Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 943f69a6

History | View | Annotate | Download (25.8 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "dsputil.h"
32
#include "cabac.h"
33
#include "mpegvideo.h"
34
#include "h264pred.h"
35

    
36
#define interlaced_dct interlaced_dct_is_a_bad_name
37
#define mb_intra mb_intra_is_not_initialized_see_mb_type
38

    
39
#define LUMA_DC_BLOCK_INDEX   25
40
#define CHROMA_DC_BLOCK_INDEX 26
41

    
42
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
43
#define COEFF_TOKEN_VLC_BITS           8
44
#define TOTAL_ZEROS_VLC_BITS           9
45
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
46
#define RUN_VLC_BITS                   3
47
#define RUN7_VLC_BITS                  6
48

    
49
#define MAX_SPS_COUNT 32
50
#define MAX_PPS_COUNT 256
51

    
52
#define MAX_MMCO_COUNT 66
53

    
54
#define MAX_DELAYED_PIC_COUNT 16
55

    
56
/* Compiling in interlaced support reduces the speed
57
 * of progressive decoding by about 2%. */
58
#define ALLOW_INTERLACE
59

    
60
#define ALLOW_NOCHROMA
61

    
62
/**
63
 * The maximum number of slices supported by the decoder.
64
 * must be a power of 2
65
 */
66
#define MAX_SLICES 16
67

    
68
#ifdef ALLOW_INTERLACE
69
#define MB_MBAFF h->mb_mbaff
70
#define MB_FIELD h->mb_field_decoding_flag
71
#define FRAME_MBAFF h->mb_aff_frame
72
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
73
#else
74
#define MB_MBAFF 0
75
#define MB_FIELD 0
76
#define FRAME_MBAFF 0
77
#define FIELD_PICTURE 0
78
#undef  IS_INTERLACED
79
#define IS_INTERLACED(mb_type) 0
80
#endif
81
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
82

    
83
#ifdef ALLOW_NOCHROMA
84
#define CHROMA h->sps.chroma_format_idc
85
#else
86
#define CHROMA 1
87
#endif
88

    
89
#define EXTENDED_SAR          255
90

    
91
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
92
#define MB_TYPE_8x8DCT     0x01000000
93
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
94
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
95

    
96
/* NAL unit types */
97
enum {
98
    NAL_SLICE=1,
99
    NAL_DPA,
100
    NAL_DPB,
101
    NAL_DPC,
102
    NAL_IDR_SLICE,
103
    NAL_SEI,
104
    NAL_SPS,
105
    NAL_PPS,
106
    NAL_AUD,
107
    NAL_END_SEQUENCE,
108
    NAL_END_STREAM,
109
    NAL_FILLER_DATA,
110
    NAL_SPS_EXT,
111
    NAL_AUXILIARY_SLICE=19
112
};
113

    
114
/**
115
 * SEI message types
116
 */
117
typedef enum {
118
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
119
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
120
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
121
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
122
} SEI_Type;
123

    
124
/**
125
 * pic_struct in picture timing SEI message
126
 */
127
typedef enum {
128
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
129
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
130
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
131
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
132
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
133
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
134
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
135
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
136
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
137
} SEI_PicStructType;
138

    
139
/**
140
 * Sequence parameter set
141
 */
142
typedef struct SPS{
143

    
144
    int profile_idc;
145
    int level_idc;
146
    int chroma_format_idc;
147
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
148
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
149
    int poc_type;                      ///< pic_order_cnt_type
150
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
151
    int delta_pic_order_always_zero_flag;
152
    int offset_for_non_ref_pic;
153
    int offset_for_top_to_bottom_field;
154
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
155
    int ref_frame_count;               ///< num_ref_frames
156
    int gaps_in_frame_num_allowed_flag;
157
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
158
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
159
    int frame_mbs_only_flag;
160
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
161
    int direct_8x8_inference_flag;
162
    int crop;                   ///< frame_cropping_flag
163
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
164
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
165
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
166
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
167
    int vui_parameters_present_flag;
168
    AVRational sar;
169
    int video_signal_type_present_flag;
170
    int full_range;
171
    int colour_description_present_flag;
172
    enum AVColorPrimaries color_primaries;
173
    enum AVColorTransferCharacteristic color_trc;
174
    enum AVColorSpace colorspace;
175
    int timing_info_present_flag;
176
    uint32_t num_units_in_tick;
177
    uint32_t time_scale;
178
    int fixed_frame_rate_flag;
179
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
180
    int bitstream_restriction_flag;
181
    int num_reorder_frames;
182
    int scaling_matrix_present;
183
    uint8_t scaling_matrix4[6][16];
184
    uint8_t scaling_matrix8[2][64];
185
    int nal_hrd_parameters_present_flag;
186
    int vcl_hrd_parameters_present_flag;
187
    int pic_struct_present_flag;
188
    int time_offset_length;
189
    int cpb_cnt;                       ///< See H.264 E.1.2
190
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
191
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
192
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
193
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
194
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
195
    int residual_color_transform_flag; ///< residual_colour_transform_flag
196
}SPS;
197

