Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.c @ 9f2d1b4f

History | View | Annotate | Download (234 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 *
19
 */
20
 
21
/**
22
 * @file h264.c
23
 * H.264 / AVC / MPEG4 part10 codec.
24
 * @author Michael Niedermayer <michaelni@gmx.at>
25
 */
26

    
27
#include "common.h"
28
#include "dsputil.h"
29
#include "avcodec.h"
30
#include "mpegvideo.h"
31
#include "h264data.h"
32
#include "golomb.h"
33

    
34
#include "cabac.h"
35

    
36
#undef NDEBUG
37
#include <assert.h>
38

    
39
#define interlaced_dct interlaced_dct_is_a_bad_name
40
#define mb_intra mb_intra_isnt_initalized_see_mb_type
41

    
42
#define LUMA_DC_BLOCK_INDEX   25
43
#define CHROMA_DC_BLOCK_INDEX 26
44

    
45
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46
#define COEFF_TOKEN_VLC_BITS           8
47
#define TOTAL_ZEROS_VLC_BITS           9
48
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49
#define RUN_VLC_BITS                   3
50
#define RUN7_VLC_BITS                  6
51

    
52
#define MAX_SPS_COUNT 32
53
#define MAX_PPS_COUNT 256
54

    
55
#define MAX_MMCO_COUNT 66
56

    
57
/**
58
 * Sequence parameter set
59
 */
60
typedef struct SPS{
61
    
62
    int profile_idc;
63
    int level_idc;
64
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
65
    int poc_type;                      ///< pic_order_cnt_type
66
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
67
    int delta_pic_order_always_zero_flag;
68
    int offset_for_non_ref_pic;
69
    int offset_for_top_to_bottom_field;
70
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
71
    int ref_frame_count;               ///< num_ref_frames
72
    int gaps_in_frame_num_allowed_flag;
73
    int mb_width;                      ///< frame_width_in_mbs_minus1 + 1
74
    int mb_height;                     ///< frame_height_in_mbs_minus1 + 1
75
    int frame_mbs_only_flag;
76
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
77
    int direct_8x8_inference_flag;
78
    int crop;                   ///< frame_cropping_flag
79
    int crop_left;              ///< frame_cropping_rect_left_offset
80
    int crop_right;             ///< frame_cropping_rect_right_offset
81
    int crop_top;               ///< frame_cropping_rect_top_offset
82
    int crop_bottom;            ///< frame_cropping_rect_bottom_offset
83
    int vui_parameters_present_flag;
84
    AVRational sar;
85
    int timing_info_present_flag;
86
    uint32_t num_units_in_tick;
87
    uint32_t time_scale;
88
    int fixed_frame_rate_flag;
89
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
90
}SPS;
91

    
92
/**
93
 * Picture parameter set
94
 */
95
typedef struct PPS{
96
    int sps_id;
97
    int cabac;                  ///< entropy_coding_mode_flag
98
    int pic_order_present;      ///< pic_order_present_flag
99
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
100
    int mb_slice_group_map_type;
101
    int ref_count[2];           ///< num_ref_idx_l0/1_active_minus1 + 1
102
    int weighted_pred;          ///< weighted_pred_flag
103
    int weighted_bipred_idc;
104
    int init_qp;                ///< pic_init_qp_minus26 + 26
105
    int init_qs;                ///< pic_init_qs_minus26 + 26
106
    int chroma_qp_index_offset;
107
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
108
    int constrained_intra_pred; ///< constrained_intra_pred_flag
109
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
110
}PPS;
111

    
112
/**
113
 * Memory management control operation opcode.
114
 */
115
typedef enum MMCOOpcode{
116
    MMCO_END=0,
117
    MMCO_SHORT2UNUSED,
118
    MMCO_LONG2UNUSED,
119
    MMCO_SHORT2LONG,
120
    MMCO_SET_MAX_LONG,
121
    MMCO_RESET, 
122
    MMCO_LONG,
123
} MMCOOpcode;
124

    
125
/**
126
 * Memory management control operation.
127
 */
128
typedef struct MMCO{
129
    MMCOOpcode opcode;
130
    int short_frame_num;
131
    int long_index;
132
} MMCO;
133

    
134
/**
135
 * H264Context
136
 */
137
typedef struct H264Context{
138
    MpegEncContext s;
139
    int nal_ref_idc;        
140
    int nal_unit_type;
141
#define NAL_SLICE                1
142
#define NAL_DPA                        2
143
#define NAL_DPB                        3
144
#define NAL_DPC                        4
145
#define NAL_IDR_SLICE                5
146
#define NAL_SEI                        6
147
#define NAL_SPS                        7
148
#define NAL_PPS                        8
149
#define NAL_PICTURE_DELIMITER        9
150
#define NAL_FILTER_DATA                10
151
    uint8_t *rbsp_buffer;
152
    int rbsp_buffer_size;
153

    
154
    /**
155
      * Used to parse AVC variant of h264
156
      */
157
    int is_avc; ///< this flag is != 0 if codec is avc1
158
    int got_avcC; ///< flag used to parse avcC data only once
159
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
160

    
161
    int chroma_qp; //QPc
162

    
163
    int prev_mb_skiped; //FIXME remove (IMHO not used)
164

    
165
    //prediction stuff
166
    int chroma_pred_mode;
167
    int intra16x16_pred_mode;
168
    
169
    int8_t intra4x4_pred_mode_cache[5*8];
170
    int8_t (*intra4x4_pred_mode)[8];
171
    void (*pred4x4  [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
172
    void (*pred8x8  [4+3])(uint8_t *src, int stride);
173
    void (*pred16x16[4+3])(uint8_t *src, int stride);
174
    unsigned int topleft_samples_available;
175
    unsigned int top_samples_available;
176
    unsigned int topright_samples_available;
177
    unsigned int left_samples_available;
178
    uint8_t (*top_border)[16+2*8];
179
    uint8_t left_border[17+2*9];
180

    
181
    /**
182
     * non zero coeff count cache.
183
     * is 64 if not available.
184
     */
185
    uint8_t non_zero_count_cache[6*8];
186
    uint8_t (*non_zero_count)[16];
187

    
188
    /**
189
     * Motion vector cache.
190
     */
191
    int16_t mv_cache[2][5*8][2];
192
    int8_t ref_cache[2][5*8];
193
#define LIST_NOT_USED -1 //FIXME rename?
194
#define PART_NOT_AVAILABLE -2
195
    
196
    /**
197
     * is 1 if the specific list MV&references are set to 0,0,-2.
198
     */
199
    int mv_cache_clean[2];
200

    
201
    int block_offset[16+8];
202
    int chroma_subblock_offset[16]; //FIXME remove
203
    
204
    uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
205
    uint16_t *mb2b8_xy;
206
    int b_stride; //FIXME use s->b4_stride
207
    int b8_stride;
208

    
209
    int halfpel_flag;
210
    int thirdpel_flag;
211

    
212
    int unknown_svq3_flag;
213
    int next_slice_index;
214

    
215
    SPS sps_buffer[MAX_SPS_COUNT];
216
    SPS sps; ///< current sps
217
    
218
    PPS pps_buffer[MAX_PPS_COUNT];
219
    /**
220
     * current pps
221
     */
222
    PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
223

    
224
    int slice_num;
225
    uint8_t *slice_table_base;
226
    uint8_t *slice_table;      ///< slice_table_base + mb_stride + 1
227
    int slice_type;
228
    int slice_type_fixed;
229
    
230
    //interlacing specific flags
231
    int mb_field_decoding_flag;
232
    
233
    int sub_mb_type[4];
234
    
235
    //POC stuff
236
    int poc_lsb;
237
    int poc_msb;
238
    int delta_poc_bottom;
239
    int delta_poc[2];
240
    int frame_num;
241
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
242
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
243
    int frame_num_offset;         ///< for POC type 2
244
    int prev_frame_num_offset;    ///< for POC type 2
245
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
246

    
247
    /**
248
     * frame_num for frames or 2*frame_num for field pics.
249
     */
250
    int curr_pic_num;
251
    
252
    /**
253
     * max_frame_num or 2*max_frame_num for field pics.
254
     */
255
    int max_pic_num;
256

    
257
    //Weighted pred stuff
258
    int use_weight;
259
    int use_weight_chroma;
260
    int luma_log2_weight_denom;
261
    int chroma_log2_weight_denom;
262
    int luma_weight[2][16];
263
    int luma_offset[2][16];
264
    int chroma_weight[2][16][2];
265
    int chroma_offset[2][16][2];
266
    int implicit_weight[16][16];
267
   
268
    //deblock
269
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0 
270
    int slice_alpha_c0_offset;
271
    int slice_beta_offset;
272
     
273
    int redundant_pic_count;
274
    
275
    int direct_spatial_mv_pred;
276
    int dist_scale_factor[16];
277

    
278
    /**
279
     * num_ref_idx_l0/1_active_minus1 + 1
280
     */
281
    int ref_count[2];// FIXME split for AFF
282
    Picture *short_ref[16];
283
    Picture *long_ref[16];
284
    Picture default_ref_list[2][32];
285
    Picture ref_list[2][32]; //FIXME size?
286
    Picture field_ref_list[2][32]; //FIXME size?
287
    Picture *delayed_pic[16]; //FIXME size?
288
    
289
    /**
290
     * memory management control operations buffer.
291
     */
292
    MMCO mmco[MAX_MMCO_COUNT];
293
    int mmco_index;
294
    
295
    int long_ref_count;  ///< number of actual long term references
296
    int short_ref_count; ///< number of actual short term references
297
    
298
    //data partitioning
299
    GetBitContext intra_gb;
300
    GetBitContext inter_gb;
301
    GetBitContext *intra_gb_ptr;
302
    GetBitContext *inter_gb_ptr;
303
    
304
    DCTELEM mb[16*24] __align8;
305

    
306
    /**
307
     * Cabac
308
     */
309
    CABACContext cabac;
310
    uint8_t      cabac_state[399];
311
    int          cabac_init_idc;
312

    
313
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
314
    uint16_t     *cbp_table;
315
    int top_cbp;
316
    int left_cbp;
317
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
318
    uint8_t     *chroma_pred_mode_table;
319
    int         last_qscale_diff;
320
    int16_t     (*mvd_table[2])[2];
321
    int16_t     mvd_cache[2][5*8][2];
322
    uint8_t     *direct_table;
323
    uint8_t     direct_cache[5*8];
324

    
325
}H264Context;
326

    
327
static VLC coeff_token_vlc[4];
328
static VLC chroma_dc_coeff_token_vlc;
329

    
330
static VLC total_zeros_vlc[15];
331
static VLC chroma_dc_total_zeros_vlc[3];
332

    
333
static VLC run_vlc[6];
334
static VLC run7_vlc;
335

    
336
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
337
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
338
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr);
339

    
340
static inline uint32_t pack16to32(int a, int b){
341
#ifdef WORDS_BIGENDIAN
342
   return (b&0xFFFF) + (a<<16);
343
#else
344
   return (a&0xFFFF) + (b<<16);
345
#endif
346
}
347

    
348
/**
349
 * fill a rectangle.
350
 * @param h height of the rectangle, should be a constant
351
 * @param w width of the rectangle, should be a constant
352
 * @param size the size of val (1 or 4), should be a constant
353
 */
354
static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
355
    uint8_t *p= (uint8_t*)vp;
356
    assert(size==1 || size==4);
357
    
358
    w      *= size;
359
    stride *= size;
360
    
361
//FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
362
    if(w==2 && h==2){
363
        *(uint16_t*)(p + 0)=
364
        *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
365
    }else if(w==2 && h==4){
366
        *(uint16_t*)(p + 0*stride)=
367
        *(uint16_t*)(p + 1*stride)=
368
        *(uint16_t*)(p + 2*stride)=
369
        *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
370
    }else if(w==4 && h==1){
371
        *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
372
    }else if(w==4 && h==2){
373
        *(uint32_t*)(p + 0*stride)=
374
        *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
375
    }else if(w==4 && h==4){
376
        *(uint32_t*)(p + 0*stride)=
377
        *(uint32_t*)(p + 1*stride)=
378
        *(uint32_t*)(p + 2*stride)=
379
        *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
380
    }else if(w==8 && h==1){
381
        *(uint32_t*)(p + 0)=
382
        *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
383
    }else if(w==8 && h==2){
384
        *(uint32_t*)(p + 0 + 0*stride)=
385
        *(uint32_t*)(p + 4 + 0*stride)=
386
        *(uint32_t*)(p + 0 + 1*stride)=
387
        *(uint32_t*)(p + 4 + 1*stride)=  size==4 ? val : val*0x01010101;
388
    }else if(w==8 && h==4){
389
        *(uint64_t*)(p + 0*stride)=
390
        *(uint64_t*)(p + 1*stride)=
391
        *(uint64_t*)(p + 2*stride)=
392
        *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
393
    }else if(w==16 && h==2){
394
        *(uint64_t*)(p + 0+0*stride)=
395
        *(uint64_t*)(p + 8+0*stride)=
396
        *(uint64_t*)(p + 0+1*stride)=
397
        *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
398
    }else if(w==16 && h==4){
399
        *(uint64_t*)(p + 0+0*stride)=
400
        *(uint64_t*)(p + 8+0*stride)=
401
        *(uint64_t*)(p + 0+1*stride)=
402
        *(uint64_t*)(p + 8+1*stride)=
403
        *(uint64_t*)(p + 0+2*stride)=
404
        *(uint64_t*)(p + 8+2*stride)=
405
        *(uint64_t*)(p + 0+3*stride)=
406
        *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
407
    }else
408
        assert(0);
409
}
410

