Statistics
| Branch: | Revision:

ffmpeg / libavcodec / fft.c @ 94d85eaf

History | View | Annotate | Download (6.73 KB)

1
/*
2
 * FFT/IFFT transforms
3
 * Copyright (c) 2002 Fabrice Bellard.
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
 */
19

    
20
/**
21
 * @file fft.c
22
 * FFT/IFFT transforms.
23
 */
24

    
25
#include "dsputil.h"
26

    
27
/**
28
 * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
29
 * done
30
 */
31
int ff_fft_init(FFTContext *s, int nbits, int inverse)
32
{
33
    int i, j, m, n;
34
    float alpha, c1, s1, s2;
35

    
36
    s->nbits = nbits;
37
    n = 1 << nbits;
38

    
39
    s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
40
    if (!s->exptab)
41
        goto fail;
42
    s->revtab = av_malloc(n * sizeof(uint16_t));
43
    if (!s->revtab)
44
        goto fail;
45
    s->inverse = inverse;
46

    
47
    s2 = inverse ? 1.0 : -1.0;
48

    
49
    for(i=0;i<(n/2);i++) {
50
        alpha = 2 * M_PI * (float)i / (float)n;
51
        c1 = cos(alpha);
52
        s1 = sin(alpha) * s2;
53
        s->exptab[i].re = c1;
54
        s->exptab[i].im = s1;
55
    }
56
    s->fft_calc = ff_fft_calc_c;
57
    s->exptab1 = NULL;
58

    
59
    /* compute constant table for HAVE_SSE version */
60
#if (defined(HAVE_MMX) && (defined(HAVE_BUILTIN_VECTOR) || defined(HAVE_MM3DNOW))) || defined(HAVE_ALTIVEC)
61
    {
62
        int has_vectors = 0;
63

    
64
#if defined(HAVE_MMX)
65
        has_vectors = mm_support() & (MM_3DNOW | MM_3DNOWEXT | MM_SSE | MM_SSE2);
66
#endif
67
#if defined(HAVE_ALTIVEC) && !defined(ALTIVEC_USE_REFERENCE_C_CODE)
68
        has_vectors = mm_support() & MM_ALTIVEC;
69
#endif
70
        if (has_vectors) {
71
            int np, nblocks, np2, l;
72
            FFTComplex *q;
73

    
74
            np = 1 << nbits;
75
            nblocks = np >> 3;
76
            np2 = np >> 1;
77
            s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
78
            if (!s->exptab1)
79
                goto fail;
80
            q = s->exptab1;
81
            do {
82
                for(l = 0; l < np2; l += 2 * nblocks) {
83
                    *q++ = s->exptab[l];
84
                    *q++ = s->exptab[l + nblocks];
85

    
86
                    q->re = -s->exptab[l].im;
87
                    q->im = s->exptab[l].re;
88
                    q++;
89
                    q->re = -s->exptab[l + nblocks].im;
90
                    q->im = s->exptab[l + nblocks].re;
91
                    q++;
92
                }
93
                nblocks = nblocks >> 1;
94
            } while (nblocks != 0);
95
            av_freep(&s->exptab);
96
#if defined(HAVE_MMX)
97
#ifdef HAVE_MM3DNOW
98
            if (has_vectors & MM_3DNOWEXT)
99
                /* 3DNowEx for Athlon(XP) */
100
                s->fft_calc = ff_fft_calc_3dn2;
101
            else if (has_vectors & MM_3DNOW)
102
                /* 3DNow! for K6-2/3 */
103
                s->fft_calc = ff_fft_calc_3dn;
104
#endif
105
#ifdef HAVE_BUILTIN_VECTOR
106
            if (has_vectors & MM_SSE2)
107
                /* SSE for P4/K8 */
108
                s->fft_calc = ff_fft_calc_sse;
109
            else if ((has_vectors & MM_SSE) &&
110
                     s->fft_calc == ff_fft_calc_c)
111
                /* SSE for P3 */
112
                s->fft_calc = ff_fft_calc_sse;
113
#endif
114
#else /* HAVE_MMX */
115
            s->fft_calc = ff_fft_calc_altivec;
116
#endif
117
        }
118
    }
119
#endif
120

    
121
    /* compute bit reverse table */
122

    
123
    for(i=0;i<n;i++) {
124
        m=0;
125
        for(j=0;j<nbits;j++) {
126
            m |= ((i >> j) & 1) << (nbits-j-1);
127
        }
128
        s->revtab[i]=m;
129
    }
130
    return 0;
131
 fail:
132
    av_freep(&s->revtab);
133
    av_freep(&s->exptab);
134
    av_freep(&s->exptab1);
135
    return -1;
136
}
137