    
198
/**
199
 * Picture parameter set
200
 */
201
typedef struct PPS{
202
    unsigned int sps_id;
203
    int cabac;                  ///< entropy_coding_mode_flag
204
    int pic_order_present;      ///< pic_order_present_flag
205
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
206
    int mb_slice_group_map_type;
207
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
208
    int weighted_pred;          ///< weighted_pred_flag
209
    int weighted_bipred_idc;
210
    int init_qp;                ///< pic_init_qp_minus26 + 26
211
    int init_qs;                ///< pic_init_qs_minus26 + 26
212
    int chroma_qp_index_offset[2];
213
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
214
    int constrained_intra_pred; ///< constrained_intra_pred_flag
215
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
216
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
217
    uint8_t scaling_matrix4[6][16];
218
    uint8_t scaling_matrix8[2][64];
219
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
220
    int chroma_qp_diff;
221
}PPS;
222

    
223
/**
224
 * Memory management control operation opcode.
225
 */
226
typedef enum MMCOOpcode{
227
    MMCO_END=0,
228
    MMCO_SHORT2UNUSED,
229
    MMCO_LONG2UNUSED,
230
    MMCO_SHORT2LONG,
231
    MMCO_SET_MAX_LONG,
232
    MMCO_RESET,
233
    MMCO_LONG,
234
} MMCOOpcode;
235

    
236
/**
237
 * Memory management control operation.
238
 */
239
typedef struct MMCO{
240
    MMCOOpcode opcode;
241
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
242
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
243
} MMCO;
244

    
245
/**
246
 * H264Context
247
 */
248
typedef struct H264Context{
249
    MpegEncContext s;
250
    int nal_ref_idc;
251
    int nal_unit_type;
252
    uint8_t *rbsp_buffer[2];
253
    unsigned int rbsp_buffer_size[2];
254

    
255
    /**
256
      * Used to parse AVC variant of h264
257
      */
258
    int is_avc; ///< this flag is != 0 if codec is avc1
259
    int got_avcC; ///< flag used to parse avcC data only once
260
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
261

    
262
    int chroma_qp[2]; //QPc
263

    
264
    int prev_mb_skipped;
265
    int next_mb_skipped;
266

    
267
    //prediction stuff
268
    int chroma_pred_mode;
269
    int intra16x16_pred_mode;
270

    
271
    int top_mb_xy;
272
    int left_mb_xy[2];
273

    
274
    int8_t intra4x4_pred_mode_cache[5*8];
275
    int8_t (*intra4x4_pred_mode)[8];
276
    H264PredContext hpc;
277
    unsigned int topleft_samples_available;
278
    unsigned int top_samples_available;
279
    unsigned int topright_samples_available;
280
    unsigned int left_samples_available;
281
    uint8_t (*top_borders[2])[16+2*8];
282
    uint8_t left_border[2*(17+2*9)];
283

    
284
    /**
285
     * non zero coeff count cache.
286
     * is 64 if not available.
287
     */
288
    DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
289
    uint8_t (*non_zero_count)[16];
290

    
291
    /**
292
     * Motion vector cache.
293
     */
294
    DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
295
    DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
296
#define LIST_NOT_USED -1 //FIXME rename?
297
#define PART_NOT_AVAILABLE -2
298

    
299
    /**
300
     * is 1 if the specific list MV&references are set to 0,0,-2.
301
     */
302
    int mv_cache_clean[2];
303

    
304
    /**
305
     * number of neighbors (top and/or left) that used 8x8 dct
306
     */
307
    int neighbor_transform_size;
308

    
309
    /**
310
     * block_offset[ 0..23] for frame macroblocks
311
     * block_offset[24..47] for field macroblocks
312
     */
313
    int block_offset[2*(16+8)];
314

    
315
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
316
    uint32_t *mb2b8_xy;
317
    int b_stride; //FIXME use s->b4_stride
318
    int b8_stride;
319

    
320
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
321
    int mb_uvlinesize;
322