    
411
static inline void fill_caches(H264Context *h, int mb_type){
412
    MpegEncContext * const s = &h->s;
413
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
414
    int topleft_xy, top_xy, topright_xy, left_xy[2];
415
    int topleft_type, top_type, topright_type, left_type[2];
416
    int left_block[4];
417
    int i;
418

    
419
    //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it 
420
    
421
    if(h->sps.mb_aff){
422
    //FIXME
423
        topleft_xy = 0; /* avoid warning */
424
        top_xy = 0; /* avoid warning */
425
        topright_xy = 0; /* avoid warning */
426
    }else{
427
        topleft_xy = mb_xy-1 - s->mb_stride;
428
        top_xy     = mb_xy   - s->mb_stride;
429
        topright_xy= mb_xy+1 - s->mb_stride;
430
        left_xy[0]   = mb_xy-1;
431
        left_xy[1]   = mb_xy-1;
432
        left_block[0]= 0;
433
        left_block[1]= 1;
434
        left_block[2]= 2;
435
        left_block[3]= 3;
436
    }
437

    
438
    topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
439
    top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
440
    topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
441
    left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
442
    left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
443

    
444
    if(IS_INTRA(mb_type)){
445
        h->topleft_samples_available= 
446
        h->top_samples_available= 
447
        h->left_samples_available= 0xFFFF;
448
        h->topright_samples_available= 0xEEEA;
449

    
450
        if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
451
            h->topleft_samples_available= 0xB3FF;
452
            h->top_samples_available= 0x33FF;
453
            h->topright_samples_available= 0x26EA;
454
        }
455
        for(i=0; i<2; i++){
456
            if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
457
                h->topleft_samples_available&= 0xDF5F;
458
                h->left_samples_available&= 0x5F5F;
459
            }
460
        }
461
        
462
        if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
463
            h->topleft_samples_available&= 0x7FFF;
464
        
465
        if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
466
            h->topright_samples_available&= 0xFBFF;
467
    
468
        if(IS_INTRA4x4(mb_type)){
469
            if(IS_INTRA4x4(top_type)){
470
                h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
471
                h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
472
                h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
473
                h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
474
            }else{
475
                int pred;
476
                if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
477
                    pred= 2;
478
                else{
479
                    pred= -1;
480
                }
481
                h->intra4x4_pred_mode_cache[4+8*0]=
482
                h->intra4x4_pred_mode_cache[5+8*0]=
483
                h->intra4x4_pred_mode_cache[6+8*0]=
484
                h->intra4x4_pred_mode_cache[7+8*0]= pred;
485
            }
486
            for(i=0; i<2; i++){
487
                if(IS_INTRA4x4(left_type[i])){
488
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
489
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
490
                }else{
491
                    int pred;
492
                    if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
493
                        pred= 2;
494
                    else{
495
                        pred= -1;
496
                    }
497
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
498
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
499
                }
500
            }
501
        }
502
    }
503
    
504
    
505
/*
506
0 . T T. T T T T 
507
1 L . .L . . . . 
508
2 L . .L . . . . 
509
3 . T TL . . . . 
510
4 L . .L . . . . 
511
5 L . .. . . . . 
512
*/
513
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
514
    if(top_type){
515
        h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
516
        h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
517
        h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
518
        h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
519
    
520
        h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
521
        h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
522
    
523
        h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
524
        h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
525
        
526
        h->top_cbp= h->cbp_table[top_xy];
527
    }else{
528
        h->non_zero_count_cache[4+8*0]=      
529
        h->non_zero_count_cache[5+8*0]=
530
        h->non_zero_count_cache[6+8*0]=
531
        h->non_zero_count_cache[7+8*0]=
532
    
533
        h->non_zero_count_cache[1+8*0]=
534
        h->non_zero_count_cache[2+8*0]=
535
    
536
        h->non_zero_count_cache[1+8*3]=
537
        h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
538
        
539
        if(IS_INTRA(mb_type)) h->top_cbp= 0x1C0;
540
        else                  h->top_cbp= 0;
541
    }
542
    
543
    if(left_type[0]){
544
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
545
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
546
        h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
547
        h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
548
        h->left_cbp= h->cbp_table[left_xy[0]]; //FIXME interlacing
549
    }else{
550
        h->non_zero_count_cache[3+8*1]= 
551
        h->non_zero_count_cache[3+8*2]= 
552
        h->non_zero_count_cache[0+8*1]= 
553
        h->non_zero_count_cache[0+8*4]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
554
        
555
        if(IS_INTRA(mb_type)) h->left_cbp= 0x1C0;//FIXME interlacing
556
        else                  h->left_cbp= 0;
557
    }
558
    
559
    if(left_type[1]){
560
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
561
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
562
        h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
563
        h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
564
    }else{
565
        h->non_zero_count_cache[3+8*3]= 
566
        h->non_zero_count_cache[3+8*4]= 
567
        h->non_zero_count_cache[0+8*2]= 
568
        h->non_zero_count_cache[0+8*5]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
569
    }
570
    
571
#if 1
572
    //FIXME direct mb can skip much of this
573
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
574
        int list;
575
        for(list=0; list<2; list++){
576
            if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
577
                /*if(!h->mv_cache_clean[list]){
578
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
579
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
580
                    h->mv_cache_clean[list]= 1;
581
                }*/
582
                continue;
583
            }
584
            h->mv_cache_clean[list]= 0;
585
            
586
            if(IS_INTER(topleft_type)){
587
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
588
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
589
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
590
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
591
            }else{
592
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
593
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
594
            }
595
            
596
            if(IS_INTER(top_type)){
597
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
598
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
599
                *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
600
                *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
601
                *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
602
                *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
603
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
604
                h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
605
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
606
                h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
607
            }else{
608
                *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= 
609
                *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= 
610
                *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 
611
                *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
612
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
613
            }
614

    
615
            if(IS_INTER(topright_type)){
616
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
617
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
618
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
619
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
620
            }else{
621
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
622
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
623
            }
624
            
625
            //FIXME unify cleanup or sth
626
            if(IS_INTER(left_type[0])){
627
                const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
628
                const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
629
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
630
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
631
                h->ref_cache[list][scan8[0] - 1 + 0*8]= 
632
                h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
633
            }else{
634
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
635
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
636
                h->ref_cache[list][scan8[0] - 1 + 0*8]=
637
                h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
638
            }
639
            
640
            if(IS_INTER(left_type[1])){
641
                const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
642
                const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
643
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
644
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
645
                h->ref_cache[list][scan8[0] - 1 + 2*8]= 
646
                h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
647
            }else{
648
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
649
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
650
                h->ref_cache[list][scan8[0] - 1 + 2*8]=
651
                h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
652
            }
653

    
654
            h->ref_cache[list][scan8[5 ]+1] = 
655
            h->ref_cache[list][scan8[7 ]+1] = 
656
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewher else)
657
            h->ref_cache[list][scan8[4 ]] = 
658
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
659
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
660
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
661
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
662
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
663
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
664

    
665
            if( h->pps.cabac ) {
666
                /* XXX beurk, Load mvd */
667
                if(IS_INTER(topleft_type)){
668
                    const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
669
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
670
                }else{
671
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
672
                }
673

    
674
                if(IS_INTER(top_type)){
675
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
676
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
677
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
678
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
679
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
680
                }else{
681
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]= 
682
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]= 
683
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]= 
684
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
685
                }
686
                if(IS_INTER(left_type[0])){
687
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
688
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
689
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
690
                }else{
691
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
692
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
693
                }
694
                if(IS_INTER(left_type[1])){
695
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
696
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
697
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
698
                }else{
699
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
700
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
701
                }
702
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
703
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
704
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
705
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
706
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
707

    
708
                if(h->slice_type == B_TYPE){
709
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
710

    
711
                    if(IS_DIRECT(top_type)){
712
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
713
                    }else if(IS_8X8(top_type)){
714
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
715
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
716
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
717
                    }else{
718
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
719
                    }
720
                    
721
                    //FIXME interlacing
722
                    if(IS_DIRECT(left_type[0])){
723
                        h->direct_cache[scan8[0] - 1 + 0*8]=
724
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
725
                    }else if(IS_8X8(left_type[0])){
726
                        int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
727
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
728
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
729
                    }else{
730
                        h->direct_cache[scan8[0] - 1 + 0*8]=
731
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
732
                    }
733
                }
734
            }
735
        }
736
    }
737
#endif
738
}
739

    
740
static inline void write_back_intra_pred_mode(H264Context *h){
741
    MpegEncContext * const s = &h->s;
742
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
743

    
744
    h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
745
    h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
746
    h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
747
    h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
748
    h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
749
    h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
750
    h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
751
}
752

    
753
/**
754
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
755
 */
756
static inline int check_intra4x4_pred_mode(H264Context *h){
757
    MpegEncContext * const s = &h->s;
758
    static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
759
    static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
760
    int i;
761
    
762
    if(!(h->top_samples_available&0x8000)){
763
        for(i=0; i<4; i++){
764
            int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
765
            if(status<0){
766
                av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
767
                return -1;
768
            } else if(status){
769
                h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
770
            }
771
        }
772
    }
773
    
774
    if(!(h->left_samples_available&0x8000)){
775
        for(i=0; i<4; i++){
776
            int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
777
            if(status<0){
778
                av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
779
                return -1;
780
            } else if(status){
781
                h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
782
            }
783
        }
784
    }
785

    
786
    return 0;
787
} //FIXME cleanup like next
788

    
789
/**
790
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
791
 */
792
static inline int check_intra_pred_mode(H264Context *h, int mode){
793
    MpegEncContext * const s = &h->s;
794
    static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
795
    static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
796
    
797
    if(mode < 0 || mode > 6) {
798
        av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
799
        return -1;
800
    }
801
    
802
    if(!(h->top_samples_available&0x8000)){
803
        mode= top[ mode ];
804
        if(mode<0){
805
            av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
806
            return -1;
807
        }
808
    }
809
    
810
    if(!(h->left_samples_available&0x8000)){
811
        mode= left[ mode ];
812
        if(mode<0){
813
            av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
814
            return -1;
815
        } 
816
    }
817

    
818
    return mode;
819
}
820

    
821
/**
822
 * gets the predicted intra4x4 prediction mode.
823
 */
824
static inline int pred_intra_mode(H264Context *h, int n){
825
    const int index8= scan8[n];
826
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
827
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
828
    const int min= FFMIN(left, top);
829

    
830
    tprintf("mode:%d %d min:%d\n", left ,top, min);
831

    
832
    if(min<0) return DC_PRED;
833
    else      return min;
834
}
835

    
836
static inline void write_back_non_zero_count(H264Context *h){
837
    MpegEncContext * const s = &h->s;
838
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
839

    
840
    h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
841
    h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
842
    h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
843
    h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
844
    h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
845
    h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
846
    h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
847
    
848
    h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
849
    h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
850
    h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
851

    
852
    h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
853
    h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
854
    h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
855
}
856

    
857
/**
858
 * gets the predicted number of non zero coefficients.
859
 * @param n block index
860
 */
861
static inline int pred_non_zero_count(H264Context *h, int n){
862
    const int index8= scan8[n];
863
    const int left= h->non_zero_count_cache[index8 - 1];
864
    const int top = h->non_zero_count_cache[index8 - 8];
865
    int i= left + top;
866
    
867
    if(i<64) i= (i+1)>>1;
868

    
869
    tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
870

    
871
    return i&31;
872
}
873

    
874
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
875
    const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
876

    
877
    if(topright_ref != PART_NOT_AVAILABLE){
878
        *C= h->mv_cache[list][ i - 8 + part_width ];
879
        return topright_ref;
880
    }else{
881
        tprintf("topright MV not available\n");
882

    
883
        *C= h->mv_cache[list][ i - 8 - 1 ];
884
        return h->ref_cache[list][ i - 8 - 1 ];
885
    }
886
}
887

    
888
/**
889
 * gets the predicted MV.
890
 * @param n the block index
891
 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
892
 * @param mx the x component of the predicted motion vector
893
 * @param my the y component of the predicted motion vector
894
 */
895
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
896
    const int index8= scan8[n];
897
    const int top_ref=      h->ref_cache[list][ index8 - 8 ];
898
    const int left_ref=     h->ref_cache[list][ index8 - 1 ];
899
    const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
900
    const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
901
    const int16_t * C;
902
    int diagonal_ref, match_count;
903

    
904
    assert(part_width==1 || part_width==2 || part_width==4);
905

    
906
/* mv_cache
907
  B . . A T T T T 
908
  U . . L . . , .
909
  U . . L . . . .
910
  U . . L . . , .
911
  . . . L . . . .
912
*/
913

    
914
    diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
915
    match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
916
    if(match_count > 1){ //most common
917
        *mx= mid_pred(A[0], B[0], C[0]);
918
        *my= mid_pred(A[1], B[1], C[1]);
919
    }else if(match_count==1){
920
        if(left_ref==ref){
921
            *mx= A[0];
922
            *my= A[1];        
923
        }else if(top_ref==ref){
924
            *mx= B[0];
925
            *my= B[1];        
926
        }else{
927
            *mx= C[0];
928
            *my= C[1];        
929
        }
930
    }else{
931
        if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
932
            *mx= A[0];
933
            *my= A[1];        
934
        }else{
935
            *mx= mid_pred(A[0], B[0], C[0]);
936
            *my= mid_pred(A[1], B[1], C[1]);
937
        }
938
    }
939
        
