Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.c @ 9a41c2c7

History | View | Annotate | Download (150 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 *
19
 */
20
 
21
/**
22
 * @file h264.c
23
 * H.264 / AVC / MPEG4 part10 codec.
24
 * @author Michael Niedermayer <michaelni@gmx.at>
25
 */
26

    
27
#include "common.h"
28
#include "dsputil.h"
29
#include "avcodec.h"
30
#include "mpegvideo.h"
31
#include "h264data.h"
32
#include "golomb.h"
33

    
34
#undef NDEBUG
35
#include <assert.h>
36

    
37
#define interlaced_dct interlaced_dct_is_a_bad_name
38
#define mb_intra mb_intra_isnt_initalized_see_mb_type
39

    
40
#define LUMA_DC_BLOCK_INDEX   25
41
#define CHROMA_DC_BLOCK_INDEX 26
42

    
43
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44
#define COEFF_TOKEN_VLC_BITS           8
45
#define TOTAL_ZEROS_VLC_BITS           9
46
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47
#define RUN_VLC_BITS                   3
48
#define RUN7_VLC_BITS                  6
49

    
50
#define MAX_SPS_COUNT 32
51
#define MAX_PPS_COUNT 256
52

    
53
#define MAX_MMCO_COUNT 66
54

    
55
/**
56
 * Sequence parameter set
57
 */
58
typedef struct SPS{
59
    
60
    int profile_idc;
61
    int level_idc;
62
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
63
    int poc_type;                      ///< pic_order_cnt_type
64
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
65
    int delta_pic_order_always_zero_flag;
66
    int offset_for_non_ref_pic;
67
    int offset_for_top_to_bottom_field;
68
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
69
    int ref_frame_count;               ///< num_ref_frames
70
    int gaps_in_frame_num_allowed_flag;
71
    int mb_width;                      ///< frame_width_in_mbs_minus1 + 1
72
    int mb_height;                     ///< frame_height_in_mbs_minus1 + 1
73
    int frame_mbs_only_flag;
74
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
75
    int direct_8x8_inference_flag;
76
    int crop;                   ///< frame_cropping_flag
77
    int crop_left;              ///< frame_cropping_rect_left_offset
78
    int crop_right;             ///< frame_cropping_rect_right_offset
79
    int crop_top;               ///< frame_cropping_rect_top_offset
80
    int crop_bottom;            ///< frame_cropping_rect_bottom_offset
81
    int vui_parameters_present_flag;
82
    AVRational sar;
83
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
84
}SPS;
85

    
86
/**
87
 * Picture parameter set
88
 */
89
typedef struct PPS{
90
    int sps_id;
91
    int cabac;                  ///< entropy_coding_mode_flag
92
    int pic_order_present;      ///< pic_order_present_flag
93
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
94
    int mb_slice_group_map_type;
95
    int ref_count[2];           ///< num_ref_idx_l0/1_active_minus1 + 1
96
    int weighted_pred;          ///< weighted_pred_flag
97
    int weighted_bipred_idc;
98
    int init_qp;                ///< pic_init_qp_minus26 + 26
99
    int init_qs;                ///< pic_init_qs_minus26 + 26
100
    int chroma_qp_index_offset;
101
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
102
    int constrained_intra_pred; ///< constrained_intra_pred_flag
103
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
104
}PPS;
105

    
106
/**
107
 * Memory management control operation opcode.
108
 */
109
typedef enum MMCOOpcode{
110
    MMCO_END=0,
111
    MMCO_SHORT2UNUSED,
112
    MMCO_LONG2UNUSED,
113
    MMCO_SHORT2LONG,
114
    MMCO_SET_MAX_LONG,
115
    MMCO_RESET, 
116
    MMCO_LONG,
117
} MMCOOpcode;
118

    
119
/**
120
 * Memory management control operation.
121
 */
122
typedef struct MMCO{
123
    MMCOOpcode opcode;
124
    int short_frame_num;
125
    int long_index;
126
} MMCO;
127

    
128
/**
129
 * H264Context
130
 */
131
typedef struct H264Context{
132
    MpegEncContext s;
133
    int nal_ref_idc;        
134
    int nal_unit_type;
135
#define NAL_SLICE                1
136
#define NAL_DPA                        2
137
#define NAL_DPB                        3
138
#define NAL_DPC                        4
139
#define NAL_IDR_SLICE                5
140
#define NAL_SEI                        6
141
#define NAL_SPS                        7
142
#define NAL_PPS                        8
143
#define NAL_PICTURE_DELIMITER        9
144
#define NAL_FILTER_DATA                10
145
    uint8_t *rbsp_buffer;
146
    int rbsp_buffer_size;
147

    
148
    int chroma_qp; //QPc
149

    
150
    int prev_mb_skiped; //FIXME remove (IMHO not used)
151

    
152
    //prediction stuff
153
    int chroma_pred_mode;
154
    int intra16x16_pred_mode;
155
    
156
    int8_t intra4x4_pred_mode_cache[5*8];
157
    int8_t (*intra4x4_pred_mode)[8];
158
    void (*pred4x4  [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
159
    void (*pred8x8  [4+3])(uint8_t *src, int stride);
160
    void (*pred16x16[4+3])(uint8_t *src, int stride);
161
    unsigned int topleft_samples_available;
162
    unsigned int top_samples_available;
163
    unsigned int topright_samples_available;
164
    unsigned int left_samples_available;
165

    
166
    /**
167
     * non zero coeff count cache.
168
     * is 64 if not available.
169
     */
170
    uint8_t non_zero_count_cache[6*8];
171
    uint8_t (*non_zero_count)[16];
172

    
173
    /**
174
     * Motion vector cache.
175
     */
176
    int16_t mv_cache[2][5*8][2];
177
    int8_t ref_cache[2][5*8];
178
#define LIST_NOT_USED -1 //FIXME rename?
179
#define PART_NOT_AVAILABLE -2
180
    
181
    /**
182
     * is 1 if the specific list MV&references are set to 0,0,-2.
183
     */
184
    int mv_cache_clean[2];
185

    
186
    int block_offset[16+8];
187
    int chroma_subblock_offset[16]; //FIXME remove
188
    
189
    uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
190
    uint16_t *mb2b8_xy;
191
    int b_stride;
192
    int b8_stride;
193

    
194
    int halfpel_flag;
195
    int thirdpel_flag;
196

    
197
    int unknown_svq3_flag;
198
    int next_slice_index;
199

    
200
    SPS sps_buffer[MAX_SPS_COUNT];
201
    SPS sps; ///< current sps
202
    
203
    PPS pps_buffer[MAX_PPS_COUNT];
204
    /**
205
     * current pps
206
     */
207
    PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
208

    
209
    int slice_num;
210
    uint8_t *slice_table_base;
211
    uint8_t *slice_table;      ///< slice_table_base + mb_stride + 1
212
    int slice_type;
213
    int slice_type_fixed;
214
    
215
    //interlacing specific flags
216
    int mb_field_decoding_flag;
217
    
218
    int sub_mb_type[4];
219
    
220
    //POC stuff
221
    int poc_lsb;
222
    int poc_msb;
223
    int delta_poc_bottom;
224
    int delta_poc[2];
225
    int frame_num;
226
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
227
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
228
    int frame_num_offset;         ///< for POC type 2
229
    int prev_frame_num_offset;    ///< for POC type 2
230
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
231

    
232
    /**
233
     * frame_num for frames or 2*frame_num for field pics.
234
     */
235
    int curr_pic_num;
236
    
237
    /**
238
     * max_frame_num or 2*max_frame_num for field pics.
239
     */
240
    int max_pic_num;
241

    
242
    //Weighted pred stuff
243
    int luma_log2_weight_denom;
244
    int chroma_log2_weight_denom;
245
    int luma_weight[2][16];
246
    int luma_offset[2][16];
247
    int chroma_weight[2][16][2];
248
    int chroma_offset[2][16][2];
249
   
250
    //deblock
251
    int disable_deblocking_filter_idc;
252
    int slice_alpha_c0_offset_div2;
253
    int slice_beta_offset_div2;
254
     
255
    int redundant_pic_count;
256
    
257
    int direct_spatial_mv_pred;
258

    
259
    /**
260
     * num_ref_idx_l0/1_active_minus1 + 1
261
     */
262
    int ref_count[2];// FIXME split for AFF
263
    Picture *short_ref[16];
264
    Picture *long_ref[16];
265
    Picture default_ref_list[2][32];
266
    Picture ref_list[2][32]; //FIXME size?
267
    Picture field_ref_list[2][32]; //FIXME size?
268
    
269
    /**
270
     * memory management control operations buffer.
271
     */
272
    MMCO mmco[MAX_MMCO_COUNT];
273
    int mmco_index;
274
    
275
    int long_ref_count;  ///< number of actual long term references
276
    int short_ref_count; ///< number of actual short term references
277
    
278
    //data partitioning
279
    GetBitContext intra_gb;
280
    GetBitContext inter_gb;
281
    GetBitContext *intra_gb_ptr;
282
    GetBitContext *inter_gb_ptr;
283
    
284
    DCTELEM mb[16*24] __align8;
285
}H264Context;
286

    
287
static VLC coeff_token_vlc[4];
288
static VLC chroma_dc_coeff_token_vlc;
289

    
290
static VLC total_zeros_vlc[15];
291
static VLC chroma_dc_total_zeros_vlc[3];
292

    
293
static VLC run_vlc[6];
294
static VLC run7_vlc;
295

    
296
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
297
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
298

    
299
static inline uint32_t pack16to32(int a, int b){
300
#ifdef WORDS_BIGENDIAN
301
   return (b&0xFFFF) + (a<<16);
302
#else
303
   return (a&0xFFFF) + (b<<16);
304
#endif
305
}
306

    
307
/**
308
 * fill a rectangle.
309
 * @param h height of the recatangle, should be a constant
310
 * @param w width of the recatangle, should be a constant
311
 * @param size the size of val (1 or 4), should be a constant
312
 */
313
static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
314
    uint8_t *p= (uint8_t*)vp;
315
    assert(size==1 || size==4);
316
    
317
    w      *= size;
318
    stride *= size;
319
    
320
//FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
321
    if(w==2 && h==2){
322
        *(uint16_t*)(p + 0)=
323
        *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
324
    }else if(w==2 && h==4){
325
        *(uint16_t*)(p + 0*stride)=
326
        *(uint16_t*)(p + 1*stride)=
327
        *(uint16_t*)(p + 2*stride)=
328
        *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
329
    }else if(w==4 && h==1){
330
        *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
331
    }else if(w==4 && h==2){
332
        *(uint32_t*)(p + 0*stride)=
333
        *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
334
    }else if(w==4 && h==4){
335
        *(uint32_t*)(p + 0*stride)=
336
        *(uint32_t*)(p + 1*stride)=
337
        *(uint32_t*)(p + 2*stride)=
338
        *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
339
    }else if(w==8 && h==1){
340
        *(uint32_t*)(p + 0)=
341
        *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
342
    }else if(w==8 && h==2){
343
        *(uint32_t*)(p + 0 + 0*stride)=
344
        *(uint32_t*)(p + 4 + 0*stride)=
345
        *(uint32_t*)(p + 0 + 1*stride)=
346
        *(uint32_t*)(p + 4 + 1*stride)=  size==4 ? val : val*0x01010101;
347
    }else if(w==8 && h==4){
348
        *(uint64_t*)(p + 0*stride)=
349
        *(uint64_t*)(p + 1*stride)=
350
        *(uint64_t*)(p + 2*stride)=
351
        *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
352
    }else if(w==16 && h==2){
353
        *(uint64_t*)(p + 0+0*stride)=
354
        *(uint64_t*)(p + 8+0*stride)=
355
        *(uint64_t*)(p + 0+1*stride)=
356
        *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
357
    }else if(w==16 && h==4){
358
        *(uint64_t*)(p + 0+0*stride)=
359
        *(uint64_t*)(p + 8+0*stride)=
360
        *(uint64_t*)(p + 0+1*stride)=
361
        *(uint64_t*)(p + 8+1*stride)=
362
        *(uint64_t*)(p + 0+2*stride)=
363
        *(uint64_t*)(p + 8+2*stride)=
364
        *(uint64_t*)(p + 0+3*stride)=
365
        *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
366
    }else
367
        assert(0);
368
}
369

    
370
static inline void fill_caches(H264Context *h, int mb_type){
371
    MpegEncContext * const s = &h->s;
372
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
373
    int topleft_xy, top_xy, topright_xy, left_xy[2];
374
    int topleft_type, top_type, topright_type, left_type[2];
375
    int left_block[4];
376
    int i;
377

    
378
    //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it 
379
    
380
    if(h->sps.mb_aff){
381
    //FIXME
382
        topleft_xy = 0; /* avoid warning */
383
        top_xy = 0; /* avoid warning */
384
        topright_xy = 0; /* avoid warning */
385
    }else{
386
        topleft_xy = mb_xy-1 - s->mb_stride;
387
        top_xy     = mb_xy   - s->mb_stride;
388
        topright_xy= mb_xy+1 - s->mb_stride;
389
        left_xy[0]   = mb_xy-1;
390
        left_xy[1]   = mb_xy-1;
391
        left_block[0]= 0;
392
        left_block[1]= 1;
393
        left_block[2]= 2;
394
        left_block[3]= 3;
395
    }
396

    
397
    topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
398
    top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
399
    topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
400
    left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
401
    left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
402

    
403
    if(IS_INTRA(mb_type)){
404
        h->topleft_samples_available= 
405
        h->top_samples_available= 
406
        h->left_samples_available= 0xFFFF;
407
        h->topright_samples_available= 0xEEEA;
408

    
409
        if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
410
            h->topleft_samples_available= 0xB3FF;
411
            h->top_samples_available= 0x33FF;
412
            h->topright_samples_available= 0x26EA;
413
        }
414
        for(i=0; i<2; i++){
415
            if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
416
                h->topleft_samples_available&= 0xDF5F;
417
                h->left_samples_available&= 0x5F5F;
418
            }
419
        }
420
        
421
        if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
422
            h->topleft_samples_available&= 0x7FFF;
423
        
424
        if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
425
            h->topright_samples_available&= 0xFBFF;
426
    
427
        if(IS_INTRA4x4(mb_type)){
428
            if(IS_INTRA4x4(top_type)){
429
                h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
430
                h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
431
                h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
432
                h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
433
            }else{
434
                int pred;
435
                if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
436
                    pred= 2;
437
                else{
438
                    pred= -1;
439
                }
440
                h->intra4x4_pred_mode_cache[4+8*0]=
441
                h->intra4x4_pred_mode_cache[5+8*0]=
442
                h->intra4x4_pred_mode_cache[6+8*0]=
443
                h->intra4x4_pred_mode_cache[7+8*0]= pred;
444
            }
445
            for(i=0; i<2; i++){
446
                if(IS_INTRA4x4(left_type[i])){
447
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
448
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
449
                }else{
450
                    int pred;
451
                    if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
452
                        pred= 2;
453
                    else{
454
                        pred= -1;
455
                    }
456
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
457
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
458
                }
459
            }
460
        }
461
    }
462
    
463
    
464
/*
465
0 . T T. T T T T 
466
1 L . .L . . . . 
467
2 L . .L . . . . 
468
3 . T TL . . . . 
469
4 L . .L . . . . 
470
5 L . .. . . . . 
471
*/
472
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
473
    if(top_type){
474
        h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
475
        h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
476
        h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
477
        h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
478
    
479
        h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
480
        h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
481
    
482
        h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
483
        h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
484
    }else{
485
        h->non_zero_count_cache[4+8*0]=      
486
        h->non_zero_count_cache[5+8*0]=
487
        h->non_zero_count_cache[6+8*0]=
488
        h->non_zero_count_cache[7+8*0]=
489
    
490
        h->non_zero_count_cache[1+8*0]=
491
        h->non_zero_count_cache[2+8*0]=
492
    
493
        h->non_zero_count_cache[1+8*3]=
494
        h->non_zero_count_cache[2+8*3]= 64;
495
    }
496
    
497
    if(left_type[0]){
498
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
499
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
500
        h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
501
        h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
502
    }else{
503
        h->non_zero_count_cache[3+8*1]= 
504
        h->non_zero_count_cache[3+8*2]= 
505
        h->non_zero_count_cache[0+8*1]= 
506
        h->non_zero_count_cache[0+8*4]= 64;
507
    }
508
    
509
    if(left_type[1]){
510
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
511
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
512
        h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
513
        h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
514
    }else{
515
        h->non_zero_count_cache[3+8*3]= 
516
        h->non_zero_count_cache[3+8*4]= 
517
        h->non_zero_count_cache[0+8*2]= 
518
        h->non_zero_count_cache[0+8*5]= 64;
519
    }
520
    
521
#if 1
522
    if(IS_INTER(mb_type)){
523
        int list;
524
        for(list=0; list<2; list++){
525
            if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
526
                /*if(!h->mv_cache_clean[list]){
527
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
528
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
529
                    h->mv_cache_clean[list]= 1;
530
                }*/
531
                continue; //FIXME direct mode ...
532
            }
533
            h->mv_cache_clean[list]= 0;
534
            
535
            if(IS_INTER(topleft_type)){
536
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
537
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
538
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
539
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
540
            }else{
541
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
542
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
543
            }
544
            
545
            if(IS_INTER(top_type)){
546
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
547
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
548
                *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
549
                *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
550
                *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
551
                *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
552
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
553
                h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
554
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
555
                h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
556
            }else{
557
                *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= 
558
                *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= 
559
                *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 
560
                *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
561
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
562
            }
563

    
564
            if(IS_INTER(topright_type)){
565
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
566
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
567
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
568
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
569
            }else{
570
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
571
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
572
            }
573
            
574
            //FIXME unify cleanup or sth
575
            if(IS_INTER(left_type[0])){
576
                const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
577
                const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
578
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
579
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
580
                h->ref_cache[list][scan8[0] - 1 + 0*8]= 
581
                h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
582
            }else{
583
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
584
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
585
                h->ref_cache[list][scan8[0] - 1 + 0*8]=
586
                h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
587
            }
588
            
