ffmpeg / libavcodec / vp8.c @ 968570d6
History | View | Annotate | Download (56 KB)
1 |
/**
|
---|---|
2 |
* VP8 compatible video decoder
|
3 |
*
|
4 |
* Copyright (C) 2010 David Conrad
|
5 |
* Copyright (C) 2010 Ronald S. Bultje
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
#include "avcodec.h" |
25 |
#include "vp56.h" |
26 |
#include "vp8data.h" |
27 |
#include "vp8dsp.h" |
28 |
#include "h264pred.h" |
29 |
#include "rectangle.h" |
30 |
|
31 |
typedef struct { |
32 |
uint8_t filter_level; |
33 |
uint8_t inner_limit; |
34 |
} VP8FilterStrength; |
35 |
|
36 |
typedef struct { |
37 |
uint8_t segment; |
38 |
uint8_t skip; |
39 |
// todo: make it possible to check for at least (i4x4 or split_mv)
|
40 |
// in one op. are others needed?
|
41 |
uint8_t mode; |
42 |
uint8_t ref_frame; |
43 |
uint8_t partitioning; |
44 |
VP56mv mv; |
45 |
VP56mv bmv[16];
|
46 |
} VP8Macroblock; |
47 |
|
48 |
typedef struct { |
49 |
AVCodecContext *avctx; |
50 |
DSPContext dsp; |
51 |
VP8DSPContext vp8dsp; |
52 |
H264PredContext hpc; |
53 |
vp8_mc_func put_pixels_tab[3][3][3]; |
54 |
AVFrame frames[4];
|
55 |
AVFrame *framep[4];
|
56 |
uint8_t *edge_emu_buffer; |
57 |
VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
|
58 |
int profile;
|
59 |
|
60 |
int mb_width; /* number of horizontal MB */ |
61 |
int mb_height; /* number of vertical MB */ |
62 |
int linesize;
|
63 |
int uvlinesize;
|
64 |
|
65 |
int keyframe;
|
66 |
int invisible;
|
67 |
int update_last; ///< update VP56_FRAME_PREVIOUS with the current one |
68 |
int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so |
69 |
int update_altref;
|
70 |
int deblock_filter;
|
71 |
|
72 |
/**
|
73 |
* If this flag is not set, all the probability updates
|
74 |
* are discarded after this frame is decoded.
|
75 |
*/
|
76 |
int update_probabilities;
|
77 |
|
78 |
/**
|
79 |
* All coefficients are contained in separate arith coding contexts.
|
80 |
* There can be 1, 2, 4, or 8 of these after the header context.
|
81 |
*/
|
82 |
int num_coeff_partitions;
|
83 |
VP56RangeCoder coeff_partition[8];
|
84 |
|
85 |
VP8Macroblock *macroblocks; |
86 |
VP8Macroblock *macroblocks_base; |
87 |
VP8FilterStrength *filter_strength; |
88 |
int mb_stride;
|
89 |
|
90 |
uint8_t *intra4x4_pred_mode; |
91 |
uint8_t *intra4x4_pred_mode_base; |
92 |
int b4_stride;
|
93 |
|
94 |
/**
|
95 |
* Cache of the top row needed for intra prediction
|
96 |
* 16 for luma, 8 for each chroma plane
|
97 |
*/
|
98 |
uint8_t (*top_border)[16+8+8]; |
99 |
|
100 |
/**
|
101 |
* For coeff decode, we need to know whether the above block had non-zero
|
102 |
* coefficients. This means for each macroblock, we need data for 4 luma
|
103 |
* blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
|
104 |
* per macroblock. We keep the last row in top_nnz.
|
105 |
*/
|
106 |
uint8_t (*top_nnz)[9];
|
107 |
DECLARE_ALIGNED(8, uint8_t, left_nnz)[9]; |
108 |
|
109 |
/**
|
110 |
* This is the index plus one of the last non-zero coeff
|
111 |
* for each of the blocks in the current macroblock.
|
112 |
* So, 0 -> no coeffs
|
113 |
* 1 -> dc-only (special transform)
|
114 |
* 2+-> full transform
|
115 |
*/
|
116 |
DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4]; |
117 |
DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16]; |
118 |
uint8_t intra4x4_pred_mode_mb[16];
|
119 |
|
120 |
int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock |
121 |
|
122 |
int mbskip_enabled;
|
123 |
int sign_bias[4]; ///< one state [0, 1] per ref frame type |
124 |
|
125 |
/**
|
126 |
* Base parameters for segmentation, i.e. per-macroblock parameters.
|
127 |
* These must be kept unchanged even if segmentation is not used for
|
128 |
* a frame, since the values persist between interframes.
|
129 |
*/
|
130 |
struct {
|
131 |
int enabled;
|
132 |
int absolute_vals;
|
133 |
int update_map;
|
134 |
int8_t base_quant[4];
|
135 |
int8_t filter_level[4]; ///< base loop filter level |
136 |
} segmentation; |
137 |
|
138 |
/**
|
139 |
* Macroblocks can have one of 4 different quants in a frame when
|
140 |
* segmentation is enabled.
|
141 |
* If segmentation is disabled, only the first segment's values are used.
|
142 |
*/
|
143 |
struct {
|
144 |
// [0] - DC qmul [1] - AC qmul
|
145 |
int16_t luma_qmul[2];
|
146 |
int16_t luma_dc_qmul[2]; ///< luma dc-only block quant |
147 |
int16_t chroma_qmul[2];
|
148 |
} qmat[4];
|
149 |
|
150 |
struct {
|
151 |
int simple;
|
152 |
int level;
|
153 |
int sharpness;
|
154 |
} filter; |
155 |
|
156 |
struct {
|
157 |
int enabled; ///< whether each mb can have a different strength based on mode/ref |
158 |
|
159 |
/**
|
160 |
* filter strength adjustment for the following macroblock modes:
|
161 |
* [0] - i4x4
|
162 |
* [1] - zero mv
|
163 |
* [2] - inter modes except for zero or split mv
|
164 |
* [3] - split mv
|
165 |
* i16x16 modes never have any adjustment
|
166 |
*/
|
167 |
int8_t mode[4];
|
168 |
|
169 |
/**
|
170 |
* filter strength adjustment for macroblocks that reference:
|
171 |
* [0] - intra / VP56_FRAME_CURRENT
|
172 |
* [1] - VP56_FRAME_PREVIOUS
|
173 |
* [2] - VP56_FRAME_GOLDEN
|
174 |
* [3] - altref / VP56_FRAME_GOLDEN2
|
175 |
*/
|
176 |
int8_t ref[4];
|
177 |
} lf_delta; |
178 |
|
179 |
/**
|
180 |
* These are all of the updatable probabilities for binary decisions.
|
181 |
* They are only implictly reset on keyframes, making it quite likely
|
182 |
* for an interframe to desync if a prior frame's header was corrupt
|
183 |
* or missing outright!