940
    tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
941
}
942

    
943
/**
944
 * gets the directionally predicted 16x8 MV.
945
 * @param n the block index
946
 * @param mx the x component of the predicted motion vector
947
 * @param my the y component of the predicted motion vector
948
 */
949
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
950
    if(n==0){
951
        const int top_ref=      h->ref_cache[list][ scan8[0] - 8 ];
952
        const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
953

    
954
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
955
        
956
        if(top_ref == ref){
957
            *mx= B[0];
958
            *my= B[1];
959
            return;
960
        }
961
    }else{
962
        const int left_ref=     h->ref_cache[list][ scan8[8] - 1 ];
963
        const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
964
        
965
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
966

    
967
        if(left_ref == ref){
968
            *mx= A[0];
969
            *my= A[1];
970
            return;
971
        }
972
    }
973

    
974
    //RARE
975
    pred_motion(h, n, 4, list, ref, mx, my);
976
}
977

    
978
/**
979
 * gets the directionally predicted 8x16 MV.
980
 * @param n the block index
981
 * @param mx the x component of the predicted motion vector
982
 * @param my the y component of the predicted motion vector
983
 */
984
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
985
    if(n==0){
986
        const int left_ref=      h->ref_cache[list][ scan8[0] - 1 ];
987
        const int16_t * const A=  h->mv_cache[list][ scan8[0] - 1 ];
988
        
989
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
990

    
991
        if(left_ref == ref){
992
            *mx= A[0];
993
            *my= A[1];
994
            return;
995
        }
996
    }else{
997
        const int16_t * C;
998
        int diagonal_ref;
999

    
1000
        diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1001
        
1002
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1003

    
1004
        if(diagonal_ref == ref){ 
1005
            *mx= C[0];
1006
            *my= C[1];
1007
            return;
1008
        }
1009
    }
1010

    
1011
    //RARE
1012
    pred_motion(h, n, 2, list, ref, mx, my);
1013
}
1014

    
1015
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1016
    const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1017
    const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1018

    
1019
    tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1020

    
1021
    if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1022
       || (top_ref == 0  && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1023
       || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1024
       
1025
        *mx = *my = 0;
1026
        return;
1027
    }
1028
        
1029
    pred_motion(h, 0, 4, 0, 0, mx, my);
1030

    
1031
    return;
1032
}
1033

    
1034
static inline void direct_dist_scale_factor(H264Context * const h){
1035
    const int poc = h->s.current_picture_ptr->poc;
1036
    const int poc1 = h->ref_list[1][0].poc;
1037
    int i;
1038
    for(i=0; i<h->ref_count[0]; i++){
1039
        int poc0 = h->ref_list[0][i].poc;
1040
        int td = clip(poc1 - poc0, -128, 127);
1041
        if(td == 0 /* FIXME || pic0 is a long-term ref */){
1042
            h->dist_scale_factor[i] = 256;
1043
        }else{
1044
            int tb = clip(poc - poc0, -128, 127);
1045
            int tx = (16384 + (ABS(td) >> 1)) / td;
1046
            h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1047
        }
1048
    }
1049
}
1050

    
1051
static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1052
    MpegEncContext * const s = &h->s;
1053
    const int mb_xy =   s->mb_x +   s->mb_y*s->mb_stride;
1054
    const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1055
    const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1056
    const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1057
    const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1058
    const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1059
    const int is_b8x8 = IS_8X8(*mb_type);
1060
    int sub_mb_type;
1061
    int i8, i4;
1062

    
1063
    if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1064
        /* FIXME save sub mb types from previous frames (or derive from MVs)
1065
         * so we know exactly what block size to use */
1066
        sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1067
        *mb_type =    MB_TYPE_8x8;
1068
    }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
1069
        sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1070
        *mb_type =    MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1071
    }else{
1072
        sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1073
        *mb_type =    MB_TYPE_8x8;
1074
    }
1075
    if(!is_b8x8)
1076
        *mb_type |= MB_TYPE_DIRECT2;
1077

    
1078
    if(h->direct_spatial_mv_pred){
1079
        int ref[2];
1080
        int mv[2][2];
1081
        int list;
1082

    
1083
        /* ref = min(neighbors) */
1084
        for(list=0; list<2; list++){
1085
            int refa = h->ref_cache[list][scan8[0] - 1];
1086
            int refb = h->ref_cache[list][scan8[0] - 8];
1087
            int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1088
            if(refc == -2)
1089
                refc = h->ref_cache[list][scan8[0] - 8 - 1];
1090
            ref[list] = refa;
1091
            if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1092
                ref[list] = refb;
1093
            if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1094
                ref[list] = refc;
1095
            if(ref[list] < 0)
1096
                ref[list] = -1;
1097
        }
1098

    
1099
        if(ref[0] < 0 && ref[1] < 0){
1100
            ref[0] = ref[1] = 0;
1101
            mv[0][0] = mv[0][1] =
1102
            mv[1][0] = mv[1][1] = 0;
1103
        }else{
1104
            for(list=0; list<2; list++){
1105
                if(ref[list] >= 0)
1106
                    pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1107
                else
1108
                    mv[list][0] = mv[list][1] = 0;
1109
            }
1110
        }
1111

    
1112
        if(ref[1] < 0){
1113
            *mb_type &= ~MB_TYPE_P0L1;
1114
            sub_mb_type &= ~MB_TYPE_P0L1;
1115
        }else if(ref[0] < 0){
1116
            *mb_type &= ~MB_TYPE_P0L0;
1117
            sub_mb_type &= ~MB_TYPE_P0L0;
1118
        }
1119

    
1120
        if(IS_16X16(*mb_type)){
1121
            fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref[0], 1);
1122
            fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, ref[1], 1);
1123
            if(!IS_INTRA(mb_type_col) && l1ref0[0] == 0 &&
1124
                ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1){
1125
                if(ref[0] > 0)
1126
                    fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1127
                else
1128
                    fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1129
                if(ref[1] > 0)
1130
                    fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1131
                else
1132
                    fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1133
            }else{
1134
                fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1135
                fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1136
            }
1137
        }else{
1138
            for(i8=0; i8<4; i8++){
1139
                const int x8 = i8&1;
1140
                const int y8 = i8>>1;
1141
    
1142
                if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1143
                    continue;
1144
                h->sub_mb_type[i8] = sub_mb_type;
1145
    
1146
                fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1147
                fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1148
                fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref[0], 1);
1149
                fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, ref[1], 1);
1150
    
1151
                /* col_zero_flag */
1152
                if(!IS_INTRA(mb_type_col) && l1ref0[x8 + y8*h->b8_stride] == 0){
1153
                    for(i4=0; i4<4; i4++){
1154
                        const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1155
                        if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1156
                            if(ref[0] == 0)
1157
                                *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1158
                            if(ref[1] == 0)
1159
                                *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1160
                        }
1161
                    }
1162
                }
1163
            }
1164
        }
1165
    }else{ /* direct temporal mv pred */
1166
        /* FIXME assumes that L1ref0 used the same ref lists as current frame */
1167
        if(IS_16X16(*mb_type)){
1168
            fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1169
            if(IS_INTRA(mb_type_col)){
1170
                fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1171
                fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1172
                fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1173
            }else{
1174
                const int ref0 = l1ref0[0];
1175
                const int dist_scale_factor = h->dist_scale_factor[ref0];
1176
                const int16_t *mv_col = l1mv0[0];
1177
                int mv_l0[2];
1178
                mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1179
                mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1180
                fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1181
                fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1182
                fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1183
            }
1184
        }else{
1185
            for(i8=0; i8<4; i8++){
1186
                const int x8 = i8&1;
1187
                const int y8 = i8>>1;
1188
                int ref0, dist_scale_factor;
1189
    
1190
                if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1191
                    continue;
1192
                h->sub_mb_type[i8] = sub_mb_type;
1193
                if(IS_INTRA(mb_type_col)){
1194
                    fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1195
                    fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1196
                    fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1197
                    fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1198
                    continue;
1199
                }
1200
    
1201
                ref0 = l1ref0[x8 + y8*h->b8_stride];
1202
                dist_scale_factor = h->dist_scale_factor[ref0];
1203
    
1204
                fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1205
                fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1206
                for(i4=0; i4<4; i4++){
1207
                    const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1208
                    int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1209
                    mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1210
                    mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1211
                    *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1212
                        pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1213
                }
1214
            }
1215
        }
1216
    }
1217
}
1218

    
1219
static inline void write_back_motion(H264Context *h, int mb_type){
1220
    MpegEncContext * const s = &h->s;
1221
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1222
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1223
    int list;
1224

    
1225
    for(list=0; list<2; list++){
1226
        int y;
1227
        if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
1228
            if(1){ //FIXME skip or never read if mb_type doesnt use it
1229
                for(y=0; y<4; y++){
1230
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
1231
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
1232
                }
1233
                if( h->pps.cabac ) {
1234
                    /* FIXME needed ? */
1235
                    for(y=0; y<4; y++){
1236
                        *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
1237
                        *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
1238
                    }
1239
                }
1240
                for(y=0; y<2; y++){
1241
                    *(uint16_t*)&s->current_picture.ref_index[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
1242
                }
1243
            }
1244
            continue;
1245
        }
1246
        
1247
        for(y=0; y<4; y++){
1248
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1249
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1250
        }
1251
        if( h->pps.cabac ) {
1252
            for(y=0; y<4; y++){
1253
                *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1254
                *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1255
            }
1256
        }
1257
        for(y=0; y<2; y++){
1258
            s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
1259
            s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
1260
        }
1261
    }
1262
    
1263
    if(h->slice_type == B_TYPE && h->pps.cabac){
1264
        if(IS_8X8(mb_type)){
1265
            h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1266
            h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1267
            h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1268
        }
1269
    }
1270
}
1271

    
1272
/**
1273
 * Decodes a network abstraction layer unit.
1274
 * @param consumed is the number of bytes used as input
1275
 * @param length is the length of the array
1276
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
1277
 * @returns decoded bytes, might be src+1 if no escapes 
1278
 */
1279
static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1280
    int i, si, di;
1281
    uint8_t *dst;
1282

    
1283
//    src[0]&0x80;                //forbidden bit
1284
    h->nal_ref_idc= src[0]>>5;
1285
    h->nal_unit_type= src[0]&0x1F;
1286

    
1287
    src++; length--;
1288
#if 0    
1289
    for(i=0; i<length; i++)
1290
        printf("%2X ", src[i]);
1291
#endif
1292
    for(i=0; i+1<length; i+=2){
1293
        if(src[i]) continue;
1294
        if(i>0 && src[i-1]==0) i--;
1295
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1296
            if(src[i+2]!=3){
1297
                /* startcode, so we must be past the end */
1298
                length=i;
1299
            }
1300
            break;
1301
        }
1302
    }
1303

    
1304
    if(i>=length-1){ //no escaped 0
1305
        *dst_length= length;
1306
        *consumed= length+1; //+1 for the header
1307
        return src; 
1308
    }
1309

    
1310
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1311
    dst= h->rbsp_buffer;
1312

    
1313
//printf("deoding esc\n");
1314
    si=di=0;
1315
    while(si<length){ 
1316
        //remove escapes (very rare 1:2^22)
1317
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1318
            if(src[si+2]==3){ //escape
1319
                dst[di++]= 0;
1320
                dst[di++]= 0;
1321
                si+=3;
1322
                continue;
1323
            }else //next start code
1324
                break;
1325
        }
1326

    
1327
        dst[di++]= src[si++];
1328
    }
1329

    
1330
    *dst_length= di;
1331
    *consumed= si + 1;//+1 for the header
1332
//FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1333
    return dst;
1334
}
1335

    
1336
#if 0
1337
/**
1338
 * @param src the data which should be escaped
1339
 * @param dst the target buffer, dst+1 == src is allowed as a special case
1340
 * @param length the length of the src data
1341
 * @param dst_length the length of the dst array
1342
 * @returns length of escaped data in bytes or -1 if an error occured
1343
 */
1344
static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1345
    int i, escape_count, si, di;
1346
    uint8_t *temp;
1347
    
1348
    assert(length>=0);
1349
    assert(dst_length>0);
1350
    
1351
    dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1352

1353
    if(length==0) return 1;
1354

1355
    escape_count= 0;
1356
    for(i=0; i<length; i+=2){
1357
        if(src[i]) continue;
1358
        if(i>0 && src[i-1]==0) 
1359
            i--;
1360
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1361
            escape_count++;
1362
            i+=2;
1363
        }
1364
    }
1365
    
1366
    if(escape_count==0){ 
1367
        if(dst+1 != src)
1368
            memcpy(dst+1, src, length);
1369
        return length + 1;
1370
    }
1371
    
1372
    if(length + escape_count + 1> dst_length)
1373
        return -1;
1374

1375
    //this should be damn rare (hopefully)
1376

1377
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1378
    temp= h->rbsp_buffer;
1379
//printf("encoding esc\n");
1380
    
1381
    si= 0;
1382
    di= 0;
1383
    while(si < length){
1384
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1385
            temp[di++]= 0; si++;
1386
            temp[di++]= 0; si++;
1387
            temp[di++]= 3; 
1388
            temp[di++]= src[si++];
1389
        }
1390
        else
1391
            temp[di++]= src[si++];
1392
    }
1393
    memcpy(dst+1, temp, length+escape_count);
1394
    
1395
    assert(di == length+escape_count);
1396
    
1397
    return di + 1;
1398
}
1399

1400
/**
1401
 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1402
 */
1403
static void encode_rbsp_trailing(PutBitContext *pb){
1404
    int length;
1405
    put_bits(pb, 1, 1);
1406
    length= (-put_bits_count(pb))&7;
1407
    if(length) put_bits(pb, length, 0);
1408
}
1409
#endif
1410

