Statistics
| Branch: | Revision:

ffmpeg / libswscale / swscale.c @ 911406f2

History | View | Annotate | Download (82.5 KB)

1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * the C code (not assembly, mmx, ...) of this file can be used
21
 * under the LGPL license too
22
 */
23

    
24
/*
25
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27
  {BGR,RGB}{1,4,8,15,16} support dithering
28
  
29
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31
  x -> x
32
  YUV9 -> YV12
33
  YUV9/YV12 -> Y800
34
  Y800 -> YUV9/YV12
35
  BGR24 -> BGR32 & RGB24 -> RGB32
36
  BGR32 -> BGR24 & RGB32 -> RGB24
37
  BGR15 -> BGR16
38
*/
39

    
40
/* 
41
tested special converters (most are tested actually but i didnt write it down ...)
42
 YV12 -> BGR16
43
 YV12 -> YV12
44
 BGR15 -> BGR16
45
 BGR16 -> BGR16
46
 YVU9 -> YV12
47

48
untested special converters
49
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
50
  YV12/I420 -> YV12/I420
51
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52
  BGR24 -> BGR32 & RGB24 -> RGB32
53
  BGR32 -> BGR24 & RGB32 -> RGB24
54
  BGR24 -> YV12
55
*/
56

    
57
#include <inttypes.h>
58
#include <string.h>
59
#include <math.h>
60
#include <stdio.h>
61
#include <unistd.h>
62
#include "config.h"
63
#include <assert.h>
64
#ifdef HAVE_SYS_MMAN_H
65
#include <sys/mman.h>
66
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67
#define MAP_ANONYMOUS MAP_ANON
68
#endif
69
#endif
70
#include "swscale.h"
71
#include "swscale_internal.h"
72
#include "x86_cpu.h"
73
#include "bswap.h"
74
#include "rgb2rgb.h"
75
#ifdef USE_FASTMEMCPY
76
#include "libvo/fastmemcpy.h"
77
#endif
78

    
79
#undef MOVNTQ
80
#undef PAVGB
81

    
82
//#undef HAVE_MMX2
83
//#define HAVE_3DNOW
84
//#undef HAVE_MMX
85
//#undef ARCH_X86
86
//#define WORDS_BIGENDIAN
87
#define DITHER1XBPP
88

    
89
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90

    
91
#define RET 0xC3 //near return opcode for X86
92

    
93
#ifdef MP_DEBUG
94
#define ASSERT(x) assert(x);
95
#else
96
#define ASSERT(x) ;
97
#endif
98

    
99
#ifdef M_PI
100
#define PI M_PI
101
#else
102
#define PI 3.14159265358979323846
103
#endif
104

    
105
#define isSupportedIn(x)  ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
106
                        || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
107
                        || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\
108
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
109
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
110
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
111
                        || (x)==PIX_FMT_PAL8 || (x)==PIX_FMT_BGR8 || (x)==PIX_FMT_RGB8\
112
                        || (x)==PIX_FMT_BGR4_BYTE  || (x)==PIX_FMT_RGB4_BYTE)
113
#define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
114
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
115
                        || isRGB(x) || isBGR(x)\
116
                        || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
117
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
118
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
119
#define isPacked(x)    ((x)==PIX_FMT_PAL8 || (x)==PIX_FMT_YUYV422 ||\
120
                        (x)==PIX_FMT_UYVY422 || isRGB(x) || isBGR(x))
121

    
122
#define RGB2YUV_SHIFT 16
123
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
124
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
125
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
126
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
127
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
128
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
129
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
130
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
131
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
132

    
133
extern const int32_t Inverse_Table_6_9[8][4];
134

    
135
/*
136
NOTES
137
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
138

139
TODO
140
more intelligent missalignment avoidance for the horizontal scaler
141
write special vertical cubic upscale version
142
Optimize C code (yv12 / minmax)
143
add support for packed pixel yuv input & output
144
add support for Y8 output
145
optimize bgr24 & bgr32
146
add BGR4 output support
147
write special BGR->BGR scaler
148
*/
149

    
150
#if defined(ARCH_X86) && defined (CONFIG_GPL)
151
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
152
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
153
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
154
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
155
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
156
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
157
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
158
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
159

    
160
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
161
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
162
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
163
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
164

    
165
static uint64_t __attribute__((aligned(8))) dither4[2]={
166
        0x0103010301030103LL,
167
        0x0200020002000200LL,};
168

    
169
static uint64_t __attribute__((aligned(8))) dither8[2]={
170
        0x0602060206020602LL,
171
        0x0004000400040004LL,};
172

    
173
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
174
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
175
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
176
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
177
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
178
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
179

    
180
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
181
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
182
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
183

    
184
#ifdef FAST_BGR2YV12
185
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
186
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
187
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
188
#else
189
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
190
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
191
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
192
#endif /* FAST_BGR2YV12 */
193
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
194
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
195
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
196
#endif /* defined(ARCH_X86) */
197

    
198
// clipping helper table for C implementations:
199
static unsigned char clip_table[768];
200

    
201
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
202
                  
203
extern const uint8_t dither_2x2_4[2][8];
204
extern const uint8_t dither_2x2_8[2][8];
205
extern const uint8_t dither_8x8_32[8][8];
206
extern const uint8_t dither_8x8_73[8][8];
207
extern const uint8_t dither_8x8_220[8][8];
208

    
209
static const char * sws_context_to_name(void * ptr) {
210
    return "swscaler";
211
}
212

    
213
static AVClass sws_context_class = { "SWScaler", sws_context_to_name, NULL };
214

    
215
char *sws_format_name(enum PixelFormat format)
216
{
217
    switch (format) {
218
        case PIX_FMT_YUV420P:
219
            return "yuv420p";
220
        case PIX_FMT_YUYV422:
221
            return "yuyv422";
222
        case PIX_FMT_RGB24:
223
            return "rgb24";
224
        case PIX_FMT_BGR24:
225
            return "bgr24";
226
        case PIX_FMT_YUV422P:
227
            return "yuv422p";
228
        case PIX_FMT_YUV444P:
229
            return "yuv444p";
230
        case PIX_FMT_RGB32:
231
            return "rgb32";
232
        case PIX_FMT_YUV410P:
233
            return "yuv410p";
234
        case PIX_FMT_YUV411P:
235
            return "yuv411p";
236
        case PIX_FMT_RGB565:
237
            return "rgb565";
238
        case PIX_FMT_RGB555:
239
            return "rgb555";
240
        case PIX_FMT_GRAY16BE:
241
            return "gray16be";
242
        case PIX_FMT_GRAY16LE:
243
            return "gray16le";
244
        case PIX_FMT_GRAY8:
245
            return "gray8";
246
        case PIX_FMT_MONOWHITE:
247
            return "mono white";
248
        case PIX_FMT_MONOBLACK:
249
            return "mono black";
250
        case PIX_FMT_PAL8:
251
            return "Palette";
252
        case PIX_FMT_YUVJ420P:
253
            return "yuvj420p";
254
        case PIX_FMT_YUVJ422P:
255
            return "yuvj422p";
256
        case PIX_FMT_YUVJ444P:
257
            return "yuvj444p";
258
        case PIX_FMT_XVMC_MPEG2_MC:
259
            return "xvmc_mpeg2_mc";
260
        case PIX_FMT_XVMC_MPEG2_IDCT:
261
            return "xvmc_mpeg2_idct";
262
        case PIX_FMT_UYVY422:
263
            return "uyvy422";
264
        case PIX_FMT_UYYVYY411:
265
            return "uyyvyy411";
266
        case PIX_FMT_RGB32_1:
267
            return "rgb32x";
268
        case PIX_FMT_BGR32_1:
269
            return "bgr32x";
270
        case PIX_FMT_BGR32:
271
            return "bgr32";
272
        case PIX_FMT_BGR565:
273
            return "bgr565";
274
        case PIX_FMT_BGR555:
275
            return "bgr555";
276
        case PIX_FMT_BGR8:
277
            return "bgr8";
278
        case PIX_FMT_BGR4:
279
            return "bgr4";
280
        case PIX_FMT_BGR4_BYTE:
281
            return "bgr4 byte";
282
        case PIX_FMT_RGB8:
283
            return "rgb8";
284
        case PIX_FMT_RGB4:
285
            return "rgb4";
286
        case PIX_FMT_RGB4_BYTE:
287
            return "rgb4 byte";
288
        case PIX_FMT_NV12:
289
            return "nv12";
290
        case PIX_FMT_NV21:
291
            return "nv21";
292
        default:
293
            return "Unknown format";
294
    }
295
}
296

    
297
#if defined(ARCH_X86) && defined (CONFIG_GPL)
298
void in_asm_used_var_warning_killer()
299
{
300
 volatile int i= bF8+bFC+w10+
301
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
302
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
303
 if(i) i=0;
304
}
305
#endif
306

    
307
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
308
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
309
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
310
{
311
        //FIXME Optimize (just quickly writen not opti..)
312
        int i;
313
        for(i=0; i<dstW; i++)
314
        {
315
                int val=1<<18;
316
                int j;
317
                for(j=0; j<lumFilterSize; j++)
318
                        val += lumSrc[j][i] * lumFilter[j];
319

    
320
                dest[i]= av_clip_uint8(val>>19);
321
        }
322

    
323
        if(uDest != NULL)
324
                for(i=0; i<chrDstW; i++)
325
                {
326
                        int u=1<<18;
327
                        int v=1<<18;
328
                        int j;
329
                        for(j=0; j<chrFilterSize; j++)
330
                        {
331
                                u += chrSrc[j][i] * chrFilter[j];
332
                                v += chrSrc[j][i + 2048] * chrFilter[j];
333
                        }
334

    
335
                        uDest[i]= av_clip_uint8(u>>19);
336
                        vDest[i]= av_clip_uint8(v>>19);
337
                }
338
}
339

    
340
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
341
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
342
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
343
{
344
        //FIXME Optimize (just quickly writen not opti..)
345
        int i;
346
        for(i=0; i<dstW; i++)
347
        {
348
                int val=1<<18;
349
                int j;
350
                for(j=0; j<lumFilterSize; j++)
351
                        val += lumSrc[j][i] * lumFilter[j];
352

    
353
                dest[i]= av_clip_uint8(val>>19);
354
        }
355

    
356
        if(uDest == NULL)
357
                return;
358

    
359
        if(dstFormat == PIX_FMT_NV12)
360
                for(i=0; i<chrDstW; i++)
361
                {
362
                        int u=1<<18;
363
                        int v=1<<18;
364
                        int j;
365
                        for(j=0; j<chrFilterSize; j++)
366
                        {
367
                                u += chrSrc[j][i] * chrFilter[j];
368
                                v += chrSrc[j][i + 2048] * chrFilter[j];
369
                        }
370

    
371
                        uDest[2*i]= av_clip_uint8(u>>19);
372
                        uDest[2*i+1]= av_clip_uint8(v>>19);
373
                }
374
        else
375
                for(i=0; i<chrDstW; i++)
376
                {
377
                        int u=1<<18;
378
                        int v=1<<18;
379
                        int j;
380
                        for(j=0; j<chrFilterSize; j++)
381
                        {
382
                                u += chrSrc[j][i] * chrFilter[j];
383
                                v += chrSrc[j][i + 2048] * chrFilter[j];
384
                        }
385