|
184 |
*/
|
185 |
struct {
|
186 |
uint8_t segmentid[3];
|
187 |
uint8_t mbskip; |
188 |
uint8_t intra; |
189 |
uint8_t last; |
190 |
uint8_t golden; |
191 |
uint8_t pred16x16[4];
|
192 |
uint8_t pred8x8c[3];
|
193 |
uint8_t token[4][8][3][NUM_DCT_TOKENS-1]; |
194 |
uint8_t mvc[2][19]; |
195 |
} prob[2];
|
196 |
} VP8Context; |
197 |
|
198 |
#define RL24(p) (AV_RL16(p) + ((p)[2] << 16)) |
199 |
|
200 |
static void vp8_decode_flush(AVCodecContext *avctx) |
201 |
{ |
202 |
VP8Context *s = avctx->priv_data; |
203 |
int i;
|
204 |
|
205 |
for (i = 0; i < 4; i++) |
206 |
if (s->frames[i].data[0]) |
207 |
avctx->release_buffer(avctx, &s->frames[i]); |
208 |
memset(s->framep, 0, sizeof(s->framep)); |
209 |
|
210 |
av_freep(&s->macroblocks_base); |
211 |
av_freep(&s->intra4x4_pred_mode_base); |
212 |
av_freep(&s->top_nnz); |
213 |
av_freep(&s->edge_emu_buffer); |
214 |
av_freep(&s->top_border); |
215 |
|
216 |
s->macroblocks = NULL;
|
217 |
s->intra4x4_pred_mode = NULL;
|
218 |
} |
219 |
|
220 |
static int update_dimensions(VP8Context *s, int width, int height) |
221 |
{ |
222 |
int i;
|
223 |
|
224 |
if (avcodec_check_dimensions(s->avctx, width, height))
|
225 |
return AVERROR_INVALIDDATA;
|
226 |
|
227 |
vp8_decode_flush(s->avctx); |
228 |
|
229 |
avcodec_set_dimensions(s->avctx, width, height); |
230 |
|
231 |
s->mb_width = (s->avctx->coded_width +15) / 16; |
232 |
s->mb_height = (s->avctx->coded_height+15) / 16; |
233 |
|
234 |
// we allocate a border around the top/left of intra4x4 modes
|
235 |
// this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
|
236 |
s->mb_stride = s->mb_width+1;
|
237 |
s->b4_stride = 4*s->mb_stride;
|
238 |
|
239 |
s->macroblocks_base = av_mallocz(s->mb_stride*(s->mb_height+1)*sizeof(*s->macroblocks)); |
240 |
s->filter_strength = av_mallocz(s->mb_stride*sizeof(*s->filter_strength));
|
241 |
s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1)); |
242 |
s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
|
243 |
s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border)); |
244 |
|
245 |
if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_base || !s->top_nnz || !s->top_border)
|
246 |
return AVERROR(ENOMEM);
|
247 |
|
248 |
s->macroblocks = s->macroblocks_base + 1 + s->mb_stride;
|
249 |
s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride;
|
250 |
|
251 |
memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride); |
252 |
for (i = 0; i < 4*s->mb_height; i++) |
253 |
s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED;
|
254 |
|
255 |
return 0; |
256 |
} |
257 |
|
258 |
static void parse_segment_info(VP8Context *s) |
259 |
{ |
260 |
VP56RangeCoder *c = &s->c; |
261 |
int i;
|
262 |
|
263 |
s->segmentation.update_map = vp8_rac_get(c); |
264 |
|
265 |
if (vp8_rac_get(c)) { // update segment feature data |
266 |
s->segmentation.absolute_vals = vp8_rac_get(c); |
267 |
|
268 |
for (i = 0; i < 4; i++) |
269 |
s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
|
270 |
|
271 |
for (i = 0; i < 4; i++) |
272 |
s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
|
273 |
} |
274 |
if (s->segmentation.update_map)
|
275 |
for (i = 0; i < 3; i++) |
276 |
s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; |
277 |
} |
278 |
|
279 |
static void update_lf_deltas(VP8Context *s) |
280 |
{ |
281 |
VP56RangeCoder *c = &s->c; |
282 |
int i;
|
283 |
|
284 |
for (i = 0; i < 4; i++) |
285 |
s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
|
286 |
|
287 |
for (i = 0; i < 4; i++) |
288 |
s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
|
289 |
} |
290 |
|
291 |
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) |
292 |
{ |
293 |
const uint8_t *sizes = buf;
|
294 |
int i;
|
295 |
|
296 |
s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2); |
297 |
|
298 |
buf += 3*(s->num_coeff_partitions-1); |
299 |
buf_size -= 3*(s->num_coeff_partitions-1); |
300 |
if (buf_size < 0) |
301 |
return -1; |
302 |
|
303 |
for (i = 0; i < s->num_coeff_partitions-1; i++) { |
304 |
int size = RL24(sizes + 3*i); |
305 |
if (buf_size - size < 0) |
306 |
return -1; |
307 |
|
308 |
vp56_init_range_decoder(&s->coeff_partition[i], buf, size); |
309 |
buf += size; |
310 |
buf_size -= size; |
311 |
} |
312 |
vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size); |
313 |
|
314 |
return 0; |
315 |
} |
316 |
|
317 |
static void get_quants(VP8Context *s) |
318 |
{ |
319 |
VP56RangeCoder *c = &s->c; |
320 |
int i, base_qi;
|
321 |
|
322 |
int yac_qi = vp8_rac_get_uint(c, 7); |
323 |
int ydc_delta = vp8_rac_get_sint(c, 4); |
324 |
int y2dc_delta = vp8_rac_get_sint(c, 4); |
325 |
int y2ac_delta = vp8_rac_get_sint(c, 4); |
326 |
int uvdc_delta = vp8_rac_get_sint(c, 4); |
327 |
int uvac_delta = vp8_rac_get_sint(c, 4); |
328 |
|
329 |
for (i = 0; i < 4; i++) { |
330 |
if (s->segmentation.enabled) {
|
331 |
base_qi = s->segmentation.base_quant[i]; |
332 |
if (!s->segmentation.absolute_vals)
|
333 |
base_qi += yac_qi; |
334 |
} else
|
335 |
base_qi = yac_qi; |
336 |
|
337 |
s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)]; |
338 |
s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)]; |
339 |
s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)]; |
340 |
s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100; |
341 |
s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)]; |
342 |
s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)]; |
343 |
|
344 |
s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); |
345 |
s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); |
346 |
} |
347 |
} |
348 |
|
349 |
/**
|
350 |
* Determine which buffers golden and altref should be updated with after this frame.
|
351 |
* The spec isn't clear here, so I'm going by my understanding of what libvpx does
|
352 |
*
|
353 |
* Intra frames update all 3 references
|
354 |
* Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
|
355 |
* If the update (golden|altref) flag is set, it's updated with the current frame
|
356 |
* if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
|
357 |
* If the flag is not set, the number read means:
|
358 |
* 0: no update
|
359 |
* 1: VP56_FRAME_PREVIOUS
|
360 |
* 2: update golden with altref, or update altref with golden
|
361 |
*/
|
362 |
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref) |
363 |
{ |
364 |
VP56RangeCoder *c = &s->c; |
365 |
|
366 |
if (update)
|
367 |
return VP56_FRAME_CURRENT;
|
368 |
|
369 |
switch (vp8_rac_get_uint(c, 2)) { |
370 |
case 1: |
371 |
return VP56_FRAME_PREVIOUS;
|
372 |
case 2: |
373 |
return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
|
374 |
} |
375 |
return VP56_FRAME_NONE;
|
376 |
} |
377 |
|
378 |
static void update_refs(VP8Context *s) |
379 |
{ |
380 |
VP56RangeCoder *c = &s->c; |
381 |
|
382 |
int update_golden = vp8_rac_get(c);
|
383 |
int update_altref = vp8_rac_get(c);
|
384 |
|
385 |
s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN); |
386 |
s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2); |
387 |
} |
388 |
|
389 |
static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) |
390 |
{ |
391 |
VP56RangeCoder *c = &s->c; |
392 |
int header_size, hscale, vscale, i, j, k, l, ret;
|
393 |
int width = s->avctx->width;
|
394 |
int height = s->avctx->height;
|
395 |
|
396 |
s->keyframe = !(buf[0] & 1); |
397 |
s->profile = (buf[0]>>1) & 7; |
398 |
s->invisible = !(buf[0] & 0x10); |
399 |
header_size = RL24(buf) >> 5;
|
400 |
buf += 3;
|
401 |
buf_size -= 3;
|
402 |
|
403 |
if (s->profile > 3) |
404 |
av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
|
405 |
|
406 |
if (!s->profile)
|
407 |
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
|
408 |
else // profile 1-3 use bilinear, 4+ aren't defined so whatever |