    
1411
/**
1412
 * identifies the exact end of the bitstream
1413
 * @return the length of the trailing, or 0 if damaged
1414
 */
1415
static int decode_rbsp_trailing(uint8_t *src){
1416
    int v= *src;
1417
    int r;
1418

    
1419
    tprintf("rbsp trailing %X\n", v);
1420

    
1421
    for(r=1; r<9; r++){
1422
        if(v&1) return r;
1423
        v>>=1;
1424
    }
1425
    return 0;
1426
}
1427

    
1428
/**
1429
 * idct tranforms the 16 dc values and dequantize them.
1430
 * @param qp quantization parameter
1431
 */
1432
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1433
    const int qmul= dequant_coeff[qp][0];
1434
#define stride 16
1435
    int i;
1436
    int temp[16]; //FIXME check if this is a good idea
1437
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1438
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1439

    
1440
//memset(block, 64, 2*256);
1441
//return;
1442
    for(i=0; i<4; i++){
1443
        const int offset= y_offset[i];
1444
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1445
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1446
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1447
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1448

    
1449
        temp[4*i+0]= z0+z3;
1450
        temp[4*i+1]= z1+z2;
1451
        temp[4*i+2]= z1-z2;
1452
        temp[4*i+3]= z0-z3;
1453
    }
1454

    
1455
    for(i=0; i<4; i++){
1456
        const int offset= x_offset[i];
1457
        const int z0= temp[4*0+i] + temp[4*2+i];
1458
        const int z1= temp[4*0+i] - temp[4*2+i];
1459
        const int z2= temp[4*1+i] - temp[4*3+i];
1460
        const int z3= temp[4*1+i] + temp[4*3+i];
1461

    
1462
        block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1463
        block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1464
        block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1465
        block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1466
    }
1467
}
1468

    
1469
#if 0
1470
/**
1471
 * dct tranforms the 16 dc values.
1472
 * @param qp quantization parameter ??? FIXME
1473
 */
1474
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1475
//    const int qmul= dequant_coeff[qp][0];
1476
    int i;
1477
    int temp[16]; //FIXME check if this is a good idea
1478
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1479
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1480

1481
    for(i=0; i<4; i++){
1482
        const int offset= y_offset[i];
1483
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1484
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1485
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1486
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1487

1488
        temp[4*i+0]= z0+z3;
1489
        temp[4*i+1]= z1+z2;
1490
        temp[4*i+2]= z1-z2;
1491
        temp[4*i+3]= z0-z3;
1492
    }
1493

1494
    for(i=0; i<4; i++){
1495
        const int offset= x_offset[i];
1496
        const int z0= temp[4*0+i] + temp[4*2+i];
1497
        const int z1= temp[4*0+i] - temp[4*2+i];
1498
        const int z2= temp[4*1+i] - temp[4*3+i];
1499
        const int z3= temp[4*1+i] + temp[4*3+i];
1500

1501
        block[stride*0 +offset]= (z0 + z3)>>1;
1502
        block[stride*2 +offset]= (z1 + z2)>>1;
1503
        block[stride*8 +offset]= (z1 - z2)>>1;
1504
        block[stride*10+offset]= (z0 - z3)>>1;
1505
    }
1506
}
1507
#endif
1508

    
1509
#undef xStride
1510
#undef stride
1511

    
1512
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1513
    const int qmul= dequant_coeff[qp][0];
1514
    const int stride= 16*2;
1515
    const int xStride= 16;
1516
    int a,b,c,d,e;
1517

    
1518
    a= block[stride*0 + xStride*0];
1519
    b= block[stride*0 + xStride*1];
1520
    c= block[stride*1 + xStride*0];
1521
    d= block[stride*1 + xStride*1];
1522

    
1523
    e= a-b;
1524
    a= a+b;
1525
    b= c-d;
1526
    c= c+d;
1527

    
1528
    block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1529
    block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1530
    block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1531
    block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1532
}
1533

    
1534
#if 0
1535
static void chroma_dc_dct_c(DCTELEM *block){
1536
    const int stride= 16*2;
1537
    const int xStride= 16;
1538
    int a,b,c,d,e;
1539

1540
    a= block[stride*0 + xStride*0];
1541
    b= block[stride*0 + xStride*1];
1542
    c= block[stride*1 + xStride*0];
1543
    d= block[stride*1 + xStride*1];
1544

1545
    e= a-b;
1546
    a= a+b;
1547
    b= c-d;
1548
    c= c+d;
1549

1550
    block[stride*0 + xStride*0]= (a+c);
1551
    block[stride*0 + xStride*1]= (e+b);
1552
    block[stride*1 + xStride*0]= (a-c);
1553
    block[stride*1 + xStride*1]= (e-b);
1554
}
1555
#endif
1556

    
1557
/**
1558
 * gets the chroma qp.
1559
 */
1560
static inline int get_chroma_qp(H264Context *h, int qscale){
1561
    
1562
    return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1563
}
1564

    
1565

    
1566
#if 0
1567
static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1568
    int i;
1569
    //FIXME try int temp instead of block
1570
    
1571
    for(i=0; i<4; i++){
1572
        const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1573
        const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1574
        const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1575
        const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1576
        const int z0= d0 + d3;
1577
        const int z3= d0 - d3;
1578
        const int z1= d1 + d2;
1579
        const int z2= d1 - d2;
1580
        
1581
        block[0 + 4*i]=   z0 +   z1;
1582
        block[1 + 4*i]= 2*z3 +   z2;
1583
        block[2 + 4*i]=   z0 -   z1;
1584
        block[3 + 4*i]=   z3 - 2*z2;
1585
    }    
1586

1587
    for(i=0; i<4; i++){
1588
        const int z0= block[0*4 + i] + block[3*4 + i];
1589
        const int z3= block[0*4 + i] - block[3*4 + i];
1590
        const int z1= block[1*4 + i] + block[2*4 + i];
1591
        const int z2= block[1*4 + i] - block[2*4 + i];
1592
        
1593
        block[0*4 + i]=   z0 +   z1;
1594
        block[1*4 + i]= 2*z3 +   z2;
1595
        block[2*4 + i]=   z0 -   z1;
1596
        block[3*4 + i]=   z3 - 2*z2;
1597
    }
1598
}
1599
#endif
1600

    
1601
//FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1602
//FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1603
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1604
    int i;
1605
    const int * const quant_table= quant_coeff[qscale];
1606
    const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1607
    const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1608
    const unsigned int threshold2= (threshold1<<1);
1609
    int last_non_zero;
1610

    
1611
    if(seperate_dc){
1612
        if(qscale<=18){
1613
            //avoid overflows
1614
            const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1615
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1616
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1617

    
1618
            int level= block[0]*quant_coeff[qscale+18][0];
1619
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1620
                if(level>0){
1621
                    level= (dc_bias + level)>>(QUANT_SHIFT-2);
1622
                    block[0]= level;
1623
                }else{
1624
                    level= (dc_bias - level)>>(QUANT_SHIFT-2);
1625
                    block[0]= -level;
1626
                }
1627
//                last_non_zero = i;
1628
            }else{
1629
                block[0]=0;
1630
            }
1631
        }else{
1632
            const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1633
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1634
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1635

    
1636
            int level= block[0]*quant_table[0];
1637
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1638
                if(level>0){
1639
                    level= (dc_bias + level)>>(QUANT_SHIFT+1);
1640
                    block[0]= level;
1641
                }else{
1642
                    level= (dc_bias - level)>>(QUANT_SHIFT+1);
1643
                    block[0]= -level;
1644
                }
1645
//                last_non_zero = i;
1646
            }else{
1647
                block[0]=0;
1648
            }
1649
        }
1650
        last_non_zero= 0;
1651
        i=1;
1652
    }else{
1653
        last_non_zero= -1;
1654
        i=0;
1655
    }
1656

    
1657
    for(; i<16; i++){
1658
        const int j= scantable[i];
1659
        int level= block[j]*quant_table[j];
1660

    
1661
//        if(   bias+level >= (1<<(QMAT_SHIFT - 3))
1662
//           || bias-level >= (1<<(QMAT_SHIFT - 3))){
1663
        if(((unsigned)(level+threshold1))>threshold2){
1664
            if(level>0){
1665
                level= (bias + level)>>QUANT_SHIFT;
1666
                block[j]= level;
1667
            }else{
1668
                level= (bias - level)>>QUANT_SHIFT;
1669
                block[j]= -level;
1670
            }
1671
            last_non_zero = i;
1672
        }else{
1673
            block[j]=0;
1674
        }
1675
    }
1676

    
1677
    return last_non_zero;
1678
}
1679

    
1680
static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1681
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1682
    ((uint32_t*)(src+0*stride))[0]= a;
1683
    ((uint32_t*)(src+1*stride))[0]= a;
1684
    ((uint32_t*)(src+2*stride))[0]= a;
1685
    ((uint32_t*)(src+3*stride))[0]= a;
1686
}
1687

    
1688
static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1689
    ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1690
    ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1691
    ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1692
    ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1693
}
1694

    
1695
static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1696
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1697
                   + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1698
    
1699
    ((uint32_t*)(src+0*stride))[0]= 
1700
    ((uint32_t*)(src+1*stride))[0]= 
1701
    ((uint32_t*)(src+2*stride))[0]= 
1702
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1703
}
1704

    
1705
static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1706
    const int dc= (  src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1707
    
1708
    ((uint32_t*)(src+0*stride))[0]= 
1709
    ((uint32_t*)(src+1*stride))[0]= 
1710
    ((uint32_t*)(src+2*stride))[0]= 
1711
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1712
}
1713

    
1714
static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1715
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1716
    
1717
    ((uint32_t*)(src+0*stride))[0]= 
1718
    ((uint32_t*)(src+1*stride))[0]= 
1719
    ((uint32_t*)(src+2*stride))[0]= 
1720
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1721
}
1722

    
1723
static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1724
    ((uint32_t*)(src+0*stride))[0]= 
1725
    ((uint32_t*)(src+1*stride))[0]= 
1726
    ((uint32_t*)(src+2*stride))[0]= 
1727
    ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1728
}
1729

    
1730

    
1731
#define LOAD_TOP_RIGHT_EDGE\
1732
    const int t4= topright[0];\
1733
    const int t5= topright[1];\
1734
    const int t6= topright[2];\
1735
    const int t7= topright[3];\
1736

    
1737
#define LOAD_LEFT_EDGE\
1738
    const int l0= src[-1+0*stride];\
1739
    const int l1= src[-1+1*stride];\
1740
    const int l2= src[-1+2*stride];\
1741
    const int l3= src[-1+3*stride];\
1742

    
1743
#define LOAD_TOP_EDGE\
1744
    const int t0= src[ 0-1*stride];\
1745
    const int t1= src[ 1-1*stride];\
1746
    const int t2= src[ 2-1*stride];\
1747
    const int t3= src[ 3-1*stride];\
1748

    
1749
static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1750
    const int lt= src[-1-1*stride];
1751
    LOAD_TOP_EDGE
1752
    LOAD_LEFT_EDGE
1753

    
1754
    src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; 
1755
    src[0+2*stride]=
1756
    src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; 
1757
    src[0+1*stride]=
1758
    src[1+2*stride]=
1759
    src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; 
1760
    src[0+0*stride]=
1761
    src[1+1*stride]=
1762
    src[2+2*stride]=
1763
    src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; 
1764
    src[1+0*stride]=
1765
    src[2+1*stride]=
1766
    src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1767
    src[2+0*stride]=
1768
    src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1769
    src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1770
}
1771

    
1772
static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1773
    LOAD_TOP_EDGE    
1774
    LOAD_TOP_RIGHT_EDGE    
1775
//    LOAD_LEFT_EDGE    
1776

    
1777
    src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1778
    src[1+0*stride]=
1779
    src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1780
    src[2+0*stride]=
1781
    src[1+1*stride]=
1782
    src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1783
    src[3+0*stride]=
1784
    src[2+1*stride]=
1785
    src[1+2*stride]=
1786
    src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1787
    src[3+1*stride]=
1788
    src[2+2*stride]=
1789
    src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1790
    src[3+2*stride]=
1791
    src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1792
    src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1793
}
1794

    
1795
static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1796
    const int lt= src[-1-1*stride];
1797
    LOAD_TOP_EDGE    
1798
    LOAD_LEFT_EDGE    
1799
    const __attribute__((unused)) int unu= l3;
1800

    
1801
    src[0+0*stride]=
1802
    src[1+2*stride]=(lt + t0 + 1)>>1;
1803
    src[1+0*stride]=
1804
    src[2+2*stride]=(t0 + t1 + 1)>>1;
1805
    src[2+0*stride]=
1806
    src[3+2*stride]=(t1 + t2 + 1)>>1;
1807
    src[3+0*stride]=(t2 + t3 + 1)>>1;
1808
    src[0+1*stride]=
1809
    src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1810
    src[1+1*stride]=
1811
    src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1812
    src[2+1*stride]=
1813
    src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1814
    src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1815
    src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1816
    src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1817
}
1818

    
1819
static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1820
    LOAD_TOP_EDGE    
1821
    LOAD_TOP_RIGHT_EDGE    
1822
    const __attribute__((unused)) int unu= t7;
1823