    
386
                        uDest[2*i]= av_clip_uint8(v>>19);
387
                        uDest[2*i+1]= av_clip_uint8(u>>19);
388
                }
389
}
390

    
391
#define YSCALE_YUV_2_PACKEDX_C(type) \
392
                for(i=0; i<(dstW>>1); i++){\
393
                        int j;\
394
                        int Y1=1<<18;\
395
                        int Y2=1<<18;\
396
                        int U=1<<18;\
397
                        int V=1<<18;\
398
                        type attribute_unused *r, *b, *g;\
399
                        const int i2= 2*i;\
400
                        \
401
                        for(j=0; j<lumFilterSize; j++)\
402
                        {\
403
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
404
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
405
                        }\
406
                        for(j=0; j<chrFilterSize; j++)\
407
                        {\
408
                                U += chrSrc[j][i] * chrFilter[j];\
409
                                V += chrSrc[j][i+2048] * chrFilter[j];\
410
                        }\
411
                        Y1>>=19;\
412
                        Y2>>=19;\
413
                        U >>=19;\
414
                        V >>=19;\
415
                        if((Y1|Y2|U|V)&256)\
416
                        {\
417
                                if(Y1>255)   Y1=255;\
418
                                else if(Y1<0)Y1=0;\
419
                                if(Y2>255)   Y2=255;\
420
                                else if(Y2<0)Y2=0;\
421
                                if(U>255)    U=255;\
422
                                else if(U<0) U=0;\
423
                                if(V>255)    V=255;\
424
                                else if(V<0) V=0;\
425
                        }
426
                        
427
#define YSCALE_YUV_2_RGBX_C(type) \
428
                        YSCALE_YUV_2_PACKEDX_C(type)\
429
                        r = (type *)c->table_rV[V];\
430
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
431
                        b = (type *)c->table_bU[U];\
432

    
433
#define YSCALE_YUV_2_PACKED2_C \
434
                for(i=0; i<(dstW>>1); i++){\
435
                        const int i2= 2*i;\
436
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
437
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
438
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
439
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
440

    
441
#define YSCALE_YUV_2_RGB2_C(type) \
442
                        YSCALE_YUV_2_PACKED2_C\
443
                        type *r, *b, *g;\
444
                        r = (type *)c->table_rV[V];\
445
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
446
                        b = (type *)c->table_bU[U];\
447

    
448
#define YSCALE_YUV_2_PACKED1_C \
449
                for(i=0; i<(dstW>>1); i++){\
450
                        const int i2= 2*i;\
451
                        int Y1= buf0[i2  ]>>7;\
452
                        int Y2= buf0[i2+1]>>7;\
453
                        int U= (uvbuf1[i     ])>>7;\
454
                        int V= (uvbuf1[i+2048])>>7;\
455

    
456
#define YSCALE_YUV_2_RGB1_C(type) \
457
                        YSCALE_YUV_2_PACKED1_C\
458
                        type *r, *b, *g;\
459
                        r = (type *)c->table_rV[V];\
460
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
461
                        b = (type *)c->table_bU[U];\
462

    
463
#define YSCALE_YUV_2_PACKED1B_C \
464
                for(i=0; i<(dstW>>1); i++){\
465
                        const int i2= 2*i;\
466
                        int Y1= buf0[i2  ]>>7;\
467
                        int Y2= buf0[i2+1]>>7;\
468
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
469
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
470

    
471
#define YSCALE_YUV_2_RGB1B_C(type) \
472
                        YSCALE_YUV_2_PACKED1B_C\
473
                        type *r, *b, *g;\
474
                        r = (type *)c->table_rV[V];\
475
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
476
                        b = (type *)c->table_bU[U];\
477

    
478
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
479
        switch(c->dstFormat)\
480
        {\
481
        case PIX_FMT_RGB32:\
482
        case PIX_FMT_BGR32:\
483
                func(uint32_t)\
484
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
485
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
486
                }                \
487
                break;\
488
        case PIX_FMT_RGB24:\
489
                func(uint8_t)\
490
                        ((uint8_t*)dest)[0]= r[Y1];\
491
                        ((uint8_t*)dest)[1]= g[Y1];\
492
                        ((uint8_t*)dest)[2]= b[Y1];\
493
                        ((uint8_t*)dest)[3]= r[Y2];\
494
                        ((uint8_t*)dest)[4]= g[Y2];\
495
                        ((uint8_t*)dest)[5]= b[Y2];\
496
                        dest+=6;\
497
                }\
498
                break;\
499
        case PIX_FMT_BGR24:\
500
                func(uint8_t)\
501
                        ((uint8_t*)dest)[0]= b[Y1];\
502
                        ((uint8_t*)dest)[1]= g[Y1];\
503
                        ((uint8_t*)dest)[2]= r[Y1];\
504
                        ((uint8_t*)dest)[3]= b[Y2];\
505
                        ((uint8_t*)dest)[4]= g[Y2];\
506
                        ((uint8_t*)dest)[5]= r[Y2];\
507
                        dest+=6;\
508
                }\
509
                break;\
510
        case PIX_FMT_RGB565:\
511
        case PIX_FMT_BGR565:\
512
                {\
513
                        const int dr1= dither_2x2_8[y&1    ][0];\
514
                        const int dg1= dither_2x2_4[y&1    ][0];\
515
                        const int db1= dither_2x2_8[(y&1)^1][0];\
516
                        const int dr2= dither_2x2_8[y&1    ][1];\
517
                        const int dg2= dither_2x2_4[y&1    ][1];\
518
                        const int db2= dither_2x2_8[(y&1)^1][1];\
519
                        func(uint16_t)\
520
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
521
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
522
                        }\
523
                }\
524
                break;\
525
        case PIX_FMT_RGB555:\
526
        case PIX_FMT_BGR555:\
527
                {\
528
                        const int dr1= dither_2x2_8[y&1    ][0];\
529
                        const int dg1= dither_2x2_8[y&1    ][1];\
530
                        const int db1= dither_2x2_8[(y&1)^1][0];\
531
                        const int dr2= dither_2x2_8[y&1    ][1];\
532
                        const int dg2= dither_2x2_8[y&1    ][0];\
533
                        const int db2= dither_2x2_8[(y&1)^1][1];\
534
                        func(uint16_t)\
535
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
536
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
537
                        }\
538
                }\
539
                break;\
540
        case PIX_FMT_RGB8:\
541
        case PIX_FMT_BGR8:\
542
                {\
543
                        const uint8_t * const d64= dither_8x8_73[y&7];\
544
                        const uint8_t * const d32= dither_8x8_32[y&7];\
545
                        func(uint8_t)\
546
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
547
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
548
                        }\
549
                }\
550
                break;\
551
        case PIX_FMT_RGB4:\
552
        case PIX_FMT_BGR4:\
553
                {\
554
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
555
                        const uint8_t * const d128=dither_8x8_220[y&7];\
556
                        func(uint8_t)\
557
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
558
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
559
                        }\
560
                }\
561
                break;\
562
        case PIX_FMT_RGB4_BYTE:\
563
        case PIX_FMT_BGR4_BYTE:\
564
                {\
565
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
566
                        const uint8_t * const d128=dither_8x8_220[y&7];\
567
                        func(uint8_t)\
568
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
569
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
570
                        }\
571
                }\
572
                break;\
573
        case PIX_FMT_MONOBLACK:\
574
                {\
575
                        const uint8_t * const d128=dither_8x8_220[y&7];\
576
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
577
                        for(i=0; i<dstW-7; i+=8){\
578
                                int acc;\
579
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
580
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
581
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
582
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
583
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
584
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
585
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
586
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
587
                                ((uint8_t*)dest)[0]= acc;\
588
                                dest++;\
589
                        }\
590
\
591
/*\
592
((uint8_t*)dest)-= dstW>>4;\
593
{\
594
                        int acc=0;\
595
                        int left=0;\
596
                        static int top[1024];\
597
                        static int last_new[1024][1024];\
598
                        static int last_in3[1024][1024];\
599
                        static int drift[1024][1024];\
600
                        int topLeft=0;\
601
                        int shift=0;\
602
                        int count=0;\
603
                        const uint8_t * const d128=dither_8x8_220[y&7];\
604
                        int error_new=0;\
605
                        int error_in3=0;\
606
                        int f=0;\
607
                        \
608
                        for(i=dstW>>1; i<dstW; i++){\
609
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
610
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
611
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
612
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
613
                                        + (last_new[y][i] - in3)*f/256;\
614
                                int new= old> 128 ? 255 : 0;\
615
\
616
                                error_new+= FFABS(last_new[y][i] - new);\
617
                                error_in3+= FFABS(last_in3[y][i] - in3);\
618
                                f= error_new - error_in3*4;\
619
                                if(f<0) f=0;\
620
                                if(f>256) f=256;\
621
\
622
                                topLeft= top[i];\
623
                                left= top[i]= old - new;\
624
                                last_new[y][i]= new;\
625
                                last_in3[y][i]= in3;\
626
\
627
                                acc+= acc + (new&1);\
628
                                if((i&7)==6){\
629
                                        ((uint8_t*)dest)[0]= acc;\
630
                                        ((uint8_t*)dest)++;\
631
                                }\
632
                        }\
633
}\
634
*/\
635
                }\
636
                break;\
637
        case PIX_FMT_YUYV422:\
638
                func2\
639
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
640
                        ((uint8_t*)dest)[2*i2+1]= U;\
641
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
642
                        ((uint8_t*)dest)[2*i2+3]= V;\
643
                }                \
644
                break;\
645
        case PIX_FMT_UYVY422:\
646
                func2\
647
                        ((uint8_t*)dest)[2*i2+0]= U;\
648
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
649
                        ((uint8_t*)dest)[2*i2+2]= V;\
650
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
651
                }                \
652
                break;\
653
        }\
654