409 |
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
|
410 |
|
411 |
if (header_size > buf_size - 7*s->keyframe) { |
412 |
av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
|
413 |
return AVERROR_INVALIDDATA;
|
414 |
} |
415 |
|
416 |
if (s->keyframe) {
|
417 |
if (RL24(buf) != 0x2a019d) { |
418 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf));
|
419 |
return AVERROR_INVALIDDATA;
|
420 |
} |
421 |
width = AV_RL16(buf+3) & 0x3fff; |
422 |
height = AV_RL16(buf+5) & 0x3fff; |
423 |
hscale = buf[4] >> 6; |
424 |
vscale = buf[6] >> 6; |
425 |
buf += 7;
|
426 |
buf_size -= 7;
|
427 |
|
428 |
if (hscale || vscale)
|
429 |
av_log_missing_feature(s->avctx, "Upscaling", 1); |
430 |
|
431 |
s->update_golden = s->update_altref = VP56_FRAME_CURRENT; |
432 |
memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token));
|
433 |
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
|
434 |
memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
|
435 |
memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
|
436 |
memset(&s->segmentation, 0, sizeof(s->segmentation)); |
437 |
} |
438 |
|
439 |
if (!s->macroblocks_base || /* first frame */ |
440 |
width != s->avctx->width || height != s->avctx->height) { |
441 |
if ((ret = update_dimensions(s, width, height) < 0)) |
442 |
return ret;
|
443 |
} |
444 |
|
445 |
vp56_init_range_decoder(c, buf, header_size); |
446 |
buf += header_size; |
447 |
buf_size -= header_size; |
448 |
|
449 |
if (s->keyframe) {
|
450 |
if (vp8_rac_get(c))
|
451 |
av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
|
452 |
vp8_rac_get(c); // whether we can skip clamping in dsp functions
|
453 |
} |
454 |
|
455 |
if ((s->segmentation.enabled = vp8_rac_get(c)))
|
456 |
parse_segment_info(s); |
457 |
else
|
458 |
s->segmentation.update_map = 0; // FIXME: move this to some init function? |
459 |
|
460 |
s->filter.simple = vp8_rac_get(c); |
461 |
s->filter.level = vp8_rac_get_uint(c, 6);
|
462 |
s->filter.sharpness = vp8_rac_get_uint(c, 3);
|
463 |
|
464 |
if ((s->lf_delta.enabled = vp8_rac_get(c)))
|
465 |
if (vp8_rac_get(c))
|
466 |
update_lf_deltas(s); |
467 |
|
468 |
if (setup_partitions(s, buf, buf_size)) {
|
469 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
|
470 |
return AVERROR_INVALIDDATA;
|
471 |
} |
472 |
|
473 |
get_quants(s); |
474 |
|
475 |
if (!s->keyframe) {
|
476 |
update_refs(s); |
477 |
s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); |
478 |
s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
|
479 |
} |
480 |
|
481 |
// if we aren't saving this frame's probabilities for future frames,
|
482 |
// make a copy of the current probabilities
|
483 |
if (!(s->update_probabilities = vp8_rac_get(c)))
|
484 |
s->prob[1] = s->prob[0]; |
485 |
|
486 |
s->update_last = s->keyframe || vp8_rac_get(c); |
487 |
|
488 |
for (i = 0; i < 4; i++) |
489 |
for (j = 0; j < 8; j++) |
490 |
for (k = 0; k < 3; k++) |
491 |
for (l = 0; l < NUM_DCT_TOKENS-1; l++) |
492 |
if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l]))
|
493 |
s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8);
|
494 |
|
495 |
if ((s->mbskip_enabled = vp8_rac_get(c)))
|
496 |
s->prob->mbskip = vp8_rac_get_uint(c, 8);
|
497 |
|
498 |
if (!s->keyframe) {
|
499 |
s->prob->intra = vp8_rac_get_uint(c, 8);
|
500 |
s->prob->last = vp8_rac_get_uint(c, 8);
|
501 |
s->prob->golden = vp8_rac_get_uint(c, 8);
|
502 |
|
503 |
if (vp8_rac_get(c))
|
504 |
for (i = 0; i < 4; i++) |
505 |
s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
|
506 |
if (vp8_rac_get(c))
|
507 |
for (i = 0; i < 3; i++) |
508 |
s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
|
509 |
|
510 |
// 17.2 MV probability update
|
511 |
for (i = 0; i < 2; i++) |
512 |
for (j = 0; j < 19; j++) |
513 |
if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j]))
|
514 |
s->prob->mvc[i][j] = vp8_rac_get_nn(c); |
515 |
} |
516 |
|
517 |
return 0; |
518 |
} |
519 |
|
520 |
static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, |
521 |
int mb_x, int mb_y) |
522 |
{ |
523 |
#define MARGIN (16 << 2) |
524 |
dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
|
525 |
((s->mb_width - 1 - mb_x) << 6) + MARGIN); |
526 |
dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
|
527 |
((s->mb_height - 1 - mb_y) << 6) + MARGIN); |
528 |
} |
529 |
|
530 |
static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, |
531 |
VP56mv near[2], VP56mv *best, uint8_t cnt[4]) |
532 |
{ |
533 |
int mb_stride = s->mb_stride;
|
534 |
VP8Macroblock *mb_edge[3] = { mb - mb_stride /* top */, |
535 |
mb - 1 /* left */, |
536 |
mb - mb_stride - 1 /* top-left */ }; |
537 |
enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
|
538 |
VP56mv near_mv[4] = {{ 0 }}; |
539 |
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
|
540 |
int idx = CNT_ZERO;
|
541 |
int best_idx = CNT_ZERO;
|
542 |
int cur_sign_bias = s->sign_bias[mb->ref_frame];
|
543 |
int *sign_bias = s->sign_bias;
|
544 |
|
545 |
/* Process MB on top, left and top-left */
|
546 |
#define MV_EDGE_CHECK(n)\
|
547 |
{\ |
548 |
VP8Macroblock *edge = mb_edge[n];\ |
549 |
int edge_ref = edge->ref_frame;\
|
550 |
if (edge_ref != VP56_FRAME_CURRENT) {\
|
551 |
uint32_t mv = AV_RN32A(&edge->mv);\ |
552 |
if (mv) {\
|
553 |
if (cur_sign_bias != sign_bias[edge_ref]) {\
|
554 |
/* SWAR negate of the values in mv. */\
|
555 |
mv = ((mv&0x80008000) + 0x00010001) ^ (mv&0x7fff7fff);\ |
556 |
}\ |
557 |
if (!n || mv != AV_RN32A(&near_mv[idx]))\
|
558 |
AV_WN32A(&near_mv[++idx], mv);\ |
559 |
cnt[idx] += 1 + (n != 2);\ |
560 |
} else\
|
561 |
cnt[CNT_ZERO] += 1 + (n != 2);\ |
562 |
}\ |
563 |
} |
564 |
MV_EDGE_CHECK(0)
|
565 |
MV_EDGE_CHECK(1)
|
566 |
MV_EDGE_CHECK(2)
|
567 |
|
568 |
/* If we have three distinct MVs, merge first and last if they're the same */
|
569 |
if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT])) |
570 |
cnt[CNT_NEAREST] += 1;
|
571 |
|
572 |
cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + |
573 |
(mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
|
574 |
(mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); |
575 |
|
576 |
/* Swap near and nearest if necessary */
|
577 |
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
|
578 |
FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]); |
579 |
FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); |
580 |
} |
581 |
|
582 |
/* Choose the best mv out of 0,0 and the nearest mv */
|
583 |
if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
|
584 |
best_idx = CNT_NEAREST; |
585 |
|
586 |
clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y); |
587 |
near[0] = near_mv[CNT_NEAREST];
|
588 |
near[1] = near_mv[CNT_NEAR];
|
589 |
} |
590 |
|
591 |
/**
|
592 |
* Motion vector coding, 17.1.
|
593 |
*/
|
594 |
static int read_mv_component(VP56RangeCoder *c, const uint8_t *p) |
595 |
{ |
596 |
int x = 0; |
597 |
|
598 |
if (vp56_rac_get_prob(c, p[0])) { |
599 |
int i;
|
600 |
|
601 |
for (i = 0; i < 3; i++) |
602 |
x += vp56_rac_get_prob(c, p[9 + i]) << i;
|
603 |
for (i = 9; i > 3; i--) |
604 |
x += vp56_rac_get_prob(c, p[9 + i]) << i;
|
605 |
if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12])) |
606 |
x += 8;
|
607 |
} else
|
608 |
x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]);
|
609 |
|
610 |
return (x && vp56_rac_get_prob(c, p[1])) ? -x : x; |
611 |
} |
612 |
|
613 |
static const uint8_t *get_submv_prob(uint32_t left, uint32_t top) |
614 |
{ |
615 |
if (left == top)
|
616 |
return vp8_submv_prob[4-!!left]; |
617 |
if (!top)
|
618 |
return vp8_submv_prob[2]; |
619 |
return vp8_submv_prob[1-!!left]; |
620 |
} |
621 |
|
622 |
/**
|
623 |
* Split motion vector prediction, 16.4.