    
1824
    src[0+0*stride]=(t0 + t1 + 1)>>1;
1825
    src[1+0*stride]=
1826
    src[0+2*stride]=(t1 + t2 + 1)>>1;
1827
    src[2+0*stride]=
1828
    src[1+2*stride]=(t2 + t3 + 1)>>1;
1829
    src[3+0*stride]=
1830
    src[2+2*stride]=(t3 + t4+ 1)>>1;
1831
    src[3+2*stride]=(t4 + t5+ 1)>>1;
1832
    src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1833
    src[1+1*stride]=
1834
    src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1835
    src[2+1*stride]=
1836
    src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1837
    src[3+1*stride]=
1838
    src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1839
    src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1840
}
1841

    
1842
static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1843
    LOAD_LEFT_EDGE    
1844

    
1845
    src[0+0*stride]=(l0 + l1 + 1)>>1;
1846
    src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1847
    src[2+0*stride]=
1848
    src[0+1*stride]=(l1 + l2 + 1)>>1;
1849
    src[3+0*stride]=
1850
    src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1851
    src[2+1*stride]=
1852
    src[0+2*stride]=(l2 + l3 + 1)>>1;
1853
    src[3+1*stride]=
1854
    src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1855
    src[3+2*stride]=
1856
    src[1+3*stride]=
1857
    src[0+3*stride]=
1858
    src[2+2*stride]=
1859
    src[2+3*stride]=
1860
    src[3+3*stride]=l3;
1861
}
1862
    
1863
static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1864
    const int lt= src[-1-1*stride];
1865
    LOAD_TOP_EDGE    
1866
    LOAD_LEFT_EDGE    
1867
    const __attribute__((unused)) int unu= t3;
1868

    
1869
    src[0+0*stride]=
1870
    src[2+1*stride]=(lt + l0 + 1)>>1;
1871
    src[1+0*stride]=
1872
    src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1873
    src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1874
    src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1875
    src[0+1*stride]=
1876
    src[2+2*stride]=(l0 + l1 + 1)>>1;
1877
    src[1+1*stride]=
1878
    src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1879
    src[0+2*stride]=
1880
    src[2+3*stride]=(l1 + l2+ 1)>>1;
1881
    src[1+2*stride]=
1882
    src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1883
    src[0+3*stride]=(l2 + l3 + 1)>>1;
1884
    src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1885
}
1886

    
1887
static void pred16x16_vertical_c(uint8_t *src, int stride){
1888
    int i;
1889
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1890
    const uint32_t b= ((uint32_t*)(src-stride))[1];
1891
    const uint32_t c= ((uint32_t*)(src-stride))[2];
1892
    const uint32_t d= ((uint32_t*)(src-stride))[3];
1893
    
1894
    for(i=0; i<16; i++){
1895
        ((uint32_t*)(src+i*stride))[0]= a;
1896
        ((uint32_t*)(src+i*stride))[1]= b;
1897
        ((uint32_t*)(src+i*stride))[2]= c;
1898
        ((uint32_t*)(src+i*stride))[3]= d;
1899
    }
1900
}
1901

    
1902
static void pred16x16_horizontal_c(uint8_t *src, int stride){
1903
    int i;
1904

    
1905
    for(i=0; i<16; i++){
1906
        ((uint32_t*)(src+i*stride))[0]=
1907
        ((uint32_t*)(src+i*stride))[1]=
1908
        ((uint32_t*)(src+i*stride))[2]=
1909
        ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1910
    }
1911
}
1912

    
1913
static void pred16x16_dc_c(uint8_t *src, int stride){
1914
    int i, dc=0;
1915

    
1916
    for(i=0;i<16; i++){
1917
        dc+= src[-1+i*stride];
1918
    }
1919
    
1920
    for(i=0;i<16; i++){
1921
        dc+= src[i-stride];
1922
    }
1923

    
1924
    dc= 0x01010101*((dc + 16)>>5);
1925

    
1926
    for(i=0; i<16; i++){
1927
        ((uint32_t*)(src+i*stride))[0]=
1928
        ((uint32_t*)(src+i*stride))[1]=
1929
        ((uint32_t*)(src+i*stride))[2]=
1930
        ((uint32_t*)(src+i*stride))[3]= dc;
1931
    }
1932
}
1933

    
1934
static void pred16x16_left_dc_c(uint8_t *src, int stride){
1935
    int i, dc=0;
1936

    
1937
    for(i=0;i<16; i++){
1938
        dc+= src[-1+i*stride];
1939
    }
1940
    
1941
    dc= 0x01010101*((dc + 8)>>4);
1942

    
1943
    for(i=0; i<16; i++){
1944
        ((uint32_t*)(src+i*stride))[0]=
1945
        ((uint32_t*)(src+i*stride))[1]=
1946
        ((uint32_t*)(src+i*stride))[2]=
1947
        ((uint32_t*)(src+i*stride))[3]= dc;
1948
    }
1949
}
1950

    
1951
static void pred16x16_top_dc_c(uint8_t *src, int stride){
1952
    int i, dc=0;
1953

    
1954
    for(i=0;i<16; i++){
1955
        dc+= src[i-stride];
1956
    }
1957
    dc= 0x01010101*((dc + 8)>>4);
1958

    
1959
    for(i=0; i<16; i++){
1960
        ((uint32_t*)(src+i*stride))[0]=
1961
        ((uint32_t*)(src+i*stride))[1]=
1962
        ((uint32_t*)(src+i*stride))[2]=
1963
        ((uint32_t*)(src+i*stride))[3]= dc;
1964
    }
1965
}
1966

    
1967
static void pred16x16_128_dc_c(uint8_t *src, int stride){
1968
    int i;
1969

    
1970
    for(i=0; i<16; i++){
1971
        ((uint32_t*)(src+i*stride))[0]=
1972
        ((uint32_t*)(src+i*stride))[1]=
1973
        ((uint32_t*)(src+i*stride))[2]=
1974
        ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1975
    }
1976
}
1977

    
1978
static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1979
  int i, j, k;
1980
  int a;
1981
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
1982
  const uint8_t * const src0 = src+7-stride;
1983
  const uint8_t *src1 = src+8*stride-1;
1984
  const uint8_t *src2 = src1-2*stride;      // == src+6*stride-1;
1985
  int H = src0[1] - src0[-1];
1986
  int V = src1[0] - src2[ 0];
1987
  for(k=2; k<=8; ++k) {
1988
    src1 += stride; src2 -= stride;
1989
    H += k*(src0[k] - src0[-k]);
1990
    V += k*(src1[0] - src2[ 0]);
1991
  }
1992
  if(svq3){
1993
    H = ( 5*(H/4) ) / 16;
1994
    V = ( 5*(V/4) ) / 16;
1995

    
1996
    /* required for 100% accuracy */
1997
    i = H; H = V; V = i;
1998
  }else{
1999
    H = ( 5*H+32 ) >> 6;
2000
    V = ( 5*V+32 ) >> 6;
2001
  }
2002

    
2003
  a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2004
  for(j=16; j>0; --j) {
2005
    int b = a;
2006
    a += V;
2007
    for(i=-16; i<0; i+=4) {
2008
      src[16+i] = cm[ (b    ) >> 5 ];
2009
      src[17+i] = cm[ (b+  H) >> 5 ];
2010
      src[18+i] = cm[ (b+2*H) >> 5 ];
2011
      src[19+i] = cm[ (b+3*H) >> 5 ];
2012
      b += 4*H;
2013
    }
2014
    src += stride;
2015
  }
2016
}
2017

    
2018
static void pred16x16_plane_c(uint8_t *src, int stride){
2019
    pred16x16_plane_compat_c(src, stride, 0);
2020
}
2021

    
2022
static void pred8x8_vertical_c(uint8_t *src, int stride){
2023
    int i;
2024
    const uint32_t a= ((uint32_t*)(src-stride))[0];
2025
    const uint32_t b= ((uint32_t*)(src-stride))[1];
2026
    
2027
    for(i=0; i<8; i++){
2028
        ((uint32_t*)(src+i*stride))[0]= a;
2029
        ((uint32_t*)(src+i*stride))[1]= b;
2030
    }
2031
}
2032

    
2033
static void pred8x8_horizontal_c(uint8_t *src, int stride){
2034
    int i;
2035

    
2036
    for(i=0; i<8; i++){
2037
        ((uint32_t*)(src+i*stride))[0]=
2038
        ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2039
    }
2040
}
2041

    
2042
static void pred8x8_128_dc_c(uint8_t *src, int stride){
2043
    int i;
2044

    
2045
    for(i=0; i<4; i++){
2046
        ((uint32_t*)(src+i*stride))[0]= 
2047
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2048
    }
2049
    for(i=4; i<8; i++){
2050
        ((uint32_t*)(src+i*stride))[0]= 
2051
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2052
    }
2053
}
2054

    
2055
static void pred8x8_left_dc_c(uint8_t *src, int stride){
2056
    int i;
2057
    int dc0, dc2;
2058

    
2059
    dc0=dc2=0;
2060
    for(i=0;i<4; i++){
2061
        dc0+= src[-1+i*stride];
2062
        dc2+= src[-1+(i+4)*stride];
2063
    }
2064
    dc0= 0x01010101*((dc0 + 2)>>2);
2065
    dc2= 0x01010101*((dc2 + 2)>>2);
2066

    
2067
    for(i=0; i<4; i++){
2068
        ((uint32_t*)(src+i*stride))[0]=
2069
        ((uint32_t*)(src+i*stride))[1]= dc0;
2070
    }
2071
    for(i=4; i<8; i++){
2072
        ((uint32_t*)(src+i*stride))[0]=
2073
        ((uint32_t*)(src+i*stride))[1]= dc2;
2074
    }
2075
}
2076

    
2077
static void pred8x8_top_dc_c(uint8_t *src, int stride){
2078
    int i;
2079
    int dc0, dc1;
2080

    
2081
    dc0=dc1=0;
2082
    for(i=0;i<4; i++){
2083
        dc0+= src[i-stride];
2084
        dc1+= src[4+i-stride];
2085
    }
2086
    dc0= 0x01010101*((dc0 + 2)>>2);
2087
    dc1= 0x01010101*((dc1 + 2)>>2);
2088

    
2089
    for(i=0; i<4; i++){
2090
        ((uint32_t*)(src+i*stride))[0]= dc0;
2091
        ((uint32_t*)(src+i*stride))[1]= dc1;
2092
    }
2093
    for(i=4; i<8; i++){
2094
        ((uint32_t*)(src+i*stride))[0]= dc0;
2095
        ((uint32_t*)(src+i*stride))[1]= dc1;
2096
    }
2097
}
2098

    
2099

    
2100
static void pred8x8_dc_c(uint8_t *src, int stride){
2101
    int i;
2102
    int dc0, dc1, dc2, dc3;
2103

    
2104
    dc0=dc1=dc2=0;
2105
    for(i=0;i<4; i++){
2106
        dc0+= src[-1+i*stride] + src[i-stride];
2107
        dc1+= src[4+i-stride];
2108
        dc2+= src[-1+(i+4)*stride];
2109
    }
2110
    dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2111
    dc0= 0x01010101*((dc0 + 4)>>3);
2112
    dc1= 0x01010101*((dc1 + 2)>>2);
2113
    dc2= 0x01010101*((dc2 + 2)>>2);
2114

    
2115
    for(i=0; i<4; i++){
2116
        ((uint32_t*)(src+i*stride))[0]= dc0;
2117
        ((uint32_t*)(src+i*stride))[1]= dc1;
2118
    }
2119
    for(i=4; i<8; i++){
2120
        ((uint32_t*)(src+i*stride))[0]= dc2;
2121
        ((uint32_t*)(src+i*stride))[1]= dc3;
2122
    }
2123
}
2124

    
2125
static void pred8x8_plane_c(uint8_t *src, int stride){
2126
  int j, k;
2127
  int a;
2128
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
2129
  const uint8_t * const src0 = src+3-stride;
2130
  const uint8_t *src1 = src+4*stride-1;
2131
  const uint8_t *src2 = src1-2*stride;      // == src+2*stride-1;
2132
  int H = src0[1] - src0[-1];
2133
  int V = src1[0] - src2[ 0];
2134
  for(k=2; k<=4; ++k) {
2135
    src1 += stride; src2 -= stride;
2136
    H += k*(src0[k] - src0[-k]);
2137
    V += k*(src1[0] - src2[ 0]);
2138
  }
2139
  H = ( 17*H+16 ) >> 5;
2140
  V = ( 17*V+16 ) >> 5;
2141

    
2142
  a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2143
  for(j=8; j>0; --j) {
2144
    int b = a;
2145
    a += V;
2146
    src[0] = cm[ (b    ) >> 5 ];
2147
    src[1] = cm[ (b+  H) >> 5 ];
2148
    src[2] = cm[ (b+2*H) >> 5 ];
2149
    src[3] = cm[ (b+3*H) >> 5 ];
2150
    src[4] = cm[ (b+4*H) >> 5 ];
2151
    src[5] = cm[ (b+5*H) >> 5 ];
2152
    src[6] = cm[ (b+6*H) >> 5 ];
2153
    src[7] = cm[ (b+7*H) >> 5 ];
2154
    src += stride;
2155
  }
2156
}
2157

    
2158
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
2159
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2160
                           int src_x_offset, int src_y_offset,
2161
                           qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
2162
    MpegEncContext * const s = &h->s;
2163
    const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
2164
    const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
2165
    const int luma_xy= (mx&3) + ((my&3)<<2);
2166
    uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
2167
    uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
2168
    uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
2169
    int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
2170
    int extra_height= extra_width;
2171
    int emu=0;
2172
    const int full_mx= mx>>2;
2173
    const int full_my= my>>2;
2174
    