    
655

    
656
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
657
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
658
                                    uint8_t *dest, int dstW, int y)
659
{
660
        int i;
661
        switch(c->dstFormat)
662
        {
663
        case PIX_FMT_BGR32:
664
        case PIX_FMT_RGB32:
665
                YSCALE_YUV_2_RGBX_C(uint32_t)
666
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
667
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
668
                }
669
                break;
670
        case PIX_FMT_RGB24:
671
                YSCALE_YUV_2_RGBX_C(uint8_t)
672
                        ((uint8_t*)dest)[0]= r[Y1];
673
                        ((uint8_t*)dest)[1]= g[Y1];
674
                        ((uint8_t*)dest)[2]= b[Y1];
675
                        ((uint8_t*)dest)[3]= r[Y2];
676
                        ((uint8_t*)dest)[4]= g[Y2];
677
                        ((uint8_t*)dest)[5]= b[Y2];
678
                        dest+=6;
679
                }
680
                break;
681
        case PIX_FMT_BGR24:
682
                YSCALE_YUV_2_RGBX_C(uint8_t)
683
                        ((uint8_t*)dest)[0]= b[Y1];
684
                        ((uint8_t*)dest)[1]= g[Y1];
685
                        ((uint8_t*)dest)[2]= r[Y1];
686
                        ((uint8_t*)dest)[3]= b[Y2];
687
                        ((uint8_t*)dest)[4]= g[Y2];
688
                        ((uint8_t*)dest)[5]= r[Y2];
689
                        dest+=6;
690
                }
691
                break;
692
        case PIX_FMT_RGB565:
693
        case PIX_FMT_BGR565:
694
                {
695
                        const int dr1= dither_2x2_8[y&1    ][0];
696
                        const int dg1= dither_2x2_4[y&1    ][0];
697
                        const int db1= dither_2x2_8[(y&1)^1][0];
698
                        const int dr2= dither_2x2_8[y&1    ][1];
699
                        const int dg2= dither_2x2_4[y&1    ][1];
700
                        const int db2= dither_2x2_8[(y&1)^1][1];
701
                        YSCALE_YUV_2_RGBX_C(uint16_t)
702
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
703
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
704
                        }
705
                }
706
                break;
707
        case PIX_FMT_RGB555:
708
        case PIX_FMT_BGR555:
709
                {
710
                        const int dr1= dither_2x2_8[y&1    ][0];
711
                        const int dg1= dither_2x2_8[y&1    ][1];
712
                        const int db1= dither_2x2_8[(y&1)^1][0];
713
                        const int dr2= dither_2x2_8[y&1    ][1];
714
                        const int dg2= dither_2x2_8[y&1    ][0];
715
                        const int db2= dither_2x2_8[(y&1)^1][1];
716
                        YSCALE_YUV_2_RGBX_C(uint16_t)
717
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
718
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
719
                        }
720
                }
721
                break;
722
        case PIX_FMT_RGB8:
723
        case PIX_FMT_BGR8:
724
                {
725
                        const uint8_t * const d64= dither_8x8_73[y&7];
726
                        const uint8_t * const d32= dither_8x8_32[y&7];
727
                        YSCALE_YUV_2_RGBX_C(uint8_t)
728
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
729
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
730
                        }
731
                }
732
                break;
733
        case PIX_FMT_RGB4:
734
        case PIX_FMT_BGR4:
735
                {
736
                        const uint8_t * const d64= dither_8x8_73 [y&7];
737
                        const uint8_t * const d128=dither_8x8_220[y&7];
738
                        YSCALE_YUV_2_RGBX_C(uint8_t)
739
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
740
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
741
                        }
742
                }
743
                break;
744
        case PIX_FMT_RGB4_BYTE:
745
        case PIX_FMT_BGR4_BYTE:
746
                {
747
                        const uint8_t * const d64= dither_8x8_73 [y&7];
748
                        const uint8_t * const d128=dither_8x8_220[y&7];
749
                        YSCALE_YUV_2_RGBX_C(uint8_t)
750
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
751
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
752
                        }
753
                }
754
                break;
755
        case PIX_FMT_MONOBLACK:
756
                {
757
                        const uint8_t * const d128=dither_8x8_220[y&7];
758
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
759
                        int acc=0;
760
                        for(i=0; i<dstW-1; i+=2){
761
                                int j;
762
                                int Y1=1<<18;
763
                                int Y2=1<<18;
764

    
765
                                for(j=0; j<lumFilterSize; j++)
766
                                {
767
                                        Y1 += lumSrc[j][i] * lumFilter[j];
768
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
769
                                }
770
                                Y1>>=19;
771
                                Y2>>=19;
772
                                if((Y1|Y2)&256)
773
                                {
774
                                        if(Y1>255)   Y1=255;
775
                                        else if(Y1<0)Y1=0;
776
                                        if(Y2>255)   Y2=255;
777
                                        else if(Y2<0)Y2=0;
778
                                }
779
                                acc+= acc + g[Y1+d128[(i+0)&7]];
780
                                acc+= acc + g[Y2+d128[(i+1)&7]];
781
                                if((i&7)==6){
782
                                        ((uint8_t*)dest)[0]= acc;
783
                                        dest++;
784
                                }
785
                        }
786
                }
787
                break;
788
        case PIX_FMT_YUYV422:
789
                YSCALE_YUV_2_PACKEDX_C(void)
790
                        ((uint8_t*)dest)[2*i2+0]= Y1;
791
                        ((uint8_t*)dest)[2*i2+1]= U;
792
                        ((uint8_t*)dest)[2*i2+2]= Y2;
793
                        ((uint8_t*)dest)[2*i2+3]= V;
794
                }
795
                break;
796
        case PIX_FMT_UYVY422:
797
                YSCALE_YUV_2_PACKEDX_C(void)
798
                        ((uint8_t*)dest)[2*i2+0]= U;
799
                        ((uint8_t*)dest)[2*i2+1]= Y1;
800
                        ((uint8_t*)dest)[2*i2+2]= V;
801
                        ((uint8_t*)dest)[2*i2+3]= Y2;
802
                }
803
                break;
804
        }
805
}
806

    
807

    
808
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
809
//Plain C versions
810
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
811
#define COMPILE_C
812
#endif
813

    
814
#ifdef ARCH_POWERPC
815
#if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
816
#define COMPILE_ALTIVEC
817
#endif //HAVE_ALTIVEC
818
#endif //ARCH_POWERPC
819

    
820
#if defined(ARCH_X86)
821

    
822
#if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
823
#define COMPILE_MMX
824
#endif
825

    
826
#if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
827
#define COMPILE_MMX2
828
#endif
829

    
830
#if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
831
#define COMPILE_3DNOW
832
#endif
833
#endif //ARCH_X86 || ARCH_X86_64
834

    
835
#undef HAVE_MMX
836
#undef HAVE_MMX2
837
#undef HAVE_3DNOW
838

    
839
#ifdef COMPILE_C
840
#undef HAVE_MMX
841
#undef HAVE_MMX2
842
#undef HAVE_3DNOW
843
#undef HAVE_ALTIVEC
844
#define RENAME(a) a ## _C
845
#include "swscale_template.c"
846
#endif
847

    
848
#ifdef ARCH_POWERPC
849
#ifdef COMPILE_ALTIVEC
850
#undef RENAME
851
#define HAVE_ALTIVEC
852
#define RENAME(a) a ## _altivec
853
#include "swscale_template.c"
854
#endif
855
#endif //ARCH_POWERPC
856

    
857
#if defined(ARCH_X86)
858

    
859
//X86 versions
860
/*
861
#undef RENAME
862
#undef HAVE_MMX
863
#undef HAVE_MMX2
864
#undef HAVE_3DNOW
865
#define ARCH_X86
866
#define RENAME(a) a ## _X86
867
#include "swscale_template.c"
868
*/
869
//MMX versions
870
#ifdef COMPILE_MMX
871
#undef RENAME
872
#define HAVE_MMX
873
#undef HAVE_MMX2
874
#undef HAVE_3DNOW
875
#define RENAME(a) a ## _MMX
876
#include "swscale_template.c"
877
#endif
878

    
879
//MMX2 versions
880
#ifdef COMPILE_MMX2
881
#undef RENAME
882
#define HAVE_MMX
883
#define HAVE_MMX2
884
#undef HAVE_3DNOW
885
#define RENAME(a) a ## _MMX2
886
#include "swscale_template.c"
887
#endif
888

    
889
//3DNOW versions
890
#ifdef COMPILE_3DNOW
891
#undef RENAME
892
#define HAVE_MMX
893
#undef HAVE_MMX2
894
#define HAVE_3DNOW
895
#define RENAME(a) a ## _3DNow
896
#include "swscale_template.c"
897
#endif
898

    
899
#endif //ARCH_X86 || ARCH_X86_64
900

    
901
// minor note: the HAVE_xyz is messed up after that line so don't use it
902

    
903
static double getSplineCoeff(double a, double b, double c, double d, double dist)
904
{
905
//        printf("%f %f %f %f %f\n", a,b,c,d,dist);
906
        if(dist<=1.0)         return ((d*dist + c)*dist + b)*dist +a;
907
        else                return getSplineCoeff(        0.0, 
908
                                                 b+ 2.0*c + 3.0*d,
909
                                                        c + 3.0*d,
910
                                                -b- 3.0*c - 6.0*d,
911
                                                dist-1.0);
912
}
913

    
914
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
915
                              int srcW, int dstW, int filterAlign, int one, int flags,
916
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
917
{
918
        int i;
919
        int filterSize;
920
        int filter2Size;
921
        int minFilterSize;
922
        double *filter=NULL;
923
        double *filter2=NULL;
924
#if defined(ARCH_X86)
925
        if(flags & SWS_CPU_CAPS_MMX)
926
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
927
#endif
928

    
929
        // Note the +1 is for the MMXscaler which reads over the end
930
        *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
931

    
932
        if(FFABS(xInc - 0x10000) <10) // unscaled
933
        {
934
                int i;
935
                filterSize= 1;
936
                filter= av_malloc(dstW*sizeof(double)*filterSize);
937
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
938

    
939
                for(i=0; i<dstW; i++)
940
                {
941
                        filter[i*filterSize]=1;
942
                        (*filterPos)[i]=i;
943
                }
944

    
945
        }
946
        else if(flags&SWS_POINT) // lame looking point sampling mode
947
        {
948
                int i;
949
                int xDstInSrc;
950
                filterSize= 1;
951
                filter= av_malloc(dstW*sizeof(double)*filterSize);
952
                
953
                xDstInSrc= xInc/2 - 0x8000;
954
                for(i=0; i<dstW; i++)
955
                {
956
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
957

    
958
                        (*filterPos)[i]= xx;
959
                        filter[i]= 1.0;
960
                        xDstInSrc+= xInc;
961
                }
962
        }
963
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
964
        {
965
                int i;
966
                int xDstInSrc;
967
                if     (flags&SWS_BICUBIC) filterSize= 4;
968
                else if(flags&SWS_X      ) filterSize= 4;
969
                else                           filterSize= 2; // SWS_BILINEAR / SWS_AREA 
970
                filter= av_malloc(dstW*sizeof(double)*filterSize);
971

    
972
                xDstInSrc= xInc/2 - 0x8000;
973
                for(i=0; i<dstW; i++)
974
                {
975
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
976
                        int j;
977

    
978
                        (*filterPos)[i]= xx;
979
                                //Bilinear upscale / linear interpolate / Area averaging
980
                                for(j=0; j<filterSize; j++)
981
                                {
982
                                        double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
983
                                        double coeff= 1.0 - d;
984
                                        if(coeff<0) coeff=0;
985
                                        filter[i*filterSize + j]= coeff;
986
                                        xx++;
987
                                }
988
                        xDstInSrc+= xInc;
989
                }
990
        }
991
        else
992
        {
993
                double xDstInSrc;
994
                double sizeFactor, filterSizeInSrc;
995
                const double xInc1= (double)xInc / (double)(1<<16);
996

    
997
                if     (flags&SWS_BICUBIC)        sizeFactor= 4.0;
998
                else if(flags&SWS_X)                sizeFactor= 8.0;
999
                else if(flags&SWS_AREA)                sizeFactor= 1.0; //downscale only, for upscale it is bilinear
1000
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
1001
                else if(flags&SWS_LANCZOS)        sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1002
                else if(flags&SWS_SINC)                sizeFactor= 20.0; // infinite ;)
1003
                else if(flags&SWS_SPLINE)        sizeFactor= 20.0;  // infinite ;)
1004
                else if(flags&SWS_BILINEAR)        sizeFactor= 2.0;
1005
                else {
1006
                        sizeFactor= 0.0; //GCC warning killer
1007
                        ASSERT(0)
1008
                }
1009
                
1010
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
1011
                else                        filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1012

    
1013
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1014
                if(filterSize > srcW-2) filterSize=srcW-2;
1015