|
624 |
* @returns the number of motion vectors parsed (2, 4 or 16)
|
625 |
*/
|
626 |
static int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, |
627 |
VP8Macroblock *mb, VP56mv *base_mv) |
628 |
{ |
629 |
int part_idx = mb->partitioning =
|
630 |
vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob); |
631 |
int n, num = vp8_mbsplit_count[part_idx];
|
632 |
VP8Macroblock *top_mb = &mb[-s->mb_stride]; |
633 |
VP8Macroblock *left_mb = &mb[-1];
|
634 |
const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
|
635 |
*mbsplits_top = vp8_mbsplits[top_mb->partitioning], |
636 |
*mbsplits_cur = vp8_mbsplits[part_idx], |
637 |
*firstidx = vp8_mbfirstidx[part_idx]; |
638 |
VP56mv *top_mv = top_mb->bmv; |
639 |
VP56mv *left_mv = left_mb->bmv; |
640 |
VP56mv *cur_mv = mb->bmv; |
641 |
|
642 |
for (n = 0; n < num; n++) { |
643 |
int k = firstidx[n];
|
644 |
uint32_t left, above; |
645 |
const uint8_t *submv_prob;
|
646 |
|
647 |
if (!(k & 3)) |
648 |
left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
|
649 |
else
|
650 |
left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
|
651 |
if (k <= 3) |
652 |
above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
|
653 |
else
|
654 |
above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
|
655 |
|
656 |
submv_prob = get_submv_prob(left, above); |
657 |
|
658 |
switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) {
|
659 |
case VP8_SUBMVMODE_NEW4X4:
|
660 |
mb->bmv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]);
|
661 |
mb->bmv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]);
|
662 |
break;
|
663 |
case VP8_SUBMVMODE_ZERO4X4:
|
664 |
AV_WN32A(&mb->bmv[n], 0);
|
665 |
break;
|
666 |
case VP8_SUBMVMODE_LEFT4X4:
|
667 |
AV_WN32A(&mb->bmv[n], left); |
668 |
break;
|
669 |
case VP8_SUBMVMODE_TOP4X4:
|
670 |
AV_WN32A(&mb->bmv[n], above); |
671 |
break;
|
672 |
} |
673 |
} |
674 |
|
675 |
return num;
|
676 |
} |
677 |
|
678 |
static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4, |
679 |
int stride, int keyframe) |
680 |
{ |
681 |
int x, y, t, l, i;
|
682 |
|
683 |
if (keyframe) {
|
684 |
const uint8_t *ctx;
|
685 |
for (y = 0; y < 4; y++) { |
686 |
for (x = 0; x < 4; x++) { |
687 |
t = intra4x4[x - stride]; |
688 |
l = intra4x4[x - 1];
|
689 |
ctx = vp8_pred4x4_prob_intra[t][l]; |
690 |
intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx); |
691 |
} |
692 |
intra4x4 += stride; |
693 |
} |
694 |
} else {
|
695 |
for (i = 0; i < 16; i++) |
696 |
intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter); |
697 |
} |
698 |
} |
699 |
|
700 |
static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, |
701 |
uint8_t *intra4x4) |
702 |
{ |
703 |
VP56RangeCoder *c = &s->c; |
704 |
|
705 |
if (s->segmentation.update_map)
|
706 |
mb->segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid); |
707 |
|
708 |
mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
|
709 |
|
710 |
if (s->keyframe) {
|
711 |
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra); |
712 |
|
713 |
if (mb->mode == MODE_I4x4) {
|
714 |
decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1);
|
715 |
} else
|
716 |
fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1); |
717 |
|
718 |
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra); |
719 |
mb->ref_frame = VP56_FRAME_CURRENT; |
720 |
} else if (vp56_rac_get_prob(c, s->prob->intra)) { |
721 |
VP56mv near[2], best;
|
722 |
uint8_t cnt[4] = { 0 }; |
723 |
uint8_t p[4];
|
724 |
|
725 |
// inter MB, 16.2
|
726 |
if (vp56_rac_get_prob(c, s->prob->last))
|
727 |
mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ? |
728 |
VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
|
729 |
else
|
730 |
mb->ref_frame = VP56_FRAME_PREVIOUS; |
731 |
|
732 |
// motion vectors, 16.3
|
733 |
find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt); |
734 |
p[0] = vp8_mode_contexts[cnt[0]][0]; |
735 |
p[1] = vp8_mode_contexts[cnt[1]][1]; |
736 |
p[2] = vp8_mode_contexts[cnt[2]][2]; |
737 |
p[3] = vp8_mode_contexts[cnt[3]][3]; |
738 |
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p); |
739 |
switch (mb->mode) {
|
740 |
case VP8_MVMODE_SPLIT:
|
741 |
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, &best) - 1];
|
742 |
break;
|
743 |
case VP8_MVMODE_ZERO:
|
744 |
mb->mv.x = 0;
|
745 |
mb->mv.y = 0;
|
746 |
break;
|
747 |
case VP8_MVMODE_NEAREST:
|
748 |
clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
|
749 |
break;
|
750 |
case VP8_MVMODE_NEAR:
|
751 |
clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
|
752 |
break;
|
753 |
case VP8_MVMODE_NEW:
|
754 |
mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]);
|
755 |
mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]);
|
756 |
break;
|
757 |
} |
758 |
if (mb->mode != VP8_MVMODE_SPLIT) {
|
759 |
mb->partitioning = VP8_SPLITMVMODE_NONE; |
760 |
mb->bmv[0] = mb->mv;
|
761 |
} |
762 |
} else {
|
763 |
// intra MB, 16.1
|
764 |
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); |
765 |
|
766 |
if (mb->mode == MODE_I4x4)
|
767 |
decode_intra4x4_modes(c, intra4x4, 4, 0); |
768 |
|
769 |
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c); |
770 |
mb->ref_frame = VP56_FRAME_CURRENT; |
771 |
} |
772 |
} |
773 |
|
774 |
/**
|
775 |
* @param c arithmetic bitstream reader context
|
776 |
* @param block destination for block coefficients
|
777 |
* @param probs probabilities to use when reading trees from the bitstream
|
778 |
* @param i initial coeff index, 0 unless a separate DC block is coded
|
779 |
* @param zero_nhood the initial prediction context for number of surrounding
|
780 |
* all-zero blocks (only left/top, so 0-2)
|
781 |
* @param qmul array holding the dc/ac dequant factor at position 0/1
|
782 |
* @return 0 if no coeffs were decoded
|
783 |
* otherwise, the index of the last coeff decoded plus one
|
784 |
*/
|
785 |
static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16], |
786 |
uint8_t probs[8][3][NUM_DCT_TOKENS-1], |
787 |
int i, int zero_nhood, int16_t qmul[2]) |
788 |
{ |
789 |
int token, nonzero = 0; |
790 |
int offset = 0; |
791 |
|
792 |
for (; i < 16; i++) { |
793 |
token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset); |
794 |
|
795 |
if (token == DCT_EOB)
|
796 |
break;
|
797 |
else if (token >= DCT_CAT1) { |
798 |
int cat = token-DCT_CAT1;
|
799 |
token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]); |
800 |
token += vp8_dct_cat_offset[cat]; |
801 |
} |
802 |
|
803 |
// after the first token, the non-zero prediction context becomes
|
804 |
// based on the last decoded coeff
|
805 |
if (!token) {
|
806 |
zero_nhood = 0;
|
807 |
offset = 1;
|
808 |
continue;
|
809 |
} else if (token == 1) |
810 |
zero_nhood = 1;
|
811 |
else
|
812 |
zero_nhood = 2;
|
813 |
|
814 |
// todo: full [16] qmat? load into register?
