Statistics
| Branch: | Revision:

ffmpeg / libavcodec / mdct.c @ 979395bb

History | View | Annotate | Download (5.94 KB)

1
/*
2
 * MDCT/IMDCT transforms
3
 * Copyright (c) 2002 Fabrice Bellard
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
#include <stdlib.h>
23
#include <string.h>
24
#include "libavutil/common.h"
25
#include "libavutil/mathematics.h"
26
#include "fft.h"
27

    
28
/**
29
 * @file
30
 * MDCT/IMDCT transforms.
31
 */
32

    
33
// Generate a Kaiser-Bessel Derived Window.
34
#define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
35
av_cold void ff_kbd_window_init(float *window, float alpha, int n)
36
{
37
   int i, j;
38
   double sum = 0.0, bessel, tmp;
39
   double local_window[FF_KBD_WINDOW_MAX];
40
   double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
41

    
42
   assert(n <= FF_KBD_WINDOW_MAX);
43

    
44
   for (i = 0; i < n; i++) {
45
       tmp = i * (n - i) * alpha2;
46
       bessel = 1.0;
47
       for (j = BESSEL_I0_ITER; j > 0; j--)
48
           bessel = bessel * tmp / (j * j) + 1;
49
       sum += bessel;
50
       local_window[i] = sum;
51
   }
52

    
53
   sum++;
54
   for (i = 0; i < n; i++)
55
       window[i] = sqrt(local_window[i] / sum);
56
}
57

    
58
#include "mdct_tablegen.h"
59

    
60
/**
61
 * init MDCT or IMDCT computation.
62
 */
63
av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
64
{
65
    int n, n4, i;
66
    double alpha, theta;
67
    int tstep;
68

    
69
    memset(s, 0, sizeof(*s));
70
    n = 1 << nbits;
71
    s->mdct_bits = nbits;
72
    s->mdct_size = n;
73
    n4 = n >> 2;
74
    s->mdct_permutation = FF_MDCT_PERM_NONE;
75

    
76
    if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
77
        goto fail;
78

    
79
    s->tcos = av_malloc(n/2 * sizeof(FFTSample));
80
    if (!s->tcos)
81
        goto fail;
82

    
83
    switch (s->mdct_permutation) {
84
    case FF_MDCT_PERM_NONE:
85
        s->tsin = s->tcos + n4;
86
        tstep = 1;
87
        break;
88
    case FF_MDCT_PERM_INTERLEAVE:
89
        s->tsin = s->tcos + 1;
90
        tstep = 2;
91
        break;
92
    default:
93
        goto fail;
94
    }
95

    
96
    theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
97
    scale = sqrt(fabs(scale));
98
    for(i=0;i<n4;i++) {
99
        alpha = 2 * M_PI * (i + theta) / n;
100
        s->tcos[i*tstep] = -cos(alpha) * scale;
101
        s->tsin[i*tstep] = -sin(alpha) * scale;
102
    }
103
    return 0;
104
 fail:
105
    ff_mdct_end(s);
106
    return -1;
107
}
108

    
109
/* complex multiplication: p = a * b */
110
#define CMUL(pre, pim, are, aim, bre, bim) \
111
{\
112
    FFTSample _are = (are);\
113
    FFTSample _aim = (aim);\
114
    FFTSample _bre = (bre);\
115
    FFTSample _bim = (bim);\
116
    (pre) = _are * _bre - _aim * _bim;\
117
    (pim) = _are * _bim + _aim * _bre;\
118
}
119

    
120
/**
121
 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
122
 * thus excluding the parts that can be derived by symmetry
123
 * @param output N/2 samples
124
 * @param input N/2 samples
125
 */
126
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
127
{
128
    int k, n8, n4, n2, n, j;
129
    const uint16_t *revtab = s->revtab;
130
    const FFTSample *tcos = s->tcos;
131
    const FFTSample *tsin = s->tsin;
132
    const FFTSample *in1, *in2;
133
    FFTComplex *z = (FFTComplex *)output;
134

    
135
    n = 1 << s->mdct_bits;
136
    n2 = n >> 1;
137
    n4 = n >> 2;
138
    n8 = n >> 3;
139

    
140
    /* pre rotation */
141
    in1 = input;
142
    in2 = input + n2 - 1;
143
    for(k = 0; k < n4; k++) {
144
        j=revtab[k];
145
        CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
146
        in1 += 2;
147
        in2 -= 2;
148
    }
149
    ff_fft_calc(s, z);
150

    
151
    /* post rotation + reordering */
152
    for(k = 0; k < n8; k++) {
153
        FFTSample r0, i0, r1, i1;
154
        CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
155
        CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
156
        z[n8-k-1].re = r0;
157
        z[n8-k-1].im = i0;
158
        z[n8+k  ].re = r1;
159
        z[n8+k  ].im = i1;
160
    }
161
}
162

    
163
/**
164
 * Compute inverse MDCT of size N = 2^nbits
165
 * @param output N samples
166
 * @param input N/2 samples
167
 */
168
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
169
{
170
    int k;
171
    int n = 1 << s->mdct_bits;
172
    int n2 = n >> 1;
173
    int n4 = n >> 2;
174

    
175
    ff_imdct_half_c(s, output+n4, input);
176

    
177
    for(k = 0; k < n4; k++) {
178
        output[k] = -output[n2-k-1];
179
        output[n-k-1] = output[n2+k];
180
    }
181
}
182

    
183
/**
184
 * Compute MDCT of size N = 2^nbits
185
 * @param input N samples
186
 * @param out N/2 samples
187
 */
188
void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
189
{
190
    int i, j, n, n8, n4, n2, n3;
191
    FFTSample re, im;
192
    const uint16_t *revtab = s->revtab;
193
    const FFTSample *tcos = s->tcos;
194
    const FFTSample *tsin = s->tsin;
195
    FFTComplex *x = (FFTComplex *)out;
196

    
197
    n = 1 << s->mdct_bits;
198
    n2 = n >> 1;
199
    n4 = n >> 2;
200
    n8 = n >> 3;
201
    n3 = 3 * n4;
202

    
203
    /* pre rotation */
204
    for(i=0;i<n8;i++) {
205
        re = -input[2*i+n3] - input[n3-1-2*i];
206
        im = -input[n4+2*i] + input[n4-1-2*i];
207
        j = revtab[i];
208
        CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
209

    
210
        re = input[2*i] - input[n2-1-2*i];
211
        im = -(input[n2+2*i] + input[n-1-2*i]);
212
        j = revtab[n8 + i];
213
        CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
214
    }
215

    
216
    ff_fft_calc(s, x);
217

    
218
    /* post rotation */
219
    for(i=0;i<n8;i++) {
220
        FFTSample r0, i0, r1, i1;
221
        CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
222
        CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
223
        x[n8-i-1].re = r0;
224
        x[n8-i-1].im = i0;
225
        x[n8+i  ].re = r1;
226
        x[n8+i  ].im = i1;
227
    }
228
}
229

    
230
av_cold void ff_mdct_end(FFTContext *s)
231
{
232
    av_freep(&s->tcos);
233
    ff_fft_end(s);
234
}