2175
    assert(pic->data[0]);
2176
    
2177
    if(mx&7) extra_width -= 3;
2178
    if(my&7) extra_height -= 3;
2179
    
2180
    if(   full_mx < 0-extra_width 
2181
       || full_my < 0-extra_height 
2182
       || full_mx + 16/*FIXME*/ > s->width + extra_width 
2183
       || full_my + 16/*FIXME*/ > s->height + extra_height){
2184
        ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
2185
            src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
2186
        emu=1;
2187
    }
2188
    
2189
    qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
2190
    if(!square){
2191
        qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
2192
    }
2193
    
2194
    if(s->flags&CODEC_FLAG_GRAY) return;
2195
    
2196
    if(emu){
2197
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2198
            src_cb= s->edge_emu_buffer;
2199
    }
2200
    chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
2201

    
2202
    if(emu){
2203
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2204
            src_cr= s->edge_emu_buffer;
2205
    }
2206
    chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
2207
}
2208

    
2209
static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
2210
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2211
                           int x_offset, int y_offset,
2212
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2213
                           qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2214
                           int list0, int list1){
2215
    MpegEncContext * const s = &h->s;
2216
    qpel_mc_func *qpix_op=  qpix_put;
2217
    h264_chroma_mc_func chroma_op= chroma_put;
2218
    
2219
    dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
2220
    dest_cb +=   x_offset +   y_offset*s->uvlinesize;
2221
    dest_cr +=   x_offset +   y_offset*s->uvlinesize;
2222
    x_offset += 8*s->mb_x;
2223
    y_offset += 8*s->mb_y;
2224
    
2225
    if(list0){
2226
        Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2227
        mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2228
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
2229
                           qpix_op, chroma_op);
2230

    
2231
        qpix_op=  qpix_avg;
2232
        chroma_op= chroma_avg;
2233
    }
2234

    
2235
    if(list1){
2236
        Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2237
        mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2238
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
2239
                           qpix_op, chroma_op);
2240
    }
2241
}
2242

    
2243
static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
2244
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2245
                           int x_offset, int y_offset,
2246
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2247
                           h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
2248
                           h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
2249
                           int list0, int list1){
2250
    MpegEncContext * const s = &h->s;
2251

    
2252
    dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
2253
    dest_cb +=   x_offset +   y_offset*s->uvlinesize;
2254
    dest_cr +=   x_offset +   y_offset*s->uvlinesize;
2255
    x_offset += 8*s->mb_x;
2256
    y_offset += 8*s->mb_y;
2257
    
2258
    if(list0 && list1){
2259
        /* don't optimize for luma-only case, since B-frames usually
2260
         * use implicit weights => chroma too. */
2261
        uint8_t *tmp_cb = s->obmc_scratchpad;
2262
        uint8_t *tmp_cr = tmp_cb + 8*s->uvlinesize;
2263
        uint8_t *tmp_y  = tmp_cr + 8*s->uvlinesize;
2264
        int refn0 = h->ref_cache[0][ scan8[n] ];
2265
        int refn1 = h->ref_cache[1][ scan8[n] ];
2266

    
2267
        mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
2268
                    dest_y, dest_cb, dest_cr,
2269
                    x_offset, y_offset, qpix_put, chroma_put);
2270
        mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
2271
                    tmp_y, tmp_cb, tmp_cr,
2272
                    x_offset, y_offset, qpix_put, chroma_put);
2273

    
2274
        if(h->use_weight == 2){
2275
            int weight0 = h->implicit_weight[refn0][refn1];
2276
            int weight1 = 64 - weight0;
2277
            luma_weight_avg(  dest_y,  tmp_y,  s->  linesize, 5, weight0, weight1, 0, 0);
2278
            chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, 5, weight0, weight1, 0, 0);
2279
            chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, 5, weight0, weight1, 0, 0);
2280
        }else{
2281
            luma_weight_avg(dest_y, tmp_y, s->linesize, h->luma_log2_weight_denom,
2282
                            h->luma_weight[0][refn0], h->luma_weight[1][refn1], 
2283
                            h->luma_offset[0][refn0], h->luma_offset[1][refn1]);
2284
            chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2285
                            h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0], 
2286
                            h->chroma_offset[0][refn0][0], h->chroma_offset[1][refn1][0]);
2287
            chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2288
                            h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1], 
2289
                            h->chroma_offset[0][refn0][1], h->chroma_offset[1][refn1][1]);
2290
        }
2291
    }else{
2292
        int list = list1 ? 1 : 0;
2293
        int refn = h->ref_cache[list][ scan8[n] ];
2294
        Picture *ref= &h->ref_list[list][refn];
2295
        mc_dir_part(h, ref, n, square, chroma_height, delta, list,
2296
                    dest_y, dest_cb, dest_cr, x_offset, y_offset,
2297
                    qpix_put, chroma_put);
2298

    
2299
        luma_weight_op(dest_y, s->linesize, h->luma_log2_weight_denom,
2300
                       h->luma_weight[list][refn], h->luma_offset[list][refn]);
2301
        if(h->use_weight_chroma){
2302
            chroma_weight_op(dest_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2303
                             h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
2304
            chroma_weight_op(dest_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2305
                             h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
2306
        }
2307
    }
2308
}
2309

    
2310
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
2311
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2312
                           int x_offset, int y_offset,
2313
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2314
                           qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2315
                           h264_weight_func *weight_op, h264_biweight_func *weight_avg, 
2316
                           int list0, int list1){
2317
    if((h->use_weight==2 && list0 && list1
2318
        && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
2319
       || h->use_weight==1)
2320
        mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2321
                         x_offset, y_offset, qpix_put, chroma_put,
2322
                         weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
2323
    else
2324
        mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2325
                    x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
2326
}
2327

    
2328
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2329
                      qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
2330
                      qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
2331
                      h264_weight_func *weight_op, h264_biweight_func *weight_avg){
2332
    MpegEncContext * const s = &h->s;
2333
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
2334
    const int mb_type= s->current_picture.mb_type[mb_xy];
2335
    
2336
    assert(IS_INTER(mb_type));
2337
    
2338
    if(IS_16X16(mb_type)){
2339
        mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
2340
                qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
2341
                &weight_op[0], &weight_avg[0],
2342
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2343
    }else if(IS_16X8(mb_type)){
2344
        mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
2345
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2346
                &weight_op[1], &weight_avg[1],
2347
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2348
        mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
2349
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2350
                &weight_op[1], &weight_avg[1],
2351
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2352
    }else if(IS_8X16(mb_type)){
2353
        mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
2354
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2355
                &weight_op[2], &weight_avg[2],
2356
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2357
        mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
2358
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2359
                &weight_op[2], &weight_avg[2],
2360
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2361
    }else{
2362
        int i;
2363
        
2364
        assert(IS_8X8(mb_type));
2365

    
2366
        for(i=0; i<4; i++){
2367
            const int sub_mb_type= h->sub_mb_type[i];
2368
            const int n= 4*i;
2369
            int x_offset= (i&1)<<2;
2370
            int y_offset= (i&2)<<1;
2371

    
2372
            if(IS_SUB_8X8(sub_mb_type)){
2373
                mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2374
                    qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2375
                    &weight_op[3], &weight_avg[3],
2376
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2377
            }else if(IS_SUB_8X4(sub_mb_type)){
2378
                mc_part(h, n  , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2379
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2380
                    &weight_op[4], &weight_avg[4],
2381
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2382
                mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2383
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2384
                    &weight_op[4], &weight_avg[4],
2385
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2386
            }else if(IS_SUB_4X8(sub_mb_type)){
2387
                mc_part(h, n  , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2388
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2389
                    &weight_op[5], &weight_avg[5],
2390
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2391
                mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2392
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2393
                    &weight_op[5], &weight_avg[5],
2394
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2395
            }else{
2396
                int j;
2397
                assert(IS_SUB_4X4(sub_mb_type));
2398
                for(j=0; j<4; j++){
2399
                    int sub_x_offset= x_offset + 2*(j&1);
2400
                    int sub_y_offset= y_offset +   (j&2);
2401
                    mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2402
                        qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2403
                        &weight_op[6], &weight_avg[6],
2404
                        IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2405
                }
2406
            }
2407
        }
2408
    }
2409
}
2410

    
2411
static void decode_init_vlc(H264Context *h){
2412
    static int done = 0;
2413

    
2414
    if (!done) {
2415
        int i;
2416
        done = 1;
2417

    
2418
        init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, 
2419
                 &chroma_dc_coeff_token_len [0], 1, 1,
2420
                 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
2421

    
2422
        for(i=0; i<4; i++){
2423
            init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, 
2424
                     &coeff_token_len [i][0], 1, 1,
2425
                     &coeff_token_bits[i][0], 1, 1, 1);
2426
        }
2427

    
2428
        for(i=0; i<3; i++){
2429
            init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2430
                     &chroma_dc_total_zeros_len [i][0], 1, 1,
2431
                     &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
2432
        }
2433
        for(i=0; i<15; i++){
2434
            init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, 
2435
                     &total_zeros_len [i][0], 1, 1,
2436
                     &total_zeros_bits[i][0], 1, 1, 1);
2437
        }
2438

    
2439
        for(i=0; i<6; i++){
2440
            init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, 
2441
                     &run_len [i][0], 1, 1,
2442
                     &run_bits[i][0], 1, 1, 1);
2443
        }
2444
        init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, 
2445
                 &run_len [6][0], 1, 1,
2446
                 &run_bits[6][0], 1, 1, 1);
2447
    }
2448
}
2449

    
2450
/**
2451
 * Sets the intra prediction function pointers.
2452
 */
2453
static void init_pred_ptrs(H264Context *h){
2454
//    MpegEncContext * const s = &h->s;
2455

    
2456
    h->pred4x4[VERT_PRED           ]= pred4x4_vertical_c;
2457
    h->pred4x4[HOR_PRED            ]= pred4x4_horizontal_c;
2458
    h->pred4x4[DC_PRED             ]= pred4x4_dc_c;
2459
    h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2460
    h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2461
    h->pred4x4[VERT_RIGHT_PRED     ]= pred4x4_vertical_right_c;
2462
    h->pred4x4[HOR_DOWN_PRED       ]= pred4x4_horizontal_down_c;
2463
    h->pred4x4[VERT_LEFT_PRED      ]= pred4x4_vertical_left_c;
2464
    h->pred4x4[HOR_UP_PRED         ]= pred4x4_horizontal_up_c;
2465
    h->pred4x4[LEFT_DC_PRED        ]= pred4x4_left_dc_c;
2466
    h->pred4x4[TOP_DC_PRED         ]= pred4x4_top_dc_c;
2467
    h->pred4x4[DC_128_PRED         ]= pred4x4_128_dc_c;
2468

    
2469
    h->pred8x8[DC_PRED8x8     ]= pred8x8_dc_c;
2470
    h->pred8x8[VERT_PRED8x8   ]= pred8x8_vertical_c;
2471
    h->pred8x8[HOR_PRED8x8    ]= pred8x8_horizontal_c;
2472
    h->pred8x8[PLANE_PRED8x8  ]= pred8x8_plane_c;
2473
    h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2474
    h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2475
    h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2476

    
2477
    h->pred16x16[DC_PRED8x8     ]= pred16x16_dc_c;
2478
    h->pred16x16[VERT_PRED8x8   ]= pred16x16_vertical_c;
2479
    h->pred16x16[HOR_PRED8x8    ]= pred16x16_horizontal_c;
2480
    h->pred16x16[PLANE_PRED8x8  ]= pred16x16_plane_c;
2481
    h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2482
    h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2483
    h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2484
}
2485

    
2486
static void free_tables(H264Context *h){
2487
    av_freep(&h->intra4x4_pred_mode);
2488
    av_freep(&h->chroma_pred_mode_table);
2489
    av_freep(&h->cbp_table);
2490
    av_freep(&h->mvd_table[0]);
2491
    av_freep(&h->mvd_table[1]);
2492
    av_freep(&h->direct_table);
2493
    av_freep(&h->non_zero_count);
2494
    av_freep(&h->slice_table_base);
2495
    av_freep(&h->top_border);
2496
    h->slice_table= NULL;
2497

    
2498
    av_freep(&h->mb2b_xy);
2499
    av_freep(&h->mb2b8_xy);
2500

    
2501
    av_freep(&h->s.obmc_scratchpad);
2502
}
2503

    
2504
/**
2505
 * allocates tables.
2506
 * needs widzh/height
2507
 */
2508
static int alloc_tables(H264Context *h){
2509
    MpegEncContext * const s = &h->s;
2510
    const int big_mb_num= s->mb_stride * (s->mb_height+1);
2511
    int x,y;
2512

    
2513
    CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8  * sizeof(uint8_t))
2514

    
2515
    CHECKED_ALLOCZ(h->non_zero_count    , big_mb_num * 16 * sizeof(uint8_t))
2516
    CHECKED_ALLOCZ(h->slice_table_base  , big_mb_num * sizeof(uint8_t))
2517
    CHECKED_ALLOCZ(h->top_border       , s->mb_width * (16+8+8) * sizeof(uint8_t))
2518
    CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2519

    
2520
    if( h->pps.cabac ) {
2521
        CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2522
        CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2523
        CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2524
        CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2525
    }
2526

    
2527
    memset(h->slice_table_base, -1, big_mb_num  * sizeof(uint8_t));
2528
    h->slice_table= h->slice_table_base + s->mb_stride + 1;
2529