|
815 |
block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i]; |
816 |
nonzero = i+1;
|
817 |
offset = 0;
|
818 |
} |
819 |
return nonzero;
|
820 |
} |
821 |
|
822 |
static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, |
823 |
uint8_t t_nnz[9], uint8_t l_nnz[9]) |
824 |
{ |
825 |
LOCAL_ALIGNED_16(DCTELEM, dc,[16]);
|
826 |
int i, x, y, luma_start = 0, luma_ctx = 3; |
827 |
int nnz_pred, nnz, nnz_total = 0; |
828 |
int segment = s->segmentation.enabled ? mb->segment : 0; |
829 |
|
830 |
s->dsp.clear_blocks((DCTELEM *)s->block); |
831 |
|
832 |
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
|
833 |
AV_ZERO128(dc); |
834 |
AV_ZERO128(dc+8);
|
835 |
nnz_pred = t_nnz[8] + l_nnz[8]; |
836 |
|
837 |
// decode DC values and do hadamard
|
838 |
nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred, |
839 |
s->qmat[segment].luma_dc_qmul); |
840 |
l_nnz[8] = t_nnz[8] = !!nnz; |
841 |
nnz_total += nnz; |
842 |
s->vp8dsp.vp8_luma_dc_wht(s->block, dc); |
843 |
luma_start = 1;
|
844 |
luma_ctx = 0;
|
845 |
} |
846 |
|
847 |
// luma blocks
|
848 |
for (y = 0; y < 4; y++) |
849 |
for (x = 0; x < 4; x++) { |
850 |
nnz_pred = l_nnz[y] + t_nnz[x]; |
851 |
nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start, |
852 |
nnz_pred, s->qmat[segment].luma_qmul); |
853 |
// nnz+luma_start may be one more than the actual last index, but we don't care
|
854 |
s->non_zero_count_cache[y][x] = nnz + luma_start; |
855 |
t_nnz[x] = l_nnz[y] = !!nnz; |
856 |
nnz_total += nnz; |
857 |
} |
858 |
|
859 |
// chroma blocks
|
860 |
// TODO: what to do about dimensions? 2nd dim for luma is x,
|
861 |
// but for chroma it's (y<<1)|x
|
862 |
for (i = 4; i < 6; i++) |
863 |
for (y = 0; y < 2; y++) |
864 |
for (x = 0; x < 2; x++) { |
865 |
nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x]; |
866 |
nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0, |
867 |
nnz_pred, s->qmat[segment].chroma_qmul); |
868 |
s->non_zero_count_cache[i][(y<<1)+x] = nnz;
|
869 |
t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz; |
870 |
nnz_total += nnz; |
871 |
} |
872 |
|
873 |
// if there were no coded coeffs despite the macroblock not being marked skip,
|
874 |
// we MUST not do the inner loop filter and should not do IDCT
|
875 |
// Since skip isn't used for bitstream prediction, just manually set it.
|
876 |
if (!nnz_total)
|
877 |
mb->skip = 1;
|
878 |
} |
879 |
|
880 |
static av_always_inline
|
881 |
void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
|
882 |
int linesize, int uvlinesize, int simple) |
883 |
{ |
884 |
AV_COPY128(top_border, src_y + 15*linesize);
|
885 |
if (!simple) {
|
886 |
AV_COPY64(top_border+16, src_cb + 7*uvlinesize); |
887 |
AV_COPY64(top_border+24, src_cr + 7*uvlinesize); |
888 |
} |
889 |
} |
890 |
|
891 |
static av_always_inline
|
892 |
void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
|
893 |
int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width, |
894 |
int simple, int xchg) |
895 |
{ |
896 |
uint8_t *top_border_m1 = top_border-32; // for TL prediction |
897 |
src_y -= linesize; |
898 |
src_cb -= uvlinesize; |
899 |
src_cr -= uvlinesize; |
900 |
|
901 |
#define XCHG(a,b,xchg) do { \ |
902 |
if (xchg) AV_SWAP64(b,a); \
|
903 |
else AV_COPY64(b,a); \
|
904 |
} while (0) |
905 |
|
906 |
XCHG(top_border_m1+8, src_y-8, xchg); |
907 |
XCHG(top_border, src_y, xchg); |
908 |
XCHG(top_border+8, src_y+8, 1); |
909 |
if (mb_x < mb_width-1) |
910 |
XCHG(top_border+32, src_y+16, 1); |
911 |
|
912 |
// only copy chroma for normal loop filter
|
913 |
// or to initialize the top row to 127
|
914 |
if (!simple || !mb_y) {
|
915 |
XCHG(top_border_m1+16, src_cb-8, xchg); |
916 |
XCHG(top_border_m1+24, src_cr-8, xchg); |
917 |
XCHG(top_border+16, src_cb, 1); |
918 |
XCHG(top_border+24, src_cr, 1); |
919 |
} |
920 |
} |
921 |
|
922 |
static int check_intra_pred_mode(int mode, int mb_x, int mb_y) |
923 |
{ |
924 |
if (mode == DC_PRED8x8) {
|
925 |
if (!(mb_x|mb_y))
|
926 |
mode = DC_128_PRED8x8; |
927 |
else if (!mb_y) |
928 |
mode = LEFT_DC_PRED8x8; |
929 |
else if (!mb_x) |
930 |
mode = TOP_DC_PRED8x8; |
931 |
} |
932 |
return mode;
|
933 |
} |
934 |
|
935 |
static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, |
936 |
uint8_t *intra4x4, int mb_x, int mb_y) |
937 |
{ |
938 |
int x, y, mode, nnz, tr;
|
939 |
|
940 |
// for the first row, we need to run xchg_mb_border to init the top edge to 127
|
941 |
// otherwise, skip it if we aren't going to deblock
|
942 |
if (s->deblock_filter || !mb_y)
|
943 |
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], |
944 |
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
945 |
s->filter.simple, 1);
|
946 |
|
947 |
if (mb->mode < MODE_I4x4) {
|
948 |
mode = check_intra_pred_mode(mb->mode, mb_x, mb_y); |
949 |
s->hpc.pred16x16[mode](dst[0], s->linesize);
|
950 |
} else {
|
951 |
uint8_t *ptr = dst[0];
|
952 |
int stride = s->keyframe ? s->b4_stride : 4; |
953 |
|
954 |
// all blocks on the right edge of the macroblock use bottom edge
|
955 |
// the top macroblock for their topright edge
|
956 |
uint8_t *tr_right = ptr - s->linesize + 16;
|
957 |
|
958 |
// if we're on the right edge of the frame, said edge is extended
|
959 |
// from the top macroblock
|
960 |
if (mb_x == s->mb_width-1) { |
961 |
tr = tr_right[-1]*0x01010101; |
962 |
tr_right = (uint8_t *)&tr; |
963 |
} |
964 |
|
965 |
for (y = 0; y < 4; y++) { |
966 |
uint8_t *topright = ptr + 4 - s->linesize;
|
967 |
for (x = 0; x < 4; x++) { |
968 |
if (x == 3) |
969 |
topright = tr_right; |
970 |
|
971 |
s->hpc.pred4x4[intra4x4[x]](ptr+4*x, topright, s->linesize);
|
972 |
|
973 |
nnz = s->non_zero_count_cache[y][x]; |
974 |
if (nnz) {
|
975 |
if (nnz == 1) |
976 |
s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
|
977 |
else
|
978 |
s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
|
979 |
} |
980 |
topright += 4;
|
981 |
} |
982 |
|
983 |
ptr += 4*s->linesize;
|
984 |
intra4x4 += stride; |
985 |
} |
986 |
} |
987 |
|
988 |
mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y); |
989 |
s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
|
990 |
s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
|
991 |
|
992 |
if (s->deblock_filter || !mb_y)
|
993 |
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], |
994 |
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
995 |
s->filter.simple, 0);
|
996 |
} |
997 |
|
998 |
/**
|
999 |
* Generic MC function.