589
            if(IS_INTER(left_type[1])){
590
                const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
591
                const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
592
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
593
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
594
                h->ref_cache[list][scan8[0] - 1 + 2*8]= 
595
                h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
596
            }else{
597
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
598
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
599
                h->ref_cache[list][scan8[0] - 1 + 2*8]=
600
                h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
601
            }
602

    
603
            h->ref_cache[list][scan8[5 ]+1] = 
604
            h->ref_cache[list][scan8[7 ]+1] = 
605
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewher else)
606
            h->ref_cache[list][scan8[4 ]] = 
607
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
608
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
609
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
610
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
611
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
612
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
613
        }
614
//FIXME
615

    
616
    }
617
#endif
618
}
619

    
620
static inline void write_back_intra_pred_mode(H264Context *h){
621
    MpegEncContext * const s = &h->s;
622
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
623

    
624
    h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
625
    h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
626
    h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
627
    h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
628
    h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
629
    h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
630
    h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
631
}
632

    
633
/**
634
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
635
 */
636
static inline int check_intra4x4_pred_mode(H264Context *h){
637
    MpegEncContext * const s = &h->s;
638
    static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
639
    static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
640
    int i;
641
    
642
    if(!(h->top_samples_available&0x8000)){
643
        for(i=0; i<4; i++){
644
            int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
645
            if(status<0){
646
                av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
647
                return -1;
648
            } else if(status){
649
                h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
650
            }
651
        }
652
    }
653
    
654
    if(!(h->left_samples_available&0x8000)){
655
        for(i=0; i<4; i++){
656
            int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
657
            if(status<0){
658
                av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
659
                return -1;
660
            } else if(status){
661
                h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
662
            }
663
        }
664
    }
665

    
666
    return 0;
667
} //FIXME cleanup like next
668

    
669
/**
670
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
671
 */
672
static inline int check_intra_pred_mode(H264Context *h, int mode){
673
    MpegEncContext * const s = &h->s;
674
    static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
675
    static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
676
    
677
    if(!(h->top_samples_available&0x8000)){
678
        mode= top[ mode ];
679
        if(mode<0){
680
            av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
681
            return -1;
682
        }
683
    }
684
    
685
    if(!(h->left_samples_available&0x8000)){
686
        mode= left[ mode ];
687
        if(mode<0){
688
            av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
689
            return -1;
690
        } 
691
    }
692

    
693
    return mode;
694
}
695

    
696
/**
697
 * gets the predicted intra4x4 prediction mode.
698
 */
699
static inline int pred_intra_mode(H264Context *h, int n){
700
    const int index8= scan8[n];
701
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
702
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
703
    const int min= FFMIN(left, top);
704

    
705
    tprintf("mode:%d %d min:%d\n", left ,top, min);
706

    
707
    if(min<0) return DC_PRED;
708
    else      return min;
709
}
710

    
711
static inline void write_back_non_zero_count(H264Context *h){
712
    MpegEncContext * const s = &h->s;
713
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
714

    
715
    h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
716
    h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
717
    h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
718
    h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
719
    h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
720
    h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
721
    h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
722
    
723
    h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
724
    h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
725
    h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
726

    
727
    h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
728
    h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
729
    h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
730
}
731

    
732
/**
733
 * gets the predicted number of non zero coefficients.
734
 * @param n block index
735
 */
736
static inline int pred_non_zero_count(H264Context *h, int n){
737
    const int index8= scan8[n];
738
    const int left= h->non_zero_count_cache[index8 - 1];
739
    const int top = h->non_zero_count_cache[index8 - 8];
740
    int i= left + top;
741
    
742
    if(i<64) i= (i+1)>>1;
743

    
744
    tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
745

    
746
    return i&31;
747
}
748

    
749
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
750
    const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
751

    
752
    if(topright_ref != PART_NOT_AVAILABLE){
753
        *C= h->mv_cache[list][ i - 8 + part_width ];
754
        return topright_ref;
755
    }else{
756
        tprintf("topright MV not available\n");
757

    
758
        *C= h->mv_cache[list][ i - 8 - 1 ];
759
        return h->ref_cache[list][ i - 8 - 1 ];
760
    }
761
}
762

    
763
/**
764
 * gets the predicted MV.
765
 * @param n the block index
766
 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
767
 * @param mx the x component of the predicted motion vector
768
 * @param my the y component of the predicted motion vector
769
 */
770
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
771
    const int index8= scan8[n];
772
    const int top_ref=      h->ref_cache[list][ index8 - 8 ];
773
    const int left_ref=     h->ref_cache[list][ index8 - 1 ];
774
    const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
775
    const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
776
    const int16_t * C;
777
    int diagonal_ref, match_count;
778

    
779
    assert(part_width==1 || part_width==2 || part_width==4);
780

    
781
/* mv_cache
782
  B . . A T T T T 
783
  U . . L . . , .
784
  U . . L . . . .
785
  U . . L . . , .
786
  . . . L . . . .
787
*/
788

    
789
    diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
790
    match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
791
    if(match_count > 1){ //most common
792
        *mx= mid_pred(A[0], B[0], C[0]);
793
        *my= mid_pred(A[1], B[1], C[1]);
794
    }else if(match_count==1){
795
        if(left_ref==ref){
796
            *mx= A[0];
797
            *my= A[1];        
798
        }else if(top_ref==ref){
799
            *mx= B[0];
800
            *my= B[1];        
801
        }else{
802
            *mx= C[0];
803
            *my= C[1];        
804
        }
805
    }else{
806
        if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
807
            *mx= A[0];
808
            *my= A[1];        
809
        }else{
810
            *mx= mid_pred(A[0], B[0], C[0]);
811
            *my= mid_pred(A[1], B[1], C[1]);
812
        }
813
    }
814
        
815
    tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
816
}
817

    
818
/**
819
 * gets the directionally predicted 16x8 MV.
820
 * @param n the block index
821
 * @param mx the x component of the predicted motion vector
822
 * @param my the y component of the predicted motion vector
823
 */
824
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
825
    if(n==0){
826
        const int top_ref=      h->ref_cache[list][ scan8[0] - 8 ];
827
        const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
828

    
829
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
830
        
831
        if(top_ref == ref){
832
            *mx= B[0];
833
            *my= B[1];
834
            return;
835
        }
836
    }else{
837
        const int left_ref=     h->ref_cache[list][ scan8[8] - 1 ];
838
        const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
839
        
840
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
841

    
842
        if(left_ref == ref){
843
            *mx= A[0];
844
            *my= A[1];
845
            return;
846
        }
847
    }
848

    
849
    //RARE
850
    pred_motion(h, n, 4, list, ref, mx, my);
851
}
852

    
853
/**
854
 * gets the directionally predicted 8x16 MV.
855
 * @param n the block index
856
 * @param mx the x component of the predicted motion vector
857
 * @param my the y component of the predicted motion vector
858
 */
859
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
860
    if(n==0){
861
        const int left_ref=      h->ref_cache[list][ scan8[0] - 1 ];
862
        const int16_t * const A=  h->mv_cache[list][ scan8[0] - 1 ];
863
        
864
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
865

    
866
        if(left_ref == ref){
867
            *mx= A[0];
868
            *my= A[1];
869
            return;
870
        }
871
    }else{
872
        const int16_t * C;
873
        int diagonal_ref;
874

    
875
        diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
876
        
877
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
878

    
879
        if(diagonal_ref == ref){ 
880
            *mx= C[0];
881
            *my= C[1];
882
            return;
883
        }
884
    }
885

    
886
    //RARE
887
    pred_motion(h, n, 2, list, ref, mx, my);
888
}
889

    
890
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
891
    const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
892
    const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
893

    
894
    tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
895

    
896
    if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
897
       || (top_ref == 0  && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
898
       || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
899
       
900
        *mx = *my = 0;
901
        return;
902
    }
903
        
904
    pred_motion(h, 0, 4, 0, 0, mx, my);
905

    
906
    return;
907
}
908

    
909
static inline void write_back_motion(H264Context *h, int mb_type){
910
    MpegEncContext * const s = &h->s;
911
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
912
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
913
    int list;
914

    
915
    for(list=0; list<2; list++){
916
        int y;
917
        if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
918
            if(1){ //FIXME skip or never read if mb_type doesnt use it
919
                for(y=0; y<4; y++){
920
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
921
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
922
                }
923
                for(y=0; y<2; y++){
924
                    *(uint16_t*)s->current_picture.motion_val[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
925
                }
926
            }
927
            continue; //FIXME direct mode ...
928
        }
929
        
930
        for(y=0; y<4; y++){
931
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
932
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
933
        }
934
        for(y=0; y<2; y++){
935
            s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
936
            s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
937
        }
938
    }
939
}
940

    
941
/**
942
 * Decodes a network abstraction layer unit.
943
 * @param consumed is the number of bytes used as input
944
 * @param length is the length of the array
945
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
946
 * @returns decoded bytes, might be src+1 if no escapes 
947
 */
948
static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
949
    int i, si, di;
950
    uint8_t *dst;
951

    
952
//    src[0]&0x80;                //forbidden bit
953
    h->nal_ref_idc= src[0]>>5;
954
    h->nal_unit_type= src[0]&0x1F;
955

    
956
    src++; length--;
957
#if 0    
958
    for(i=0; i<length; i++)
959
        printf("%2X ", src[i]);
960
#endif
961
    for(i=0; i+1<length; i+=2){
962
        if(src[i]) continue;
963
        if(i>0 && src[i-1]==0) i--;
964
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
965
            if(src[i+2]!=3){
966
                /* startcode, so we must be past the end */
967
                length=i;
968
            }
969
            break;
970
        }
971
    }
972

    
973
    if(i>=length-1){ //no escaped 0
974
        *dst_length= length;
975
        *consumed= length+1; //+1 for the header
976
        return src; 
977
    }
978

    
979
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
980
    dst= h->rbsp_buffer;
981

    
982
//printf("deoding esc\n");
983
    si=di=0;
984
    while(si<length){ 
985
        //remove escapes (very rare 1:2^22)
986
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
987
            if(src[si+2]==3){ //escape
988
                dst[di++]= 0;
989
                dst[di++]= 0;
990
                si+=3;
991
            }else //next start code
992
                break;
993
        }
994

    
995
        dst[di++]= src[si++];
996
    }
997

    
998
    *dst_length= di;
999
    *consumed= si + 1;//+1 for the header
1000
//FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1001
    return dst;
1002
}
1003

    
1004
/**
1005
 * @param src the data which should be escaped
1006
 * @param dst the target buffer, dst+1 == src is allowed as a special case
1007
 * @param length the length of the src data
1008
 * @param dst_length the length of the dst array
1009
 * @returns length of escaped data in bytes or -1 if an error occured
1010
 */
1011
static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1012
    int i, escape_count, si, di;
1013
    uint8_t *temp;
1014
    
1015
    assert(length>=0);
1016
    assert(dst_length>0);
1017
    
1018
    dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1019

    
1020
    if(length==0) return 1;
1021

    
1022
    escape_count= 0;
1023
    for(i=0; i<length; i+=2){
1024
        if(src[i]) continue;
1025
        if(i>0 && src[i-1]==0) 
1026
            i--;
1027
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1028
            escape_count++;
1029
            i+=2;
1030
        }
1031
    }
1032
    
1033
    if(escape_count==0){ 
1034
        if(dst+1 != src)
1035
            memcpy(dst+1, src, length);
1036
        return length + 1;
1037
    }
1038
    
1039
    if(length + escape_count + 1> dst_length)
1040
        return -1;
1041

    
1042
    //this should be damn rare (hopefully)
1043

    
1044
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1045
    temp= h->rbsp_buffer;
1046
//printf("encoding esc\n");
1047
    
1048
    si= 0;
1049
    di= 0;
1050
    while(si < length){
1051
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1052
            temp[di++]= 0; si++;
1053
            temp[di++]= 0; si++;
1054
            temp[di++]= 3; 
1055
            temp[di++]= src[si++];
1056
        }
1057
        else
1058
            temp[di++]= src[si++];
1059
    }
1060
    memcpy(dst+1, temp, length+escape_count);
1061
    
1062
    assert(di == length+escape_count);
1063
    
1064
    return di + 1;
1065
}
1066

    
1067
/**
1068
 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1069
 */
1070
static void encode_rbsp_trailing(PutBitContext *pb){
1071
    int length;
1072
    put_bits(pb, 1, 1);
1073
    length= (-get_bit_count(pb))&7;
1074
    if(length) put_bits(pb, length, 0);
1075
}
1076

    
1077
/**
1078
 * identifies the exact end of the bitstream
1079
 * @return the length of the trailing, or 0 if damaged
1080
 */
1081
static int decode_rbsp_trailing(uint8_t *src){
1082
    int v= *src;
1083
    int r;
1084

    
1085
    tprintf("rbsp trailing %X\n", v);
1086

    
1087
    for(r=1; r<9; r++){
1088
        if(v&1) return r;
1089
        v>>=1;
1090
    }
1091
    return 0;
1092
}
1093

    
1094
/**
1095
 * idct tranforms the 16 dc values and dequantize them.
1096
 * @param qp quantization parameter
1097
 */
1098
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1099
    const int qmul= dequant_coeff[qp][0];
1100
#define stride 16
1101
    int i;
1102
    int temp[16]; //FIXME check if this is a good idea
1103
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1104
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1105

    
1106
//memset(block, 64, 2*256);
1107
//return;
1108
    for(i=0; i<4; i++){
1109
        const int offset= y_offset[i];
1110
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1111
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1112
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1113
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1114

    
1115
        temp[4*i+0]= z0+z3;
1116
        temp[4*i+1]= z1+z2;
1117
        temp[4*i+2]= z1-z2;
1118
        temp[4*i+3]= z0-z3;
1119
    }
1120

    
1121
    for(i=0; i<4; i++){
1122
        const int offset= x_offset[i];
1123
        const int z0= temp[4*0+i] + temp[4*2+i];
1124
        const int z1= temp[4*0+i] - temp[4*2+i];
1125
        const int z2= temp[4*1+i] - temp[4*3+i];
1126
        const int z3= temp[4*1+i] + temp[4*3+i];
1127

    
1128
        block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1129
        block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1130
        block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1131
        block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1132
    }
1133
}
1134

    
1135
/**
1136
 * dct tranforms the 16 dc values.
1137
 * @param qp quantization parameter ??? FIXME
1138
 */
1139
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1140
//    const int qmul= dequant_coeff[qp][0];
1141
    int i;
1142
    int temp[16]; //FIXME check if this is a good idea
1143
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1144
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1145

    
1146
    for(i=0; i<4; i++){
1147
        const int offset= y_offset[i];
1148
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1149
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1150
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1151
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1152

    
1153
        temp[4*i+0]= z0+z3;
1154
        temp[4*i+1]= z1+z2;
1155
        temp[4*i+2]= z1-z2;
1156
        temp[4*i+3]= z0-z3;
1157
    }
1158

    
1159
    for(i=0; i<4; i++){
1160
        const int offset= x_offset[i];
1161
        const int z0= temp[4*0+i] + temp[4*2+i];
1162
        const int z1= temp[4*0+i] - temp[4*2+i];
1163
        const int z2= temp[4*1+i] - temp[4*3+i];
1164
        const int z3= temp[4*1+i] + temp[4*3+i];
1165

    
1166
        block[stride*0 +offset]= (z0 + z3)>>1;
1167
        block[stride*2 +offset]= (z1 + z2)>>1;
1168
        block[stride*8 +offset]= (z1 - z2)>>1;
1169
        block[stride*10+offset]= (z0 - z3)>>1;
1170
    }
1171
}
1172
#undef xStride
1173
#undef stride
1174

    
1175
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1176
    const int qmul= dequant_coeff[qp][0];
1177
    const int stride= 16*2;
1178
    const int xStride= 16;
1179
    int a,b,c,d,e;
1180

    
1181
    a= block[stride*0 + xStride*0];
1182
    b= block[stride*0 + xStride*1];
1183
    c= block[stride*1 + xStride*0];
1184
    d= block[stride*1 + xStride*1];
1185

    
1186
    e= a-b;
1187
    a= a+b;
1188
    b= c-d;
1189
    c= c+d;
1190

    
1191
    block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1192
    block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1193
    block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1194
    block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1195
}
1196

    
1197
static void chroma_dc_dct_c(DCTELEM *block){
1198
    const int stride= 16*2;
1199
    const int xStride= 16;
1200
    int a,b,c,d,e;
1201

    
1202
    a= block[stride*0 + xStride*0];
1203
    b= block[stride*0 + xStride*1];
1204
    c= block[stride*1 + xStride*0];
1205
    d= block[stride*1 + xStride*1];
1206

    
1207
    e= a-b;
1208
    a= a+b;
1209
    b= c-d;
1210
    c= c+d;
1211

    
1212
    block[stride*0 + xStride*0]= (a+c);
1213
    block[stride*0 + xStride*1]= (e+b);
1214
    block[stride*1 + xStride*0]= (a-c);
1215
    block[stride*1 + xStride*1]= (e-b);
1216
}
1217

    
1218
/**
1219
 * gets the chroma qp.
1220
 */
1221
static inline int get_chroma_qp(H264Context *h, int qscale){
1222
    
1223
    return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1224
}
1225

    
1226

    
1227
/**
1228
 *
1229
 */
1230
static void h264_add_idct_c(uint8_t *dst, DCTELEM *block, int stride){
1231
    int i;
1232
    uint8_t *cm = cropTbl + MAX_NEG_CROP;
1233

    
1234
    block[0] += 32;
1235
#if 1
1236
    for(i=0; i<4; i++){
1237
        const int z0=  block[i + 4*0]     +  block[i + 4*2];
1238
        const int z1=  block[i + 4*0]     -  block[i + 4*2];
1239
        const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1240
        const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1241

    
1242
        block[i + 4*0]= z0 + z3;
1243
        block[i + 4*1]= z1 + z2;
1244
        block[i + 4*2]= z1 - z2;
1245
        block[i + 4*3]= z0 - z3;
1246
    }
1247

    
1248
    for(i=0; i<4; i++){
1249
        const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1250
        const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1251
        const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1252
        const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1253