    
138
/* butter fly op */
139
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
140
{\
141
  FFTSample ax, ay, bx, by;\
142
  bx=pre1;\
143
  by=pim1;\
144
  ax=qre1;\
145
  ay=qim1;\
146
  pre = (bx + ax);\
147
  pim = (by + ay);\
148
  qre = (bx - ax);\
149
  qim = (by - ay);\
150
}
151

    
152
#define MUL16(a,b) ((a) * (b))
153

    
154
#define CMUL(pre, pim, are, aim, bre, bim) \
155
{\
156
   pre = (MUL16(are, bre) - MUL16(aim, bim));\
157
   pim = (MUL16(are, bim) + MUL16(bre, aim));\
158
}
159

    
160
/**
161
 * Do a complex FFT with the parameters defined in ff_fft_init(). The
162
 * input data must be permuted before with s->revtab table. No
163
 * 1.0/sqrt(n) normalization is done.
164
 */
165
void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
166
{
167
    int ln = s->nbits;
168
    int j, np, np2;
169
    int nblocks, nloops;
170
    register FFTComplex *p, *q;
171
    FFTComplex *exptab = s->exptab;
172
    int l;
173
    FFTSample tmp_re, tmp_im;
174

    
175
    np = 1 << ln;
176

    
177
    /* pass 0 */
178

    
179
    p=&z[0];
180
    j=(np >> 1);
181
    do {
182
        BF(p[0].re, p[0].im, p[1].re, p[1].im,
183
           p[0].re, p[0].im, p[1].re, p[1].im);
184
        p+=2;
185
    } while (--j != 0);
186

    
187
    /* pass 1 */
188

    
189

    
190
    p=&z[0];
191
    j=np >> 2;
192
    if (s->inverse) {
193
        do {
194
            BF(p[0].re, p[0].im, p[2].re, p[2].im,
195
               p[0].re, p[0].im, p[2].re, p[2].im);
196
            BF(p[1].re, p[1].im, p[3].re, p[3].im,
197
               p[1].re, p[1].im, -p[3].im, p[3].re);
198
            p+=4;
199
        } while (--j != 0);
200
    } else {
201
        do {
202
            BF(p[0].re, p[0].im, p[2].re, p[2].im,
203
               p[0].re, p[0].im, p[2].re, p[2].im);
204
            BF(p[1].re, p[1].im, p[3].re, p[3].im,
205
               p[1].re, p[1].im, p[3].im, -p[3].re);
206
            p+=4;
207
        } while (--j != 0);
208
    }
209
    /* pass 2 .. ln-1 */
210

    
211
    nblocks = np >> 3;
212
    nloops = 1 << 2;
213
    np2 = np >> 1;
214
    do {
215
        p = z;
216
        q = z + nloops;
217
        for (j = 0; j < nblocks; ++j) {
218
            BF(p->re, p->im, q->re, q->im,
219
               p->re, p->im, q->re, q->im);
220

    
221
            p++;
222
            q++;
223
            for(l = nblocks; l < np2; l += nblocks) {
224
                CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
225
                BF(p->re, p->im, q->re, q->im,
226
                   p->re, p->im, tmp_re, tmp_im);
227
                p++;
228
                q++;
229
            }
230

    
231
            p += nloops;
232
            q += nloops;
233
        }
234
        nblocks = nblocks >> 1;
235
        nloops = nloops << 1;
236
    } while (nblocks != 0);
237
}
238

    
239
/**
240
 * Do the permutation needed BEFORE calling ff_fft_calc()
241
 */
242
void ff_fft_permute(FFTContext *s, FFTComplex *z)
243
{
244
    int j, k, np;
245
    FFTComplex tmp;
246
    const uint16_t *revtab = s->revtab;
247

    
248
    /* reverse */
249
    np = 1 << s->nbits;
250
    for(j=0;j<np;j++) {
251
        k = revtab[j];
252
        if (k < j) {
253
            tmp = z[k];
254
            z[k] = z[j];
255
            z[j] = tmp;
256
        }
257
    }
258
}
259

    
260
void ff_fft_end(FFTContext *s)
261
{
262
    av_freep(&s->revtab);
263
    av_freep(&s->exptab);
264
    av_freep(&s->exptab1);
265
}
266