ffmpeg / libavcodec / jfdctfst.c @ 983e3246
History | View | Annotate | Download (7.55 KB)
1 |
/*
|
---|---|
2 |
* jfdctfst.c
|
3 |
*
|
4 |
* Copyright (C) 1994-1996, Thomas G. Lane.
|
5 |
* This file is part of the Independent JPEG Group's software.
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
7 |
*
|
8 |
* This file contains a fast, not so accurate integer implementation of the
|
9 |
* forward DCT (Discrete Cosine Transform).
|
10 |
*
|
11 |
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
12 |
* on each column. Direct algorithms are also available, but they are
|
13 |
* much more complex and seem not to be any faster when reduced to code.
|
14 |
*
|
15 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
16 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
17 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
18 |
* JPEG textbook (see REFERENCES section in file README). The following code
|
19 |
* is based directly on figure 4-8 in P&M.
|
20 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
21 |
* possible to arrange the computation so that many of the multiplies are
|
22 |
* simple scalings of the final outputs. These multiplies can then be
|
23 |
* folded into the multiplications or divisions by the JPEG quantization
|
24 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
25 |
* to be done in the DCT itself.
|
26 |
* The primary disadvantage of this method is that with fixed-point math,
|
27 |
* accuracy is lost due to imprecise representation of the scaled
|
28 |
* quantization values. The smaller the quantization table entry, the less
|
29 |
* precise the scaled value, so this implementation does worse with high-
|
30 |
* quality-setting files than with low-quality ones.
|
31 |
*/
|
32 |
|
33 |
/**
|
34 |
* @file jfdctfst.c
|
35 |
* Independent JPEG Group's fast AAN dct.
|
36 |
*/
|
37 |
|
38 |
#include <stdlib.h> |
39 |
#include <stdio.h> |
40 |
#include "common.h" |
41 |
#include "dsputil.h" |
42 |
|
43 |
#define DCTSIZE 8 |
44 |
#define GLOBAL(x) x
|
45 |
#define RIGHT_SHIFT(x, n) ((x) >> (n))
|
46 |
#define SHIFT_TEMPS
|
47 |
|
48 |
/*
|
49 |
* This module is specialized to the case DCTSIZE = 8.
|
50 |
*/
|
51 |
|
52 |
#if DCTSIZE != 8 |
53 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
54 |
#endif
|
55 |
|
56 |
|
57 |
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
58 |
* see jfdctint.c for more details. However, we choose to descale
|
59 |
* (right shift) multiplication products as soon as they are formed,
|
60 |
* rather than carrying additional fractional bits into subsequent additions.
|
61 |
* This compromises accuracy slightly, but it lets us save a few shifts.
|
62 |
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
63 |
* everywhere except in the multiplications proper; this saves a good deal
|
64 |
* of work on 16-bit-int machines.
|
65 |
*
|
66 |
* Again to save a few shifts, the intermediate results between pass 1 and
|
67 |
* pass 2 are not upscaled, but are represented only to integral precision.
|
68 |
*
|
69 |
* A final compromise is to represent the multiplicative constants to only
|
70 |
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
71 |
* machines, and may also reduce the cost of multiplication (since there
|
72 |
* are fewer one-bits in the constants).
|
73 |
*/
|
74 |
|
75 |
#define CONST_BITS 8 |
76 |
|
77 |
|
78 |
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
79 |
* causing a lot of useless floating-point operations at run time.
|
80 |
* To get around this we use the following pre-calculated constants.
|
81 |
* If you change CONST_BITS you may want to add appropriate values.
|
82 |
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
83 |
*/
|
84 |
|
85 |
#if CONST_BITS == 8 |
86 |
#define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */ |
87 |
#define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */ |
88 |
#define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */ |
89 |
#define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */ |
90 |
#else
|
91 |
#define FIX_0_382683433 FIX(0.382683433) |
92 |
#define FIX_0_541196100 FIX(0.541196100) |
93 |
#define FIX_0_707106781 FIX(0.707106781) |
94 |
#define FIX_1_306562965 FIX(1.306562965) |
95 |
#endif
|
96 |
|
97 |
|
98 |
/* We can gain a little more speed, with a further compromise in accuracy,
|
99 |
* by omitting the addition in a descaling shift. This yields an incorrectly
|
100 |
* rounded result half the time...
|
101 |
*/
|
102 |
|
103 |
#ifndef USE_ACCURATE_ROUNDING
|
104 |
#undef DESCALE
|
105 |
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
106 |
#endif
|
107 |
|
108 |
|
109 |
/* Multiply a DCTELEM variable by an int32_t constant, and immediately
|
110 |
* descale to yield a DCTELEM result.