    
323
    int emu_edge_width;
324
    int emu_edge_height;
325

    
326
    int halfpel_flag;
327
    int thirdpel_flag;
328

    
329
    int unknown_svq3_flag;
330
    int next_slice_index;
331

    
332
    SPS *sps_buffers[MAX_SPS_COUNT];
333
    SPS sps; ///< current sps
334

    
335
    PPS *pps_buffers[MAX_PPS_COUNT];
336
    /**
337
     * current pps
338
     */
339
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
340

    
341
    uint32_t dequant4_buffer[6][52][16];
342
    uint32_t dequant8_buffer[2][52][64];
343
    uint32_t (*dequant4_coeff[6])[16];
344
    uint32_t (*dequant8_coeff[2])[64];
345
    int dequant_coeff_pps;     ///< reinit tables when pps changes
346

    
347
    int slice_num;
348
    uint16_t *slice_table_base;
349
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
350
    int slice_type;
351
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
352
    int slice_type_fixed;
353

    
354
    //interlacing specific flags
355
    int mb_aff_frame;
356
    int mb_field_decoding_flag;
357
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
358

    
359
    DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]);
360

    
361
    //POC stuff
362
    int poc_lsb;
363
    int poc_msb;
364
    int delta_poc_bottom;
365
    int delta_poc[2];
366
    int frame_num;
367
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
368
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
369
    int frame_num_offset;         ///< for POC type 2
370
    int prev_frame_num_offset;    ///< for POC type 2
371
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
372

    
373
    /**
374
     * frame_num for frames or 2*frame_num+1 for field pics.
375
     */
376
    int curr_pic_num;
377

    
378
    /**
379
     * max_frame_num or 2*max_frame_num for field pics.
380
     */
381
    int max_pic_num;
382

    
383
    //Weighted pred stuff
384
    int use_weight;
385
    int use_weight_chroma;
386
    int luma_log2_weight_denom;
387
    int chroma_log2_weight_denom;
388
    int luma_weight[2][48];
389
    int luma_offset[2][48];
390
    int chroma_weight[2][48][2];
391
    int chroma_offset[2][48][2];
392
    int implicit_weight[48][48];
393

    
394
    //deblock
395
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
396
    int slice_alpha_c0_offset;
397
    int slice_beta_offset;
398

    
399
    int redundant_pic_count;
400

    
401
    int direct_spatial_mv_pred;
402
    int dist_scale_factor[16];
403
    int dist_scale_factor_field[2][32];
404
    int map_col_to_list0[2][16+32];
405
    int map_col_to_list0_field[2][2][16+32];
406

    
407
    /**
408
     * num_ref_idx_l0/1_active_minus1 + 1
409
     */
410
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
411
    unsigned int list_count;
412
    Picture *short_ref[32];
413
    Picture *long_ref[32];
414
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
415
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
416
                                          Reordered version of default_ref_list
417
                                          according to picture reordering in slice header */
418
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
419
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
420
    int outputed_poc;
421

    
422
    /**
423
     * memory management control operations buffer.
424
     */
425
    MMCO mmco[MAX_MMCO_COUNT];
426
    int mmco_index;
427

    
428
    int long_ref_count;  ///< number of actual long term references
429
    int short_ref_count; ///< number of actual short term references
430

    
431
    //data partitioning
432
    GetBitContext intra_gb;
433
    GetBitContext inter_gb;
434
    GetBitContext *intra_gb_ptr;
435
    GetBitContext *inter_gb_ptr;
436

    
437
    DECLARE_ALIGNED_16(DCTELEM, mb[16*24]);
438
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
439

    
440
    /**
441
     * Cabac
442
     */
443
    CABACContext cabac;
444
    uint8_t      cabac_state[460];
445
    int          cabac_init_idc;
446

    
447
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
448
    uint16_t     *cbp_table;
449
    int cbp;
450
    int top_cbp;
451
    int left_cbp;
452
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
453
    uint8_t     *chroma_pred_mode_table;
454
    int         last_qscale_diff;
455
    int16_t     (*mvd_table[2])[2];
456
    DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
457
    uint8_t     *direct_table;
458
    uint8_t     direct_cache[5*8];
459

    
460
    uint8_t zigzag_scan[16];
461
    uint8_t zigzag_scan8x8[64];
462
    uint8_t zigzag_scan8x8_cavlc[64];
463
    uint8_t field_scan[16];
464
    uint8_t field_scan8x8[64];
465
    uint8_t field_scan8x8_cavlc[64];
466
    const uint8_t *zigzag_scan_q0;
467
    const uint8_t *zigzag_scan8x8_q0;
468
    const uint8_t *zigzag_scan8x8_cavlc_q0;
469
    const uint8_t *field_scan_q0;
470
    const uint8_t *field_scan8x8_q0;
471
    const uint8_t *field_scan8x8_cavlc_q0;
472