    
1016
                filter= av_malloc(dstW*sizeof(double)*filterSize);
1017

    
1018
                xDstInSrc= xInc1 / 2.0 - 0.5;
1019
                for(i=0; i<dstW; i++)
1020
                {
1021
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1022
                        int j;
1023
                        (*filterPos)[i]= xx;
1024
                        for(j=0; j<filterSize; j++)
1025
                        {
1026
                                double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1027
                                double coeff;
1028
                                if(flags & SWS_BICUBIC)
1029
                                {
1030
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1031
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1032

    
1033
                                        if(d<1.0) 
1034
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1035
                                        else if(d<2.0)
1036
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1037
                                        else
1038
                                                coeff=0.0;
1039
                                }
1040
/*                                else if(flags & SWS_X)
1041
                                {
1042
                                        double p= param ? param*0.01 : 0.3;
1043
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1044
                                        coeff*= pow(2.0, - p*d*d);
1045
                                }*/
1046
                                else if(flags & SWS_X)
1047
                                {
1048
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1049
                                        
1050
                                        if(d<1.0)
1051
                                                coeff = cos(d*PI);
1052
                                        else
1053
                                                coeff=-1.0;
1054
                                        if(coeff<0.0)         coeff= -pow(-coeff, A);
1055
                                        else                coeff=  pow( coeff, A);
1056
                                        coeff= coeff*0.5 + 0.5;
1057
                                }
1058
                                else if(flags & SWS_AREA)
1059
                                {
1060
                                        double srcPixelSize= 1.0/xInc1;
1061
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
1062
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1063
                                        else coeff=0.0;
1064
                                }
1065
                                else if(flags & SWS_GAUSS)
1066
                                {
1067
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1068
                                        coeff = pow(2.0, - p*d*d);
1069
                                }
1070
                                else if(flags & SWS_SINC)
1071
                                {
1072
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1073
                                }
1074
                                else if(flags & SWS_LANCZOS)
1075
                                {
1076
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
1077
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1078
                                        if(d>p) coeff=0;
1079
                                }
1080
                                else if(flags & SWS_BILINEAR)
1081
                                {
1082
                                        coeff= 1.0 - d;
1083
                                        if(coeff<0) coeff=0;
1084
                                }
1085
                                else if(flags & SWS_SPLINE)
1086
                                {
1087
                                        double p=-2.196152422706632;
1088
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1089
                                }
1090
                                else {
1091
                                        coeff= 0.0; //GCC warning killer
1092
                                        ASSERT(0)
1093
                                }
1094

    
1095
                                filter[i*filterSize + j]= coeff;
1096
                                xx++;
1097
                        }
1098
                        xDstInSrc+= xInc1;
1099
                }
1100
        }
1101

    
1102
        /* apply src & dst Filter to filter -> filter2
1103
           av_free(filter);
1104
        */
1105
        ASSERT(filterSize>0)
1106
        filter2Size= filterSize;
1107
        if(srcFilter) filter2Size+= srcFilter->length - 1;
1108
        if(dstFilter) filter2Size+= dstFilter->length - 1;
1109
        ASSERT(filter2Size>0)
1110
        filter2= av_malloc(filter2Size*dstW*sizeof(double));
1111

    
1112
        for(i=0; i<dstW; i++)
1113
        {
1114
                int j;
1115
                SwsVector scaleFilter;
1116
                SwsVector *outVec;
1117

    
1118
                scaleFilter.coeff= filter + i*filterSize;
1119
                scaleFilter.length= filterSize;
1120

    
1121
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1122
                else              outVec= &scaleFilter;
1123

    
1124
                ASSERT(outVec->length == filter2Size)
1125
                //FIXME dstFilter
1126

    
1127
                for(j=0; j<outVec->length; j++)
1128
                {
1129
                        filter2[i*filter2Size + j]= outVec->coeff[j];
1130
                }
1131

    
1132
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1133

    
1134
                if(outVec != &scaleFilter) sws_freeVec(outVec);
1135
        }
1136
        av_free(filter); filter=NULL;
1137

    
1138
        /* try to reduce the filter-size (step1 find size and shift left) */
1139
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1140
        minFilterSize= 0;
1141
        for(i=dstW-1; i>=0; i--)
1142
        {
1143
                int min= filter2Size;
1144
                int j;
1145
                double cutOff=0.0;
1146

    
1147
                /* get rid off near zero elements on the left by shifting left */
1148
                for(j=0; j<filter2Size; j++)
1149
                {
1150
                        int k;
1151
                        cutOff += FFABS(filter2[i*filter2Size]);
1152

    
1153
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1154

    
1155
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1156
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1157

    
1158
                        // Move filter coeffs left
1159
                        for(k=1; k<filter2Size; k++)
1160
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1161
                        filter2[i*filter2Size + k - 1]= 0.0;
1162
                        (*filterPos)[i]++;
1163
                }
1164

    
1165
                cutOff=0.0;
1166
                /* count near zeros on the right */
1167
                for(j=filter2Size-1; j>0; j--)
1168
                {
1169
                        cutOff += FFABS(filter2[i*filter2Size + j]);
1170

    
1171
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1172
                        min--;
1173
                }
1174

    
1175
                if(min>minFilterSize) minFilterSize= min;
1176
        }
1177

    
1178
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1179
          // we can handle the special case 4,
1180
          // so we don't want to go to the full 8
1181
          if (minFilterSize < 5)
1182
            filterAlign = 4;
1183

    
1184
          // we really don't want to waste our time
1185
          // doing useless computation, so fall-back on
1186
          // the scalar C code for very small filter.
1187
          // vectorizing is worth it only if you have
1188
          // decent-sized vector.
1189
          if (minFilterSize < 3)
1190
            filterAlign = 1;
1191
        }
1192

    
1193
        if (flags & SWS_CPU_CAPS_MMX) {
1194
                // special case for unscaled vertical filtering
1195
                if(minFilterSize == 1 && filterAlign == 2)
1196
                        filterAlign= 1;
1197
        }
1198

    
1199
        ASSERT(minFilterSize > 0)
1200
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1201
        ASSERT(filterSize > 0)
1202
        filter= av_malloc(filterSize*dstW*sizeof(double));
1203
        if(filterSize >= MAX_FILTER_SIZE)
1204
                return -1;
1205
        *outFilterSize= filterSize;
1206

    
1207
        if(flags&SWS_PRINT_INFO)
1208
                av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1209
        /* try to reduce the filter-size (step2 reduce it) */
1210
        for(i=0; i<dstW; i++)
1211
        {
1212
                int j;
1213

    
1214
                for(j=0; j<filterSize; j++)
1215
                {
1216
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1217
                        else                   filter[i*filterSize + j]= filter2[i*filter2Size + j];
1218
                }
1219
        }
1220
        av_free(filter2); filter2=NULL;
1221
        
1222

    
1223
        //FIXME try to align filterpos if possible
1224

    
1225
        //fix borders
1226
        for(i=0; i<dstW; i++)
1227
        {
1228
                int j;
1229
                if((*filterPos)[i] < 0)
1230
                {
1231
                        // Move filter coeffs left to compensate for filterPos
1232
                        for(j=1; j<filterSize; j++)
1233
                        {
1234
                                int left= FFMAX(j + (*filterPos)[i], 0);
1235
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1236
                                filter[i*filterSize + j]=0;
1237
                        }
1238
                        (*filterPos)[i]= 0;
1239
                }
1240

    
1241
                if((*filterPos)[i] + filterSize > srcW)
1242
                {
1243
                        int shift= (*filterPos)[i] + filterSize - srcW;
1244
                        // Move filter coeffs right to compensate for filterPos
1245
                        for(j=filterSize-2; j>=0; j--)
1246
                        {
1247
                                int right= FFMIN(j + shift, filterSize-1);
1248
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1249
                                filter[i*filterSize +j]=0;
1250
                        }
1251
                        (*filterPos)[i]= srcW - filterSize;
1252
                }
1253
        }
1254

    
1255
        // Note the +1 is for the MMXscaler which reads over the end
1256
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1257
        *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1258

    
1259
        /* Normalize & Store in outFilter */
1260
        for(i=0; i<dstW; i++)
1261
        {
1262
                int j;
1263
                double error=0;
1264
                double sum=0;
1265
                double scale= one;
1266

    
1267
                for(j=0; j<filterSize; j++)
1268
                {
1269
                        sum+= filter[i*filterSize + j];
1270
                }
1271
                scale/= sum;
1272
                for(j=0; j<*outFilterSize; j++)
1273
                {
1274
                        double v= filter[i*filterSize + j]*scale + error;
1275
                        int intV= floor(v + 0.5);
1276
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1277
                        error = v - intV;
1278
                }
1279
        }
1280
        
1281
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1282
        for(i=0; i<*outFilterSize; i++)
1283
        {
1284
                int j= dstW*(*outFilterSize);
1285
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1286
        }
1287

    
1288
        av_free(filter);
1289
        return 0;
1290
}
1291

    
1292
#ifdef COMPILE_MMX2
1293
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1294
{
1295
        uint8_t *fragmentA;
1296
        long imm8OfPShufW1A;
1297
        long imm8OfPShufW2A;
1298
        long fragmentLengthA;
1299
        uint8_t *fragmentB;
1300
        long imm8OfPShufW1B;
1301
        long imm8OfPShufW2B;
1302
        long fragmentLengthB;
1303
        int fragmentPos;
1304

    
1305
        int xpos, i;
1306

    
1307
        // create an optimized horizontal scaling routine
1308

    
1309
        //code fragment
1310

    
1311
        asm volatile(
1312
                "jmp 9f                                \n\t"
1313
        // Begin
1314
                "0:                                \n\t"
1315
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1316
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1317
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1318
                "punpcklbw %%mm7, %%mm1                \n\t"
1319
                "punpcklbw %%mm7, %%mm0                \n\t"
1320
                "pshufw $0xFF, %%mm1, %%mm1        \n\t"
1321
                "1:                                \n\t"
1322
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1323
                "2:                                \n\t"
1324
                "psubw %%mm1, %%mm0                \n\t"
1325
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1326
                "pmullw %%mm3, %%mm0                \n\t"
1327
                "psllw $7, %%mm1                \n\t"
1328
                "paddw %%mm1, %%mm0                \n\t"
1329

    
1330
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1331

    
1332
                "add $8, %%"REG_a"                \n\t"
1333
        // End
1334
                "9:                                \n\t"
1335
//                "int $3\n\t"
1336
                "lea 0b, %0                        \n\t"
1337
                "lea 1b, %1                        \n\t"
1338
                "lea 2b, %2                        \n\t"
1339
                "dec %1                                \n\t"
1340
                "dec %2                                \n\t"
1341
                "sub %0, %1                        \n\t"
1342
                "sub %0, %2                        \n\t"
1343
                "lea 9b, %3                        \n\t"
1344
                "sub %0, %3                        \n\t"
1345

    
1346

    
1347
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1348
                "=r" (fragmentLengthA)
1349
        );
1350

    
1351
        asm volatile(
1352
                "jmp 9f                                \n\t"
1353
        // Begin
1354
                "0:                                \n\t"
1355
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1356
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1357
                "punpcklbw %%mm7, %%mm0                \n\t"
1358
                "pshufw $0xFF, %%mm0, %%mm1        \n\t"
1359
                "1:                                \n\t"
1360
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1361
                "2:                                \n\t"
1362
                "psubw %%mm1, %%mm0                \n\t"
1363
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1364
                "pmullw %%mm3, %%mm0                \n\t"
1365
                "psllw $7, %%mm1                \n\t"
1366
                "paddw %%mm1, %%mm0                \n\t"
1367