    
1254
        dst[0 + i*stride]= cm[ dst[0 + i*stride] + ((z0 + z3) >> 6) ];
1255
        dst[1 + i*stride]= cm[ dst[1 + i*stride] + ((z1 + z2) >> 6) ];
1256
        dst[2 + i*stride]= cm[ dst[2 + i*stride] + ((z1 - z2) >> 6) ];
1257
        dst[3 + i*stride]= cm[ dst[3 + i*stride] + ((z0 - z3) >> 6) ];
1258
    }
1259
#else
1260
    for(i=0; i<4; i++){
1261
        const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1262
        const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1263
        const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1264
        const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1265

    
1266
        block[0 + 4*i]= z0 + z3;
1267
        block[1 + 4*i]= z1 + z2;
1268
        block[2 + 4*i]= z1 - z2;
1269
        block[3 + 4*i]= z0 - z3;
1270
    }
1271

    
1272
    for(i=0; i<4; i++){
1273
        const int z0=  block[i + 4*0]     +  block[i + 4*2];
1274
        const int z1=  block[i + 4*0]     -  block[i + 4*2];
1275
        const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1276
        const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1277

    
1278
        dst[i + 0*stride]= cm[ dst[i + 0*stride] + ((z0 + z3) >> 6) ];
1279
        dst[i + 1*stride]= cm[ dst[i + 1*stride] + ((z1 + z2) >> 6) ];
1280
        dst[i + 2*stride]= cm[ dst[i + 2*stride] + ((z1 - z2) >> 6) ];
1281
        dst[i + 3*stride]= cm[ dst[i + 3*stride] + ((z0 - z3) >> 6) ];
1282
    }
1283
#endif
1284
}
1285

    
1286
static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1287
    int i;
1288
    //FIXME try int temp instead of block
1289
    
1290
    for(i=0; i<4; i++){
1291
        const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1292
        const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1293
        const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1294
        const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1295
        const int z0= d0 + d3;
1296
        const int z3= d0 - d3;
1297
        const int z1= d1 + d2;
1298
        const int z2= d1 - d2;
1299
        
1300
        block[0 + 4*i]=   z0 +   z1;
1301
        block[1 + 4*i]= 2*z3 +   z2;
1302
        block[2 + 4*i]=   z0 -   z1;
1303
        block[3 + 4*i]=   z3 - 2*z2;
1304
    }    
1305

    
1306
    for(i=0; i<4; i++){
1307
        const int z0= block[0*4 + i] + block[3*4 + i];
1308
        const int z3= block[0*4 + i] - block[3*4 + i];
1309
        const int z1= block[1*4 + i] + block[2*4 + i];
1310
        const int z2= block[1*4 + i] - block[2*4 + i];
1311
        
1312
        block[0*4 + i]=   z0 +   z1;
1313
        block[1*4 + i]= 2*z3 +   z2;
1314
        block[2*4 + i]=   z0 -   z1;
1315
        block[3*4 + i]=   z3 - 2*z2;
1316
    }
1317
}
1318

    
1319
//FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1320
//FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1321
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1322
    int i;
1323
    const int * const quant_table= quant_coeff[qscale];
1324
    const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1325
    const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1326
    const unsigned int threshold2= (threshold1<<1);
1327
    int last_non_zero;
1328

    
1329
    if(seperate_dc){
1330
        if(qscale<=18){
1331
            //avoid overflows
1332
            const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1333
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1334
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1335

    
1336
            int level= block[0]*quant_coeff[qscale+18][0];
1337
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1338
                if(level>0){
1339
                    level= (dc_bias + level)>>(QUANT_SHIFT-2);
1340
                    block[0]= level;
1341
                }else{
1342
                    level= (dc_bias - level)>>(QUANT_SHIFT-2);
1343
                    block[0]= -level;
1344
                }
1345
//                last_non_zero = i;
1346
            }else{
1347
                block[0]=0;
1348
            }
1349
        }else{
1350
            const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1351
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1352
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1353

    
1354
            int level= block[0]*quant_table[0];
1355
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1356
                if(level>0){
1357
                    level= (dc_bias + level)>>(QUANT_SHIFT+1);
1358
                    block[0]= level;
1359
                }else{
1360
                    level= (dc_bias - level)>>(QUANT_SHIFT+1);
1361
                    block[0]= -level;
1362
                }
1363
//                last_non_zero = i;
1364
            }else{
1365
                block[0]=0;
1366
            }
1367
        }
1368
        last_non_zero= 0;
1369
        i=1;
1370
    }else{
1371
        last_non_zero= -1;
1372
        i=0;
1373
    }
1374

    
1375
    for(; i<16; i++){
1376
        const int j= scantable[i];
1377
        int level= block[j]*quant_table[j];
1378

    
1379
//        if(   bias+level >= (1<<(QMAT_SHIFT - 3))
1380
//           || bias-level >= (1<<(QMAT_SHIFT - 3))){
1381
        if(((unsigned)(level+threshold1))>threshold2){
1382
            if(level>0){
1383
                level= (bias + level)>>QUANT_SHIFT;
1384
                block[j]= level;
1385
            }else{
1386
                level= (bias - level)>>QUANT_SHIFT;
1387
                block[j]= -level;
1388
            }
1389
            last_non_zero = i;
1390
        }else{
1391
            block[j]=0;
1392
        }
1393
    }
1394

    
1395
    return last_non_zero;
1396
}
1397

    
1398
static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1399
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1400
    ((uint32_t*)(src+0*stride))[0]= a;
1401
    ((uint32_t*)(src+1*stride))[0]= a;
1402
    ((uint32_t*)(src+2*stride))[0]= a;
1403
    ((uint32_t*)(src+3*stride))[0]= a;
1404
}
1405

    
1406
static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1407
    ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1408
    ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1409
    ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1410
    ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1411
}
1412

    
1413
static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1414
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1415
                   + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1416
    
1417
    ((uint32_t*)(src+0*stride))[0]= 
1418
    ((uint32_t*)(src+1*stride))[0]= 
1419
    ((uint32_t*)(src+2*stride))[0]= 
1420
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1421
}
1422

    
1423
static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1424
    const int dc= (  src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1425
    
1426
    ((uint32_t*)(src+0*stride))[0]= 
1427
    ((uint32_t*)(src+1*stride))[0]= 
1428
    ((uint32_t*)(src+2*stride))[0]= 
1429
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1430
}
1431

    
1432
static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1433
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1434
    
1435
    ((uint32_t*)(src+0*stride))[0]= 
1436
    ((uint32_t*)(src+1*stride))[0]= 
1437
    ((uint32_t*)(src+2*stride))[0]= 
1438
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1439
}
1440

    
1441
static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1442
    ((uint32_t*)(src+0*stride))[0]= 
1443
    ((uint32_t*)(src+1*stride))[0]= 
1444
    ((uint32_t*)(src+2*stride))[0]= 
1445
    ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1446
}
1447

    
1448

    
1449
#define LOAD_TOP_RIGHT_EDGE\
1450
    const int t4= topright[0];\
1451
    const int t5= topright[1];\
1452
    const int t6= topright[2];\
1453
    const int t7= topright[3];\
1454

    
1455
#define LOAD_LEFT_EDGE\
1456
    const int l0= src[-1+0*stride];\
1457
    const int l1= src[-1+1*stride];\
1458
    const int l2= src[-1+2*stride];\
1459
    const int l3= src[-1+3*stride];\
1460

    
1461
#define LOAD_TOP_EDGE\
1462
    const int t0= src[ 0-1*stride];\
1463
    const int t1= src[ 1-1*stride];\
1464
    const int t2= src[ 2-1*stride];\
1465
    const int t3= src[ 3-1*stride];\
1466

    
1467
static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1468
    const int lt= src[-1-1*stride];
1469
    LOAD_TOP_EDGE
1470
    LOAD_LEFT_EDGE
1471

    
1472
    src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; 
1473
    src[0+2*stride]=
1474
    src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; 
1475
    src[0+1*stride]=
1476
    src[1+2*stride]=
1477
    src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; 
1478
    src[0+0*stride]=
1479
    src[1+1*stride]=
1480
    src[2+2*stride]=
1481
    src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; 
1482
    src[1+0*stride]=
1483
    src[2+1*stride]=
1484
    src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1485
    src[2+0*stride]=
1486
    src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1487
    src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1488
}
1489

    
1490
static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1491
    LOAD_TOP_EDGE    
1492
    LOAD_TOP_RIGHT_EDGE    
1493
//    LOAD_LEFT_EDGE    
1494

    
1495
    src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1496
    src[1+0*stride]=
1497
    src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1498
    src[2+0*stride]=
1499
    src[1+1*stride]=
1500
    src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1501
    src[3+0*stride]=
1502
    src[2+1*stride]=
1503
    src[1+2*stride]=
1504
    src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1505
    src[3+1*stride]=
1506
    src[2+2*stride]=
1507
    src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1508
    src[3+2*stride]=
1509
    src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1510
    src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1511
}
1512

    
1513
static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1514
    const int lt= src[-1-1*stride];
1515
    LOAD_TOP_EDGE    
1516
    LOAD_LEFT_EDGE    
1517
    const __attribute__((unused)) int unu= l3;
1518

    
1519
    src[0+0*stride]=
1520
    src[1+2*stride]=(lt + t0 + 1)>>1;
1521
    src[1+0*stride]=
1522
    src[2+2*stride]=(t0 + t1 + 1)>>1;
1523
    src[2+0*stride]=
1524
    src[3+2*stride]=(t1 + t2 + 1)>>1;
1525
    src[3+0*stride]=(t2 + t3 + 1)>>1;
1526
    src[0+1*stride]=
1527
    src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1528
    src[1+1*stride]=
1529
    src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1530
    src[2+1*stride]=
1531
    src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1532
    src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1533
    src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1534
    src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1535
}
1536

    
1537
static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1538
    LOAD_TOP_EDGE    
1539
    LOAD_TOP_RIGHT_EDGE    
1540
    const __attribute__((unused)) int unu= t7;
1541

    
1542
    src[0+0*stride]=(t0 + t1 + 1)>>1;
1543
    src[1+0*stride]=
1544
    src[0+2*stride]=(t1 + t2 + 1)>>1;
1545
    src[2+0*stride]=
1546
    src[1+2*stride]=(t2 + t3 + 1)>>1;
1547
    src[3+0*stride]=
1548
    src[2+2*stride]=(t3 + t4+ 1)>>1;
1549
    src[3+2*stride]=(t4 + t5+ 1)>>1;
1550
    src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1551
    src[1+1*stride]=
1552
    src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1553
    src[2+1*stride]=
1554
    src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1555
    src[3+1*stride]=
1556
    src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1557
    src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1558
}
1559

    
1560
static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1561
    LOAD_LEFT_EDGE    
1562

    
1563
    src[0+0*stride]=(l0 + l1 + 1)>>1;
1564
    src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1565
    src[2+0*stride]=
1566
    src[0+1*stride]=(l1 + l2 + 1)>>1;
1567
    src[3+0*stride]=
1568
    src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1569
    src[2+1*stride]=
1570
    src[0+2*stride]=(l2 + l3 + 1)>>1;
1571
    src[3+1*stride]=
1572
    src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1573
    src[3+2*stride]=
1574
    src[1+3*stride]=
1575
    src[0+3*stride]=
1576
    src[2+2*stride]=
1577
    src[2+3*stride]=
1578
    src[3+3*stride]=l3;
1579
}
1580
    
1581
static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1582
    const int lt= src[-1-1*stride];
1583
    LOAD_TOP_EDGE    
1584
    LOAD_LEFT_EDGE    
1585
    const __attribute__((unused)) int unu= t3;
1586

    
1587
    src[0+0*stride]=
1588
    src[2+1*stride]=(lt + l0 + 1)>>1;
1589
    src[1+0*stride]=
1590
    src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1591
    src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1592
    src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1593
    src[0+1*stride]=
1594
    src[2+2*stride]=(l0 + l1 + 1)>>1;
1595
    src[1+1*stride]=
1596
    src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1597
    src[0+2*stride]=
1598
    src[2+3*stride]=(l1 + l2+ 1)>>1;
1599
    src[1+2*stride]=
1600
    src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1601
    src[0+3*stride]=(l2 + l3 + 1)>>1;
1602
    src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1603
}
1604

    
1605
static void pred16x16_vertical_c(uint8_t *src, int stride){
1606
    int i;
1607
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1608
    const uint32_t b= ((uint32_t*)(src-stride))[1];
1609
    const uint32_t c= ((uint32_t*)(src-stride))[2];
1610
    const uint32_t d= ((uint32_t*)(src-stride))[3];
1611
    
1612
    for(i=0; i<16; i++){
1613
        ((uint32_t*)(src+i*stride))[0]= a;
1614
        ((uint32_t*)(src+i*stride))[1]= b;
1615
        ((uint32_t*)(src+i*stride))[2]= c;
1616
        ((uint32_t*)(src+i*stride))[3]= d;
1617
    }
1618
}
1619

    
1620
static void pred16x16_horizontal_c(uint8_t *src, int stride){
1621
    int i;
1622

    
1623
    for(i=0; i<16; i++){
1624
        ((uint32_t*)(src+i*stride))[0]=
1625
        ((uint32_t*)(src+i*stride))[1]=
1626
        ((uint32_t*)(src+i*stride))[2]=
1627
        ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1628
    }
1629
}
1630

    
1631
static void pred16x16_dc_c(uint8_t *src, int stride){
1632
    int i, dc=0;
1633

    
1634
    for(i=0;i<16; i++){
1635
        dc+= src[-1+i*stride];
1636
    }
1637
    
1638
    for(i=0;i<16; i++){
1639
        dc+= src[i-stride];
1640
    }
1641

    
1642
    dc= 0x01010101*((dc + 16)>>5);
1643

    
1644
    for(i=0; i<16; i++){
1645
        ((uint32_t*)(src+i*stride))[0]=
1646
        ((uint32_t*)(src+i*stride))[1]=
1647
        ((uint32_t*)(src+i*stride))[2]=
1648
        ((uint32_t*)(src+i*stride))[3]= dc;
1649
    }
1650
}
1651

    
1652
static void pred16x16_left_dc_c(uint8_t *src, int stride){
1653
    int i, dc=0;
1654

    
1655
    for(i=0;i<16; i++){
1656
        dc+= src[-1+i*stride];
1657
    }
1658
    
1659
    dc= 0x01010101*((dc + 8)>>4);
1660

    
1661
    for(i=0; i<16; i++){
1662
        ((uint32_t*)(src+i*stride))[0]=
1663
        ((uint32_t*)(src+i*stride))[1]=
1664
        ((uint32_t*)(src+i*stride))[2]=
1665
        ((uint32_t*)(src+i*stride))[3]= dc;
1666
    }
1667
}
1668

    
1669
static void pred16x16_top_dc_c(uint8_t *src, int stride){
1670
    int i, dc=0;
1671

    
1672
    for(i=0;i<16; i++){
1673
        dc+= src[i-stride];
1674
    }
1675
    dc= 0x01010101*((dc + 8)>>4);
1676

    
1677
    for(i=0; i<16; i++){
1678
        ((uint32_t*)(src+i*stride))[0]=
1679
        ((uint32_t*)(src+i*stride))[1]=
1680
        ((uint32_t*)(src+i*stride))[2]=
1681
        ((uint32_t*)(src+i*stride))[3]= dc;
1682
    }
1683
}
1684

    
1685
static void pred16x16_128_dc_c(uint8_t *src, int stride){
1686
    int i;
1687

    
1688
    for(i=0; i<16; i++){
1689
        ((uint32_t*)(src+i*stride))[0]=
1690
        ((uint32_t*)(src+i*stride))[1]=
1691
        ((uint32_t*)(src+i*stride))[2]=
1692
        ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1693
    }
1694
}
1695

    
1696
static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1697
  int i, j, k;
1698
  int a;
1699
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
1700
  const uint8_t * const src0 = src+7-stride;
1701
  const uint8_t *src1 = src+8*stride-1;
1702
  const uint8_t *src2 = src1-2*stride;      // == src+6*stride-1;
1703
  int H = src0[1] - src0[-1];
1704
  int V = src1[0] - src2[ 0];
1705
  for(k=2; k<=8; ++k) {
1706
    src1 += stride; src2 -= stride;
1707
    H += k*(src0[k] - src0[-k]);
1708
    V += k*(src1[0] - src2[ 0]);
1709
  }
1710
  if(svq3){
1711
    H = ( 5*(H/4) ) / 16;
1712
    V = ( 5*(V/4) ) / 16;
1713

    
1714
    /* required for 100% accuracy */
1715
    i = H; H = V; V = i;
1716
  }else{
1717
    H = ( 5*H+32 ) >> 6;
1718
    V = ( 5*V+32 ) >> 6;
1719
  }
1720

    
1721
  a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
1722
  for(j=16; j>0; --j) {
1723
    int b = a;
1724
    a += V;
1725
    for(i=-16; i<0; i+=4) {
1726
      src[16+i] = cm[ (b    ) >> 5 ];
1727
      src[17+i] = cm[ (b+  H) >> 5 ];
1728
      src[18+i] = cm[ (b+2*H) >> 5 ];
1729
      src[19+i] = cm[ (b+3*H) >> 5 ];
1730
      b += 4*H;
1731
    }
1732
    src += stride;
1733
  }
1734
}
1735

    
1736
static void pred16x16_plane_c(uint8_t *src, int stride){
1737
    pred16x16_plane_compat_c(src, stride, 0);
1738
}
1739

    
1740
static void pred8x8_vertical_c(uint8_t *src, int stride){
1741
    int i;
1742
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1743
    const uint32_t b= ((uint32_t*)(src-stride))[1];
1744
    
1745
    for(i=0; i<8; i++){
1746
        ((uint32_t*)(src+i*stride))[0]= a;
1747
        ((uint32_t*)(src+i*stride))[1]= b;
1748
    }
1749
}
1750

    
1751
static void pred8x8_horizontal_c(uint8_t *src, int stride){
1752
    int i;
1753

    
1754
    for(i=0; i<8; i++){
1755
        ((uint32_t*)(src+i*stride))[0]=
1756
        ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
1757
    }
1758
}
1759

    
1760
static void pred8x8_128_dc_c(uint8_t *src, int stride){
1761
    int i;
1762