    
473
    int x264_build;
474

    
475
    /**
476
     * @defgroup multithreading Members for slice based multithreading
477
     * @{
478
     */
479
    struct H264Context *thread_context[MAX_THREADS];
480

    
481
    /**
482
     * current slice number, used to initalize slice_num of each thread/context
483
     */
484
    int current_slice;
485

    
486
    /**
487
     * Max number of threads / contexts.
488
     * This is equal to AVCodecContext.thread_count unless
489
     * multithreaded decoding is impossible, in which case it is
490
     * reduced to 1.
491
     */
492
    int max_contexts;
493

    
494
    /**
495
     *  1 if the single thread fallback warning has already been
496
     *  displayed, 0 otherwise.
497
     */
498
    int single_decode_warning;
499

    
500
    int last_slice_type;
501
    /** @} */
502

    
503
    int mb_xy;
504

    
505
    uint32_t svq3_watermark_key;
506

    
507
    /**
508
     * pic_struct in picture timing SEI message
509
     */
510
    SEI_PicStructType sei_pic_struct;
511

    
512
    /**
513
     * Complement sei_pic_struct
514
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
515
     * However, soft telecined frames may have these values.
516
     * This is used in an attempt to flag soft telecine progressive.
517
     */
518
    int prev_interlaced_frame;
519

    
520
    /**
521
     * Bit set of clock types for fields/frames in picture timing SEI message.
522
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
523
     * interlaced).
524
     */
525
    int sei_ct_type;
526

    
527
    /**
528
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
529
     */
530
    int sei_dpb_output_delay;
531

    
532
    /**
533
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
534
     */
535
    int sei_cpb_removal_delay;
536

    
537
    /**
538
     * recovery_frame_cnt from SEI message
539
     *
540
     * Set to -1 if no recovery point SEI message found or to number of frames
541
     * before playback synchronizes. Frames having recovery point are key
542
     * frames.
543
     */
544
    int sei_recovery_frame_cnt;
545

    
546
    int is_complex;
547

    
548
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
549
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
550

    
551
    // Timestamp stuff
552
    int sei_buffering_period_present;  ///< Buffering period SEI flag
553
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
554
}H264Context;
555

    
556
/**
557
 * Decode SEI
558
 */
559
int ff_h264_decode_sei(H264Context *h);
560

    
561
/**
562
 * Decode SPS
563
 */
564
int ff_h264_decode_seq_parameter_set(H264Context *h);
565

    
566
/**
567
 * Decode PPS
568
 */
569
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
570

    
571
/**
572
 * Decodes a network abstraction layer unit.
573
 * @param consumed is the number of bytes used as input
574
 * @param length is the length of the array
575
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
576
 * @returns decoded bytes, might be src+1 if no escapes
577
 */
578
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
579

    
580
/**
581
 * identifies the exact end of the bitstream
582
 * @return the length of the trailing, or 0 if damaged
583
 */
584
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
585

    
586
/**
587
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
588
 */
589
av_cold void ff_h264_free_context(H264Context *h);
590

    
591
/**
592
 * reconstructs bitstream slice_type.
593
 */
594
int ff_h264_get_slice_type(H264Context *h);
595

    
596
/**
597
 * allocates tables.
598
 * needs width/height
599
 */
600
int ff_h264_alloc_tables(H264Context *h);
601

    
602
/**
603
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
604
 */
605
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
606

    
607
void ff_h264_write_back_intra_pred_mode(H264Context *h);
608
void ff_h264_hl_decode_mb(H264Context *h);
609
int ff_h264_frame_start(H264Context *h);
610
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
611
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
612

    
613
void ff_h264_direct_dist_scale_factor(H264Context * const h);
614
void ff_h264_direct_ref_list_init(H264Context * const h);
615
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
616

    
617
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
618
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
619

    
620
/*
621
o-o o-o
622
 / / /
623
o-o o-o
624
 ,---'
625
o-o o-o
626
 / / /
627
o-o o-o
628
*/
629
//This table must be here because scan8[constant] must be known at compiletime
630
static const uint8_t scan8[16 + 2*4]={
631
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
632
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
633
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
634
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
635
 1+1*8, 2+1*8,
636
 1+2*8, 2+2*8,
637
 1+4*8, 2+4*8,
638
 1+5*8, 2+5*8,
639
};
640

    
641
static av_always_inline uint32_t pack16to32(int a, int b){
642
#if HAVE_BIGENDIAN
643
   return (b&0xFFFF) + (a<<16);
644
#else
645
   return (a&0xFFFF) + (b<<16);
646
#endif
647
}
648