    
1368
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1369

    
1370
                "add $8, %%"REG_a"                \n\t"
1371
        // End
1372
                "9:                                \n\t"
1373
//                "int $3\n\t"
1374
                "lea 0b, %0                        \n\t"
1375
                "lea 1b, %1                        \n\t"
1376
                "lea 2b, %2                        \n\t"
1377
                "dec %1                                \n\t"
1378
                "dec %2                                \n\t"
1379
                "sub %0, %1                        \n\t"
1380
                "sub %0, %2                        \n\t"
1381
                "lea 9b, %3                        \n\t"
1382
                "sub %0, %3                        \n\t"
1383

    
1384

    
1385
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1386
                "=r" (fragmentLengthB)
1387
        );
1388

    
1389
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1390
        fragmentPos=0;
1391
        
1392
        for(i=0; i<dstW/numSplits; i++)
1393
        {
1394
                int xx=xpos>>16;
1395

    
1396
                if((i&3) == 0)
1397
                {
1398
                        int a=0;
1399
                        int b=((xpos+xInc)>>16) - xx;
1400
                        int c=((xpos+xInc*2)>>16) - xx;
1401
                        int d=((xpos+xInc*3)>>16) - xx;
1402

    
1403
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1404
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1405
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1406
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1407
                        filterPos[i/2]= xx;
1408

    
1409
                        if(d+1<4)
1410
                        {
1411
                                int maxShift= 3-(d+1);
1412
                                int shift=0;
1413

    
1414
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1415

    
1416
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1417
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1418
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1419
                                        a | (b<<2) | (c<<4) | (d<<6);
1420

    
1421
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1422
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1423

    
1424
                                if(shift && i>=shift)
1425
                                {
1426
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1427
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1428
                                        filterPos[i/2]-=shift;
1429
                                }
1430

    
1431
                                fragmentPos+= fragmentLengthB;
1432
                        }
1433
                        else
1434
                        {
1435
                                int maxShift= 3-d;
1436
                                int shift=0;
1437

    
1438
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1439

    
1440
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1441
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1442
                                        a | (b<<2) | (c<<4) | (d<<6);
1443

    
1444
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1445
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1446

    
1447
                                if(shift && i>=shift)
1448
                                {
1449
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1450
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1451
                                        filterPos[i/2]-=shift;
1452
                                }
1453

    
1454
                                fragmentPos+= fragmentLengthA;
1455
                        }
1456

    
1457
                        funnyCode[fragmentPos]= RET;
1458
                }
1459
                xpos+=xInc;
1460
        }
1461
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1462
}
1463
#endif /* COMPILE_MMX2 */
1464

    
1465
static void globalInit(void){
1466
    // generating tables:
1467
    int i;
1468
    for(i=0; i<768; i++){
1469
        int c= av_clip_uint8(i-256);
1470
        clip_table[i]=c;
1471
    }
1472
}
1473

    
1474
static SwsFunc getSwsFunc(int flags){
1475
    
1476
#if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1477
#if defined(ARCH_X86)
1478
        // ordered per speed fasterst first
1479
        if(flags & SWS_CPU_CAPS_MMX2)
1480
                return swScale_MMX2;
1481
        else if(flags & SWS_CPU_CAPS_3DNOW)
1482
                return swScale_3DNow;
1483
        else if(flags & SWS_CPU_CAPS_MMX)
1484
                return swScale_MMX;
1485
        else
1486
                return swScale_C;
1487

    
1488
#else
1489
#ifdef ARCH_POWERPC
1490
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1491
          return swScale_altivec;
1492
        else
1493
          return swScale_C;
1494
#endif
1495
        return swScale_C;
1496
#endif /* defined(ARCH_X86) */
1497
#else //RUNTIME_CPUDETECT
1498
#ifdef HAVE_MMX2
1499
        return swScale_MMX2;
1500
#elif defined (HAVE_3DNOW)
1501
        return swScale_3DNow;
1502
#elif defined (HAVE_MMX)
1503
        return swScale_MMX;
1504
#elif defined (HAVE_ALTIVEC)
1505
        return swScale_altivec;
1506
#else
1507
        return swScale_C;
1508
#endif
1509
#endif //!RUNTIME_CPUDETECT
1510
}
1511

    
1512
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1513
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1514
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1515
        /* Copy Y plane */
1516
        if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1517
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1518
        else
1519
        {
1520
                int i;
1521
                uint8_t *srcPtr= src[0];
1522
                uint8_t *dstPtr= dst;
1523
                for(i=0; i<srcSliceH; i++)
1524
                {
1525
                        memcpy(dstPtr, srcPtr, c->srcW);
1526
                        srcPtr+= srcStride[0];
1527
                        dstPtr+= dstStride[0];
1528
                }
1529
        }
1530
        dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1531
        if (c->dstFormat == PIX_FMT_NV12)
1532
                interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1533
        else
1534
                interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1535

    
1536
        return srcSliceH;
1537
}
1538

    
1539
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1540
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1541
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1542

    
1543
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1544

    
1545
        return srcSliceH;
1546
}
1547

    
1548
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1549
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1550
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1551

    
1552
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1553

    
1554
        return srcSliceH;
1555
}
1556

    
1557
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1558
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1559
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1560
        const int srcFormat= c->srcFormat;
1561
        const int dstFormat= c->dstFormat;
1562
        const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1563
        const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1564
        const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1565
        const int dstId= fmt_depth(dstFormat) >> 2;
1566
        void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1567

    
1568
        /* BGR -> BGR */
1569
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1570
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1571
                switch(srcId | (dstId<<4)){
1572
                case 0x34: conv= rgb16to15; break;
1573
                case 0x36: conv= rgb24to15; break;
1574
                case 0x38: conv= rgb32to15; break;
1575
                case 0x43: conv= rgb15to16; break;
1576
                case 0x46: conv= rgb24to16; break;
1577
                case 0x48: conv= rgb32to16; break;
1578
                case 0x63: conv= rgb15to24; break;
1579
                case 0x64: conv= rgb16to24; break;
1580
                case 0x68: conv= rgb32to24; break;
1581
                case 0x83: conv= rgb15to32; break;
1582
                case 0x84: conv= rgb16to32; break;
1583
                case 0x86: conv= rgb24to32; break;
1584
                default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1585
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1586
                }
1587
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1588
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1589
                switch(srcId | (dstId<<4)){
1590
                case 0x33: conv= rgb15tobgr15; break;
1591
                case 0x34: conv= rgb16tobgr15; break;
1592
                case 0x36: conv= rgb24tobgr15; break;
1593
                case 0x38: conv= rgb32tobgr15; break;
1594
                case 0x43: conv= rgb15tobgr16; break;
1595
                case 0x44: conv= rgb16tobgr16; break;
1596
                case 0x46: conv= rgb24tobgr16; break;
1597
                case 0x48: conv= rgb32tobgr16; break;
1598
                case 0x63: conv= rgb15tobgr24; break;
1599
                case 0x64: conv= rgb16tobgr24; break;
1600
                case 0x66: conv= rgb24tobgr24; break;
1601
                case 0x68: conv= rgb32tobgr24; break;
1602
                case 0x83: conv= rgb15tobgr32; break;
1603
                case 0x84: conv= rgb16tobgr32; break;
1604
                case 0x86: conv= rgb24tobgr32; break;
1605
                case 0x88: conv= rgb32tobgr32; break;
1606
                default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1607
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1608
                }
1609
        }else{
1610
                av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1611
                         sws_format_name(srcFormat), sws_format_name(dstFormat));
1612
        }
1613

    
1614
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1615
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1616
        else
1617
        {
1618
                int i;
1619
                uint8_t *srcPtr= src[0];
1620
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1621

    
1622
                for(i=0; i<srcSliceH; i++)
1623
                {
1624
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1625
                        srcPtr+= srcStride[0];
1626
                        dstPtr+= dstStride[0];
1627
                }
1628
        }     
1629
        return srcSliceH;
1630
}
1631

    
1632
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1633
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1634

    
1635
        rgb24toyv12(
1636
                src[0], 
1637
                dst[0]+ srcSliceY    *dstStride[0], 
1638
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1639
                dst[2]+(srcSliceY>>1)*dstStride[2],
1640
                c->srcW, srcSliceH, 
1641
                dstStride[0], dstStride[1], srcStride[0]);
1642
        return srcSliceH;
1643
}
1644

    
1645
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1646
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1647
        int i;
1648

    
1649
        /* copy Y */
1650
        if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
1651
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1652
        else{
1653
                uint8_t *srcPtr= src[0];
1654
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1655

    
1656
                for(i=0; i<srcSliceH; i++)
1657
                {
1658
                        memcpy(dstPtr, srcPtr, c->srcW);
1659
                        srcPtr+= srcStride[0];
1660
                        dstPtr+= dstStride[0];
1661
                }
1662
        }
1663

    
1664
        if(c->dstFormat==PIX_FMT_YUV420P){
1665
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1666
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1667
        }else{
1668
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1669
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1670
        }
1671
        return srcSliceH;
1672
}
1673

    
1674
/* unscaled copy like stuff (assumes nearly identical formats) */
1675
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1676
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1677

    
1678
        if(isPacked(c->srcFormat))
1679
        {
1680
                if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1681
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1682
                else
1683
                {
1684
                        int i;
1685
                        uint8_t *srcPtr= src[0];
1686
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1687
                        int length=0;
1688

    
1689
                        /* universal length finder */
1690
                        while(length+c->srcW <= FFABS(dstStride[0]) 
1691
                           && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1692
                        ASSERT(length!=0);
1693

    
1694
                        for(i=0; i<srcSliceH; i++)
1695
                        {
1696
                                memcpy(dstPtr, srcPtr, length);
1697
                                srcPtr+= srcStride[0];
1698
                                dstPtr+= dstStride[0];
1699
                        }
1700
                }
1701
        }
1702
        else 
1703
        { /* Planar YUV or gray */
1704
                int plane;
1705
                for(plane=0; plane<3; plane++)
1706
                {
1707
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1708
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1709
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1710

    
1711
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1712
                        {
1713
                                if(!isGray(c->dstFormat))
1714
                                        memset(dst[plane], 128, dstStride[plane]*height);
1715
                        }
1716
                        else
1717
                        {
1718
                                if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1719
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1720
                                else
1721
                                {
1722
                                        int i;
1723
                                        uint8_t *srcPtr= src[plane];
1724
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1725
                                        for(i=0; i<height; i++)
1726
                                        {
1727
                                                memcpy(dstPtr, srcPtr, length);
1728
                                                srcPtr+= srcStride[plane];
1729
                                                dstPtr+= dstStride[plane];
1730
                                        }
1731
                                }
1732
                        }
1733
                }
1734
        }
1735
        return srcSliceH;
1736
}
1737

    
1738
static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1739
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1740

    
1741
        int length= c->srcW;
1742
        int y=      srcSliceY;
1743
        int height= srcSliceH;
1744
        int i, j;
1745
        uint8_t *srcPtr= src[0];
1746
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1747