    
1763
    for(i=0; i<4; i++){
1764
        ((uint32_t*)(src+i*stride))[0]= 
1765
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1766
    }
1767
    for(i=4; i<8; i++){
1768
        ((uint32_t*)(src+i*stride))[0]= 
1769
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1770
    }
1771
}
1772

    
1773
static void pred8x8_left_dc_c(uint8_t *src, int stride){
1774
    int i;
1775
    int dc0, dc2;
1776

    
1777
    dc0=dc2=0;
1778
    for(i=0;i<4; i++){
1779
        dc0+= src[-1+i*stride];
1780
        dc2+= src[-1+(i+4)*stride];
1781
    }
1782
    dc0= 0x01010101*((dc0 + 2)>>2);
1783
    dc2= 0x01010101*((dc2 + 2)>>2);
1784

    
1785
    for(i=0; i<4; i++){
1786
        ((uint32_t*)(src+i*stride))[0]=
1787
        ((uint32_t*)(src+i*stride))[1]= dc0;
1788
    }
1789
    for(i=4; i<8; i++){
1790
        ((uint32_t*)(src+i*stride))[0]=
1791
        ((uint32_t*)(src+i*stride))[1]= dc2;
1792
    }
1793
}
1794

    
1795
static void pred8x8_top_dc_c(uint8_t *src, int stride){
1796
    int i;
1797
    int dc0, dc1;
1798

    
1799
    dc0=dc1=0;
1800
    for(i=0;i<4; i++){
1801
        dc0+= src[i-stride];
1802
        dc1+= src[4+i-stride];
1803
    }
1804
    dc0= 0x01010101*((dc0 + 2)>>2);
1805
    dc1= 0x01010101*((dc1 + 2)>>2);
1806

    
1807
    for(i=0; i<4; i++){
1808
        ((uint32_t*)(src+i*stride))[0]= dc0;
1809
        ((uint32_t*)(src+i*stride))[1]= dc1;
1810
    }
1811
    for(i=4; i<8; i++){
1812
        ((uint32_t*)(src+i*stride))[0]= dc0;
1813
        ((uint32_t*)(src+i*stride))[1]= dc1;
1814
    }
1815
}
1816

    
1817

    
1818
static void pred8x8_dc_c(uint8_t *src, int stride){
1819
    int i;
1820
    int dc0, dc1, dc2, dc3;
1821

    
1822
    dc0=dc1=dc2=0;
1823
    for(i=0;i<4; i++){
1824
        dc0+= src[-1+i*stride] + src[i-stride];
1825
        dc1+= src[4+i-stride];
1826
        dc2+= src[-1+(i+4)*stride];
1827
    }
1828
    dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
1829
    dc0= 0x01010101*((dc0 + 4)>>3);
1830
    dc1= 0x01010101*((dc1 + 2)>>2);
1831
    dc2= 0x01010101*((dc2 + 2)>>2);
1832

    
1833
    for(i=0; i<4; i++){
1834
        ((uint32_t*)(src+i*stride))[0]= dc0;
1835
        ((uint32_t*)(src+i*stride))[1]= dc1;
1836
    }
1837
    for(i=4; i<8; i++){
1838
        ((uint32_t*)(src+i*stride))[0]= dc2;
1839
        ((uint32_t*)(src+i*stride))[1]= dc3;
1840
    }
1841
}
1842

    
1843
static void pred8x8_plane_c(uint8_t *src, int stride){
1844
  int j, k;
1845
  int a;
1846
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
1847
  const uint8_t * const src0 = src+3-stride;
1848
  const uint8_t *src1 = src+4*stride-1;
1849
  const uint8_t *src2 = src1-2*stride;      // == src+2*stride-1;
1850
  int H = src0[1] - src0[-1];
1851
  int V = src1[0] - src2[ 0];
1852
  for(k=2; k<=4; ++k) {
1853
    src1 += stride; src2 -= stride;
1854
    H += k*(src0[k] - src0[-k]);
1855
    V += k*(src1[0] - src2[ 0]);
1856
  }
1857
  H = ( 17*H+16 ) >> 5;
1858
  V = ( 17*V+16 ) >> 5;
1859

    
1860
  a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
1861
  for(j=8; j>0; --j) {
1862
    int b = a;
1863
    a += V;
1864
    src[0] = cm[ (b    ) >> 5 ];
1865
    src[1] = cm[ (b+  H) >> 5 ];
1866
    src[2] = cm[ (b+2*H) >> 5 ];
1867
    src[3] = cm[ (b+3*H) >> 5 ];
1868
    src[4] = cm[ (b+4*H) >> 5 ];
1869
    src[5] = cm[ (b+5*H) >> 5 ];
1870
    src[6] = cm[ (b+6*H) >> 5 ];
1871
    src[7] = cm[ (b+7*H) >> 5 ];
1872
    src += stride;
1873
  }
1874
}
1875

    
1876
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1877
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1878
                           int src_x_offset, int src_y_offset,
1879
                           qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1880
    MpegEncContext * const s = &h->s;
1881
    const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1882
    const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1883
    const int luma_xy= (mx&3) + ((my&3)<<2);
1884
    uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
1885
    uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
1886
    uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
1887
    int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
1888
    int extra_height= extra_width;
1889
    int emu=0;
1890
    const int full_mx= mx>>2;
1891
    const int full_my= my>>2;
1892
    
1893
    assert(pic->data[0]);
1894
    
1895
    if(mx&7) extra_width -= 3;
1896
    if(my&7) extra_height -= 3;
1897
    
1898
    if(   full_mx < 0-extra_width 
1899
       || full_my < 0-extra_height 
1900
       || full_mx + 16/*FIXME*/ > s->width + extra_width 
1901
       || full_my + 16/*FIXME*/ > s->height + extra_height){
1902
        ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
1903
            src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
1904
        emu=1;
1905
    }
1906
    
1907
    qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
1908
    if(!square){
1909
        qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
1910
    }
1911
    
1912
    if(s->flags&CODEC_FLAG_GRAY) return;
1913
    
1914
    if(emu){
1915
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1916
            src_cb= s->edge_emu_buffer;
1917
    }
1918
    chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
1919

    
1920
    if(emu){
1921
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1922
            src_cr= s->edge_emu_buffer;
1923
    }
1924
    chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
1925
}
1926

    
1927
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1928
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1929
                           int x_offset, int y_offset,
1930
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1931
                           qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1932
                           int list0, int list1){
1933
    MpegEncContext * const s = &h->s;
1934
    qpel_mc_func *qpix_op=  qpix_put;
1935
    h264_chroma_mc_func chroma_op= chroma_put;
1936
    
1937
    dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
1938
    dest_cb +=   x_offset +   y_offset*s->uvlinesize;
1939
    dest_cr +=   x_offset +   y_offset*s->uvlinesize;
1940
    x_offset += 8*s->mb_x;
1941
    y_offset += 8*s->mb_y;
1942
    
1943
    if(list0){
1944
        Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1945
        mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1946
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
1947
                           qpix_op, chroma_op);
1948

    
1949
        qpix_op=  qpix_avg;
1950
        chroma_op= chroma_avg;
1951
    }
1952

    
1953
    if(list1){
1954
        Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1955
        mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1956
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
1957
                           qpix_op, chroma_op);
1958
    }
1959
}
1960

    
1961
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1962
                      qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1963
                      qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){
1964
    MpegEncContext * const s = &h->s;
1965
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1966
    const int mb_type= s->current_picture.mb_type[mb_xy];
1967
    
1968
    assert(IS_INTER(mb_type));
1969
    
1970
    if(IS_16X16(mb_type)){
1971
        mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1972
                qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1973
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1974
    }else if(IS_16X8(mb_type)){
1975
        mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1976
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1977
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1978
        mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1979
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1980
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1981
    }else if(IS_8X16(mb_type)){
1982
        mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
1983
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1984
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1985
        mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
1986
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1987
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1988
    }else{
1989
        int i;
1990
        
1991
        assert(IS_8X8(mb_type));
1992

    
1993
        for(i=0; i<4; i++){
1994
            const int sub_mb_type= h->sub_mb_type[i];
1995
            const int n= 4*i;
1996
            int x_offset= (i&1)<<2;
1997
            int y_offset= (i&2)<<1;
1998

    
1999
            if(IS_SUB_8X8(sub_mb_type)){
2000
                mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2001
                    qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2002
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2003
            }else if(IS_SUB_8X4(sub_mb_type)){
2004
                mc_part(h, n  , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2005
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2006
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2007
                mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2008
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2009
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2010
            }else if(IS_SUB_4X8(sub_mb_type)){
2011
                mc_part(h, n  , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2012
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2013
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2014
                mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2015
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2016
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2017
            }else{
2018
                int j;
2019
                assert(IS_SUB_4X4(sub_mb_type));
2020
                for(j=0; j<4; j++){
2021
                    int sub_x_offset= x_offset + 2*(j&1);
2022
                    int sub_y_offset= y_offset +   (j&2);
2023
                    mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2024
                        qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2025
                        IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2026
                }
2027
            }
2028
        }
2029
    }
2030
}
2031

    
2032
static void decode_init_vlc(H264Context *h){
2033
    static int done = 0;
2034

    
2035
    if (!done) {
2036
        int i;
2037
        done = 1;
2038

    
2039
        init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, 
2040
                 &chroma_dc_coeff_token_len [0], 1, 1,
2041
                 &chroma_dc_coeff_token_bits[0], 1, 1);
2042

    
2043
        for(i=0; i<4; i++){
2044
            init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, 
2045
                     &coeff_token_len [i][0], 1, 1,
2046
                     &coeff_token_bits[i][0], 1, 1);
2047
        }
2048

    
2049
        for(i=0; i<3; i++){
2050
            init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2051
                     &chroma_dc_total_zeros_len [i][0], 1, 1,
2052
                     &chroma_dc_total_zeros_bits[i][0], 1, 1);
2053
        }
2054
        for(i=0; i<15; i++){
2055
            init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, 
2056
                     &total_zeros_len [i][0], 1, 1,
2057
                     &total_zeros_bits[i][0], 1, 1);
2058
        }
2059

    
2060
        for(i=0; i<6; i++){
2061
            init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, 
2062
                     &run_len [i][0], 1, 1,
2063
                     &run_bits[i][0], 1, 1);
2064
        }
2065
        init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, 
2066
                 &run_len [6][0], 1, 1,
2067
                 &run_bits[6][0], 1, 1);
2068
    }
2069
}
2070

    
2071
/**
2072
 * Sets the intra prediction function pointers.
2073
 */
2074
static void init_pred_ptrs(H264Context *h){
2075
//    MpegEncContext * const s = &h->s;
2076

    
2077
    h->pred4x4[VERT_PRED           ]= pred4x4_vertical_c;
2078
    h->pred4x4[HOR_PRED            ]= pred4x4_horizontal_c;
2079
    h->pred4x4[DC_PRED             ]= pred4x4_dc_c;
2080
    h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2081
    h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2082
    h->pred4x4[VERT_RIGHT_PRED     ]= pred4x4_vertical_right_c;
2083
    h->pred4x4[HOR_DOWN_PRED       ]= pred4x4_horizontal_down_c;
2084
    h->pred4x4[VERT_LEFT_PRED      ]= pred4x4_vertical_left_c;
2085
    h->pred4x4[HOR_UP_PRED         ]= pred4x4_horizontal_up_c;
2086
    h->pred4x4[LEFT_DC_PRED        ]= pred4x4_left_dc_c;
2087
    h->pred4x4[TOP_DC_PRED         ]= pred4x4_top_dc_c;
2088
    h->pred4x4[DC_128_PRED         ]= pred4x4_128_dc_c;
2089

    
2090
    h->pred8x8[DC_PRED8x8     ]= pred8x8_dc_c;
2091
    h->pred8x8[VERT_PRED8x8   ]= pred8x8_vertical_c;
2092
    h->pred8x8[HOR_PRED8x8    ]= pred8x8_horizontal_c;
2093
    h->pred8x8[PLANE_PRED8x8  ]= pred8x8_plane_c;
2094
    h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2095
    h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2096
    h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2097

    
2098
    h->pred16x16[DC_PRED8x8     ]= pred16x16_dc_c;
2099
    h->pred16x16[VERT_PRED8x8   ]= pred16x16_vertical_c;
2100
    h->pred16x16[HOR_PRED8x8    ]= pred16x16_horizontal_c;
2101
    h->pred16x16[PLANE_PRED8x8  ]= pred16x16_plane_c;
2102
    h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2103
    h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2104
    h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2105
}
2106

    
2107
static void free_tables(H264Context *h){
2108
    av_freep(&h->intra4x4_pred_mode);
2109
    av_freep(&h->non_zero_count);
2110
    av_freep(&h->slice_table_base);
2111
    h->slice_table= NULL;
2112
    
2113
    av_freep(&h->mb2b_xy);
2114
    av_freep(&h->mb2b8_xy);
2115
}
2116

    
2117
/**
2118
 * allocates tables.
2119
 * needs widzh/height
2120
 */
2121
static int alloc_tables(H264Context *h){
2122
    MpegEncContext * const s = &h->s;
2123
    const int big_mb_num= s->mb_stride * (s->mb_height+1);
2124
    int x,y;
2125

    
2126
    CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8  * sizeof(uint8_t))
2127
    CHECKED_ALLOCZ(h->non_zero_count    , big_mb_num * 16 * sizeof(uint8_t))
2128
    CHECKED_ALLOCZ(h->slice_table_base  , big_mb_num * sizeof(uint8_t))
2129

    
2130
    memset(h->slice_table_base, -1, big_mb_num  * sizeof(uint8_t));
2131
    h->slice_table= h->slice_table_base + s->mb_stride + 1;
2132

    
2133
    CHECKED_ALLOCZ(h->mb2b_xy  , big_mb_num * sizeof(uint16_t));
2134
    CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2135
    for(y=0; y<s->mb_height; y++){
2136
        for(x=0; x<s->mb_width; x++){
2137
            const int mb_xy= x + y*s->mb_stride;
2138
            const int b_xy = 4*x + 4*y*h->b_stride;
2139
            const int b8_xy= 2*x + 2*y*h->b8_stride;
2140
        
2141
            h->mb2b_xy [mb_xy]= b_xy;
2142
            h->mb2b8_xy[mb_xy]= b8_xy;
2143
        }
2144
    }
2145
    
2146
    return 0;
2147
fail:
2148
    free_tables(h);
2149
    return -1;
2150
}
2151

    
2152
static void common_init(H264Context *h){
2153
    MpegEncContext * const s = &h->s;
2154

    
2155
    s->width = s->avctx->width;
2156
    s->height = s->avctx->height;
2157
    s->codec_id= s->avctx->codec->id;
2158
    
2159
    init_pred_ptrs(h);
2160

    
2161
    s->unrestricted_mv=1;
2162
    s->decode=1; //FIXME
2163
}
2164

    
2165
static int decode_init(AVCodecContext *avctx){
2166
    H264Context *h= avctx->priv_data;
2167
    MpegEncContext * const s = &h->s;
2168

    
2169
    s->avctx = avctx;
2170
    common_init(h);
2171

    
2172
    s->out_format = FMT_H264;
2173
    s->workaround_bugs= avctx->workaround_bugs;
2174

    
2175
    // set defaults
2176
    s->progressive_sequence=1;
2177
//    s->decode_mb= ff_h263_decode_mb;
2178
    s->low_delay= 1;
2179
    avctx->pix_fmt= PIX_FMT_YUV420P;
2180

    
2181
    decode_init_vlc(h);
2182
    
2183
    return 0;
2184
}
2185

    
2186
static void frame_start(H264Context *h){
2187
    MpegEncContext * const s = &h->s;
2188
    int i;
2189

    
2190
    MPV_frame_start(s, s->avctx);
2191
    ff_er_frame_start(s);
2192
    h->mmco_index=0;
2193

    
2194
    assert(s->linesize && s->uvlinesize);
2195

    
2196
    for(i=0; i<16; i++){
2197
        h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2198
        h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2199
    }
2200
    for(i=0; i<4; i++){
2201
        h->block_offset[16+i]=
2202
        h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2203
    }
2204

    
2205
//    s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2206
}
2207

    
2208
static void hl_decode_mb(H264Context *h){
2209
    MpegEncContext * const s = &h->s;
2210
    const int mb_x= s->mb_x;
2211
    const int mb_y= s->mb_y;
2212
    const int mb_xy= mb_x + mb_y*s->mb_stride;
2213
    const int mb_type= s->current_picture.mb_type[mb_xy];
2214
    uint8_t  *dest_y, *dest_cb, *dest_cr;
2215
    int linesize, uvlinesize /*dct_offset*/;
2216
    int i;
2217

    
2218
    if(!s->decode)
2219
        return;
2220

    
2221
    if(s->mb_skiped){
2222
    }
2223

    
2224
    dest_y  = s->current_picture.data[0] + (mb_y * 16* s->linesize  ) + mb_x * 16;
2225
    dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2226
    dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2227

    
2228
    if (h->mb_field_decoding_flag) {
2229
        linesize = s->linesize * 2;
2230
        uvlinesize = s->uvlinesize * 2;
2231
        if(mb_y&1){ //FIXME move out of this func?
2232
            dest_y -= s->linesize*15;
2233
            dest_cb-= s->linesize*7;
2234
            dest_cr-= s->linesize*7;
2235
        }
2236
    } else {
2237
        linesize = s->linesize;
2238
        uvlinesize = s->uvlinesize;
2239
//        dct_offset = s->linesize * 16;
2240
    }
2241

    
2242
    if(IS_INTRA(mb_type)){
2243
        if(!(s->flags&CODEC_FLAG_GRAY)){
2244
            h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2245
            h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2246
        }
2247

    
2248
        if(IS_INTRA4x4(mb_type)){
2249
            if(!s->encoding){
2250
                for(i=0; i<16; i++){
2251
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2252
                    uint8_t *topright= ptr + 4 - linesize;
2253
                    const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2254
                    const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2255
                    int tr;
2256

    
2257
                    if(!topright_avail){
2258
                        tr= ptr[3 - linesize]*0x01010101;
2259
                        topright= (uint8_t*) &tr;
2260
                    }
2261