|
1000 |
*
|
1001 |
* @param s VP8 decoding context
|
1002 |
* @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
|
1003 |
* @param dst target buffer for block data at block position
|
1004 |
* @param src reference picture buffer at origin (0, 0)
|
1005 |
* @param mv motion vector (relative to block position) to get pixel data from
|
1006 |
* @param x_off horizontal position of block from origin (0, 0)
|
1007 |
* @param y_off vertical position of block from origin (0, 0)
|
1008 |
* @param block_w width of block (16, 8 or 4)
|
1009 |
* @param block_h height of block (always same as block_w)
|
1010 |
* @param width width of src/dst plane data
|
1011 |
* @param height height of src/dst plane data
|
1012 |
* @param linesize size of a single line of plane data, including padding
|
1013 |
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
|
1014 |
*/
|
1015 |
static inline void vp8_mc(VP8Context *s, int luma, |
1016 |
uint8_t *dst, uint8_t *src, const VP56mv *mv,
|
1017 |
int x_off, int y_off, int block_w, int block_h, |
1018 |
int width, int height, int linesize, |
1019 |
vp8_mc_func mc_func[3][3]) |
1020 |
{ |
1021 |
if (AV_RN32A(mv)) {
|
1022 |
static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 }; |
1023 |
int mx = (mv->x << luma)&7, mx_idx = idx[mx]; |
1024 |
int my = (mv->y << luma)&7, my_idx = idx[my]; |
1025 |
|
1026 |
x_off += mv->x >> (3 - luma);
|
1027 |
y_off += mv->y >> (3 - luma);
|
1028 |
|
1029 |
// edge emulation
|
1030 |
src += y_off * linesize + x_off; |
1031 |
if (x_off < 2 || x_off >= width - block_w - 3 || |
1032 |
y_off < 2 || y_off >= height - block_h - 3) { |
1033 |
ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize, |
1034 |
block_w + 5, block_h + 5, |
1035 |
x_off - 2, y_off - 2, width, height); |
1036 |
src = s->edge_emu_buffer + 2 + linesize * 2; |
1037 |
} |
1038 |
mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my); |
1039 |
} else
|
1040 |
mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0); |
1041 |
} |
1042 |
|
1043 |
static inline void vp8_mc_part(VP8Context *s, uint8_t *dst[3], |
1044 |
AVFrame *ref_frame, int x_off, int y_off, |
1045 |
int bx_off, int by_off, |
1046 |
int block_w, int block_h, |
1047 |
int width, int height, VP56mv *mv) |
1048 |
{ |
1049 |
VP56mv uvmv = *mv; |
1050 |
|
1051 |
/* Y */
|
1052 |
vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off, |
1053 |
ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
|
1054 |
block_w, block_h, width, height, s->linesize, |
1055 |
s->put_pixels_tab[block_w == 8]);
|
1056 |
|
1057 |
/* U/V */
|
1058 |
if (s->profile == 3) { |
1059 |
uvmv.x &= ~7;
|
1060 |
uvmv.y &= ~7;
|
1061 |
} |
1062 |
x_off >>= 1; y_off >>= 1; |
1063 |
bx_off >>= 1; by_off >>= 1; |
1064 |
width >>= 1; height >>= 1; |
1065 |
block_w >>= 1; block_h >>= 1; |
1066 |
vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off, |
1067 |
ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
|
1068 |
block_w, block_h, width, height, s->uvlinesize, |
1069 |
s->put_pixels_tab[1 + (block_w == 4)]); |
1070 |
vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off, |
1071 |
ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
|
1072 |
block_w, block_h, width, height, s->uvlinesize, |
1073 |
s->put_pixels_tab[1 + (block_w == 4)]); |
1074 |
} |
1075 |
|
1076 |
/* Fetch pixels for estimated mv 4 macroblocks ahead.
|
1077 |
* Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
|
1078 |
static inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int x_off, int y_off, int ref) |
1079 |
{ |
1080 |
if (mb->ref_frame != VP56_FRAME_CURRENT) {
|
1081 |
int mx = mb->mv.x + x_off + 8; |
1082 |
int my = mb->mv.y + y_off;
|
1083 |
uint8_t **src= s->framep[mb->ref_frame]->data; |
1084 |
int off= mx + (my + (mb_x&3)*4)*s->linesize + 64; |
1085 |
s->dsp.prefetch(src[0]+off, s->linesize, 4); |
1086 |
off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64; |
1087 |
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2); |
1088 |
} |
1089 |
} |
1090 |
|
1091 |
/**
|
1092 |
* Apply motion vectors to prediction buffer, chapter 18.
|
1093 |
*/
|
1094 |
static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, |
1095 |
int mb_x, int mb_y) |
1096 |
{ |
1097 |
int x_off = mb_x << 4, y_off = mb_y << 4; |
1098 |
int width = 16*s->mb_width, height = 16*s->mb_height; |
1099 |
|
1100 |
prefetch_motion(s, mb, mb_x, mb_y, x_off, y_off, VP56_FRAME_PREVIOUS); |
1101 |
|
1102 |
if (mb->mode < VP8_MVMODE_SPLIT) {
|
1103 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1104 |
0, 0, 16, 16, width, height, &mb->mv); |
1105 |
} else switch (mb->partitioning) { |
1106 |
case VP8_SPLITMVMODE_4x4: {
|
1107 |
int x, y;
|
1108 |
VP56mv uvmv; |
1109 |
|
1110 |
/* Y */
|
1111 |
for (y = 0; y < 4; y++) { |
1112 |
for (x = 0; x < 4; x++) { |
1113 |
vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4, |
1114 |
s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x], |
1115 |
4*x + x_off, 4*y + y_off, 4, 4, |
1116 |
width, height, s->linesize, |
1117 |
s->put_pixels_tab[2]);
|
1118 |
} |
1119 |
} |
1120 |
|
1121 |
/* U/V */
|
1122 |
x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; |
1123 |
for (y = 0; y < 2; y++) { |
1124 |
for (x = 0; x < 2; x++) { |
1125 |
uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x + |
1126 |
mb->bmv[ 2*y * 4 + 2*x+1].x + |
1127 |
mb->bmv[(2*y+1) * 4 + 2*x ].x + |
1128 |
mb->bmv[(2*y+1) * 4 + 2*x+1].x; |
1129 |
uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y + |
1130 |
mb->bmv[ 2*y * 4 + 2*x+1].y + |
1131 |
mb->bmv[(2*y+1) * 4 + 2*x ].y + |
1132 |
mb->bmv[(2*y+1) * 4 + 2*x+1].y; |
1133 |
uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2; |
1134 |
uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2; |
1135 |
if (s->profile == 3) { |
1136 |
uvmv.x &= ~7;
|
1137 |
uvmv.y &= ~7;
|
1138 |
} |
1139 |
vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4, |
1140 |
s->framep[mb->ref_frame]->data[1], &uvmv,
|
1141 |
4*x + x_off, 4*y + y_off, 4, 4, |
1142 |
width, height, s->uvlinesize, |
1143 |
s->put_pixels_tab[2]);
|
1144 |
vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4, |
1145 |
s->framep[mb->ref_frame]->data[2], &uvmv,
|
1146 |
4*x + x_off, 4*y + y_off, 4, 4, |
1147 |
width, height, s->uvlinesize, |
1148 |
s->put_pixels_tab[2]);
|
1149 |
} |
1150 |
} |
1151 |
break;
|
1152 |
} |
1153 |
case VP8_SPLITMVMODE_16x8:
|
1154 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1155 |
0, 0, 16, 8, width, height, &mb->bmv[0]); |
1156 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1157 |
0, 8, 16, 8, width, height, &mb->bmv[1]); |
1158 |
break;
|
1159 |
case VP8_SPLITMVMODE_8x16:
|
1160 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1161 |
0, 0, 8, 16, width, height, &mb->bmv[0]); |
1162 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1163 |
8, 0, 8, 16, width, height, &mb->bmv[1]); |
1164 |
break;
|
1165 |
case VP8_SPLITMVMODE_8x8:
|
1166 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1167 |
0, 0, 8, 8, width, height, &mb->bmv[0]); |
1168 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1169 |
8, 0, 8, 8, width, height, &mb->bmv[1]); |
1170 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1171 |
0, 8, 8, 8, width, height, &mb->bmv[2]); |
1172 |
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
1173 |
8, 8, 8, 8, width, height, &mb->bmv[3]); |
1174 |
break;
|
1175 |
} |
1176 |
|
1177 |
prefetch_motion(s, mb, mb_x, mb_y, x_off, y_off, VP56_FRAME_GOLDEN); |
1178 |
} |
1179 |
|
1180 |
static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst, |
1181 |
VP8Macroblock *mb) |
1182 |
{ |
1183 |
int x, y, nnz;
|
1184 |
|
1185 |
if (mb->mode != MODE_I4x4)
|
1186 |
for (y = 0; y < 4; y++) { |
1187 |
for (x = 0; x < 4; x++) { |
1188 |
nnz = s->non_zero_count_cache[y][x]; |
1189 |
if (nnz) {
|
1190 |
if (nnz == 1) |
1191 |
s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
|
1192 |
else
|
1193 |
s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
|
1194 |
} |
1195 |
} |
1196 |
y_dst += 4*s->linesize;
|
1197 |
} |
1198 |
|
1199 |
for (y = 0; y < 2; y++) { |
1200 |
for (x = 0; x < 2; x++) { |
1201 |
nnz = s->non_zero_count_cache[4][(y<<1)+x]; |
1202 |
if (nnz) {
|
1203 |
if (nnz == 1) |
1204 |
s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); |
1205 |
else
|
1206 |
s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); |
1207 |
} |
1208 |
|
1209 |
nnz = s->non_zero_count_cache[5][(y<<1)+x]; |
1210 |
if (nnz) {
|
1211 |
if (nnz == 1) |
1212 |