    
1748
        if(!isGray(c->dstFormat)){
1749
                int height= -((-srcSliceH)>>c->chrDstVSubSample);
1750
                memset(dst[1], 128, dstStride[1]*height);
1751
                memset(dst[2], 128, dstStride[2]*height);
1752
        }
1753
        if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1754
        for(i=0; i<height; i++)
1755
        {
1756
                for(j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1757
                srcPtr+= srcStride[0];
1758
                dstPtr+= dstStride[0];
1759
        }
1760
        return srcSliceH;
1761
}
1762

    
1763
static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1764
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1765

    
1766
        int length= c->srcW;
1767
        int y=      srcSliceY;
1768
        int height= srcSliceH;
1769
        int i, j;
1770
        uint8_t *srcPtr= src[0];
1771
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1772
        for(i=0; i<height; i++)
1773
        {
1774
                for(j=0; j<length; j++)
1775
                {
1776
                        dstPtr[j<<1] = srcPtr[j];
1777
                        dstPtr[(j<<1)+1] = srcPtr[j];
1778
                }
1779
                srcPtr+= srcStride[0];
1780
                dstPtr+= dstStride[0];
1781
        }
1782
        return srcSliceH;
1783
}
1784

    
1785
static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1786
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1787

    
1788
        int length= c->srcW;
1789
        int y=      srcSliceY;
1790
        int height= srcSliceH;
1791
        int i, j;
1792
        uint16_t *srcPtr= src[0];
1793
        uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
1794
        for(i=0; i<height; i++)
1795
        {
1796
                for(j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1797
                srcPtr+= srcStride[0]/2;
1798
                dstPtr+= dstStride[0]/2;
1799
        }
1800
        return srcSliceH;
1801
}
1802

    
1803

    
1804
static void getSubSampleFactors(int *h, int *v, int format){
1805
        switch(format){
1806
        case PIX_FMT_UYVY422:
1807
        case PIX_FMT_YUYV422:
1808
                *h=1;
1809
                *v=0;
1810
                break;
1811
        case PIX_FMT_YUV420P:
1812
        case PIX_FMT_GRAY16BE:
1813
        case PIX_FMT_GRAY16LE:
1814
        case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1815
        case PIX_FMT_NV12:
1816
        case PIX_FMT_NV21:
1817
                *h=1;
1818
                *v=1;
1819
                break;
1820
        case PIX_FMT_YUV410P:
1821
                *h=2;
1822
                *v=2;
1823
                break;
1824
        case PIX_FMT_YUV444P:
1825
                *h=0;
1826
                *v=0;
1827
                break;
1828
        case PIX_FMT_YUV422P:
1829
                *h=1;
1830
                *v=0;
1831
                break;
1832
        case PIX_FMT_YUV411P:
1833
                *h=2;
1834
                *v=0;
1835
                break;
1836
        default:
1837
                *h=0;
1838
                *v=0;
1839
                break;
1840
        }
1841
}
1842

    
1843
static uint16_t roundToInt16(int64_t f){
1844
        int r= (f + (1<<15))>>16;
1845
             if(r<-0x7FFF) return 0x8000;
1846
        else if(r> 0x7FFF) return 0x7FFF;
1847
        else               return r;
1848
}
1849

    
1850
/**
1851
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1852
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1853
 * @return -1 if not supported
1854
 */
1855
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1856
        int64_t crv =  inv_table[0];
1857
        int64_t cbu =  inv_table[1];
1858
        int64_t cgu = -inv_table[2];
1859
        int64_t cgv = -inv_table[3];
1860
        int64_t cy  = 1<<16;
1861
        int64_t oy  = 0;
1862

    
1863
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1864
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1865
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1866

    
1867
        c->brightness= brightness;
1868
        c->contrast  = contrast;
1869
        c->saturation= saturation;
1870
        c->srcRange  = srcRange;
1871
        c->dstRange  = dstRange;
1872

    
1873
        c->uOffset=   0x0400040004000400LL;
1874
        c->vOffset=   0x0400040004000400LL;
1875

    
1876
        if(!srcRange){
1877
                cy= (cy*255) / 219;
1878
                oy= 16<<16;
1879
        }else{
1880
                crv= (crv*224) / 255;
1881
                cbu= (cbu*224) / 255;
1882
                cgu= (cgu*224) / 255;
1883
                cgv= (cgv*224) / 255;
1884
        }
1885

    
1886
        cy = (cy *contrast             )>>16;
1887
        crv= (crv*contrast * saturation)>>32;
1888
        cbu= (cbu*contrast * saturation)>>32;
1889
        cgu= (cgu*contrast * saturation)>>32;
1890
        cgv= (cgv*contrast * saturation)>>32;
1891

    
1892
        oy -= 256*brightness;
1893

    
1894
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1895
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1896
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1897
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1898
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1899
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1900

    
1901
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1902
        //FIXME factorize
1903

    
1904
#ifdef COMPILE_ALTIVEC
1905
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1906
            yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1907
#endif        
1908
        return 0;
1909
}
1910

    
1911
/**
1912
 * @return -1 if not supported
1913
 */
1914
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1915
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1916

    
1917
        *inv_table = c->srcColorspaceTable;
1918
        *table     = c->dstColorspaceTable;
1919
        *srcRange  = c->srcRange;
1920
        *dstRange  = c->dstRange;
1921
        *brightness= c->brightness;
1922
        *contrast  = c->contrast;
1923
        *saturation= c->saturation;
1924
        
1925
        return 0;        
1926
}
1927

    
1928
static int handle_jpeg(int *format)
1929
{
1930
        switch (*format) {
1931
                case PIX_FMT_YUVJ420P:
1932
                        *format = PIX_FMT_YUV420P;
1933
                        return 1;
1934
                case PIX_FMT_YUVJ422P:
1935
                        *format = PIX_FMT_YUV422P;
1936
                        return 1;
1937
                case PIX_FMT_YUVJ444P:
1938
                        *format = PIX_FMT_YUV444P;
1939
                        return 1;
1940
                default:
1941
                        return 0;
1942
        }
1943
}
1944

    
1945
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1946
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1947

    
1948
        SwsContext *c;
1949
        int i;
1950
        int usesVFilter, usesHFilter;
1951
        int unscaled, needsDither;
1952
        int srcRange, dstRange;
1953
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1954
#if defined(ARCH_X86)
1955
        if(flags & SWS_CPU_CAPS_MMX)
1956
                asm volatile("emms\n\t"::: "memory");
1957
#endif
1958

    
1959
#if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1960
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1961
#ifdef HAVE_MMX2
1962
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1963
#elif defined (HAVE_3DNOW)
1964
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1965
#elif defined (HAVE_MMX)
1966
        flags |= SWS_CPU_CAPS_MMX;
1967
#elif defined (HAVE_ALTIVEC)
1968
        flags |= SWS_CPU_CAPS_ALTIVEC;
1969
#endif
1970
#endif /* RUNTIME_CPUDETECT */
1971
        if(clip_table[512] != 255) globalInit();
1972
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1973

    
1974
        unscaled = (srcW == dstW && srcH == dstH);
1975
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1976
                     && (fmt_depth(dstFormat))<24
1977
                     && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1978

    
1979
        srcRange = handle_jpeg(&srcFormat);
1980
        dstRange = handle_jpeg(&dstFormat);
1981

    
1982
        if(!isSupportedIn(srcFormat)) 
1983
        {
1984
                av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1985
                return NULL;
1986
        }
1987
        if(!isSupportedOut(dstFormat))
1988
        {
1989
                av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1990
                return NULL;
1991
        }
1992

    
1993
        /* sanity check */
1994
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1995
        {
1996
                 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1997
                        srcW, srcH, dstW, dstH);
1998
                return NULL;
1999
        }
2000

    
2001
        if(!dstFilter) dstFilter= &dummyFilter;
2002
        if(!srcFilter) srcFilter= &dummyFilter;
2003

    
2004
        c= av_mallocz(sizeof(SwsContext));
2005

    
2006
        c->av_class = &sws_context_class;
2007
        c->srcW= srcW;
2008
        c->srcH= srcH;
2009
        c->dstW= dstW;
2010
        c->dstH= dstH;
2011
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2012
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2013
        c->flags= flags;
2014
        c->dstFormat= dstFormat;
2015
        c->srcFormat= srcFormat;
2016
        c->vRounder= 4* 0x0001000100010001ULL;
2017

    
2018
        usesHFilter= usesVFilter= 0;
2019
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
2020
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
2021
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
2022
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
2023
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
2024
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
2025
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
2026
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
2027

    
2028
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2029
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2030

    
2031
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2032
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2033

    
2034
        // drop some chroma lines if the user wants it
2035
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2036
        c->chrSrcVSubSample+= c->vChrDrop;
2037

    
2038
        // drop every 2. pixel for chroma calculation unless user wants full chroma
2039
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
2040
                c->chrSrcHSubSample=1;
2041

    
2042
        if(param){
2043
                c->param[0] = param[0];
2044
                c->param[1] = param[1];
2045
        }else{
2046
                c->param[0] =
2047
                c->param[1] = SWS_PARAM_DEFAULT;
2048
        }
2049

    
2050
        c->chrIntHSubSample= c->chrDstHSubSample;
2051
        c->chrIntVSubSample= c->chrSrcVSubSample;
2052

    
2053
        // Note the -((-x)>>y) is so that we always round toward +inf.
2054
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2055
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2056
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2057
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2058

    
2059
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16); 
2060

    
2061
        /* unscaled special Cases */
2062
        if(unscaled && !usesHFilter && !usesVFilter)
2063
        {
2064
                /* yv12_to_nv12 */
2065
                if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2066
                {
2067
                        c->swScale= PlanarToNV12Wrapper;
2068
                }
2069
#ifdef CONFIG_GPL
2070
                /* yuv2bgr */
2071
                if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2072
                {
2073
                        c->swScale= yuv2rgb_get_func_ptr(c);
2074
                }
2075
#endif
2076
                
2077
                if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
2078
                {
2079
                        c->swScale= yvu9toyv12Wrapper;
2080
                }
2081

    
2082
                /* bgr24toYV12 */
2083
                if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2084
                        c->swScale= bgr24toyv12Wrapper;
2085
                
2086
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2087
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
2088
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
2089
                   && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
2090
                   && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
2091
                   && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
2092
                   && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
2093
                   && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2094
                   && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2095
                   && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2096
                   && !needsDither)
2097
                        c->swScale= rgb2rgbWrapper;
2098

    
2099
                /* LQ converters if -sws 0 or -sws 4*/
2100
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2101
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
2102
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
2103
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
2104
                          && needsDither)
2105
                                c->swScale= rgb2rgbWrapper;
2106

    
2107
                        /* yv12_to_yuy2 */
2108
                        if(srcFormat == PIX_FMT_YUV420P && 
2109
                            (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2110
                        {
2111
                                if (dstFormat == PIX_FMT_YUYV422)
2112
                                    c->swScale= PlanarToYuy2Wrapper;
2113
                                else
2114
                                    c->swScale= PlanarToUyvyWrapper;
2115
                        }
2116
                }
2117

    
2118
#ifdef COMPILE_ALTIVEC
2119
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2120
                    ((srcFormat == PIX_FMT_YUV420P && 
2121
                      (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2122
                  // unscaled YV12 -> packed YUV, we want speed
2123
                  if (dstFormat == PIX_FMT_YUYV422)
2124
                    c->swScale= yv12toyuy2_unscaled_altivec;
2125
                  else
2126
                    c->swScale= yv12touyvy_unscaled_altivec;
2127
                }
2128
#endif
2129