    
2262
                    h->pred4x4[ dir ](ptr, topright, linesize);
2263
                    if(h->non_zero_count_cache[ scan8[i] ]){
2264
                        if(s->codec_id == CODEC_ID_H264)
2265
                            h264_add_idct_c(ptr, h->mb + i*16, linesize);
2266
                        else
2267
                            svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2268
                    }
2269
                }
2270
            }
2271
        }else{
2272
            h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2273
            if(s->codec_id == CODEC_ID_H264)
2274
                h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2275
            else
2276
                svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2277
        }
2278
    }else if(s->codec_id == CODEC_ID_H264){
2279
        hl_motion(h, dest_y, dest_cb, dest_cr,
2280
                  s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, 
2281
                  s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab);
2282
    }
2283

    
2284

    
2285
    if(!IS_INTRA4x4(mb_type)){
2286
        if(s->codec_id == CODEC_ID_H264){
2287
            for(i=0; i<16; i++){
2288
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2289
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2290
                    h264_add_idct_c(ptr, h->mb + i*16, linesize);
2291
                }
2292
            }
2293
        }else{
2294
            for(i=0; i<16; i++){
2295
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2296
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2297
                    svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2298
                }
2299
            }
2300
        }
2301
    }
2302

    
2303
    if(!(s->flags&CODEC_FLAG_GRAY)){
2304
        chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2305
        chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2306
        if(s->codec_id == CODEC_ID_H264){
2307
            for(i=16; i<16+4; i++){
2308
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2309
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2310
                    h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2311
                }
2312
            }
2313
            for(i=20; i<20+4; i++){
2314
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2315
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2316
                    h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2317
                }
2318
            }
2319
        }else{
2320
            for(i=16; i<16+4; i++){
2321
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2322
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2323
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2324
                }
2325
            }
2326
            for(i=20; i<20+4; i++){
2327
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2328
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2329
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2330
                }
2331
            }
2332
        }
2333
    }
2334
}
2335

    
2336
static void decode_mb_cabac(H264Context *h){
2337
//    MpegEncContext * const s = &h->s;
2338
}
2339

    
2340
/**
2341
 * fills the default_ref_list.
2342
 */
2343
static int fill_default_ref_list(H264Context *h){
2344
    MpegEncContext * const s = &h->s;
2345
    int i;
2346
    Picture sorted_short_ref[16];
2347
    
2348
    if(h->slice_type==B_TYPE){
2349
        int out_i;
2350
        int limit= -1;
2351

    
2352
        for(out_i=0; out_i<h->short_ref_count; out_i++){
2353
            int best_i=-1;
2354
            int best_poc=-1;
2355

    
2356
            for(i=0; i<h->short_ref_count; i++){
2357
                const int poc= h->short_ref[i]->poc;
2358
                if(poc > limit && poc < best_poc){
2359
                    best_poc= poc;
2360
                    best_i= i;
2361
                }
2362
            }
2363
            
2364
            assert(best_i != -1);
2365
            
2366
            limit= best_poc;
2367
            sorted_short_ref[out_i]= *h->short_ref[best_i];
2368
        }
2369
    }
2370

    
2371
    if(s->picture_structure == PICT_FRAME){
2372
        if(h->slice_type==B_TYPE){
2373
            const int current_poc= s->current_picture_ptr->poc;
2374
            int list;
2375

    
2376
            for(list=0; list<2; list++){
2377
                int index=0;
2378

    
2379
                for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
2380
                    const int i2= list ? h->short_ref_count - i - 1 : i;
2381
                    const int poc= sorted_short_ref[i2].poc;
2382
                    
2383
                    if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
2384

    
2385
                    if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
2386
                        h->default_ref_list[list][index  ]= sorted_short_ref[i2];
2387
                        h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
2388
                    }
2389
                }
2390

    
2391
                for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
2392
                    if(h->long_ref[i]->reference != 3) continue;
2393

    
2394
                    h->default_ref_list[ list ][index  ]= *h->long_ref[i];
2395
                    h->default_ref_list[ list ][index++].pic_id= i;;
2396
                }
2397
                
2398
                if(h->long_ref_count > 1 && h->short_ref_count==0){
2399
                    Picture temp= h->default_ref_list[1][0];
2400
                    h->default_ref_list[1][0] = h->default_ref_list[1][1];
2401
                    h->default_ref_list[1][0] = temp;
2402
                }
2403

    
2404
                if(index < h->ref_count[ list ])
2405
                    memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2406
            }
2407
        }else{
2408
            int index=0;
2409
            for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2410
                if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2411
                h->default_ref_list[0][index  ]= *h->short_ref[i];
2412
                h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2413
            }
2414
            for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
2415
                if(h->long_ref[i]->reference != 3) continue;
2416
                h->default_ref_list[0][index  ]= *h->long_ref[i];
2417
                h->default_ref_list[0][index++].pic_id= i;;
2418
            }
2419
            if(index < h->ref_count[0])
2420
                memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2421
        }
2422
    }else{ //FIELD
2423
        if(h->slice_type==B_TYPE){
2424
        }else{
2425
            //FIXME second field balh
2426
        }
2427
    }
2428
    return 0;
2429
}
2430

    
2431
static int decode_ref_pic_list_reordering(H264Context *h){
2432
    MpegEncContext * const s = &h->s;
2433
    int list;
2434
    
2435
    if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2436
    
2437
    for(list=0; list<2; list++){
2438
        memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2439

    
2440
        if(get_bits1(&s->gb)){
2441
            int pred= h->curr_pic_num;
2442
            int index;
2443

    
2444
            for(index=0; ; index++){
2445
                int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2446
                int pic_id;
2447
                int i;
2448
                
2449
                
2450
                if(index >= h->ref_count[list]){
2451
                    av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
2452
                    return -1;
2453
                }
2454
                
2455
                if(reordering_of_pic_nums_idc<3){
2456
                    if(reordering_of_pic_nums_idc<2){
2457
                        const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2458

    
2459
                        if(abs_diff_pic_num >= h->max_pic_num){
2460
                            av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
2461
                            return -1;
2462
                        }
2463

    
2464
                        if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2465
                        else                                pred+= abs_diff_pic_num;
2466
                        pred &= h->max_pic_num - 1;
2467
                    
2468
                        for(i= h->ref_count[list]-1; i>=index; i--){
2469
                            if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
2470
                                break;
2471
                        }
2472
                    }else{
2473
                        pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2474

    
2475
                        for(i= h->ref_count[list]-1; i>=index; i--){
2476
                            if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
2477
                                break;
2478
                        }
2479
                    }
2480

    
2481
                    if(i < index){
2482
                        av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
2483
                        memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2484
                    }else if(i > index){
2485
                        Picture tmp= h->ref_list[list][i];
2486
                        for(; i>index; i--){
2487
                            h->ref_list[list][i]= h->ref_list[list][i-1];
2488
                        }
2489
                        h->ref_list[list][index]= tmp;
2490
                    }
2491
                }else if(reordering_of_pic_nums_idc==3) 
2492
                    break;
2493
                else{
2494
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
2495
                    return -1;
2496
                }
2497
            }
2498
        }
2499

    
2500
        if(h->slice_type!=B_TYPE) break;
2501
    }
2502
    return 0;    
2503
}
2504

    
2505
static int pred_weight_table(H264Context *h){
2506
    MpegEncContext * const s = &h->s;
2507
    int list, i;
2508
    
2509
    h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
2510
    h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
2511

    
2512
    for(list=0; list<2; list++){
2513
        for(i=0; i<h->ref_count[list]; i++){
2514
            int luma_weight_flag, chroma_weight_flag;
2515
            
2516
            luma_weight_flag= get_bits1(&s->gb);
2517
            if(luma_weight_flag){
2518
                h->luma_weight[list][i]= get_se_golomb(&s->gb);
2519
                h->luma_offset[list][i]= get_se_golomb(&s->gb);
2520
            }
2521

    
2522
            chroma_weight_flag= get_bits1(&s->gb);
2523
            if(chroma_weight_flag){
2524
                int j;
2525
                for(j=0; j<2; j++){
2526
                    h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
2527
                    h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
2528
                }
2529
            }
2530
        }
2531
        if(h->slice_type != B_TYPE) break;
2532
    }
2533
    return 0;
2534
}
2535

    
2536
/**
2537
 * instantaneos decoder refresh.
2538
 */
2539
static void idr(H264Context *h){
2540
    int i;
2541

    
2542
    for(i=0; i<h->long_ref_count; i++){
2543
        h->long_ref[i]->reference=0;
2544
        h->long_ref[i]= NULL;
2545
    }
2546
    h->long_ref_count=0;
2547

    
2548
    for(i=0; i<h->short_ref_count; i++){
2549
        h->short_ref[i]->reference=0;
2550
        h->short_ref[i]= NULL;
2551
    }
2552
    h->short_ref_count=0;
2553
}
2554

    
2555
/**
2556
 *
2557
 * @return the removed picture or NULL if an error occures
2558
 */
2559
static Picture * remove_short(H264Context *h, int frame_num){
2560
    MpegEncContext * const s = &h->s;
2561
    int i;
2562
    
2563
    if(s->avctx->debug&FF_DEBUG_MMCO)
2564
        av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
2565
    
2566
    for(i=0; i<h->short_ref_count; i++){
2567
        Picture *pic= h->short_ref[i];
2568
        if(s->avctx->debug&FF_DEBUG_MMCO)
2569
            av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
2570
        if(pic->frame_num == frame_num){
2571
            h->short_ref[i]= NULL;
2572
            memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
2573
            h->short_ref_count--;
2574
            return pic;
2575
        }
2576
    }
2577
    return NULL;
2578
}
2579

    
2580
/**
2581
 *
2582
 * @return the removed picture or NULL if an error occures
2583
 */
2584
static Picture * remove_long(H264Context *h, int i){
2585
    Picture *pic;
2586

    
2587
    if(i >= h->long_ref_count) return NULL;
2588
    pic= h->long_ref[i];
2589
    if(pic==NULL) return NULL;
2590
    
2591
    h->long_ref[i]= NULL;
2592
    memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
2593
    h->long_ref_count--;
2594

    
2595
    return pic;
2596
}
2597

    
2598
/**
2599
 * Executes the reference picture marking (memory management control operations).
2600
 */
2601
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
2602
    MpegEncContext * const s = &h->s;
2603
    int i;
2604
    int current_is_long=0;
2605
    Picture *pic;
2606
    
2607
    if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
2608
        av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
2609
        
2610
    for(i=0; i<mmco_count; i++){
2611
        if(s->avctx->debug&FF_DEBUG_MMCO)
2612
            av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
2613

    
2614
        switch(mmco[i].opcode){
2615
        case MMCO_SHORT2UNUSED:
2616
            pic= remove_short(h, mmco[i].short_frame_num);
2617
            if(pic==NULL) return -1;
2618
            pic->reference= 0;
2619
            break;
2620
        case MMCO_SHORT2LONG:
2621
            pic= remove_long(h, mmco[i].long_index);
2622
            if(pic) pic->reference=0;
2623
            
2624
            h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
2625
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
2626
            break;
2627
        case MMCO_LONG2UNUSED:
2628
            pic= remove_long(h, mmco[i].long_index);
2629
            if(pic==NULL) return -1;
2630
            pic->reference= 0;
2631
            break;
2632
        case MMCO_LONG:
2633
            pic= remove_long(h, mmco[i].long_index);
2634
            if(pic) pic->reference=0;
2635
            
2636
            h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
2637
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
2638
            h->long_ref_count++;
2639
            
2640
            current_is_long=1;
2641
            break;
2642
        case MMCO_SET_MAX_LONG:
2643
            assert(mmco[i].long_index <= 16);
2644
            while(mmco[i].long_index < h->long_ref_count){
2645
                pic= remove_long(h, mmco[i].long_index);
2646
                pic->reference=0;
2647
            }
2648
            while(mmco[i].long_index > h->long_ref_count){
2649
                h->long_ref[ h->long_ref_count++ ]= NULL;
2650
            }
2651
            break;
2652
        case MMCO_RESET:
2653
            while(h->short_ref_count){
2654
                pic= remove_short(h, h->short_ref[0]->frame_num);
2655
                pic->reference=0;
2656
            }
2657
            while(h->long_ref_count){
2658
                pic= remove_long(h, h->long_ref_count-1);
2659
                pic->reference=0;
2660
            }
2661
            break;
2662
        default: assert(0);
2663
        }
2664
    }
2665
    
2666
    if(!current_is_long){
2667
        pic= remove_short(h, s->current_picture_ptr->frame_num);
2668
        if(pic){
2669
            pic->reference=0;
2670
            av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
2671
        }
2672
        
2673
        if(h->short_ref_count)
2674
            memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
2675

    
2676
        h->short_ref[0]= s->current_picture_ptr;
2677
        h->short_ref[0]->long_ref=0;
2678
        h->short_ref_count++;
2679
    }
2680
    
2681
    return 0; 
2682
}
2683

    
2684
static int decode_ref_pic_marking(H264Context *h){
2685
    MpegEncContext * const s = &h->s;
2686
    int i;
2687
    
2688
    if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
2689
        s->broken_link= get_bits1(&s->gb) -1;
2690
        h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
2691
        if(h->mmco[0].long_index == -1)
2692
            h->mmco_index= 0;
2693
        else{
2694
            h->mmco[0].opcode= MMCO_LONG;
2695
            h->mmco_index= 1;
2696
        } 
2697
    }else{
2698
        if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
2699
            for(i= h->mmco_index; i<MAX_MMCO_COUNT; i++) { 
2700
                MMCOOpcode opcode= get_ue_golomb(&s->gb);;
2701

    
2702
                h->mmco[i].opcode= opcode;
2703
                if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
2704
                    h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
2705
/*                    if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
2706
                        fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
2707
                        return -1;
2708
                    }*/
2709
                }
2710
                if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
2711
                    h->mmco[i].long_index= get_ue_golomb(&s->gb);
2712
                    if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
2713
                        av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
2714
                        return -1;
2715
                    }
2716
                }
2717
                    
2718
                if(opcode > MMCO_LONG){
2719
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
2720
                    return -1;
2721
                }
2722
            }
2723
            h->mmco_index= i;
2724
        }else{
2725
            assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
2726

    
2727
            if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
2728
                h->mmco[0].opcode= MMCO_SHORT2UNUSED;
2729
                h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
2730
                h->mmco_index= 1;
2731
            }else
2732
                h->mmco_index= 0;
2733
        }
2734
    }
2735
    
2736
    return 0; 
2737
}
2738

    
2739
static int init_poc(H264Context *h){
2740
    MpegEncContext * const s = &h->s;
2741
    const int max_frame_num= 1<<h->sps.log2_max_frame_num;
2742
    int field_poc[2];
2743

    
2744
    if(h->nal_unit_type == NAL_IDR_SLICE){
2745
        h->frame_num_offset= 0;
2746
    }else{
2747
        if(h->frame_num < h->prev_frame_num)
2748
            h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
2749
        else
2750
            h->frame_num_offset= h->prev_frame_num_offset;
2751
    }
2752

    
2753
    if(h->sps.poc_type==0){
2754
        const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
2755

    
2756
        if     (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
2757
            h->poc_msb = h->prev_poc_msb + max_poc_lsb;
2758
        else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
2759
            h->poc_msb = h->prev_poc_msb - max_poc_lsb;
2760
        else
2761
            h->poc_msb = h->prev_poc_msb;
2762
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
2763
        field_poc[0] = 
2764
        field_poc[1] = h->poc_msb + h->poc_lsb;
2765
        if(s->picture_structure == PICT_FRAME) 
2766
            field_poc[1] += h->delta_poc_bottom;
2767
    }else if(h->sps.poc_type==1){
2768
        int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
2769
        int i;
2770

    
2771
        if(h->sps.poc_cycle_length != 0)
2772
            abs_frame_num = h->frame_num_offset + h->frame_num;
2773
        else
2774
            abs_frame_num = 0;
2775

    
2776
        if(h->nal_ref_idc==0 && abs_frame_num > 0)
2777
            abs_frame_num--;
2778
            
2779
        expected_delta_per_poc_cycle = 0;
2780
        for(i=0; i < h->sps.poc_cycle_length; i++)
2781
            expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
2782

    
2783
        if(abs_frame_num > 0){
2784
            int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
2785
            int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
2786

    
2787
            expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
2788
            for(i = 0; i <= frame_num_in_poc_cycle; i++)
2789
                expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
2790
        } else
2791
            expectedpoc = 0;
2792

    
2793
        if(h->nal_ref_idc == 0) 
2794
            expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
2795
        
2796
        field_poc[0] = expectedpoc + h->delta_poc[0];
2797
        field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
2798

    
2799
        if(s->picture_structure == PICT_FRAME)
2800
            field_poc[1] += h->delta_poc[1];
2801
    }else{
2802
        int poc;
2803
        if(h->nal_unit_type == NAL_IDR_SLICE){
2804
            poc= 0;
2805
        }else{
2806
            if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
2807
            else               poc= 2*(h->frame_num_offset + h->frame_num) - 1;
2808
        }
2809
        field_poc[0]= poc;
2810
        field_poc[1]= poc;
2811
    }
2812
    
2813
    if(s->picture_structure != PICT_BOTTOM_FIELD)
2814
        s->current_picture_ptr->field_poc[0]= field_poc[0];
2815
    if(s->picture_structure != PICT_TOP_FIELD)
2816
        s->current_picture_ptr->field_poc[1]= field_poc[1];
2817
    if(s->picture_structure == PICT_FRAME) // FIXME field pix?
2818
        s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
2819

    
2820
    return 0;
2821
}
2822

    
2823
/**
2824
 * decodes a slice header.
2825
 * this will allso call MPV_common_init() and frame_start() as needed
2826
 */
2827
static int decode_slice_header(H264Context *h){
2828
    MpegEncContext * const s = &h->s;
2829
    int first_mb_in_slice, pps_id;
2830
    int num_ref_idx_active_override_flag;
2831
    static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
2832