s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); |
1213 |
else
|
1214 |
s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); |
1215 |
} |
1216 |
} |
1217 |
u_dst += 4*s->uvlinesize;
|
1218 |
v_dst += 4*s->uvlinesize;
|
1219 |
} |
1220 |
} |
1221 |
|
1222 |
static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f ) |
1223 |
{ |
1224 |
int interior_limit, filter_level;
|
1225 |
|
1226 |
if (s->segmentation.enabled) {
|
1227 |
filter_level = s->segmentation.filter_level[mb->segment]; |
1228 |
if (!s->segmentation.absolute_vals)
|
1229 |
filter_level += s->filter.level; |
1230 |
} else
|
1231 |
filter_level = s->filter.level; |
1232 |
|
1233 |
if (s->lf_delta.enabled) {
|
1234 |
filter_level += s->lf_delta.ref[mb->ref_frame]; |
1235 |
|
1236 |
if (mb->ref_frame == VP56_FRAME_CURRENT) {
|
1237 |
if (mb->mode == MODE_I4x4)
|
1238 |
filter_level += s->lf_delta.mode[0];
|
1239 |
} else {
|
1240 |
if (mb->mode == VP8_MVMODE_ZERO)
|
1241 |
filter_level += s->lf_delta.mode[1];
|
1242 |
else if (mb->mode == VP8_MVMODE_SPLIT) |
1243 |
filter_level += s->lf_delta.mode[3];
|
1244 |
else
|
1245 |
filter_level += s->lf_delta.mode[2];
|
1246 |
} |
1247 |
} |
1248 |
filter_level = av_clip(filter_level, 0, 63); |
1249 |
|
1250 |
interior_limit = filter_level; |
1251 |
if (s->filter.sharpness) {
|
1252 |
interior_limit >>= s->filter.sharpness > 4 ? 2 : 1; |
1253 |
interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
|
1254 |
} |
1255 |
interior_limit = FFMAX(interior_limit, 1);
|
1256 |
|
1257 |
f->filter_level = filter_level; |
1258 |
f->inner_limit = interior_limit; |
1259 |
} |
1260 |
|
1261 |
static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, VP8FilterStrength *f, int mb_x, int mb_y) |
1262 |
{ |
1263 |
int mbedge_lim, bedge_lim, hev_thresh;
|
1264 |
int filter_level = f->filter_level;
|
1265 |
int inner_limit = f->inner_limit;
|
1266 |
|
1267 |
if (!filter_level)
|
1268 |
return;
|
1269 |
|
1270 |
mbedge_lim = 2*(filter_level+2) + inner_limit; |
1271 |
bedge_lim = 2* filter_level + inner_limit;
|
1272 |
hev_thresh = filter_level >= 15;
|
1273 |
|
1274 |
if (s->keyframe) {
|
1275 |
if (filter_level >= 40) |
1276 |
hev_thresh = 2;
|
1277 |
} else {
|
1278 |
if (filter_level >= 40) |
1279 |
hev_thresh = 3;
|
1280 |
else if (filter_level >= 20) |
1281 |
hev_thresh = 2;
|
1282 |
} |
1283 |
|
1284 |
if (mb_x) {
|
1285 |
s->vp8dsp.vp8_h_loop_filter16y(dst[0], s->linesize,
|
1286 |
mbedge_lim, inner_limit, hev_thresh); |
1287 |
s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], s->uvlinesize, |
1288 |
mbedge_lim, inner_limit, hev_thresh); |
1289 |
} |
1290 |
|
1291 |
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
|
1292 |
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, s->linesize, bedge_lim, |
1293 |
inner_limit, hev_thresh); |
1294 |
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, s->linesize, bedge_lim, |
1295 |
inner_limit, hev_thresh); |
1296 |
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, s->linesize, bedge_lim, |
1297 |
inner_limit, hev_thresh); |
1298 |
s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, |
1299 |
s->uvlinesize, bedge_lim, |
1300 |
inner_limit, hev_thresh); |
1301 |
} |
1302 |
|
1303 |
if (mb_y) {
|
1304 |
s->vp8dsp.vp8_v_loop_filter16y(dst[0], s->linesize,
|
1305 |
mbedge_lim, inner_limit, hev_thresh); |
1306 |
s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], s->uvlinesize, |
1307 |
mbedge_lim, inner_limit, hev_thresh); |
1308 |
} |
1309 |
|
1310 |
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
|
1311 |
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*s->linesize, |
1312 |
s->linesize, bedge_lim, |
1313 |
inner_limit, hev_thresh); |
1314 |
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*s->linesize, |
1315 |
s->linesize, bedge_lim, |
1316 |
inner_limit, hev_thresh); |
1317 |
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*s->linesize, |
1318 |
s->linesize, bedge_lim, |
1319 |
inner_limit, hev_thresh); |
1320 |
s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * s->uvlinesize, |
1321 |
dst[2] + 4 * s->uvlinesize, |
1322 |
s->uvlinesize, bedge_lim, |
1323 |
inner_limit, hev_thresh); |
1324 |
} |
1325 |
} |
1326 |
|
1327 |
static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8Macroblock *mb, VP8FilterStrength *f, int mb_x, int mb_y) |
1328 |
{ |
1329 |
int mbedge_lim, bedge_lim;
|
1330 |
int filter_level = f->filter_level;
|
1331 |
int inner_limit = f->inner_limit;
|
1332 |
|
1333 |
if (!filter_level)
|
1334 |
return;
|
1335 |
|
1336 |
mbedge_lim = 2*(filter_level+2) + inner_limit; |
1337 |
bedge_lim = 2* filter_level + inner_limit;
|
1338 |
|
1339 |
if (mb_x)
|
1340 |
s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim); |
1341 |
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
|
1342 |
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim);
|
1343 |
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim);
|
1344 |
s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim);
|
1345 |
} |
1346 |
|
1347 |
if (mb_y)
|
1348 |
s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim); |
1349 |
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
|
1350 |
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim);
|
1351 |
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim);
|
1352 |
s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim);
|
1353 |
} |
1354 |
} |
1355 |
|
1356 |
static void filter_mb_row(VP8Context *s, int mb_y) |
1357 |
{ |
1358 |
VP8FilterStrength *f = s->filter_strength; |
1359 |
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; |
1360 |
uint8_t *dst[3] = {
|
1361 |
s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize, |
1362 |
s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize, |
1363 |
s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize |
1364 |
}; |
1365 |
int mb_x;
|
1366 |
|
1367 |
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
1368 |
backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0); |
1369 |
filter_mb(s, dst, mb++, f++, mb_x, mb_y); |
1370 |
dst[0] += 16; |
1371 |
dst[1] += 8; |
1372 |
dst[2] += 8; |
1373 |
} |
1374 |
} |
1375 |
|
1376 |
static void filter_mb_row_simple(VP8Context *s, int mb_y) |
1377 |
{ |
1378 |
VP8FilterStrength *f = s->filter_strength; |
1379 |
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; |
1380 |
uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize; |
1381 |
int mb_x;
|
1382 |
|
1383 |
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
1384 |
backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1); |
1385 |
filter_mb_simple(s, dst, mb++, f++, mb_x, mb_y); |
1386 |
dst += 16;
|
1387 |
} |
1388 |
} |
1389 |
|
1390 |
static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size, |
1391 |
AVPacket *avpkt) |
1392 |
{ |
1393 |
VP8Context *s = avctx->priv_data; |
1394 |
int ret, mb_x, mb_y, i, y, referenced;
|
1395 |
enum AVDiscard skip_thresh;
|
1396 |
AVFrame *curframe; |
1397 |
|
1398 |
if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0) |
1399 |
return ret;
|
1400 |
|
1401 |
referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT |
1402 |
|| s->update_altref == VP56_FRAME_CURRENT; |
1403 |
|
1404 |
skip_thresh = !referenced ? AVDISCARD_NONREF : |
1405 |
!s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL; |
1406 |
|
1407 |
if (avctx->skip_frame >= skip_thresh) {
|
1408 |
s->invisible = 1;
|
1409 |
goto skip_decode;
|
1410 |
} |
1411 |
s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh; |
1412 |
|
1413 |
for (i = 0; i < 4; i++) |
1414 |
if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
|
1415 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && |
1416 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) { |
1417 |
curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i]; |
1418 |
break;
|
1419 |
} |
1420 |
if (curframe->data[0]) |
1421 |
avctx->release_buffer(avctx, curframe); |
1422 |
|
1423 |
curframe->key_frame = s->keyframe; |
1424 |
curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE; |
1425 |
curframe->reference = referenced ? 3 : 0; |
1426 |
if ((ret = avctx->get_buffer(avctx, curframe))) {
|
1427 |
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
|
1428 |
return ret;
|
1429 |
} |
1430 |
|
1431 |
// Given that arithmetic probabilities are updated every frame, it's quite likely
|
1432 |
// that the values we have on a random interframe are complete junk if we didn't
|
1433 |
// start decode on a keyframe. So just don't display anything rather than junk.