    
2130
                /* simple copy */
2131
                if(   srcFormat == dstFormat
2132
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2133
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2134
                  )
2135
                {
2136
                        c->swScale= simpleCopy;
2137
                }
2138

    
2139
                /* gray16{le,be} conversions */
2140
                if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2141
                {
2142
                        c->swScale= gray16togray;
2143
                }
2144
                if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2145
                {
2146
                        c->swScale= graytogray16;
2147
                }
2148
                if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2149
                {
2150
                        c->swScale= gray16swap;
2151
                }                
2152

    
2153
                if(c->swScale){
2154
                        if(flags&SWS_PRINT_INFO)
2155
                                av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n", 
2156
                                        sws_format_name(srcFormat), sws_format_name(dstFormat));
2157
                        return c;
2158
                }
2159
        }
2160

    
2161
        if(flags & SWS_CPU_CAPS_MMX2)
2162
        {
2163
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2164
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2165
                {
2166
                        if(flags&SWS_PRINT_INFO)
2167
                                av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2168
                }
2169
                if(usesHFilter) c->canMMX2BeUsed=0;
2170
        }
2171
        else
2172
                c->canMMX2BeUsed=0;
2173

    
2174
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2175
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2176

    
2177
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2178
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
2179
        // n-2 is the last chrominance sample available
2180
        // this is not perfect, but noone shuld notice the difference, the more correct variant
2181
        // would be like the vertical one, but that would require some special code for the
2182
        // first and last pixel
2183
        if(flags&SWS_FAST_BILINEAR)
2184
        {
2185
                if(c->canMMX2BeUsed)
2186
                {
2187
                        c->lumXInc+= 20;
2188
                        c->chrXInc+= 20;
2189
                }
2190
                //we don't use the x86asm scaler if mmx is available
2191
                else if(flags & SWS_CPU_CAPS_MMX)
2192
                {
2193
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2194
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2195
                }
2196
        }
2197

    
2198
        /* precalculate horizontal scaler filter coefficients */
2199
        {
2200
                const int filterAlign=
2201
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
2202
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2203
                  1;
2204

    
2205
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2206
                                 srcW      ,       dstW, filterAlign, 1<<14,
2207
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2208
                                 srcFilter->lumH, dstFilter->lumH, c->param);
2209
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2210
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2211
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2212
                                 srcFilter->chrH, dstFilter->chrH, c->param);
2213

    
2214
#define MAX_FUNNY_CODE_SIZE 10000
2215
#if defined(COMPILE_MMX2)
2216
// can't downscale !!!
2217
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2218
                {
2219
#ifdef MAP_ANONYMOUS
2220
                        c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2221
                        c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2222
#else
2223
                        c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2224
                        c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2225
#endif
2226

    
2227
                        c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
2228
                        c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
2229
                        c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
2230
                        c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2231

    
2232
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2233
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2234
                }
2235
#endif /* defined(COMPILE_MMX2) */
2236
        } // Init Horizontal stuff
2237

    
2238

    
2239

    
2240
        /* precalculate vertical scaler filter coefficients */
2241
        {
2242
                const int filterAlign=
2243
                  (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2244
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2245
                  1;
2246

    
2247
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2248
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2249
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2250
                                srcFilter->lumV, dstFilter->lumV, c->param);
2251
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2252
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2253
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2254
                                srcFilter->chrV, dstFilter->chrV, c->param);
2255

    
2256
#ifdef HAVE_ALTIVEC
2257
                c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2258
                c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2259

    
2260
                for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2261
                  int j;
2262
                  short *p = (short *)&c->vYCoeffsBank[i];
2263
                  for (j=0;j<8;j++)
2264
                    p[j] = c->vLumFilter[i];
2265
                }
2266

    
2267
                for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2268
                  int j;
2269
                  short *p = (short *)&c->vCCoeffsBank[i];
2270
                  for (j=0;j<8;j++)
2271
                    p[j] = c->vChrFilter[i];
2272
                }
2273
#endif
2274
        }
2275

    
2276
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2277
        c->vLumBufSize= c->vLumFilterSize;
2278
        c->vChrBufSize= c->vChrFilterSize;
2279
        for(i=0; i<dstH; i++)
2280
        {
2281
                int chrI= i*c->chrDstH / dstH;
2282
                int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2283
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2284

    
2285
                nextSlice>>= c->chrSrcVSubSample;
2286
                nextSlice<<= c->chrSrcVSubSample;
2287
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2288
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2289
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2290
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2291
        }
2292

    
2293
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2294
        c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2295
        c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2296
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2297
        /* align at 16 bytes for AltiVec */
2298
        for(i=0; i<c->vLumBufSize; i++)
2299
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
2300
        for(i=0; i<c->vChrBufSize; i++)
2301
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2302

    
2303
        //try to avoid drawing green stuff between the right end and the stride end
2304
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2305

    
2306
        ASSERT(c->chrDstH <= dstH)
2307

    
2308
        if(flags&SWS_PRINT_INFO)
2309
        {
2310
#ifdef DITHER1XBPP
2311
                char *dither= " dithered";
2312
#else
2313
                char *dither= "";
2314
#endif
2315
                if(flags&SWS_FAST_BILINEAR)
2316
                        av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
2317
                else if(flags&SWS_BILINEAR)
2318
                        av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
2319
                else if(flags&SWS_BICUBIC)
2320
                        av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
2321
                else if(flags&SWS_X)
2322
                        av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
2323
                else if(flags&SWS_POINT)
2324
                        av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
2325
                else if(flags&SWS_AREA)
2326
                        av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
2327
                else if(flags&SWS_BICUBLIN)
2328
                        av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2329
                else if(flags&SWS_GAUSS)
2330
                        av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
2331
                else if(flags&SWS_SINC)
2332
                        av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
2333
                else if(flags&SWS_LANCZOS)
2334
                        av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
2335
                else if(flags&SWS_SPLINE)
2336
                        av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
2337
                else
2338
                        av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
2339

    
2340
                if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2341
                        av_log(c, AV_LOG_INFO, "from %s to%s %s ", 
2342
                                sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2343
                else
2344
                        av_log(c, AV_LOG_INFO, "from %s to %s ", 
2345
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
2346

    
2347
                if(flags & SWS_CPU_CAPS_MMX2)
2348
                        av_log(c, AV_LOG_INFO, "using MMX2\n");
2349
                else if(flags & SWS_CPU_CAPS_3DNOW)
2350
                        av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2351
                else if(flags & SWS_CPU_CAPS_MMX)
2352
                        av_log(c, AV_LOG_INFO, "using MMX\n");
2353
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2354
                        av_log(c, AV_LOG_INFO, "using AltiVec\n");
2355
                else 
2356
                        av_log(c, AV_LOG_INFO, "using C\n");
2357
        }
2358

    
2359
        if(flags & SWS_PRINT_INFO)
2360
        {
2361
                if(flags & SWS_CPU_CAPS_MMX)
2362
                {
2363
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2364
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2365
                        else
2366
                        {
2367
                                if(c->hLumFilterSize==4)
2368
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2369
                                else if(c->hLumFilterSize==8)
2370
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2371
                                else
2372
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2373

    
2374
                                if(c->hChrFilterSize==4)
2375
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2376
                                else if(c->hChrFilterSize==8)
2377
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2378
                                else
2379
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2380
                        }
2381
                }
2382
                else
2383
                {
2384
#if defined(ARCH_X86)
2385
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2386
#else
2387
                        if(flags & SWS_FAST_BILINEAR)
2388
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2389
                        else
2390
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
2391
#endif
2392
                }
2393
                if(isPlanarYUV(dstFormat))
2394
                {
2395
                        if(c->vLumFilterSize==1)
2396
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2397
                        else
2398
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2399
                }
2400
                else
2401
                {
2402
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2403
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2404
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2405
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2406
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2407
                        else
2408
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2409
                }
2410

    
2411
                if(dstFormat==PIX_FMT_BGR24)
2412
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
2413
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2414
                else if(dstFormat==PIX_FMT_RGB32)
2415
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2416
                else if(dstFormat==PIX_FMT_BGR565)
2417
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2418
                else if(dstFormat==PIX_FMT_BGR555)
2419
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2420

    
2421
                av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2422
        }
2423
        if(flags & SWS_PRINT_INFO)
2424
        {
2425
                av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2426
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2427
                av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2428
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2429
        }
2430

    
2431
        c->swScale= getSwsFunc(flags);
2432
        return c;
2433
}
2434

    
2435
/**
2436
 * swscale warper, so we don't need to export the SwsContext.
2437
 * assumes planar YUV to be in YUV order instead of YVU
2438
 */
2439
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2440
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2441
        if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2442
            av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
2443
            return 0;
2444
        }
2445
        if (c->sliceDir == 0) {
2446
            if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2447
        }
2448

    
2449
        // copy strides, so they can safely be modified
2450
        if (c->sliceDir == 1) {
2451
            uint8_t* src2[4]= {src[0], src[1], src[2]};
2452
            // slices go from top to bottom
2453
            int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2454
            int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2455
            return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2456
        } else {
2457
            // slices go from bottom to top => we flip the image internally
2458
            uint8_t* src2[4]= {src[0] + (srcSliceH-1)*srcStride[0],
2459
                               src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2460
                               src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2461
            };
2462
            uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2463
                               dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2464
                               dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2465
            int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2466
            int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2467
            
2468
            return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2469
        }
2470
}
2471

    
2472
/**
2473
 * swscale warper, so we don't need to export the SwsContext
2474
 */
2475
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2476
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2477
        return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2478
}
2479

    
2480
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2481
                                float lumaSharpen, float chromaSharpen,
2482
                                float chromaHShift, float chromaVShift,
2483
                                int verbose)
2484
{
2485
        SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2486

    
2487
        if(lumaGBlur!=0.0){
2488
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2489
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2490
        }else{
2491
                filter->lumH= sws_getIdentityVec();
2492
                filter->lumV= sws_getIdentityVec();
2493
        }
2494

    
2495
        if(chromaGBlur!=0.0){
2496
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2497
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2498
        }else{
2499
                filter->chrH= sws_getIdentityVec();
2500
                filter->chrV= sws_getIdentityVec();
2501
        }
2502

    
2503
        if(chromaSharpen!=0.0){
2504
                SwsVector *id= sws_getIdentityVec();
2505
                sws_scaleVec(filter->chrH, -chromaSharpen);
2506
                sws_scaleVec(filter->chrV, -chromaSharpen);
2507
                sws_addVec(filter->chrH, id);
2508
                sws_addVec(filter->chrV, id);
2509
                sws_freeVec(id);
2510
        }
2511

    
2512
        if(lumaSharpen!=0.0){
2513
                SwsVector *id= sws_getIdentityVec();
2514
                sws_scaleVec(filter->lumH, -lumaSharpen);
2515
                sws_scaleVec(filter->lumV, -lumaSharpen);
2516
                sws_addVec(filter->lumH, id);
2517
                sws_addVec(filter->lumV, id);
2518
                sws_freeVec(id);
2519
        }
2520

    
2521
        if(chromaHShift != 0.0)
2522
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2523

    
2524
        if(chromaVShift != 0.0)
2525
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2526