    
2833
    s->current_picture.reference= h->nal_ref_idc != 0;
2834

    
2835
    first_mb_in_slice= get_ue_golomb(&s->gb);
2836

    
2837
    h->slice_type= get_ue_golomb(&s->gb);
2838
    if(h->slice_type > 9){
2839
        av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
2840
    }
2841
    if(h->slice_type > 4){
2842
        h->slice_type -= 5;
2843
        h->slice_type_fixed=1;
2844
    }else
2845
        h->slice_type_fixed=0;
2846
    
2847
    h->slice_type= slice_type_map[ h->slice_type ];
2848
    
2849
    s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
2850
        
2851
    pps_id= get_ue_golomb(&s->gb);
2852
    if(pps_id>255){
2853
        av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
2854
        return -1;
2855
    }
2856
    h->pps= h->pps_buffer[pps_id];
2857
    if(h->pps.slice_group_count == 0){
2858
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
2859
        return -1;
2860
    }
2861

    
2862
    h->sps= h->sps_buffer[ h->pps.sps_id ];
2863
    if(h->sps.log2_max_frame_num == 0){
2864
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
2865
        return -1;
2866
    }
2867
    
2868
    s->mb_width= h->sps.mb_width;
2869
    s->mb_height= h->sps.mb_height;
2870
    
2871
    h->b_stride=  s->mb_width*4;
2872
    h->b8_stride= s->mb_width*2;
2873

    
2874
    s->mb_x = first_mb_in_slice % s->mb_width;
2875
    s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
2876
    
2877
    s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
2878
    if(h->sps.frame_mbs_only_flag)
2879
        s->height= 16*s->mb_height - 2*(h->sps.crop_top  + h->sps.crop_bottom);
2880
    else
2881
        s->height= 16*s->mb_height - 4*(h->sps.crop_top  + h->sps.crop_bottom); //FIXME recheck
2882
    
2883
    if (s->context_initialized 
2884
        && (   s->width != s->avctx->width || s->height != s->avctx->height)) {
2885
        free_tables(h);
2886
        MPV_common_end(s);
2887
    }
2888
    if (!s->context_initialized) {
2889
        if (MPV_common_init(s) < 0)
2890
            return -1;
2891

    
2892
        alloc_tables(h);
2893

    
2894
        s->avctx->width = s->width;
2895
        s->avctx->height = s->height;
2896
        s->avctx->sample_aspect_ratio= h->sps.sar;
2897
    }
2898

    
2899
    if(first_mb_in_slice == 0){
2900
        frame_start(h);
2901
    }
2902

    
2903
    s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
2904
    h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
2905

    
2906
    if(h->sps.frame_mbs_only_flag){
2907
        s->picture_structure= PICT_FRAME;
2908
    }else{
2909
        if(get_bits1(&s->gb)) //field_pic_flag
2910
            s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
2911
        else
2912
            s->picture_structure= PICT_FRAME;
2913
    }
2914

    
2915
    if(s->picture_structure==PICT_FRAME){
2916
        h->curr_pic_num=   h->frame_num;
2917
        h->max_pic_num= 1<< h->sps.log2_max_frame_num;
2918
    }else{
2919
        h->curr_pic_num= 2*h->frame_num;
2920
        h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
2921
    }
2922
        
2923
    if(h->nal_unit_type == NAL_IDR_SLICE){
2924
        get_ue_golomb(&s->gb); /* idr_pic_id */
2925
    }
2926
   
2927
    if(h->sps.poc_type==0){
2928
        h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
2929
        
2930
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
2931
            h->delta_poc_bottom= get_se_golomb(&s->gb);
2932
        }
2933
    }
2934
    
2935
    if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
2936
        h->delta_poc[0]= get_se_golomb(&s->gb);
2937
        
2938
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
2939
            h->delta_poc[1]= get_se_golomb(&s->gb);
2940
    }
2941
    
2942
    init_poc(h);
2943
    
2944
    if(h->pps.redundant_pic_cnt_present){
2945
        h->redundant_pic_count= get_ue_golomb(&s->gb);
2946
    }
2947

    
2948
    //set defaults, might be overriden a few line later
2949
    h->ref_count[0]= h->pps.ref_count[0];
2950
    h->ref_count[1]= h->pps.ref_count[1];
2951

    
2952
    if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
2953
        if(h->slice_type == B_TYPE){
2954
            h->direct_spatial_mv_pred= get_bits1(&s->gb);
2955
        }
2956
        num_ref_idx_active_override_flag= get_bits1(&s->gb);
2957
    
2958
        if(num_ref_idx_active_override_flag){
2959
            h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
2960
            if(h->slice_type==B_TYPE)
2961
                h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
2962

    
2963
            if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
2964
                av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
2965
                return -1;
2966
            }
2967
        }
2968
    }
2969

    
2970
    if(first_mb_in_slice == 0){
2971
        fill_default_ref_list(h);
2972
    }
2973

    
2974
    decode_ref_pic_list_reordering(h);
2975

    
2976
    if(   (h->pps.weighted_pred          && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) 
2977
       || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
2978
        pred_weight_table(h);
2979
    
2980
    if(s->current_picture.reference)
2981
        decode_ref_pic_marking(h);
2982
    //FIXME CABAC stuff
2983

    
2984
    s->qscale = h->pps.init_qp + get_se_golomb(&s->gb); //slice_qp_delta
2985
    //FIXME qscale / qp ... stuff
2986
    if(h->slice_type == SP_TYPE){
2987
        get_bits1(&s->gb); /* sp_for_switch_flag */
2988
    }
2989
    if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
2990
        get_se_golomb(&s->gb); /* slice_qs_delta */
2991
    }
2992

    
2993
    if( h->pps.deblocking_filter_parameters_present ) {
2994
        h->disable_deblocking_filter_idc= get_ue_golomb(&s->gb);
2995
        if( h->disable_deblocking_filter_idc  !=  1 ) {
2996
            h->slice_alpha_c0_offset_div2= get_se_golomb(&s->gb);
2997
            h->slice_beta_offset_div2= get_se_golomb(&s->gb);
2998
        }
2999
    }else
3000
        h->disable_deblocking_filter_idc= 0;
3001

    
3002
#if 0 //FMO
3003
    if( h->pps.num_slice_groups > 1  && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
3004
        slice_group_change_cycle= get_bits(&s->gb, ?);
3005
#endif
3006

    
3007
    if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3008
        av_log(h->s.avctx, AV_LOG_DEBUG, "mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d\n", 
3009
               first_mb_in_slice, 
3010
               av_get_pict_type_char(h->slice_type),
3011
               pps_id, h->frame_num,
3012
               s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3013
               h->ref_count[0], h->ref_count[1],
3014
               s->qscale,
3015
               h->disable_deblocking_filter_idc
3016
               );
3017
    }
3018

    
3019
    return 0;
3020
}
3021

    
3022
/**
3023
 *
3024
 */
3025
static inline int get_level_prefix(GetBitContext *gb){
3026
    unsigned int buf;
3027
    int log;
3028
    
3029
    OPEN_READER(re, gb);
3030
    UPDATE_CACHE(re, gb);
3031
    buf=GET_CACHE(re, gb);
3032
    
3033
    log= 32 - av_log2(buf);
3034
#ifdef TRACE
3035
    print_bin(buf>>(32-log), log);
3036
    printf("%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
3037
#endif
3038

    
3039
    LAST_SKIP_BITS(re, gb, log);
3040
    CLOSE_READER(re, gb);
3041

    
3042
    return log-1;
3043
}
3044

    
3045
/**
3046
 * decodes a residual block.
3047
 * @param n block index
3048
 * @param scantable scantable
3049
 * @param max_coeff number of coefficients in the block
3050
 * @return <0 if an error occured
3051
 */
3052
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
3053
    MpegEncContext * const s = &h->s;
3054
    const uint16_t *qmul= dequant_coeff[qp];
3055
    static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
3056
    int level[16], run[16];
3057
    int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
3058

    
3059
    //FIXME put trailing_onex into the context
3060

    
3061
    if(n == CHROMA_DC_BLOCK_INDEX){
3062
        coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
3063
        total_coeff= coeff_token>>2;
3064
    }else{    
3065
        if(n == LUMA_DC_BLOCK_INDEX){
3066
            total_coeff= pred_non_zero_count(h, 0);
3067
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3068
            total_coeff= coeff_token>>2;
3069
        }else{
3070
            total_coeff= pred_non_zero_count(h, n);
3071
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3072
            total_coeff= coeff_token>>2;
3073
            h->non_zero_count_cache[ scan8[n] ]= total_coeff;
3074
        }
3075
    }
3076

    
3077
    //FIXME set last_non_zero?
3078

    
3079
    if(total_coeff==0)
3080
        return 0;
3081
        
3082
    trailing_ones= coeff_token&3;
3083
    tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
3084
    assert(total_coeff<=16);
3085
    
3086
    for(i=0; i<trailing_ones; i++){
3087
        level[i]= 1 - 2*get_bits1(gb);
3088
    }
3089

    
3090
    suffix_length= total_coeff > 10 && trailing_ones < 3;
3091

    
3092
    for(; i<total_coeff; i++){
3093
        const int prefix= get_level_prefix(gb);
3094
        int level_code, mask;
3095

    
3096
        if(prefix<14){ //FIXME try to build a large unified VLC table for all this
3097
            if(suffix_length)
3098
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3099
            else
3100
                level_code= (prefix<<suffix_length); //part
3101
        }else if(prefix==14){
3102
            if(suffix_length)
3103
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3104
            else
3105
                level_code= prefix + get_bits(gb, 4); //part
3106
        }else if(prefix==15){
3107
            level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
3108
            if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
3109
        }else{
3110
            av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
3111
            return -1;
3112
        }
3113

    
3114
        if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
3115

    
3116
        mask= -(level_code&1);
3117
        level[i]= (((2+level_code)>>1) ^ mask) - mask;
3118

    
3119
        if(suffix_length==0) suffix_length=1; //FIXME split first iteration
3120

    
3121
#if 1
3122
        if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3123
#else        
3124
        if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3125
        ? == prefix > 2 or sth
3126
#endif
3127
        tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
3128
    }
3129

    
3130
    if(total_coeff == max_coeff)
3131
        zeros_left=0;
3132
    else{
3133
        if(n == CHROMA_DC_BLOCK_INDEX)
3134
            zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
3135
        else
3136
            zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
3137
    }
3138
    
3139
    for(i=0; i<total_coeff-1; i++){
3140
        if(zeros_left <=0)
3141
            break;
3142
        else if(zeros_left < 7){
3143
            run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
3144
        }else{
3145
            run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
3146
        }
3147
        zeros_left -= run[i];
3148
    }
3149

    
3150
    if(zeros_left<0){
3151
        av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
3152
        return -1;
3153
    }
3154
    
3155
    for(; i<total_coeff-1; i++){
3156
        run[i]= 0;
3157
    }
3158

    
3159
    run[i]= zeros_left;
3160

    
3161
    coeff_num=-1;
3162
    if(n > 24){
3163
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
3164
            int j;
3165

    
3166
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3167
            j= scantable[ coeff_num ];
3168

    
3169
            block[j]= level[i];
3170
        }
3171
    }else{
3172
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into  rundecode?
3173
            int j;
3174

    
3175
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3176
            j= scantable[ coeff_num ];
3177

    
3178
            block[j]= level[i] * qmul[j];
3179
//            printf("%d %d  ", block[j], qmul[j]);
3180
        }
3181
    }
3182
    return 0;
3183
}
3184

    
3185
/**
3186
 * decodes a macroblock
3187
 * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
3188
 */
3189
static int decode_mb(H264Context *h){
3190
    MpegEncContext * const s = &h->s;
3191
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3192
    int mb_type, partition_count, cbp;
3193

    
3194
    s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?    
3195

    
3196
    tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
3197
    cbp = 0; /* avoid warning. FIXME: find a solution without slowing
3198
                down the code */
3199
    if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
3200
        if(s->mb_skip_run==-1)
3201
            s->mb_skip_run= get_ue_golomb(&s->gb);
3202
        
3203
        if (s->mb_skip_run--) {
3204
            int mx, my;
3205
            /* skip mb */
3206
//FIXME b frame
3207
            mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0;
3208

    
3209
            memset(h->non_zero_count[mb_xy], 0, 16);
3210
            memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
3211

    
3212
            if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
3213
                h->mb_field_decoding_flag= get_bits1(&s->gb);
3214
            }
3215

    
3216
            if(h->mb_field_decoding_flag)
3217
                mb_type|= MB_TYPE_INTERLACED;
3218
            
3219
            fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3220
            pred_pskip_motion(h, &mx, &my);
3221
            fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
3222
            fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
3223
            write_back_motion(h, mb_type);
3224

    
3225
            s->current_picture.mb_type[mb_xy]= mb_type; //FIXME SKIP type
3226
            h->slice_table[ mb_xy ]= h->slice_num;
3227

    
3228
            h->prev_mb_skiped= 1;
3229
            return 0;
3230
        }
3231
    }
3232
    if(h->sps.mb_aff /* && !field pic FIXME needed? */){
3233
        if((s->mb_y&1)==0)
3234
            h->mb_field_decoding_flag = get_bits1(&s->gb);
3235
    }else
3236
        h->mb_field_decoding_flag=0; //FIXME som ed note ?!
3237
    
3238
    h->prev_mb_skiped= 0;
3239
    
3240
    mb_type= get_ue_golomb(&s->gb);
3241
    if(h->slice_type == B_TYPE){
3242
        if(mb_type < 23){
3243
            partition_count= b_mb_type_info[mb_type].partition_count;
3244
            mb_type=         b_mb_type_info[mb_type].type;
3245
        }else{
3246
            mb_type -= 23;
3247
            goto decode_intra_mb;
3248
        }
3249
    }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
3250
        if(mb_type < 5){
3251
            partition_count= p_mb_type_info[mb_type].partition_count;
3252
            mb_type=         p_mb_type_info[mb_type].type;
3253
        }else{
3254
            mb_type -= 5;
3255
            goto decode_intra_mb;
3256
        }
3257
    }else{
3258
       assert(h->slice_type == I_TYPE);
3259
decode_intra_mb:
3260
        if(mb_type > 25){
3261
            av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
3262
            return -1;
3263
        }
3264
        partition_count=0;
3265
        cbp= i_mb_type_info[mb_type].cbp;
3266
        h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
3267
        mb_type= i_mb_type_info[mb_type].type;
3268
    }
3269

    
3270
    if(h->mb_field_decoding_flag)
3271
        mb_type |= MB_TYPE_INTERLACED;
3272

    
3273
    s->current_picture.mb_type[mb_xy]= mb_type;
3274
    h->slice_table[ mb_xy ]= h->slice_num;
3275
    
3276
    if(IS_INTRA_PCM(mb_type)){
3277
        const uint8_t *ptr;
3278
        int x, y;
3279
        
3280
        // we assume these blocks are very rare so we dont optimize it
3281
        align_get_bits(&s->gb);
3282
        
3283
        ptr= s->gb.buffer + get_bits_count(&s->gb);
3284
    
3285
        for(y=0; y<16; y++){
3286
            const int index= 4*(y&3) + 64*(y>>2);
3287
            for(x=0; x<16; x++){
3288
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3289
            }
3290
        }
3291
        for(y=0; y<8; y++){
3292
            const int index= 256 + 4*(y&3) + 32*(y>>2);
3293
            for(x=0; x<8; x++){
3294
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3295
            }
3296
        }
3297
        for(y=0; y<8; y++){
3298
            const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
3299
            for(x=0; x<8; x++){
3300
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3301
            }
3302
        }
3303
    
3304
        skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
3305
        
3306
        memset(h->non_zero_count[mb_xy], 16, 16);
3307
        
3308
        return 0;
3309
    }
3310
        
3311
    fill_caches(h, mb_type);
3312

    
3313
    //mb_pred
3314
    if(IS_INTRA(mb_type)){
3315
//            init_top_left_availability(h);
3316
            if(IS_INTRA4x4(mb_type)){
3317
                int i;
3318

    
3319
//                fill_intra4x4_pred_table(h);
3320
                for(i=0; i<16; i++){
3321
                    const int mode_coded= !get_bits1(&s->gb);
3322
                    const int predicted_mode=  pred_intra_mode(h, i);
3323
                    int mode;
3324

    
3325
                    if(mode_coded){
3326
                        const int rem_mode= get_bits(&s->gb, 3);
3327
                        if(rem_mode<predicted_mode)
3328
                            mode= rem_mode;
3329
                        else
3330
                            mode= rem_mode + 1;
3331
                    }else{
3332
                        mode= predicted_mode;
3333
                    }
3334
                    
3335
                    h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
3336
                }
3337
                write_back_intra_pred_mode(h);
3338
                if( check_intra4x4_pred_mode(h) < 0)
3339
                    return -1;
3340
            }else{
3341
                h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
3342
                if(h->intra16x16_pred_mode < 0)
3343
                    return -1;
3344
            }
3345
            h->chroma_pred_mode= get_ue_golomb(&s->gb);
3346

    
3347
            h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
3348
            if(h->chroma_pred_mode < 0)
3349
                return -1;
3350
    }else if(partition_count==4){
3351
        int i, j, sub_partition_count[4], list, ref[2][4];
3352
        
3353
        if(h->slice_type == B_TYPE){
3354
            for(i=0; i<4; i++){
3355
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3356
                if(h->sub_mb_type[i] >=13){
3357
                    av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3358
                    return -1;
3359
                }
3360
                sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3361
                h->sub_mb_type[i]=      b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3362
            }
3363
        }else{
3364
            assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
3365
            for(i=0; i<4; i++){
3366
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3367
                if(h->sub_mb_type[i] >=4){
3368
                    av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3369
                    return -1;
3370
                }
3371
                sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3372
                h->sub_mb_type[i]=      p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3373
            }
3374
        }
3375
        
3376
        for(list=0; list<2; list++){
3377
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3378
            if(ref_count == 0) continue;
3379
            for(i=0; i<4; i++){
3380
                if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3381
                    ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
3382
                }else{
3383
                 //FIXME
3384
                    ref[list][i] = -1;
3385
                }
3386
            }
3387
        }
3388
        
3389
        for(list=0; list<2; list++){
3390
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3391
            if(ref_count == 0) continue;
3392

