ffmpeg / libavcodec / mdct.c @ 983e3246
History | View | Annotate | Download (4.42 KB)
1 |
/*
|
---|---|
2 |
* MDCT/IMDCT transforms
|
3 |
* Copyright (c) 2002 Fabrice Bellard.
|
4 |
*
|
5 |
* This library is free software; you can redistribute it and/or
|
6 |
* modify it under the terms of the GNU Lesser General Public
|
7 |
* License as published by the Free Software Foundation; either
|
8 |
* version 2 of the License, or (at your option) any later version.
|
9 |
*
|
10 |
* This library is distributed in the hope that it will be useful,
|
11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
13 |
* Lesser General Public License for more details.
|
14 |
*
|
15 |
* You should have received a copy of the GNU Lesser General Public
|
16 |
* License along with this library; if not, write to the Free Software
|
17 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
18 |
*/
|
19 |
#include "dsputil.h" |
20 |
|
21 |
/**
|
22 |
* @file mdct.c
|
23 |
* MDCT/IMDCT transforms.
|
24 |
*/
|
25 |
|
26 |
/**
|
27 |
* init MDCT or IMDCT computation.
|
28 |
*/
|
29 |
int ff_mdct_init(MDCTContext *s, int nbits, int inverse) |
30 |
{ |
31 |
int n, n4, i;
|
32 |
float alpha;
|
33 |
|
34 |
memset(s, 0, sizeof(*s)); |
35 |
n = 1 << nbits;
|
36 |
s->nbits = nbits; |
37 |
s->n = n; |
38 |
n4 = n >> 2;
|
39 |
s->tcos = av_malloc(n4 * sizeof(FFTSample));
|
40 |
if (!s->tcos)
|
41 |
goto fail;
|
42 |
s->tsin = av_malloc(n4 * sizeof(FFTSample));
|
43 |
if (!s->tsin)
|
44 |
goto fail;
|
45 |
|
46 |
for(i=0;i<n4;i++) { |
47 |
alpha = 2 * M_PI * (i + 1.0 / 8.0) / n; |
48 |
s->tcos[i] = -cos(alpha); |
49 |
s->tsin[i] = -sin(alpha); |
50 |
} |
51 |
if (fft_init(&s->fft, s->nbits - 2, inverse) < 0) |
52 |
goto fail;
|
53 |
return 0; |
54 |
fail:
|
55 |
av_freep(&s->tcos); |
56 |
av_freep(&s->tsin); |
57 |
return -1; |
58 |
} |
59 |
|
60 |
/* complex multiplication: p = a * b */
|
61 |
#define CMUL(pre, pim, are, aim, bre, bim) \
|
62 |
{\ |
63 |
float _are = (are);\
|
64 |
float _aim = (aim);\
|
65 |
float _bre = (bre);\
|
66 |
float _bim = (bim);\
|
67 |
(pre) = _are * _bre - _aim * _bim;\ |
68 |
(pim) = _are * _bim + _aim * _bre;\ |
69 |
} |
70 |
|
71 |
/**
|
72 |
* Compute inverse MDCT of size N = 2^nbits
|
73 |
* @param output N samples
|
74 |
* @param input N/2 samples
|
75 |
* @param tmp N/2 samples
|
76 |
*/
|
77 |
void ff_imdct_calc(MDCTContext *s, FFTSample *output,
|
78 |
const FFTSample *input, FFTSample *tmp)
|
79 |
{ |
80 |
int k, n8, n4, n2, n, j;
|
81 |
const uint16_t *revtab = s->fft.revtab;
|
82 |
const FFTSample *tcos = s->tcos;
|
83 |
const FFTSample *tsin = s->tsin;
|
84 |
const FFTSample *in1, *in2;
|
85 |
FFTComplex *z = (FFTComplex *)tmp; |
86 |
|
87 |
n = 1 << s->nbits;
|
88 |
n2 = n >> 1;
|
89 |
n4 = n >> 2;
|
90 |
n8 = n >> 3;
|
91 |
|
92 |
/* pre rotation */
|
93 |
in1 = input; |
94 |
in2 = input + n2 - 1;
|
95 |
for(k = 0; k < n4; k++) { |
96 |
j=revtab[k]; |
97 |
CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]); |
98 |
in1 += 2;
|
99 |
in2 -= 2;
|
100 |
} |
101 |
fft_calc(&s->fft, z); |
102 |
|
103 |
/* post rotation + reordering */
|
104 |
/* XXX: optimize */
|
105 |
for(k = 0; k < n4; k++) { |
106 |
CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]); |
107 |
} |
108 |
for(k = 0; k < n8; k++) { |
109 |
output[2*k] = -z[n8 + k].im;
|
110 |
output[n2-1-2*k] = z[n8 + k].im; |
111 |
|
112 |
output[2*k+1] = z[n8-1-k].re; |
113 |
output[n2-1-2*k-1] = -z[n8-1-k].re; |
114 |
|
115 |
output[n2 + 2*k]=-z[k+n8].re;
|
116 |
output[n-1- 2*k]=-z[k+n8].re; |
117 |
|
118 |
output[n2 + 2*k+1]=z[n8-k-1].im; |
119 |
output[n-2 - 2 * k] = z[n8-k-1].im; |
120 |
} |
121 |
} |
122 |
|
123 |
/**
|
124 |
* Compute MDCT of size N = 2^nbits
|
125 |
* @param input N samples
|
126 |
* @param out N/2 samples
|
127 |
* @param tmp temporary storage of N/2 samples
|
128 |
*/
|
129 |
void ff_mdct_calc(MDCTContext *s, FFTSample *out,
|
130 |
const FFTSample *input, FFTSample *tmp)
|
131 |
{ |
132 |
int i, j, n, n8, n4, n2, n3;
|
133 |
FFTSample re, im, re1, im1; |
134 |
const uint16_t *revtab = s->fft.revtab;
|
135 |
const FFTSample *tcos = s->tcos;
|
136 |
const FFTSample *tsin = s->tsin;
|
137 |
FFTComplex *x = (FFTComplex *)tmp; |
138 |
|
139 |
n = 1 << s->nbits;
|
140 |
n2 = n >> 1;
|
141 |
n4 = n >> 2;
|
142 |
n8 = n >> 3;
|
143 |
n3 = 3 * n4;
|
144 |
|
145 |
/* pre rotation */
|
146 |
for(i=0;i<n8;i++) { |
147 |
re = -input[2*i+3*n4] - input[n3-1-2*i]; |
148 |
im = -input[n4+2*i] + input[n4-1-2*i]; |
149 |
j = revtab[i]; |
150 |
CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]); |
151 |
|
152 |
re = input[2*i] - input[n2-1-2*i]; |
153 |
im = -(input[n2+2*i] + input[n-1-2*i]); |
154 |
j = revtab[n8 + i]; |
155 |
CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]); |
156 |
} |
157 |
|
158 |
fft_calc(&s->fft, x); |
159 |
|
160 |
/* post rotation */
|
161 |
for(i=0;i<n4;i++) { |
162 |
re = x[i].re; |
163 |
im = x[i].im; |
164 |
CMUL(re1, im1, re, im, -tsin[i], -tcos[i]); |
165 |
out[2*i] = im1;
|
166 |
out[n2-1-2*i] = re1; |
167 |
} |
168 |
} |
169 |
|
170 |
void ff_mdct_end(MDCTContext *s)
|
171 |
{ |
172 |
av_freep(&s->tcos); |
173 |
av_freep(&s->tsin); |
174 |
fft_end(&s->fft); |
175 |
} |