    
2527
        sws_normalizeVec(filter->chrH, 1.0);
2528
        sws_normalizeVec(filter->chrV, 1.0);
2529
        sws_normalizeVec(filter->lumH, 1.0);
2530
        sws_normalizeVec(filter->lumV, 1.0);
2531

    
2532
        if(verbose) sws_printVec(filter->chrH);
2533
        if(verbose) sws_printVec(filter->lumH);
2534

    
2535
        return filter;
2536
}
2537

    
2538
/**
2539
 * returns a normalized gaussian curve used to filter stuff
2540
 * quality=3 is high quality, lowwer is lowwer quality
2541
 */
2542
SwsVector *sws_getGaussianVec(double variance, double quality){
2543
        const int length= (int)(variance*quality + 0.5) | 1;
2544
        int i;
2545
        double *coeff= av_malloc(length*sizeof(double));
2546
        double middle= (length-1)*0.5;
2547
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2548

    
2549
        vec->coeff= coeff;
2550
        vec->length= length;
2551

    
2552
        for(i=0; i<length; i++)
2553
        {
2554
                double dist= i-middle;
2555
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2556
        }
2557

    
2558
        sws_normalizeVec(vec, 1.0);
2559

    
2560
        return vec;
2561
}
2562

    
2563
SwsVector *sws_getConstVec(double c, int length){
2564
        int i;
2565
        double *coeff= av_malloc(length*sizeof(double));
2566
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2567

    
2568
        vec->coeff= coeff;
2569
        vec->length= length;
2570

    
2571
        for(i=0; i<length; i++)
2572
                coeff[i]= c;
2573

    
2574
        return vec;
2575
}
2576

    
2577

    
2578
SwsVector *sws_getIdentityVec(void){
2579
        return sws_getConstVec(1.0, 1);
2580
}
2581

    
2582
double sws_dcVec(SwsVector *a){
2583
        int i;
2584
        double sum=0;
2585

    
2586
        for(i=0; i<a->length; i++)
2587
                sum+= a->coeff[i];
2588

    
2589
        return sum;
2590
}
2591

    
2592
void sws_scaleVec(SwsVector *a, double scalar){
2593
        int i;
2594

    
2595
        for(i=0; i<a->length; i++)
2596
                a->coeff[i]*= scalar;
2597
}
2598

    
2599
void sws_normalizeVec(SwsVector *a, double height){
2600
        sws_scaleVec(a, height/sws_dcVec(a));
2601
}
2602

    
2603
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2604
        int length= a->length + b->length - 1;
2605
        double *coeff= av_malloc(length*sizeof(double));
2606
        int i, j;
2607
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2608

    
2609
        vec->coeff= coeff;
2610
        vec->length= length;
2611

    
2612
        for(i=0; i<length; i++) coeff[i]= 0.0;
2613

    
2614
        for(i=0; i<a->length; i++)
2615
        {
2616
                for(j=0; j<b->length; j++)
2617
                {
2618
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2619
                }
2620
        }
2621

    
2622
        return vec;
2623
}
2624

    
2625
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2626
        int length= FFMAX(a->length, b->length);
2627
        double *coeff= av_malloc(length*sizeof(double));
2628
        int i;
2629
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2630

    
2631
        vec->coeff= coeff;
2632
        vec->length= length;
2633

    
2634
        for(i=0; i<length; i++) coeff[i]= 0.0;
2635

    
2636
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2637
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2638

    
2639
        return vec;
2640
}
2641

    
2642
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2643
        int length= FFMAX(a->length, b->length);
2644
        double *coeff= av_malloc(length*sizeof(double));
2645
        int i;
2646
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2647

    
2648
        vec->coeff= coeff;
2649
        vec->length= length;
2650

    
2651
        for(i=0; i<length; i++) coeff[i]= 0.0;
2652

    
2653
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2654
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2655

    
2656
        return vec;
2657
}
2658

    
2659
/* shift left / or right if "shift" is negative */
2660
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2661
        int length= a->length + FFABS(shift)*2;
2662
        double *coeff= av_malloc(length*sizeof(double));
2663
        int i;
2664
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2665

    
2666
        vec->coeff= coeff;
2667
        vec->length= length;
2668

    
2669
        for(i=0; i<length; i++) coeff[i]= 0.0;
2670

    
2671
        for(i=0; i<a->length; i++)
2672
        {
2673
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2674
        }
2675

    
2676
        return vec;
2677
}
2678

    
2679
void sws_shiftVec(SwsVector *a, int shift){
2680
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2681
        av_free(a->coeff);
2682
        a->coeff= shifted->coeff;
2683
        a->length= shifted->length;
2684
        av_free(shifted);
2685
}
2686

    
2687
void sws_addVec(SwsVector *a, SwsVector *b){
2688
        SwsVector *sum= sws_sumVec(a, b);
2689
        av_free(a->coeff);
2690
        a->coeff= sum->coeff;
2691
        a->length= sum->length;
2692
        av_free(sum);
2693
}
2694

    
2695
void sws_subVec(SwsVector *a, SwsVector *b){
2696
        SwsVector *diff= sws_diffVec(a, b);
2697
        av_free(a->coeff);
2698
        a->coeff= diff->coeff;
2699
        a->length= diff->length;
2700
        av_free(diff);
2701
}
2702

    
2703
void sws_convVec(SwsVector *a, SwsVector *b){
2704
        SwsVector *conv= sws_getConvVec(a, b);
2705
        av_free(a->coeff);  
2706
        a->coeff= conv->coeff;
2707
        a->length= conv->length;
2708
        av_free(conv);
2709
}
2710

    
2711
SwsVector *sws_cloneVec(SwsVector *a){
2712
        double *coeff= av_malloc(a->length*sizeof(double));
2713
        int i;
2714
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2715

    
2716
        vec->coeff= coeff;
2717
        vec->length= a->length;
2718

    
2719
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2720

    
2721
        return vec;
2722
}
2723

    
2724
void sws_printVec(SwsVector *a){
2725
        int i;
2726
        double max=0;
2727
        double min=0;
2728
        double range;
2729

    
2730
        for(i=0; i<a->length; i++)
2731
                if(a->coeff[i]>max) max= a->coeff[i];
2732

    
2733
        for(i=0; i<a->length; i++)
2734
                if(a->coeff[i]<min) min= a->coeff[i];
2735

    
2736
        range= max - min;
2737

    
2738
        for(i=0; i<a->length; i++)
2739
        {
2740
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2741
                av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2742
                for(;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2743
                av_log(NULL, AV_LOG_DEBUG, "|\n");
2744
        }
2745
}
2746

    
2747
void sws_freeVec(SwsVector *a){
2748
        if(!a) return;
2749
        av_free(a->coeff);
2750
        a->coeff=NULL;
2751
        a->length=0;
2752
        av_free(a);
2753
}
2754

    
2755
void sws_freeFilter(SwsFilter *filter){
2756
        if(!filter) return;
2757

    
2758
        if(filter->lumH) sws_freeVec(filter->lumH);
2759
        if(filter->lumV) sws_freeVec(filter->lumV);
2760
        if(filter->chrH) sws_freeVec(filter->chrH);
2761
        if(filter->chrV) sws_freeVec(filter->chrV);
2762
        av_free(filter);
2763
}
2764

    
2765

    
2766
void sws_freeContext(SwsContext *c){
2767
        int i;
2768
        if(!c) return;
2769

    
2770
        if(c->lumPixBuf)
2771
        {
2772
                for(i=0; i<c->vLumBufSize; i++)
2773
                {
2774
                        av_free(c->lumPixBuf[i]);
2775
                        c->lumPixBuf[i]=NULL;
2776
                }
2777
                av_free(c->lumPixBuf);
2778
                c->lumPixBuf=NULL;
2779
        }
2780

    
2781
        if(c->chrPixBuf)
2782
        {
2783
                for(i=0; i<c->vChrBufSize; i++)
2784
                {
2785
                        av_free(c->chrPixBuf[i]);
2786
                        c->chrPixBuf[i]=NULL;
2787
                }
2788
                av_free(c->chrPixBuf);
2789
                c->chrPixBuf=NULL;
2790
        }
2791

    
2792
        av_free(c->vLumFilter);
2793
        c->vLumFilter = NULL;
2794
        av_free(c->vChrFilter);
2795
        c->vChrFilter = NULL;
2796
        av_free(c->hLumFilter);
2797
        c->hLumFilter = NULL;
2798
        av_free(c->hChrFilter);
2799
        c->hChrFilter = NULL;
2800
#ifdef HAVE_ALTIVEC
2801
        av_free(c->vYCoeffsBank);
2802
        c->vYCoeffsBank = NULL;
2803
        av_free(c->vCCoeffsBank);
2804
        c->vCCoeffsBank = NULL;
2805
#endif
2806

    
2807
        av_free(c->vLumFilterPos);
2808
        c->vLumFilterPos = NULL;
2809
        av_free(c->vChrFilterPos);
2810
        c->vChrFilterPos = NULL;
2811
        av_free(c->hLumFilterPos);
2812
        c->hLumFilterPos = NULL;
2813
        av_free(c->hChrFilterPos);
2814
        c->hChrFilterPos = NULL;
2815

    
2816
#if defined(ARCH_X86) && defined(CONFIG_GPL)
2817
#ifdef MAP_ANONYMOUS
2818
        if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2819
        if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2820
#else
2821
        av_free(c->funnyYCode);
2822
        av_free(c->funnyUVCode);
2823
#endif
2824
        c->funnyYCode=NULL;
2825
        c->funnyUVCode=NULL;
2826
#endif /* defined(ARCH_X86) */
2827

    
2828
        av_free(c->lumMmx2Filter);
2829
        c->lumMmx2Filter=NULL;
2830
        av_free(c->chrMmx2Filter);
2831
        c->chrMmx2Filter=NULL;
2832
        av_free(c->lumMmx2FilterPos);
2833
        c->lumMmx2FilterPos=NULL;
2834
        av_free(c->chrMmx2FilterPos);
2835
        c->chrMmx2FilterPos=NULL;
2836
        av_free(c->yuvTable);
2837
        c->yuvTable=NULL;
2838

    
2839
        av_free(c);
2840
}
2841

    
2842
/**
2843
 * Checks if context is valid or reallocs a new one instead.
2844
 * If context is NULL, just calls sws_getContext() to get a new one.
2845
 * Otherwise, checks if the parameters are the same already saved in context.
2846
 * If that is the case, returns the current context.
2847
 * Otherwise, frees context and gets a new one.
2848
 *
2849
 * Be warned that srcFilter, dstFilter are not checked, they are
2850
 * asumed to remain valid.
2851
 */
2852
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2853
                        int srcW, int srcH, int srcFormat,
2854
                        int dstW, int dstH, int dstFormat, int flags,
2855
                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2856
{
2857
    if (context != NULL) {
2858
        if ((context->srcW != srcW) || (context->srcH != srcH) ||
2859
            (context->srcFormat != srcFormat) ||
2860
            (context->dstW != dstW) || (context->dstH != dstH) ||
2861
            (context->dstFormat != dstFormat) || (context->flags != flags) ||
2862
            (context->param != param))
2863
        {
2864
            sws_freeContext(context);
2865
            context = NULL;
2866
        }
2867
    }
2868
    if (context == NULL) {
2869
        return sws_getContext(srcW, srcH, srcFormat,
2870
                        dstW, dstH, dstFormat, flags,
2871
                        srcFilter, dstFilter, param);
2872
    }
2873
    return context;
2874
}
2875