    
3393
            for(i=0; i<4; i++){
3394
                h->ref_cache[list][ scan8[4*i]   ]=h->ref_cache[list][ scan8[4*i]+1 ]=
3395
                h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
3396

    
3397
                if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3398
                    const int sub_mb_type= h->sub_mb_type[i];
3399
                    const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
3400
                    for(j=0; j<sub_partition_count[i]; j++){
3401
                        int mx, my;
3402
                        const int index= 4*i + block_width*j;
3403
                        int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
3404
                        pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
3405
                        mx += get_se_golomb(&s->gb);
3406
                        my += get_se_golomb(&s->gb);
3407
                        tprintf("final mv:%d %d\n", mx, my);
3408

    
3409
                        if(IS_SUB_8X8(sub_mb_type)){
3410
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= 
3411
                            mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
3412
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= 
3413
                            mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
3414
                        }else if(IS_SUB_8X4(sub_mb_type)){
3415
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
3416
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
3417
                        }else if(IS_SUB_4X8(sub_mb_type)){
3418
                            mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
3419
                            mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
3420
                        }else{
3421
                            assert(IS_SUB_4X4(sub_mb_type));
3422
                            mv_cache[ 0 ][0]= mx;
3423
                            mv_cache[ 0 ][1]= my;
3424
                        }
3425
                    }
3426
                }else{
3427
                    uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
3428
                    p[0] = p[1]=
3429
                    p[8] = p[9]= 0;
3430
                }
3431
            }
3432
        }
3433
    }else if(!IS_DIRECT(mb_type)){
3434
        int list, mx, my, i;
3435
         //FIXME we should set ref_idx_l? to 0 if we use that later ...
3436
        if(IS_16X16(mb_type)){
3437
            for(list=0; list<2; list++){
3438
                if(h->ref_count[0]>0){
3439
                    if(IS_DIR(mb_type, 0, list)){
3440
                        const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3441
                        fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
3442
                    }
3443
                }
3444
            }
3445
            for(list=0; list<2; list++){
3446
                if(IS_DIR(mb_type, 0, list)){
3447
                    pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
3448
                    mx += get_se_golomb(&s->gb);
3449
                    my += get_se_golomb(&s->gb);
3450
                    tprintf("final mv:%d %d\n", mx, my);
3451

    
3452
                    fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
3453
                }
3454
            }
3455
        }
3456
        else if(IS_16X8(mb_type)){
3457
            for(list=0; list<2; list++){
3458
                if(h->ref_count[list]>0){
3459
                    for(i=0; i<2; i++){
3460
                        if(IS_DIR(mb_type, i, list)){
3461
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3462
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
3463
                        }
3464
                    }
3465
                }
3466
            }
3467
            for(list=0; list<2; list++){
3468
                for(i=0; i<2; i++){
3469
                    if(IS_DIR(mb_type, i, list)){
3470
                        pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
3471
                        mx += get_se_golomb(&s->gb);
3472
                        my += get_se_golomb(&s->gb);
3473
                        tprintf("final mv:%d %d\n", mx, my);
3474

    
3475
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
3476
                    }
3477
                }
3478
            }
3479
        }else{
3480
            assert(IS_8X16(mb_type));
3481
            for(list=0; list<2; list++){
3482
                if(h->ref_count[list]>0){
3483
                    for(i=0; i<2; i++){
3484
                        if(IS_DIR(mb_type, i, list)){ //FIXME optimize
3485
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3486
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
3487
                        }
3488
                    }
3489
                }
3490
            }
3491
            for(list=0; list<2; list++){
3492
                for(i=0; i<2; i++){
3493
                    if(IS_DIR(mb_type, i, list)){
3494
                        pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
3495
                        mx += get_se_golomb(&s->gb);
3496
                        my += get_se_golomb(&s->gb);
3497
                        tprintf("final mv:%d %d\n", mx, my);
3498

    
3499
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
3500
                    }
3501
                }
3502
            }
3503
        }
3504
    }
3505
    
3506
    if(IS_INTER(mb_type))
3507
        write_back_motion(h, mb_type);
3508
    
3509
    if(!IS_INTRA16x16(mb_type)){
3510
        cbp= get_ue_golomb(&s->gb);
3511
        if(cbp > 47){
3512
            av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
3513
            return -1;
3514
        }
3515
        
3516
        if(IS_INTRA4x4(mb_type))
3517
            cbp= golomb_to_intra4x4_cbp[cbp];
3518
        else
3519
            cbp= golomb_to_inter_cbp[cbp];
3520
    }
3521

    
3522
    if(cbp || IS_INTRA16x16(mb_type)){
3523
        int i8x8, i4x4, chroma_idx;
3524
        int chroma_qp, dquant;
3525
        GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
3526
        const uint8_t *scan, *dc_scan;
3527
        
3528
//        fill_non_zero_count_cache(h);
3529

    
3530
        if(IS_INTERLACED(mb_type)){
3531
            scan= field_scan;
3532
            dc_scan= luma_dc_field_scan;
3533
        }else{
3534
            scan= zigzag_scan;
3535
            dc_scan= luma_dc_zigzag_scan;
3536
        }
3537

    
3538
        dquant= get_se_golomb(&s->gb);
3539

    
3540
        if( dquant > 25 || dquant < -26 ){
3541
            av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
3542
            return -1;
3543
        }
3544
        
3545
        s->qscale += dquant;
3546
        if(((unsigned)s->qscale) > 51){
3547
            if(s->qscale<0) s->qscale+= 52;
3548
            else            s->qscale-= 52;
3549
        }
3550
        
3551
        h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
3552
        if(IS_INTRA16x16(mb_type)){
3553
            if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
3554
                return -1; //FIXME continue if partotioned and other retirn -1 too
3555
            }
3556

    
3557
            assert((cbp&15) == 0 || (cbp&15) == 15);
3558

    
3559
            if(cbp&15){
3560
                for(i8x8=0; i8x8<4; i8x8++){
3561
                    for(i4x4=0; i4x4<4; i4x4++){
3562
                        const int index= i4x4 + 4*i8x8;
3563
                        if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
3564
                            return -1;
3565
                        }
3566
                    }
3567
                }
3568
            }else{
3569
                fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
3570
            }
3571
        }else{
3572
            for(i8x8=0; i8x8<4; i8x8++){
3573
                if(cbp & (1<<i8x8)){
3574
                    for(i4x4=0; i4x4<4; i4x4++){
3575
                        const int index= i4x4 + 4*i8x8;
3576
                        
3577
                        if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
3578
                            return -1;
3579
                        }
3580
                    }
3581
                }else{
3582
                    uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
3583
                    nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
3584
                }
3585
            }
3586
        }
3587
        
3588
        if(cbp&0x30){
3589
            for(chroma_idx=0; chroma_idx<2; chroma_idx++)
3590
                if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
3591
                    return -1;
3592
                }
3593
        }
3594

    
3595
        if(cbp&0x20){
3596
            for(chroma_idx=0; chroma_idx<2; chroma_idx++){
3597
                for(i4x4=0; i4x4<4; i4x4++){
3598
                    const int index= 16 + 4*chroma_idx + i4x4;
3599
                    if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
3600
                        return -1;
3601
                    }
3602
                }
3603
            }
3604
        }else{
3605
            uint8_t * const nnz= &h->non_zero_count_cache[0];
3606
            nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
3607
            nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
3608
        }
3609
    }else{
3610
        memset(&h->non_zero_count_cache[8], 0, 8*5);
3611
    }
3612
    write_back_non_zero_count(h);
3613

    
3614
    return 0;
3615
}
3616

    
3617
static int decode_slice(H264Context *h){
3618
    MpegEncContext * const s = &h->s;
3619
    const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
3620

    
3621
    s->mb_skip_run= -1;
3622
    
3623
#if 1
3624
    for(;;){
3625
        int ret= decode_mb(h);
3626
            
3627
        hl_decode_mb(h);
3628
        
3629
        if(ret>=0 && h->sps.mb_aff){ //FIXME optimal? or let mb_decode decode 16x32 ?
3630
            s->mb_y++;
3631
            ret= decode_mb(h);
3632
            
3633
            hl_decode_mb(h);
3634
            s->mb_y--;
3635
        }
3636

    
3637
        if(ret<0){
3638
            av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3639
            ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3640

    
3641
            return -1;
3642
        }
3643
        
3644
        if(++s->mb_x >= s->mb_width){
3645
            s->mb_x=0;
3646
            ff_draw_horiz_band(s, 16*s->mb_y, 16);
3647
            if(++s->mb_y >= s->mb_height){
3648
                tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
3649

    
3650
                if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3651
                    ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3652

    
3653
                    return 0;
3654
                }else{
3655
                    ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3656

    
3657
                    return -1;
3658
                }
3659
            }
3660
        }
3661
        
3662
        if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
3663
            if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3664
                ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3665

    
3666
                return 0;
3667
            }else{
3668
                ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3669

    
3670
                return -1;
3671
            }
3672
        }
3673
    }
3674
#endif
3675
#if 0
3676
    for(;s->mb_y < s->mb_height; s->mb_y++){
3677
        for(;s->mb_x < s->mb_width; s->mb_x++){
3678
            int ret= decode_mb(h);
3679
            
3680
            hl_decode_mb(h);
3681

3682
            if(ret<0){
3683
                fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3684
                ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3685

3686
                return -1;
3687
            }
3688
        
3689
            if(++s->mb_x >= s->mb_width){
3690
                s->mb_x=0;
3691
                if(++s->mb_y >= s->mb_height){
3692
                    if(get_bits_count(s->gb) == s->gb.size_in_bits){
3693
                        ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3694

3695
                        return 0;
3696
                    }else{
3697
                        ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3698

3699
                        return -1;
3700
                    }
3701
                }
3702
            }
3703
        
3704
            if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
3705
                if(get_bits_count(s->gb) == s->gb.size_in_bits){
3706
                    ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3707

3708
                    return 0;
3709
                }else{
3710
                    ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3711

3712
                    return -1;
3713
                }
3714
            }
3715
        }
3716
        s->mb_x=0;
3717
        ff_draw_horiz_band(s, 16*s->mb_y, 16);
3718
    }
3719
#endif
3720
    return -1; //not reached
3721
}
3722

    
3723
static inline int decode_vui_parameters(H264Context *h, SPS *sps){
3724
    MpegEncContext * const s = &h->s;
3725
    int aspect_ratio_info_present_flag, aspect_ratio_idc;
3726

    
3727
    aspect_ratio_info_present_flag= get_bits1(&s->gb);
3728
    
3729
    if( aspect_ratio_info_present_flag ) {
3730
        aspect_ratio_idc= get_bits(&s->gb, 8);
3731
        if( aspect_ratio_idc == EXTENDED_SAR ) {
3732
            sps->sar.num= get_bits(&s->gb, 16);
3733
            sps->sar.den= get_bits(&s->gb, 16);
3734
        }else if(aspect_ratio_idc < 16){
3735
            sps->sar=  pixel_aspect[aspect_ratio_idc];
3736
        }else{
3737
            av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
3738
            return -1;
3739
        }
3740
    }else{
3741
        sps->sar.num= 
3742
        sps->sar.den= 0;
3743
    }
3744
//            s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
3745
#if 0
3746
| overscan_info_present_flag                        |0  |u(1)    |
3747
| if( overscan_info_present_flag )                  |   |        |
3748
|  overscan_appropriate_flag                        |0  |u(1)    |
3749
| video_signal_type_present_flag                    |0  |u(1)    |
3750
| if( video_signal_type_present_flag ) {            |   |        |
3751
|  video_format                                     |0  |u(3)    |
3752
|  video_full_range_flag                            |0  |u(1)    |
3753
|  colour_description_present_flag                  |0  |u(1)    |
3754
|  if( colour_description_present_flag ) {          |   |        |
3755
|   colour_primaries                                |0  |u(8)    |
3756
|   transfer_characteristics                        |0  |u(8)    |
3757
|   matrix_coefficients                             |0  |u(8)    |
3758
|  }                                                |   |        |
3759
| }                                                 |   |        |
3760
| chroma_location_info_present_flag                 |0  |u(1)    |
3761
| if ( chroma_location_info_present_flag ) {        |   |        |
3762
|  chroma_sample_location_type_top_field            |0  |ue(v)   |
3763
|  chroma_sample_location_type_bottom_field         |0  |ue(v)   |
3764
| }                                                 |   |        |
3765
| timing_info_present_flag                          |0  |u(1)    |
3766
| if( timing_info_present_flag ) {                  |   |        |
3767
|  num_units_in_tick                                |0  |u(32)   |
3768
|  time_scale                                       |0  |u(32)   |
3769
|  fixed_frame_rate_flag                            |0  |u(1)    |
3770
| }                                                 |   |        |
3771
| nal_hrd_parameters_present_flag                   |0  |u(1)    |
3772
| if( nal_hrd_parameters_present_flag  = =  1)      |   |        |
3773
|  hrd_parameters( )                                |   |        |
3774
| vcl_hrd_parameters_present_flag                   |0  |u(1)    |
3775
| if( vcl_hrd_parameters_present_flag  = =  1)      |   |        |
3776
|  hrd_parameters( )                                |   |        |
3777
| if( ( nal_hrd_parameters_present_flag  = =  1  | ||   |        |
3778
|                                                   |   |        |
3779
|( vcl_hrd_parameters_present_flag  = =  1 ) )      |   |        |
3780
|  low_delay_hrd_flag                               |0  |u(1)    |
3781
| bitstream_restriction_flag                        |0  |u(1)    |
3782
| if( bitstream_restriction_flag ) {                |0  |u(1)    |
3783
|  motion_vectors_over_pic_boundaries_flag          |0  |u(1)    |
3784
|  max_bytes_per_pic_denom                          |0  |ue(v)   |
3785
|  max_bits_per_mb_denom                            |0  |ue(v)   |
3786
|  log2_max_mv_length_horizontal                    |0  |ue(v)   |
3787
|  log2_max_mv_length_vertical                      |0  |ue(v)   |
3788
|  num_reorder_frames                               |0  |ue(v)   |
3789
|  max_dec_frame_buffering                          |0  |ue(v)   |
3790
| }                                                 |   |        |
3791
|}                                                  |   |        |
3792
#endif
3793
    return 0;
3794
}
3795

    
3796
static inline int decode_seq_parameter_set(H264Context *h){
3797
    MpegEncContext * const s = &h->s;
3798
    int profile_idc, level_idc;
3799
    int sps_id, i;
3800
    SPS *sps;
3801
    
3802
    profile_idc= get_bits(&s->gb, 8);
3803
    get_bits1(&s->gb);   //constraint_set0_flag
3804
    get_bits1(&s->gb);   //constraint_set1_flag
3805
    get_bits1(&s->gb);   //constraint_set2_flag
3806
    get_bits(&s->gb, 5); // reserved
3807
    level_idc= get_bits(&s->gb, 8);
3808
    sps_id= get_ue_golomb(&s->gb);
3809
    
3810
    sps= &h->sps_buffer[ sps_id ];
3811
    sps->profile_idc= profile_idc;
3812
    sps->level_idc= level_idc;
3813
    
3814
    sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
3815
    sps->poc_type= get_ue_golomb(&s->gb);
3816
    
3817
    if(sps->poc_type == 0){ //FIXME #define
3818
        sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
3819
    } else if(sps->poc_type == 1){//FIXME #define
3820
        sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
3821
        sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
3822
        sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
3823
        sps->poc_cycle_length= get_ue_golomb(&s->gb);
3824
        
3825
        for(i=0; i<sps->poc_cycle_length; i++)
3826
            sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
3827
    }
3828
    if(sps->poc_type > 2){
3829
        av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
3830
        return -1;
3831
    }
3832

    
3833
    sps->ref_frame_count= get_ue_golomb(&s->gb);
3834
    sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
3835
    sps->mb_width= get_ue_golomb(&s->gb) + 1;
3836
    sps->mb_height= get_ue_golomb(&s->gb) + 1;
3837
    sps->frame_mbs_only_flag= get_bits1(&s->gb);
3838
    if(!sps->frame_mbs_only_flag)
3839
        sps->mb_aff= get_bits1(&s->gb);
3840
    else
3841
        sps->mb_aff= 0;
3842

    
3843
    sps->direct_8x8_inference_flag= get_bits1(&s->gb);
3844

    
3845
    sps->crop= get_bits1(&s->gb);
3846
    if(sps->crop){
3847
        sps->crop_left  = get_ue_golomb(&s->gb);
3848
        sps->crop_right = get_ue_golomb(&s->gb);
3849
        sps->crop_top   = get_ue_golomb(&s->gb);
3850
        sps->crop_bottom= get_ue_golomb(&s->gb);
3851
        if(sps->crop_left || sps->crop_top){
3852
            av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completly supported, this could look slightly wrong ...\n");
3853
        }
3854
    }else{
3855
        sps->crop_left  = 
3856
        sps->crop_right = 
3857
        sps->crop_top   = 
3858
        sps->crop_bottom= 0;
3859
    }
3860

    
3861
    sps->vui_parameters_present_flag= get_bits1(&s->gb);
3862
    if( sps->vui_parameters_present_flag )
3863
        decode_vui_parameters(h, sps);
3864
    
3865
    if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3866
        av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n", 
3867
               sps_id, sps->profile_idc, sps->level_idc,
3868
               sps->poc_type,
3869
               sps->ref_frame_count,
3870
               sps->mb_width, sps->mb_height,
3871
               sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
3872
               sps->direct_8x8_inference_flag ? "8B8" : "",
3873
               sps->crop_left, sps->crop_right, 
3874
               sps->crop_top, sps->crop_bottom, 
3875
               sps->vui_parameters_present_flag ? "VUI" : ""
3876
               );
3877
    }
3878
    return 0;
3879
}
3880

    
3881
static inline int decode_picture_parameter_set(H264Context *h){
3882
    MpegEncContext * const s = &h->s;
3883
    int pps_id= get_ue_golomb(&s->gb);
3884
    PPS *pps= &h->pps_buffer[pps_id];
3885
    