    
649
/**
650
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
651
 */
652
static inline int check_intra4x4_pred_mode(H264Context *h){
653
    MpegEncContext * const s = &h->s;
654
    static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
655
    static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
656
    int i;
657

    
658
    if(!(h->top_samples_available&0x8000)){
659
        for(i=0; i<4; i++){
660
            int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
661
            if(status<0){
662
                av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
663
                return -1;
664
            } else if(status){
665
                h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
666
            }
667
        }
668
    }
669

    
670
    if((h->left_samples_available&0x8888)!=0x8888){
671
        static const int mask[4]={0x8000,0x2000,0x80,0x20};
672
        for(i=0; i<4; i++){
673
            if(!(h->left_samples_available&mask[i])){
674
                int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
675
                if(status<0){
676
                    av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
677
                    return -1;
678
                } else if(status){
679
                    h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
680
                }
681
            }
682
        }
683
    }
684

    
685
    return 0;
686
} //FIXME cleanup like ff_h264_check_intra_pred_mode
687

    
688
/**
689
 * gets the chroma qp.
690
 */
691
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
692
    return h->pps.chroma_qp_table[t][qscale];
693
}
694

    
695
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
696
    const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
697
    MpegEncContext *s = &h->s;
698

    
699
    /* there is no consistent mapping of mvs to neighboring locations that will
700
     * make mbaff happy, so we can't move all this logic to fill_caches */
701
    if(FRAME_MBAFF){
702
        const uint32_t *mb_types = s->current_picture_ptr->mb_type;
703
        const int16_t *mv;
704
        *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
705
        *C = h->mv_cache[list][scan8[0]-2];
706

    
707
        if(!MB_FIELD
708
           && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
709
            int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
710
            if(IS_INTERLACED(mb_types[topright_xy])){
711
#define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
712
                const int x4 = X4, y4 = Y4;\
713
                const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
714
                if(!USES_LIST(mb_type,list))\
715
                    return LIST_NOT_USED;\
716
                mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
717
                h->mv_cache[list][scan8[0]-2][0] = mv[0];\
718
                h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
719
                return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
720

    
721
                SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
722
            }
723
        }
724
        if(topright_ref == PART_NOT_AVAILABLE
725
           && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
726
           && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
727
            if(!MB_FIELD
728
               && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
729
                SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
730
            }
731
            if(MB_FIELD
732
               && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
733
               && i >= scan8[0]+8){
734
                // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
735
                SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
736
            }
737
        }
738
#undef SET_DIAG_MV
739
    }
740

    
741
    if(topright_ref != PART_NOT_AVAILABLE){
742
        *C= h->mv_cache[list][ i - 8 + part_width ];
743
        return topright_ref;
744
    }else{
745
        tprintf(s->avctx, "topright MV not available\n");
746

    
747
        *C= h->mv_cache[list][ i - 8 - 1 ];
748
        return h->ref_cache[list][ i - 8 - 1 ];
749
    }
750
}
751

    
752
/**
753
 * gets the predicted MV.
754
 * @param n the block index
755
 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
756
 * @param mx the x component of the predicted motion vector
757
 * @param my the y component of the predicted motion vector
758
 */
759
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
760
    const int index8= scan8[n];
761
    const int top_ref=      h->ref_cache[list][ index8 - 8 ];
762
    const int left_ref=     h->ref_cache[list][ index8 - 1 ];
763
    const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
764
    const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
765
    const int16_t * C;
766
    int diagonal_ref, match_count;
767

    
768
    assert(part_width==1 || part_width==2 || part_width==4);
769

    
770
/* mv_cache
771
  B . . A T T T T
772
  U . . L . . , .
773
  U . . L . . . .
774
  U . . L . . , .
775
  . . . L . . . .
776
*/
777

    
778
    diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
779
    match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
780
    tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
781
    if(match_count > 1){ //most common
782
        *mx= mid_pred(A[0], B[0], C[0]);
783
        *my= mid_pred(A[1], B[1], C[1]);
784
    }else if(match_count==1){
785
        if(left_ref==ref){
786
            *mx= A[0];
787
            *my= A[1];
788
        }else if(top_ref==ref){
789
            *mx= B[0];
790
            *my= B[1];
791
        }else{
792
            *mx= C[0];
793
            *my= C[1];
794
        }
795
    }else{
796
        if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
797
            *mx= A[0];
798
            *my= A[1];
799
        }else{
800
            *mx= mid_pred(A[0], B[0], C[0]);
801
            *my= mid_pred(A[1], B[1], C[1]);
802
        }
803
    }
804

    
805
    tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
806
}
807

    
808

    
809
#endif /* AVCODEC_H264_H */