt(unsigned int x)
70
{
71
    int s = 2;
72
    while (x > 0xfff) {
73
        s++;
74
        x >>= 2;
75
    }
76

    
77
    return ff_sqrt(x << 20) << s;
78
}
79

    
80
/**
81
 * Evaluate the LPC filter coefficients from the reflection coefficients.
82
 * Does the inverse of the eval_refl() function.
83
 */
84
static void eval_coefs(int *coefs, const int *refl)
85
{
86
    int buffer[10];
87
    int *b1 = buffer;
88
    int *b2 = coefs;
89
    int i, j;
90

    
91
    for (i=0; i < 10; i++) {
92
        b1[i] = refl[i] << 4;
93

    
94
        for (j=0; j < i; j++)
95
            b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j];
96

    
97
        FFSWAP(int *, b1, b2);
98
    }
99

    
100
    for (i=0; i < 10; i++)
101
        coefs[i] >>= 4;
102
}
103

    
104
/**
105
 * Copy the last offset values of *source to *target. If those values are not
106
 * enough to fill the target buffer, fill it with another copy of those values.
107
 */
108
static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
109
{
110
    source += BUFFERSIZE - offset;
111

    
112
    memcpy(target, source, FFMIN(BLOCKSIZE, offset)*sizeof(*target));
113
    if (offset < BLOCKSIZE)
114
        memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
115
}
116

    
117
/** inverse root mean square */
118
static int irms(const int16_t *data)
119
{
120
    unsigned int i, sum = 0;
121

    
122
    for (i=0; i < BLOCKSIZE; i++)
123
        sum += data[i] * data[i];
124

    
125
    if (sum == 0)
126
        return 0; /* OOPS - division by zero */
127

    
128
    return 0x20000000 / (t_sqrt(sum) >> 8);
129
}
130

    
131
static void add_wav(int16_t *dest, int n, int skip_first, int *m,
132
                    const int16_t *s1, const int8_t *s2, const int8_t *s3)
133
{
134
    int i;
135
    int v[3];
136

    
137
    v[0] = 0;
138
    for (i=!skip_first; i<3; i++)
139
        v[i] = (gain_val_tab[n][i] * m[i]) >> gain_exp_tab[n];
140

    
141
    if (v[0]) {
142
        for (i=0; i < BLOCKSIZE; i++)
143
            dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
144
    } else {
145
        for (i=0; i < BLOCKSIZE; i++)
146
            dest[i] = (             s2[i]*v[1] + s3[i]*v[2]) >> 12;
147
    }
148
}
149

    
150
static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
151
{
152
    return (rms * energy) >> 10;
153
}
154

    
155
static unsigned int rms(const int *data)
156
{
157
    int i;
158
    unsigned int res = 0x10000;
159
    int b = 10;
160

    
161
    for (i=0; i < 10; i++) {
162
        res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12;
163

    
164
        if (res == 0)
165
            return 0;
166

    
167
        while (res <= 0x3fff) {
168
            b++;
169
            res <<= 2;
170
        }
171
    }
172

    
173
    return t_sqrt(res) >> b;
174
}
175

    
176
static void do_output_subblock(RA144Context *ractx, const uint16_t  *lpc_coefs,
177
                               int gval, GetBitContext *gb)
178
{
179
    uint16_t buffer_a[40];
180
    uint16_t *block;
181
    int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
182
    int gain    = get_bits(gb, 8);
183
    int cb1_idx = get_bits(gb, 7);
184
    int cb2_idx = get_bits(gb, 7);
185
    int m[3];
186

    
187
    if (cba_idx) {
188
        cba_idx += BLOCKSIZE/2 - 1;
189
        copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
190
        m[0] = (irms(buffer_a) * gval) >> 12;
191
    } else {
192
        m[0] = 0;
193
    }
194

    
195
    m[1] = (cb1_base[cb1_idx] * gval) >> 8;
196
    m[2] = (cb2_base[cb2_idx] * gval) >> 8;
197

    
198
    memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
199
            (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
200

    
201
    block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
202

    
203
    add_wav(block, gain, cba_idx, m, cba_idx? buffer_a: NULL,
204
            cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
205

    
206
    memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
207
           10*sizeof(*ractx->curr_sblock));
208

    
209
    if (ff_celp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs,
210
                                    block, BLOCKSIZE, 10, 1, 0xfff))
211
        memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
212
}
213

    
214
static void int_to_int16(int16_t *out, const int *inp)
215
{
216
    int i;
217