|
111 |
*/
|
112 |
|
113 |
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
114 |
|
115 |
|
116 |
/*
|
117 |
* Perform the forward DCT on one block of samples.
|
118 |
*/
|
119 |
|
120 |
GLOBAL(void)
|
121 |
fdct_ifast (DCTELEM * data) |
122 |
{ |
123 |
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
124 |
DCTELEM tmp10, tmp11, tmp12, tmp13; |
125 |
DCTELEM z1, z2, z3, z4, z5, z11, z13; |
126 |
DCTELEM *dataptr; |
127 |
int ctr;
|
128 |
SHIFT_TEMPS |
129 |
|
130 |
/* Pass 1: process rows. */
|
131 |
|
132 |
dataptr = data; |
133 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
134 |
tmp0 = dataptr[0] + dataptr[7]; |
135 |
tmp7 = dataptr[0] - dataptr[7]; |
136 |
tmp1 = dataptr[1] + dataptr[6]; |
137 |
tmp6 = dataptr[1] - dataptr[6]; |
138 |
tmp2 = dataptr[2] + dataptr[5]; |
139 |
tmp5 = dataptr[2] - dataptr[5]; |
140 |
tmp3 = dataptr[3] + dataptr[4]; |
141 |
tmp4 = dataptr[3] - dataptr[4]; |
142 |
|
143 |
/* Even part */
|
144 |
|
145 |
tmp10 = tmp0 + tmp3; /* phase 2 */
|
146 |
tmp13 = tmp0 - tmp3; |
147 |
tmp11 = tmp1 + tmp2; |
148 |
tmp12 = tmp1 - tmp2; |
149 |
|
150 |
dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
151 |
dataptr[4] = tmp10 - tmp11;
|
152 |
|
153 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
154 |
dataptr[2] = tmp13 + z1; /* phase 5 */ |
155 |
dataptr[6] = tmp13 - z1;
|
156 |
|
157 |
/* Odd part */
|
158 |
|
159 |
tmp10 = tmp4 + tmp5; /* phase 2 */
|
160 |
tmp11 = tmp5 + tmp6; |
161 |
tmp12 = tmp6 + tmp7; |
162 |
|
163 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
164 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
165 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
166 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
167 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
168 |
|
169 |
z11 = tmp7 + z3; /* phase 5 */
|
170 |
z13 = tmp7 - z3; |
171 |
|
172 |
dataptr[5] = z13 + z2; /* phase 6 */ |
173 |
dataptr[3] = z13 - z2;
|
174 |
dataptr[1] = z11 + z4;
|
175 |
dataptr[7] = z11 - z4;
|
176 |
|
177 |
dataptr += DCTSIZE; /* advance pointer to next row */
|
178 |
} |
179 |
|
180 |
/* Pass 2: process columns. */
|
181 |
|
182 |
dataptr = data; |
183 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
184 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
185 |
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
186 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
187 |
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
188 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
189 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
190 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
191 |
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
192 |
|
193 |
/* Even part */
|
194 |
|
195 |
tmp10 = tmp0 + tmp3; /* phase 2 */
|
196 |
tmp13 = tmp0 - tmp3; |
197 |
tmp11 = tmp1 + tmp2; |
198 |
tmp12 = tmp1 - tmp2; |
199 |
|
200 |
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
201 |
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
202 |
|
203 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
204 |
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
205 |
dataptr[DCTSIZE*6] = tmp13 - z1;
|
206 |
|
207 |
/* Odd part */
|
208 |
|
209 |
tmp10 = tmp4 + tmp5; /* phase 2 */
|
210 |
tmp11 = tmp5 + tmp6; |
211 |
tmp12 = tmp6 + tmp7; |
212 |
|
213 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
214 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
215 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
216 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
217 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
218 |
|
219 |
z11 = tmp7 + z3; /* phase 5 */
|
220 |
z13 = tmp7 - z3; |
221 |
|
222 |
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
223 |
dataptr[DCTSIZE*3] = z13 - z2;
|
224 |
dataptr[DCTSIZE*1] = z11 + z4;
|
225 |
dataptr[DCTSIZE*7] = z11 - z4;
|
226 |
|
227 |
dataptr++; /* advance pointer to next column */
|
228 |
} |
229 |
} |
230 |
|
231 |
|
232 |
#undef GLOBAL
|
233 |
#undef CONST_BITS
|
234 |
#undef DESCALE
|
235 |
#undef FIX_0_541196100
|
236 |
#undef FIX_1_306562965
|