3886
    pps->sps_id= get_ue_golomb(&s->gb);
3887
    pps->cabac= get_bits1(&s->gb);
3888
    pps->pic_order_present= get_bits1(&s->gb);
3889
    pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
3890
    if(pps->slice_group_count > 1 ){
3891
        pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
3892
        av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
3893
        switch(pps->mb_slice_group_map_type){
3894
        case 0:
3895
#if 0
3896
|   for( i = 0; i <= num_slice_groups_minus1; i++ ) |   |        |
3897
|    run_length[ i ]                                |1  |ue(v)   |
3898
#endif
3899
            break;
3900
        case 2:
3901
#if 0
3902
|   for( i = 0; i < num_slice_groups_minus1; i++ )  |   |        |
3903
|{                                                  |   |        |
3904
|    top_left_mb[ i ]                               |1  |ue(v)   |
3905
|    bottom_right_mb[ i ]                           |1  |ue(v)   |
3906
|   }                                               |   |        |
3907
#endif
3908
            break;
3909
        case 3:
3910
        case 4:
3911
        case 5:
3912
#if 0
3913
|   slice_group_change_direction_flag               |1  |u(1)    |
3914
|   slice_group_change_rate_minus1                  |1  |ue(v)   |
3915
#endif
3916
            break;
3917
        case 6:
3918
#if 0
3919
|   slice_group_id_cnt_minus1                       |1  |ue(v)   |
3920
|   for( i = 0; i <= slice_group_id_cnt_minus1; i++ |   |        |
3921
|)                                                  |   |        |
3922
|    slice_group_id[ i ]                            |1  |u(v)    |
3923
#endif
3924
            break;
3925
        }
3926
    }
3927
    pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3928
    pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3929
    if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){
3930
        av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
3931
        return -1;
3932
    }
3933
    
3934
    pps->weighted_pred= get_bits1(&s->gb);
3935
    pps->weighted_bipred_idc= get_bits(&s->gb, 2);
3936
    pps->init_qp= get_se_golomb(&s->gb) + 26;
3937
    pps->init_qs= get_se_golomb(&s->gb) + 26;
3938
    pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
3939
    pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
3940
    pps->constrained_intra_pred= get_bits1(&s->gb);
3941
    pps->redundant_pic_cnt_present = get_bits1(&s->gb);
3942
    
3943
    if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3944
        av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s\n", 
3945
               pps_id, pps->sps_id,
3946
               pps->cabac ? "CABAC" : "CAVLC",
3947
               pps->slice_group_count,
3948
               pps->ref_count[0], pps->ref_count[1],
3949
               pps->weighted_pred ? "weighted" : "",
3950
               pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
3951
               pps->deblocking_filter_parameters_present ? "LPAR" : "",
3952
               pps->constrained_intra_pred ? "CONSTR" : "",
3953
               pps->redundant_pic_cnt_present ? "REDU" : ""
3954
               );
3955
    }
3956
    
3957
    return 0;
3958
}
3959

    
3960
/**
3961
 * finds the end of the current frame in the bitstream.
3962
 * @return the position of the first byte of the next frame, or -1
3963
 */
3964
static int find_frame_end(MpegEncContext *s, uint8_t *buf, int buf_size){
3965
    ParseContext *pc= &s->parse_context;
3966
    int i;
3967
    uint32_t state;
3968
//printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
3969
//    mb_addr= pc->mb_addr - 1;
3970
    state= pc->state;
3971
    //FIXME this will fail with slices
3972
    for(i=0; i<buf_size; i++){
3973
        state= (state<<8) | buf[i];
3974
        if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
3975
            if(pc->frame_start_found){
3976
                pc->state=-1; 
3977
                pc->frame_start_found= 0;
3978
                return i-3;
3979
            }
3980
            pc->frame_start_found= 1;
3981
        }
3982
    }
3983
    
3984
    pc->state= state;
3985
    return END_NOT_FOUND;
3986
}
3987

    
3988
static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
3989
    MpegEncContext * const s = &h->s;
3990
    AVCodecContext * const avctx= s->avctx;
3991
    int buf_index=0;
3992
#if 0
3993
    int i;
3994
    for(i=0; i<32; i++){
3995
        printf("%X ", buf[i]);
3996
    }
3997
#endif
3998
    for(;;){
3999
        int consumed;
4000
        int dst_length;
4001
        int bit_length;
4002
        uint8_t *ptr;
4003
        
4004
        // start code prefix search
4005
        for(; buf_index + 3 < buf_size; buf_index++){
4006
            // this should allways succeed in the first iteration
4007
            if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
4008
                break;
4009
        }
4010
        
4011
        if(buf_index+3 >= buf_size) break;
4012
        
4013
        buf_index+=3;
4014
        
4015
        ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, buf_size - buf_index);
4016
        if(ptr[dst_length - 1] == 0) dst_length--;
4017
        bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
4018

    
4019
        if(s->avctx->debug&FF_DEBUG_STARTCODE){
4020
            av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d length %d\n", h->nal_unit_type, buf_index, dst_length);
4021
        }
4022
        
4023
        buf_index += consumed;
4024

    
4025
        if(h->nal_ref_idc < s->hurry_up)
4026
            continue;
4027
        
4028
        switch(h->nal_unit_type){
4029
        case NAL_IDR_SLICE:
4030
            idr(h); //FIXME ensure we dont loose some frames if there is reordering
4031
        case NAL_SLICE:
4032
            init_get_bits(&s->gb, ptr, bit_length);
4033
            h->intra_gb_ptr=
4034
            h->inter_gb_ptr= &s->gb;
4035
            s->data_partitioning = 0;
4036
            
4037
            if(decode_slice_header(h) < 0) return -1;
4038
            if(h->redundant_pic_count==0)
4039
                decode_slice(h);
4040
            break;
4041
        case NAL_DPA:
4042
            init_get_bits(&s->gb, ptr, bit_length);
4043
            h->intra_gb_ptr=
4044
            h->inter_gb_ptr= NULL;
4045
            s->data_partitioning = 1;
4046
            
4047
            if(decode_slice_header(h) < 0) return -1;
4048
            break;
4049
        case NAL_DPB:
4050
            init_get_bits(&h->intra_gb, ptr, bit_length);
4051
            h->intra_gb_ptr= &h->intra_gb;
4052
            break;
4053
        case NAL_DPC:
4054
            init_get_bits(&h->inter_gb, ptr, bit_length);
4055
            h->inter_gb_ptr= &h->inter_gb;
4056

    
4057
            if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning)
4058
                decode_slice(h);
4059
            break;
4060
        case NAL_SEI:
4061
            break;
4062
        case NAL_SPS:
4063
            init_get_bits(&s->gb, ptr, bit_length);
4064
            decode_seq_parameter_set(h);
4065
            
4066
            if(s->flags& CODEC_FLAG_LOW_DELAY)
4067
                s->low_delay=1;
4068
      
4069
            avctx->has_b_frames= !s->low_delay;
4070
            break;
4071
        case NAL_PPS:
4072
            init_get_bits(&s->gb, ptr, bit_length);
4073
            
4074
            decode_picture_parameter_set(h);
4075

    
4076
            break;
4077
        case NAL_PICTURE_DELIMITER:
4078
            break;
4079
        case NAL_FILTER_DATA:
4080
            break;
4081
        }        
4082

    
4083
        //FIXME move after where irt is set
4084
        s->current_picture.pict_type= s->pict_type;
4085
        s->current_picture.key_frame= s->pict_type == I_TYPE;
4086
    }
4087
    
4088
    if(!s->current_picture_ptr) return buf_index; //no frame
4089
    
4090
    h->prev_frame_num_offset= h->frame_num_offset;
4091
    h->prev_frame_num= h->frame_num;
4092
    if(s->current_picture_ptr->reference){
4093
        h->prev_poc_msb= h->poc_msb;
4094
        h->prev_poc_lsb= h->poc_lsb;
4095
    }
4096
    if(s->current_picture_ptr->reference)
4097
        execute_ref_pic_marking(h, h->mmco, h->mmco_index);
4098
    else
4099
        assert(h->mmco_index==0);
4100

    
4101
    ff_er_frame_end(s);
4102
    MPV_frame_end(s);
4103

    
4104
    return buf_index;
4105
}
4106

    
4107
/**
4108
 * retunrs the number of bytes consumed for building the current frame
4109
 */
4110
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
4111
    if(s->flags&CODEC_FLAG_TRUNCATED){
4112
        pos -= s->parse_context.last_index;
4113
        if(pos<0) pos=0; // FIXME remove (uneeded?)
4114
        
4115
        return pos;
4116
    }else{
4117
        if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
4118
        if(pos+10>buf_size) pos=buf_size; // oops ;)
4119

    
4120
        return pos;
4121
    }
4122
}
4123

    
4124
static int decode_frame(AVCodecContext *avctx, 
4125
                             void *data, int *data_size,
4126
                             uint8_t *buf, int buf_size)
4127
{
4128
    H264Context *h = avctx->priv_data;
4129
    MpegEncContext *s = &h->s;
4130
    AVFrame *pict = data; 
4131
    int buf_index;
4132
    
4133
    s->flags= avctx->flags;
4134

    
4135
    *data_size = 0;
4136
   
4137
   /* no supplementary picture */
4138
    if (buf_size == 0) {
4139
        return 0;
4140
    }
4141
    
4142
    if(s->flags&CODEC_FLAG_TRUNCATED){
4143
        int next= find_frame_end(s, buf, buf_size);
4144
        
4145
        if( ff_combine_frame(s, next, &buf, &buf_size) < 0 )
4146
            return buf_size;
4147
//printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
4148
    }
4149

    
4150
    if(s->avctx->extradata_size && s->picture_number==0){
4151
        if(0 < decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) ) 
4152
            return -1;
4153
    }
4154

    
4155
    buf_index=decode_nal_units(h, buf, buf_size);
4156
    if(buf_index < 0) 
4157
        return -1;
4158

    
4159
    //FIXME do something with unavailable reference frames    
4160
 
4161
//    if(ret==FRAME_SKIPED) return get_consumed_bytes(s, buf_index, buf_size);
4162
#if 0
4163
    if(s->pict_type==B_TYPE || s->low_delay){
4164
        *pict= *(AVFrame*)&s->current_picture;
4165
    } else {
4166
        *pict= *(AVFrame*)&s->last_picture;
4167
    }
4168
#endif
4169
    if(!s->current_picture_ptr){
4170
        av_log(h->s.avctx, AV_LOG_DEBUG, "error, NO frame\n");
4171
        return -1;
4172
    }
4173

    
4174
    *pict= *(AVFrame*)&s->current_picture; //FIXME 
4175
    ff_print_debug_info(s, s->current_picture_ptr);
4176
    assert(pict->data[0]);
4177
//printf("out %d\n", (int)pict->data[0]);
4178
#if 0 //?
4179

4180
    /* Return the Picture timestamp as the frame number */
4181
    /* we substract 1 because it is added on utils.c    */
4182
    avctx->frame_number = s->picture_number - 1;
4183
#endif
4184
#if 0
4185
    /* dont output the last pic after seeking */
4186
    if(s->last_picture_ptr || s->low_delay)
4187
    //Note this isnt a issue as a IDR pic should flush teh buffers
4188
#endif
4189
        *data_size = sizeof(AVFrame);
4190
    return get_consumed_bytes(s, buf_index, buf_size);
4191
}
4192
#if 0
4193
static inline void fill_mb_avail(H264Context *h){
4194
    MpegEncContext * const s = &h->s;
4195
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4196

4197
    if(s->mb_y){
4198
        h->mb_avail[0]= s->mb_x                 && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
4199
        h->mb_avail[1]=                            h->slice_table[mb_xy - s->mb_stride    ] == h->slice_num;
4200
        h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
4201
    }else{
4202
        h->mb_avail[0]=
4203
        h->mb_avail[1]=
4204
        h->mb_avail[2]= 0;
4205
    }
4206
    h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
4207
    h->mb_avail[4]= 1; //FIXME move out
4208
    h->mb_avail[5]= 0; //FIXME move out
4209
}
4210
#endif
4211

    
4212
#if 0 //selftest
4213
#define COUNT 8000
4214
#define SIZE (COUNT*40)
4215
int main(){
4216
    int i;
4217
    uint8_t temp[SIZE];
4218
    PutBitContext pb;
4219
    GetBitContext gb;
4220
//    int int_temp[10000];
4221
    DSPContext dsp;
4222
    AVCodecContext avctx;
4223
    
4224
    dsputil_init(&dsp, &avctx);
4225

4226
    init_put_bits(&pb, temp, SIZE);
4227
    printf("testing unsigned exp golomb\n");
4228
    for(i=0; i<COUNT; i++){
4229
        START_TIMER
4230
        set_ue_golomb(&pb, i);
4231
        STOP_TIMER("set_ue_golomb");
4232
    }
4233
    flush_put_bits(&pb);
4234
    
4235
    init_get_bits(&gb, temp, 8*SIZE);
4236
    for(i=0; i<COUNT; i++){
4237
        int j, s;
4238
        
4239
        s= show_bits(&gb, 24);
4240
        
4241
        START_TIMER
4242
        j= get_ue_golomb(&gb);
4243
        if(j != i){
4244
            printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4245
//            return -1;
4246
        }
4247
        STOP_TIMER("get_ue_golomb");
4248
    }
4249
    
4250
    
4251
    init_put_bits(&pb, temp, SIZE);
4252
    printf("testing signed exp golomb\n");
4253
    for(i=0; i<COUNT; i++){
4254
        START_TIMER
4255
        set_se_golomb(&pb, i - COUNT/2);
4256
        STOP_TIMER("set_se_golomb");
4257
    }
4258
    flush_put_bits(&pb);
4259
    
4260
    init_get_bits(&gb, temp, 8*SIZE);
4261
    for(i=0; i<COUNT; i++){
4262
        int j, s;
4263
        
4264
        s= show_bits(&gb, 24);
4265
        
4266
        START_TIMER
4267
        j= get_se_golomb(&gb);
4268
        if(j != i - COUNT/2){
4269
            printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4270
//            return -1;
4271
        }
4272
        STOP_TIMER("get_se_golomb");
4273
    }
4274

4275
    printf("testing 4x4 (I)DCT\n");
4276
    
4277
    DCTELEM block[16];
4278
    uint8_t src[16], ref[16];
4279
    uint64_t error= 0, max_error=0;
4280

4281
    for(i=0; i<COUNT; i++){
4282
        int j;
4283
//        printf("%d %d %d\n", r1, r2, (r2-r1)*16);
4284
        for(j=0; j<16; j++){
4285
            ref[j]= random()%255;
4286
            src[j]= random()%255;
4287
        }
4288

4289
        h264_diff_dct_c(block, src, ref, 4);
4290
        
4291
        //normalize
4292
        for(j=0; j<16; j++){
4293
//            printf("%d ", block[j]);
4294
            block[j]= block[j]*4;
4295
            if(j&1) block[j]= (block[j]*4 + 2)/5;
4296
            if(j&4) block[j]= (block[j]*4 + 2)/5;
4297
        }
4298
//        printf("\n");
4299
        
4300
        h264_add_idct_c(ref, block, 4);
4301
/*        for(j=0; j<16; j++){
4302
            printf("%d ", ref[j]);
4303
        }
4304
        printf("\n");*/
4305
            
4306
        for(j=0; j<16; j++){
4307
            int diff= ABS(src[j] - ref[j]);
4308
            
4309
            error+= diff*diff;
4310
            max_error= FFMAX(max_error, diff);
4311
        }
4312
    }
4313
    printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
4314
#if 0
4315
    printf("testing quantizer\n");
4316
    for(qp=0; qp<52; qp++){
4317
        for(i=0; i<16; i++)
4318
            src1_block[i]= src2_block[i]= random()%255;
4319
        
4320
    }
4321
#endif
4322
    printf("Testing NAL layer\n");
4323
    
4324
    uint8_t bitstream[COUNT];
4325
    uint8_t nal[COUNT*2];
4326
    H264Context h;
4327
    memset(&h, 0, sizeof(H264Context));
4328
    
4329
    for(i=0; i<COUNT; i++){
4330
        int zeros= i;
4331
        int nal_length;
4332
        int consumed;
4333
        int out_length;
4334
        uint8_t *out;
4335
        int j;
4336
        
4337
        for(j=0; j<COUNT; j++){
4338
            bitstream[j]= (random() % 255) + 1;
4339
        }
4340
        
4341
        for(j=0; j<zeros; j++){
4342
            int pos= random() % COUNT;
4343
            while(bitstream[pos] == 0){
4344
                pos++;
4345
                pos %= COUNT;
4346
            }
4347
            bitstream[pos]=0;
4348
        }
4349
        
4350
        START_TIMER
4351
        
4352
        nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
4353
        if(nal_length<0){
4354
            printf("encoding failed\n");
4355
            return -1;
4356
        }
4357
        
4358
        out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
4359

    
4360
        STOP_TIMER("NAL")
4361
        
4362
        if(out_length != COUNT){
4363
            printf("incorrect length %d %d\n", out_length, COUNT);
4364
            return -1;
4365
        }
4366
        
4367
        if(consumed != nal_length){
4368
            printf("incorrect consumed length %d %d\n", nal_length, consumed);
4369
            return -1;
4370
        }
4371
        
4372
        if(memcmp(bitstream, out, COUNT)){
4373
            printf("missmatch\n");
4374
            return -1;
4375
        }
4376
    }
4377
    
4378
    printf("Testing RBSP\n");
4379
    
4380
    
4381
    return 0;
4382
}
4383
#endif
4384

    
4385

    
4386
static int decode_end(AVCodecContext *avctx)
4387
{
4388
    H264Context *h = avctx->priv_data;
4389
    MpegEncContext *s = &h->s;
4390
    
4391
    free_tables(h); //FIXME cleanup init stuff perhaps
4392
    MPV_common_end(s);
4393

    
4394
//    memset(h, 0, sizeof(H264Context));
4395
        
4396
    return 0;
4397
}
4398

    
4399

    
4400
AVCodec h264_decoder = {
4401
    "h264",
4402
    CODEC_TYPE_VIDEO,
4403
    CODEC_ID_H264,
4404
    sizeof(H264Context),
4405
    decode_init,
4406
    NULL,
4407
    decode_end,
4408
    decode_frame,
4409
    /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED,
4410
};
4411

    
4412
#include "svq3.c"