    
2530
    CHECKED_ALLOCZ(h->mb2b_xy  , big_mb_num * sizeof(uint16_t));
2531
    CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2532
    for(y=0; y<s->mb_height; y++){
2533
        for(x=0; x<s->mb_width; x++){
2534
            const int mb_xy= x + y*s->mb_stride;
2535
            const int b_xy = 4*x + 4*y*h->b_stride;
2536
            const int b8_xy= 2*x + 2*y*h->b8_stride;
2537
        
2538
            h->mb2b_xy [mb_xy]= b_xy;
2539
            h->mb2b8_xy[mb_xy]= b8_xy;
2540
        }
2541
    }
2542

    
2543
    CHECKED_ALLOCZ(s->obmc_scratchpad, 16*s->linesize + 2*8*s->uvlinesize);
2544
    
2545
    return 0;
2546
fail:
2547
    free_tables(h);
2548
    return -1;
2549
}
2550

    
2551
static void common_init(H264Context *h){
2552
    MpegEncContext * const s = &h->s;
2553

    
2554
    s->width = s->avctx->width;
2555
    s->height = s->avctx->height;
2556
    s->codec_id= s->avctx->codec->id;
2557
    
2558
    init_pred_ptrs(h);
2559

    
2560
    s->unrestricted_mv=1;
2561
    s->decode=1; //FIXME
2562
}
2563

    
2564
static int decode_init(AVCodecContext *avctx){
2565
    H264Context *h= avctx->priv_data;
2566
    MpegEncContext * const s = &h->s;
2567

    
2568
    MPV_decode_defaults(s);
2569
    
2570
    s->avctx = avctx;
2571
    common_init(h);
2572

    
2573
    s->out_format = FMT_H264;
2574
    s->workaround_bugs= avctx->workaround_bugs;
2575

    
2576
    // set defaults
2577
//    s->decode_mb= ff_h263_decode_mb;
2578
    s->low_delay= 1;
2579
    avctx->pix_fmt= PIX_FMT_YUV420P;
2580

    
2581
    decode_init_vlc(h);
2582
    
2583
    if(avctx->codec_tag != 0x31637661 && avctx->codec_tag != 0x31435641) // avc1
2584
        h->is_avc = 0;
2585
    else {
2586
        if((avctx->extradata_size == 0) || (avctx->extradata == NULL)) {
2587
            av_log(avctx, AV_LOG_ERROR, "AVC codec requires avcC data\n");
2588
            return -1;
2589
        }
2590
        h->is_avc = 1;
2591
        h->got_avcC = 0;
2592
    }
2593

    
2594
    return 0;
2595
}
2596

    
2597
static void frame_start(H264Context *h){
2598
    MpegEncContext * const s = &h->s;
2599
    int i;
2600

    
2601
    MPV_frame_start(s, s->avctx);
2602
    ff_er_frame_start(s);
2603
    h->mmco_index=0;
2604

    
2605
    assert(s->linesize && s->uvlinesize);
2606

    
2607
    for(i=0; i<16; i++){
2608
        h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2609
        h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2610
    }
2611
    for(i=0; i<4; i++){
2612
        h->block_offset[16+i]=
2613
        h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2614
    }
2615

    
2616
//    s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2617
}
2618

    
2619
static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2620
    MpegEncContext * const s = &h->s;
2621
    int i;
2622
    
2623
    src_y  -=   linesize;
2624
    src_cb -= uvlinesize;
2625
    src_cr -= uvlinesize;
2626

    
2627
    h->left_border[0]= h->top_border[s->mb_x][15];
2628
    for(i=1; i<17; i++){
2629
        h->left_border[i]= src_y[15+i*  linesize];
2630
    }
2631
    
2632
    *(uint64_t*)(h->top_border[s->mb_x]+0)= *(uint64_t*)(src_y +  16*linesize);
2633
    *(uint64_t*)(h->top_border[s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2634

    
2635
    if(!(s->flags&CODEC_FLAG_GRAY)){
2636
        h->left_border[17  ]= h->top_border[s->mb_x][16+7];
2637
        h->left_border[17+9]= h->top_border[s->mb_x][24+7];
2638
        for(i=1; i<9; i++){
2639
            h->left_border[i+17  ]= src_cb[7+i*uvlinesize];
2640
            h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2641
        }
2642
        *(uint64_t*)(h->top_border[s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2643
        *(uint64_t*)(h->top_border[s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2644
    }
2645
}
2646

    
2647
static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2648
    MpegEncContext * const s = &h->s;
2649
    int temp8, i;
2650
    uint64_t temp64;
2651
    int deblock_left = (s->mb_x > 0);
2652
    int deblock_top  = (s->mb_y > 0);
2653

    
2654
    src_y  -=   linesize + 1;
2655
    src_cb -= uvlinesize + 1;
2656
    src_cr -= uvlinesize + 1;
2657

    
2658
#define XCHG(a,b,t,xchg)\
2659
t= a;\
2660
if(xchg)\
2661
    a= b;\
2662
b= t;
2663

    
2664
    if(deblock_left){
2665
        for(i = !deblock_top; i<17; i++){
2666
            XCHG(h->left_border[i     ], src_y [i*  linesize], temp8, xchg);
2667
        }
2668
    }
2669

    
2670
    if(deblock_top){
2671
        XCHG(*(uint64_t*)(h->top_border[s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2672
        XCHG(*(uint64_t*)(h->top_border[s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2673
    }
2674

    
2675
    if(!(s->flags&CODEC_FLAG_GRAY)){
2676
        if(deblock_left){
2677
            for(i = !deblock_top; i<9; i++){
2678
                XCHG(h->left_border[i+17  ], src_cb[i*uvlinesize], temp8, xchg);
2679
                XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2680
            }
2681
        }
2682
        if(deblock_top){
2683
            XCHG(*(uint64_t*)(h->top_border[s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2684
            XCHG(*(uint64_t*)(h->top_border[s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2685
        }
2686
    }
2687
}
2688

    
2689
static void hl_decode_mb(H264Context *h){
2690
    MpegEncContext * const s = &h->s;
2691
    const int mb_x= s->mb_x;
2692
    const int mb_y= s->mb_y;
2693
    const int mb_xy= mb_x + mb_y*s->mb_stride;
2694
    const int mb_type= s->current_picture.mb_type[mb_xy];
2695
    uint8_t  *dest_y, *dest_cb, *dest_cr;
2696
    int linesize, uvlinesize /*dct_offset*/;
2697
    int i;
2698

    
2699
    if(!s->decode)
2700
        return;
2701

    
2702
    if(s->mb_skiped){
2703
    }
2704

    
2705
    dest_y  = s->current_picture.data[0] + (mb_y * 16* s->linesize  ) + mb_x * 16;
2706
    dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2707
    dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2708

    
2709
    if (h->mb_field_decoding_flag) {
2710
        linesize = s->linesize * 2;
2711
        uvlinesize = s->uvlinesize * 2;
2712
        if(mb_y&1){ //FIXME move out of this func?
2713
            dest_y -= s->linesize*15;
2714
            dest_cb-= s->linesize*7;
2715
            dest_cr-= s->linesize*7;
2716
        }
2717
    } else {
2718
        linesize = s->linesize;
2719
        uvlinesize = s->uvlinesize;
2720
//        dct_offset = s->linesize * 16;
2721
    }
2722

    
2723
    if(IS_INTRA(mb_type)){
2724
        if(h->deblocking_filter)
2725
            xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
2726

    
2727
        if(!(s->flags&CODEC_FLAG_GRAY)){
2728
            h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2729
            h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2730
        }
2731

    
2732
        if(IS_INTRA4x4(mb_type)){
2733
            if(!s->encoding){
2734
                for(i=0; i<16; i++){
2735
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2736
                    uint8_t *topright;
2737
                    const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2738
                    int tr;
2739

    
2740
                    if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2741
                        const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2742
                        assert(mb_y || linesize <= h->block_offset[i]);
2743
                        if(!topright_avail){
2744
                            tr= ptr[3 - linesize]*0x01010101;
2745
                            topright= (uint8_t*) &tr;
2746
                        }else if(i==5 && h->deblocking_filter){
2747
                            tr= *(uint32_t*)h->top_border[mb_x+1];
2748
                            topright= (uint8_t*) &tr;
2749
                        }else
2750
                            topright= ptr + 4 - linesize;
2751
                    }else
2752
                        topright= NULL;
2753

    
2754
                    h->pred4x4[ dir ](ptr, topright, linesize);
2755
                    if(h->non_zero_count_cache[ scan8[i] ]){
2756
                        if(s->codec_id == CODEC_ID_H264)
2757
                            s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
2758
                        else
2759
                            svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2760
                    }
2761
                }
2762
            }
2763
        }else{
2764
            h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2765
            if(s->codec_id == CODEC_ID_H264)
2766
                h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2767
            else
2768
                svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2769
        }
2770
        if(h->deblocking_filter)
2771
            xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
2772
    }else if(s->codec_id == CODEC_ID_H264){
2773
        hl_motion(h, dest_y, dest_cb, dest_cr,
2774
                  s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, 
2775
                  s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab,
2776
                  s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2777
    }
2778

    
2779

    
2780
    if(!IS_INTRA4x4(mb_type)){
2781
        if(s->codec_id == CODEC_ID_H264){
2782
            for(i=0; i<16; i++){
2783
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2784
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2785
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
2786
                }
2787
            }
2788
        }else{
2789
            for(i=0; i<16; i++){
2790
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2791
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2792
                    svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2793
                }
2794
            }
2795
        }
2796
    }
2797

    
2798
    if(!(s->flags&CODEC_FLAG_GRAY)){
2799
        chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2800
        chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2801
        if(s->codec_id == CODEC_ID_H264){
2802
            for(i=16; i<16+4; i++){
2803
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2804
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2805
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
2806
                }
2807
            }
2808
            for(i=20; i<20+4; i++){
2809
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2810
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2811
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
2812
                }
2813
            }
2814
        }else{
2815
            for(i=16; i<16+4; i++){
2816
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2817
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2818
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2819
                }
2820
            }
2821
            for(i=20; i<20+4; i++){
2822
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2823
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2824
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2825
                }
2826
            }
2827
        }
2828
    }
2829
    if(h->deblocking_filter) {
2830
        backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2831
        filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr);
2832
    }
2833
}
2834

    
2835
/**
2836
 * fills the default_ref_list.
2837
 */
2838
static int fill_default_ref_list(H264Context *h){
2839
    MpegEncContext * const s = &h->s;
2840
    int i;
2841
    Picture sorted_short_ref[16];
2842
    
2843
    if(h->slice_type==B_TYPE){
2844
        int out_i;
2845
        int limit= -1;
2846

    
2847
        for(out_i=0; out_i<h->short_ref_count; out_i++){
2848
            int best_i=-1;
2849
            int best_poc=INT_MAX;
2850

    
2851
            for(i=0; i<h->short_ref_count; i++){
2852
                const int poc= h->short_ref[i]->poc;
2853
                if(poc > limit && poc < best_poc){
2854
                    best_poc= poc;
2855
                    best_i= i;
2856
                }
2857
            }
2858
            
2859
            assert(best_i != -1);
2860
            
2861
            limit= best_poc;
2862
            sorted_short_ref[out_i]= *h->short_ref[best_i];
2863
        }
2864
    }
2865

    
2866
    if(s->picture_structure == PICT_FRAME){
2867
        if(h->slice_type==B_TYPE){
2868
            const int current_poc= s->current_picture_ptr->poc;
2869
            int list;
2870

    
2871
            for(list=0; list<2; list++){
2872
                int index=0;
2873

    
2874
                for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
2875
                    const int i2= list ? i : h->short_ref_count - i - 1;
2876
                    const int poc= sorted_short_ref[i2].poc;
2877
                    
2878
                    if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
2879

    
2880
                    if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
2881
                        h->default_ref_list[list][index  ]= sorted_short_ref[i2];
2882
                        h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
2883
                    }
2884
                }
2885

    
2886
                for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
2887
                    if(h->long_ref[i]->reference != 3) continue;
2888

    
2889
                    h->default_ref_list[ list ][index  ]= *h->long_ref[i];
2890
                    h->default_ref_list[ list ][index++].pic_id= i;;
2891
                }
2892
                
2893
                if(h->long_ref_count > 1 && h->short_ref_count==0){
2894
                    Picture temp= h->default_ref_list[1][0];
2895
                    h->default_ref_list[1][0] = h->default_ref_list[1][1];
2896
                    h->default_ref_list[1][0] = temp;
2897
                }
2898

    
2899
                if(index < h->ref_count[ list ])
2900
                    memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2901
            }
2902
        }else{
2903
            int index=0;
2904
            for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2905
                if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2906
                h->default_ref_list[0][index  ]= *h->short_ref[i];
2907
                h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2908
            }
2909
            for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
2910
                if(h->long_ref[i]->reference != 3) continue;
2911
                h->default_ref_list[0][index  ]= *h->long_ref[i];
2912
                h->default_ref_list[0][index++].pic_id= i;;
2913
            }
2914
            if(index < h->ref_count[0])
2915
                memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2916
        }
2917
    }else{ //FIELD
2918
        if(h->slice_type==B_TYPE){
2919
        }else{
2920
            //FIXME second field balh
2921
        }
2922
    }
2923
    return 0;
2924
}
2925

    
2926
static int decode_ref_pic_list_reordering(H264Context *h){
2927
    MpegEncContext * const s = &h->s;
2928
    int list;
2929
    
2930
    if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2931
    
2932
    for(list=0; list<2; list++){
2933
        memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2934

    
2935
        if(get_bits1(&s->gb)){
2936
            int pred= h->curr_pic_num;
2937
            int index;
2938