    
218
    for (i=0; i < 30; i++)
219
        *out++ = *inp++;
220
}
221

    
222
/**
223
 * Evaluate the reflection coefficients from the filter coefficients.
224
 * Does the inverse of the eval_coefs() function.
225
 *
226
 * @return 1 if one of the reflection coefficients is greater than
227
 *         4095, 0 if not.
228
 */
229
static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx)
230
{
231
    int b, i, j;
232
    int buffer1[10];
233
    int buffer2[10];
234
    int *bp1 = buffer1;
235
    int *bp2 = buffer2;
236

    
237
    for (i=0; i < 10; i++)
238
        buffer2[i] = coefs[i];
239

    
240
    refl[9] = bp2[9];
241

    
242
    if ((unsigned) bp2[9] + 0x1000 > 0x1fff) {
243
        av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
244
        return 1;
245
    }
246

    
247
    for (i=8; i >= 0; i--) {
248
        b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12);
249

    
250
        if (!b)
251
            b = -2;
252

    
253
        for (j=0; j <= i; j++)
254
            bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12;
255

    
256
        if ((unsigned) bp1[i] + 0x1000 > 0x1fff)
257
            return 1;
258

    
259
        refl[i] = bp1[i];
260

    
261
        FFSWAP(int *, bp1, bp2);
262
    }
263
    return 0;
264
}
265

    
266
static int interp(RA144Context *ractx, int16_t *out, int a,
267
                  int copyold, int energy)
268
{
269
    int work[10];
270
    int b = NBLOCKS - a;
271
    int i;
272

    
273
    // Interpolate block coefficients from the this frame's forth block and
274
    // last frame's forth block.
275
    for (i=0; i<30; i++)
276
        out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2;
277

    
278
    if (eval_refl(work, out, ractx)) {
279
        // The interpolated coefficients are unstable, copy either new or old
280
        // coefficients.
281
        int_to_int16(out, ractx->lpc_coef[copyold]);
282
        return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
283
    } else {
284
        return rescale_rms(rms(work), energy);
285
    }
286
}
287

    
288
/** Uncompress one block (20 bytes -> 160*2 bytes). */
289
static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
290
                              int *data_size, AVPacket *avpkt)
291
{
292
    const uint8_t *buf = avpkt->data;
293
    int buf_size = avpkt->size;
294
    static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
295
    unsigned int refl_rms[4];    // RMS of the reflection coefficients
296
    uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
297
    unsigned int lpc_refl[10];   // LPC reflection coefficients of the frame
298
    int i, j;
299
    int16_t *data = vdata;
300
    unsigned int energy;
301

    
302
    RA144Context *ractx = avctx->priv_data;
303
    GetBitContext gb;
304

    
305
    if (*data_size < 2*160)
306
        return -1;
307

    
308
    if(buf_size < 20) {
309
        av_log(avctx, AV_LOG_ERROR,
310
               "Frame too small (%d bytes). Truncated file?\n", buf_size);
311
        *data_size = 0;
312
        return buf_size;
313
    }
314
    init_get_bits(&gb, buf, 20 * 8);
315

    
316
    for (i=0; i<10; i++)
317
        lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
318

    
319
    eval_coefs(ractx->lpc_coef[0], lpc_refl);
320
    ractx->lpc_refl_rms[0] = rms(lpc_refl);
321

    
322
    energy = energy_tab[get_bits(&gb, 5)];
323

    
324
    refl_rms[0] = interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
325
    refl_rms[1] = interp(ractx, block_coefs[1], 2, energy <= ractx->old_energy,
326
                    t_sqrt(energy*ractx->old_energy) >> 12);
327
    refl_rms[2] = interp(ractx, block_coefs[2], 3, 0, energy);
328
    refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
329

    
330
    int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
331

    
332
    for (i=0; i < 4; i++) {
333
        do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb);
334

    
335
        for (j=0; j < BLOCKSIZE; j++)
336
            *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2);
337
    }
338

    
339
    ractx->old_energy = energy;
340
    ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
341

    
342
    FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
343

    
344
    *data_size = 2*160;
345
    return 20;
346
}
347

    
348
AVCodec ra_144_decoder =
349
{
350
    "real_144",
351
    CODEC_TYPE_AUDIO,
352
    CODEC_ID_RA_144,
353
    sizeof(RA144Context),
354
    ra144_decode_init,
355
    NULL,
356
    NULL,
357
    ra144_decode_frame,
358
    .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
359
};