|
1434 |
if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
|
1435 |
!s->framep[VP56_FRAME_GOLDEN] || |
1436 |
!s->framep[VP56_FRAME_GOLDEN2])) { |
1437 |
av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
|
1438 |
return AVERROR_INVALIDDATA;
|
1439 |
} |
1440 |
|
1441 |
s->linesize = curframe->linesize[0];
|
1442 |
s->uvlinesize = curframe->linesize[1];
|
1443 |
|
1444 |
if (!s->edge_emu_buffer)
|
1445 |
s->edge_emu_buffer = av_malloc(21*s->linesize);
|
1446 |
|
1447 |
memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz)); |
1448 |
|
1449 |
// top edge of 127 for intra prediction
|
1450 |
memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border)); |
1451 |
|
1452 |
for (mb_y = 0; mb_y < s->mb_height; mb_y++) { |
1453 |
VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
|
1454 |
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; |
1455 |
uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride;
|
1456 |
uint8_t *dst[3] = {
|
1457 |
curframe->data[0] + 16*mb_y*s->linesize, |
1458 |
curframe->data[1] + 8*mb_y*s->uvlinesize, |
1459 |
curframe->data[2] + 8*mb_y*s->uvlinesize |
1460 |
}; |
1461 |
|
1462 |
memset(s->left_nnz, 0, sizeof(s->left_nnz)); |
1463 |
|
1464 |
// left edge of 129 for intra prediction
|
1465 |
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
|
1466 |
for (i = 0; i < 3; i++) |
1467 |
for (y = 0; y < 16>>!!i; y++) |
1468 |
dst[i][y*curframe->linesize[i]-1] = 129; |
1469 |
if (mb_y)
|
1470 |
memset(s->top_border, 129, sizeof(*s->top_border)); |
1471 |
|
1472 |
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
1473 |
uint8_t *intra4x4_mb = s->keyframe ? intra4x4 + 4*mb_x : s->intra4x4_pred_mode_mb;
|
1474 |
|
1475 |
/* Prefetch the current frame, 4 MBs ahead */
|
1476 |
s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4); |
1477 |
s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2); |
1478 |
|
1479 |
decode_mb_mode(s, mb, mb_x, mb_y, intra4x4_mb); |
1480 |
|
1481 |
if (!mb->skip)
|
1482 |
decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz); |
1483 |
else {
|
1484 |
AV_ZERO128(s->non_zero_count_cache); // luma
|
1485 |
AV_ZERO64(s->non_zero_count_cache[4]); // chroma |
1486 |
} |
1487 |
|
1488 |
if (mb->mode <= MODE_I4x4) {
|
1489 |
intra_predict(s, dst, mb, intra4x4_mb, mb_x, mb_y); |
1490 |
memset(mb->bmv, 0, sizeof(mb->bmv)); |
1491 |
} else {
|
1492 |
inter_predict(s, dst, mb, mb_x, mb_y); |
1493 |
} |
1494 |
|
1495 |
if (!mb->skip) {
|
1496 |
idct_mb(s, dst[0], dst[1], dst[2], mb); |
1497 |
} else {
|
1498 |
AV_ZERO64(s->left_nnz); |
1499 |
AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned |
1500 |
|
1501 |
// Reset DC block predictors if they would exist if the mb had coefficients
|
1502 |
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
|
1503 |
s->left_nnz[8] = 0; |
1504 |
s->top_nnz[mb_x][8] = 0; |
1505 |
} |
1506 |
} |
1507 |
|
1508 |
if (s->deblock_filter)
|
1509 |
filter_level_for_mb(s, mb, &s->filter_strength[mb_x]); |
1510 |
|
1511 |
dst[0] += 16; |
1512 |
dst[1] += 8; |
1513 |
dst[2] += 8; |
1514 |
mb++; |
1515 |
} |
1516 |
if (s->deblock_filter) {
|
1517 |
if (s->filter.simple)
|
1518 |
filter_mb_row_simple(s, mb_y); |
1519 |
else
|
1520 |
filter_mb_row(s, mb_y); |
1521 |
} |
1522 |
} |
1523 |
|
1524 |
skip_decode:
|
1525 |
// if future frames don't use the updated probabilities,
|
1526 |
// reset them to the values we saved
|
1527 |
if (!s->update_probabilities)
|
1528 |
s->prob[0] = s->prob[1]; |
1529 |
|
1530 |
// check if golden and altref are swapped
|
1531 |
if (s->update_altref == VP56_FRAME_GOLDEN &&
|
1532 |
s->update_golden == VP56_FRAME_GOLDEN2) |
1533 |
FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]); |
1534 |
else {
|
1535 |
if (s->update_altref != VP56_FRAME_NONE)
|
1536 |
s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref]; |
1537 |
|
1538 |
if (s->update_golden != VP56_FRAME_NONE)
|
1539 |
s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden]; |
1540 |
} |
1541 |
|
1542 |
if (s->update_last) // move cur->prev |
1543 |
s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT]; |
1544 |
|
1545 |
// release no longer referenced frames
|
1546 |
for (i = 0; i < 4; i++) |
1547 |
if (s->frames[i].data[0] && |
1548 |
&s->frames[i] != s->framep[VP56_FRAME_CURRENT] && |
1549 |
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && |
1550 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && |
1551 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) |
1552 |
avctx->release_buffer(avctx, &s->frames[i]); |
1553 |
|
1554 |
if (!s->invisible) {
|
1555 |
*(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT]; |
1556 |
*data_size = sizeof(AVFrame);
|
1557 |
} |
1558 |
|
1559 |
return avpkt->size;
|
1560 |
} |
1561 |
|
1562 |
static av_cold int vp8_decode_init(AVCodecContext *avctx) |
1563 |
{ |
1564 |
VP8Context *s = avctx->priv_data; |
1565 |
|
1566 |
s->avctx = avctx; |
1567 |
avctx->pix_fmt = PIX_FMT_YUV420P; |
1568 |
|
1569 |
dsputil_init(&s->dsp, avctx); |
1570 |
ff_h264_pred_init(&s->hpc, CODEC_ID_VP8); |
1571 |
ff_vp8dsp_init(&s->vp8dsp); |
1572 |
|
1573 |
// intra pred needs edge emulation among other things
|
1574 |
if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
|
1575 |
av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
|
1576 |
return AVERROR_PATCHWELCOME;
|
1577 |
} |
1578 |
|
1579 |
return 0; |
1580 |
} |
1581 |
|
1582 |
static av_cold int vp8_decode_free(AVCodecContext *avctx) |
1583 |
{ |
1584 |
vp8_decode_flush(avctx); |
1585 |
return 0; |
1586 |
} |
1587 |
|
1588 |
AVCodec vp8_decoder = { |
1589 |
"vp8",
|
1590 |
AVMEDIA_TYPE_VIDEO, |
1591 |
CODEC_ID_VP8, |
1592 |
sizeof(VP8Context),
|
1593 |
vp8_decode_init, |
1594 |
NULL,
|
1595 |
vp8_decode_free, |
1596 |
vp8_decode_frame, |
1597 |
CODEC_CAP_DR1, |
1598 |
.flush = vp8_decode_flush, |
1599 |
.long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
|
1600 |
}; |