    
2939
            for(index=0; ; index++){
2940
                int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2941
                int pic_id;
2942
                int i;
2943
                
2944
                if(reordering_of_pic_nums_idc==3) 
2945
                    break;
2946
                
2947
                if(index >= h->ref_count[list]){
2948
                    av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
2949
                    return -1;
2950
                }
2951
                
2952
                if(reordering_of_pic_nums_idc<3){
2953
                    if(reordering_of_pic_nums_idc<2){
2954
                        const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2955

    
2956
                        if(abs_diff_pic_num >= h->max_pic_num){
2957
                            av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
2958
                            return -1;
2959
                        }
2960

    
2961
                        if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2962
                        else                                pred+= abs_diff_pic_num;
2963
                        pred &= h->max_pic_num - 1;
2964
                    
2965
                        for(i= h->ref_count[list]-1; i>=index; i--){
2966
                            if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
2967
                                break;
2968
                        }
2969
                    }else{
2970
                        pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2971

    
2972
                        for(i= h->ref_count[list]-1; i>=index; i--){
2973
                            if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
2974
                                break;
2975
                        }
2976
                    }
2977

    
2978
                    if(i < index){
2979
                        av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
2980
                        memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2981
                    }else if(i > index){
2982
                        Picture tmp= h->ref_list[list][i];
2983
                        for(; i>index; i--){
2984
                            h->ref_list[list][i]= h->ref_list[list][i-1];
2985
                        }
2986
                        h->ref_list[list][index]= tmp;
2987
                    }
2988
                }else{
2989
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
2990
                    return -1;
2991
                }
2992
            }
2993
        }
2994

    
2995
        if(h->slice_type!=B_TYPE) break;
2996
    }
2997
    
2998
    if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
2999
        direct_dist_scale_factor(h);
3000
    return 0;    
3001
}
3002

    
3003
static int pred_weight_table(H264Context *h){
3004
    MpegEncContext * const s = &h->s;
3005
    int list, i;
3006
    int luma_def, chroma_def;
3007
    
3008
    h->use_weight= 0;
3009
    h->use_weight_chroma= 0;
3010
    h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3011
    h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3012
    luma_def = 1<<h->luma_log2_weight_denom;
3013
    chroma_def = 1<<h->chroma_log2_weight_denom;
3014

    
3015
    for(list=0; list<2; list++){
3016
        for(i=0; i<h->ref_count[list]; i++){
3017
            int luma_weight_flag, chroma_weight_flag;
3018
            
3019
            luma_weight_flag= get_bits1(&s->gb);
3020
            if(luma_weight_flag){
3021
                h->luma_weight[list][i]= get_se_golomb(&s->gb);
3022
                h->luma_offset[list][i]= get_se_golomb(&s->gb);
3023
                if(   h->luma_weight[list][i] != luma_def
3024
                   || h->luma_offset[list][i] != 0)
3025
                    h->use_weight= 1;
3026
            }else{
3027
                h->luma_weight[list][i]= luma_def;
3028
                h->luma_offset[list][i]= 0;
3029
            }
3030

    
3031
            chroma_weight_flag= get_bits1(&s->gb);
3032
            if(chroma_weight_flag){
3033
                int j;
3034
                for(j=0; j<2; j++){
3035
                    h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3036
                    h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3037
                    if(   h->chroma_weight[list][i][j] != chroma_def
3038
                       || h->chroma_offset[list][i][j] != 0)
3039
                        h->use_weight_chroma= 1;
3040
                }
3041
            }else{
3042
                int j;
3043
                for(j=0; j<2; j++){
3044
                    h->chroma_weight[list][i][j]= chroma_def;
3045
                    h->chroma_offset[list][i][j]= 0;
3046
                }
3047
            }
3048
        }
3049
        if(h->slice_type != B_TYPE) break;
3050
    }
3051
    h->use_weight= h->use_weight || h->use_weight_chroma;
3052
    return 0;
3053
}
3054

    
3055
static void implicit_weight_table(H264Context *h){
3056
    MpegEncContext * const s = &h->s;
3057
    int list, i;
3058
    int ref0, ref1;
3059
    int cur_poc = s->current_picture_ptr->poc;
3060

    
3061
    if(   h->ref_count[0] == 1 && h->ref_count[1] == 1
3062
       && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3063
        h->use_weight= 0;
3064
        h->use_weight_chroma= 0;
3065
        return;
3066
    }
3067

    
3068
    h->use_weight= 2;
3069
    h->use_weight_chroma= 2;
3070
    h->luma_log2_weight_denom= 5;
3071
    h->chroma_log2_weight_denom= 5;
3072

    
3073
    /* FIXME: MBAFF */
3074
    for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3075
        int poc0 = h->ref_list[0][ref0].poc;
3076
        for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3077
            int poc1 = h->ref_list[0][ref1].poc;
3078
            int td = clip(poc1 - poc0, -128, 127);
3079
            if(td){
3080
                int tb = clip(cur_poc - poc0, -128, 127);
3081
                int tx = (16384 + (ABS(td) >> 1)) / td;
3082
                int dist_scale_factor = clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3083
                if(dist_scale_factor < -64 || dist_scale_factor > 128)
3084
                    h->implicit_weight[ref0][ref1] = 32;
3085
                else
3086
                    h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3087
            }else
3088
                h->implicit_weight[ref0][ref1] = 32;
3089
        }
3090
    }
3091
}
3092

    
3093
/**
3094
 * instantaneous decoder refresh.
3095
 */
3096
static void idr(H264Context *h){
3097
    int i,j;
3098

    
3099
#define CHECK_DELAY(pic) \
3100
    for(j = 0; h->delayed_pic[j]; j++) \
3101
        if(pic == h->delayed_pic[j]){ \
3102
            pic->reference=1; \
3103
            break; \
3104
        }
3105

    
3106
    for(i=0; i<h->long_ref_count; i++){
3107
        h->long_ref[i]->reference=0;
3108
        CHECK_DELAY(h->long_ref[i]);
3109
        h->long_ref[i]= NULL;
3110
    }
3111
    h->long_ref_count=0;
3112

    
3113
    for(i=0; i<h->short_ref_count; i++){
3114
        h->short_ref[i]->reference=0;
3115
        CHECK_DELAY(h->short_ref[i]);
3116
        h->short_ref[i]= NULL;
3117
    }
3118
    h->short_ref_count=0;
3119
}
3120
#undef CHECK_DELAY
3121

    
3122
/**
3123
 *
3124
 * @return the removed picture or NULL if an error occures
3125
 */
3126
static Picture * remove_short(H264Context *h, int frame_num){
3127
    MpegEncContext * const s = &h->s;
3128
    int i;
3129
    
3130
    if(s->avctx->debug&FF_DEBUG_MMCO)
3131
        av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3132
    
3133
    for(i=0; i<h->short_ref_count; i++){
3134
        Picture *pic= h->short_ref[i];
3135
        if(s->avctx->debug&FF_DEBUG_MMCO)
3136
            av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3137
        if(pic->frame_num == frame_num){
3138
            h->short_ref[i]= NULL;
3139
            memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
3140
            h->short_ref_count--;
3141
            return pic;
3142
        }
3143
    }
3144
    return NULL;
3145
}
3146

    
3147
/**
3148
 *
3149
 * @return the removed picture or NULL if an error occures
3150
 */
3151
static Picture * remove_long(H264Context *h, int i){
3152
    Picture *pic;
3153

    
3154
    if(i >= h->long_ref_count) return NULL;
3155
    pic= h->long_ref[i];
3156
    if(pic==NULL) return NULL;
3157
    
3158
    h->long_ref[i]= NULL;
3159
    memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
3160
    h->long_ref_count--;
3161

    
3162
    return pic;
3163
}
3164

    
3165
/**
3166
 * Executes the reference picture marking (memory management control operations).
3167
 */
3168
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
3169
    MpegEncContext * const s = &h->s;
3170
    int i;
3171
    int current_is_long=0;
3172
    Picture *pic;
3173
    
3174
    if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
3175
        av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
3176
        
3177
    for(i=0; i<mmco_count; i++){
3178
        if(s->avctx->debug&FF_DEBUG_MMCO)
3179
            av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
3180

    
3181
        switch(mmco[i].opcode){
3182
        case MMCO_SHORT2UNUSED:
3183
            pic= remove_short(h, mmco[i].short_frame_num);
3184
            if(pic==NULL) return -1;
3185
            pic->reference= 0;
3186
            break;
3187
        case MMCO_SHORT2LONG:
3188
            pic= remove_long(h, mmco[i].long_index);
3189
            if(pic) pic->reference=0;
3190
            
3191
            h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
3192
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
3193
            break;
3194
        case MMCO_LONG2UNUSED:
3195
            pic= remove_long(h, mmco[i].long_index);
3196
            if(pic==NULL) return -1;
3197
            pic->reference= 0;
3198
            break;
3199
        case MMCO_LONG:
3200
            pic= remove_long(h, mmco[i].long_index);
3201
            if(pic) pic->reference=0;
3202
            
3203
            h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
3204
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
3205
            h->long_ref_count++;
3206
            
3207
            current_is_long=1;
3208
            break;
3209
        case MMCO_SET_MAX_LONG:
3210
            assert(mmco[i].long_index <= 16);
3211
            while(mmco[i].long_index < h->long_ref_count){
3212
                pic= remove_long(h, mmco[i].long_index);
3213
                pic->reference=0;
3214
            }
3215
            while(mmco[i].long_index > h->long_ref_count){
3216
                h->long_ref[ h->long_ref_count++ ]= NULL;
3217
            }
3218
            break;
3219
        case MMCO_RESET:
3220
            while(h->short_ref_count){
3221
                pic= remove_short(h, h->short_ref[0]->frame_num);
3222
                pic->reference=0;
3223
            }
3224
            while(h->long_ref_count){
3225
                pic= remove_long(h, h->long_ref_count-1);
3226
                pic->reference=0;
3227
            }
3228
            break;
3229
        default: assert(0);
3230
        }
3231
    }
3232
    
3233
    if(!current_is_long){
3234
        pic= remove_short(h, s->current_picture_ptr->frame_num);
3235
        if(pic){
3236
            pic->reference=0;
3237
            av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
3238
        }
3239
        
3240
        if(h->short_ref_count)
3241
            memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
3242

    
3243
        h->short_ref[0]= s->current_picture_ptr;
3244
        h->short_ref[0]->long_ref=0;
3245
        h->short_ref_count++;
3246
    }
3247
    
3248
    return 0; 
3249
}
3250

    
3251
static int decode_ref_pic_marking(H264Context *h){
3252
    MpegEncContext * const s = &h->s;
3253
    int i;
3254
    
3255
    if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
3256
        s->broken_link= get_bits1(&s->gb) -1;
3257
        h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
3258
        if(h->mmco[0].long_index == -1)
3259
            h->mmco_index= 0;
3260
        else{
3261
            h->mmco[0].opcode= MMCO_LONG;
3262
            h->mmco_index= 1;
3263
        } 
3264
    }else{
3265
        if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
3266
            for(i= 0; i<MAX_MMCO_COUNT; i++) { 
3267
                MMCOOpcode opcode= get_ue_golomb(&s->gb);;
3268

    
3269
                h->mmco[i].opcode= opcode;
3270
                if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
3271
                    h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
3272
/*                    if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
3273
                        fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
3274
                        return -1;
3275
                    }*/
3276
                }
3277
                if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
3278
                    h->mmco[i].long_index= get_ue_golomb(&s->gb);
3279
                    if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
3280
                        av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
3281
                        return -1;
3282
                    }
3283
                }
3284
                    
3285
                if(opcode > MMCO_LONG){
3286
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
3287
                    return -1;
3288
                }
3289
                if(opcode == MMCO_END)
3290
                    break;
3291
            }
3292
            h->mmco_index= i;
3293
        }else{
3294
            assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
3295

    
3296
            if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
3297
                h->mmco[0].opcode= MMCO_SHORT2UNUSED;
3298
                h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
3299
                h->mmco_index= 1;
3300
            }else
3301
                h->mmco_index= 0;
3302
        }
3303
    }
3304
    
3305
    return 0; 
3306
}
3307

    
3308
static int init_poc(H264Context *h){
3309
    MpegEncContext * const s = &h->s;
3310
    const int max_frame_num= 1<<h->sps.log2_max_frame_num;
3311
    int field_poc[2];
3312

    
3313
    if(h->nal_unit_type == NAL_IDR_SLICE){
3314
        h->frame_num_offset= 0;
3315
    }else{
3316
        if(h->frame_num < h->prev_frame_num)
3317
            h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
3318
        else
3319
            h->frame_num_offset= h->prev_frame_num_offset;
3320
    }
3321

    
3322
    if(h->sps.poc_type==0){
3323
        const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
3324

    
3325
        if     (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
3326
            h->poc_msb = h->prev_poc_msb + max_poc_lsb;
3327
        else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
3328
            h->poc_msb = h->prev_poc_msb - max_poc_lsb;
3329
        else
3330
            h->poc_msb = h->prev_poc_msb;
3331
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
3332
        field_poc[0] = 
3333
        field_poc[1] = h->poc_msb + h->poc_lsb;
3334
        if(s->picture_structure == PICT_FRAME) 
3335
            field_poc[1] += h->delta_poc_bottom;
3336
    }else if(h->sps.poc_type==1){
3337
        int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
3338
        int i;
3339

    
3340
        if(h->sps.poc_cycle_length != 0)
3341
            abs_frame_num = h->frame_num_offset + h->frame_num;
3342
        else
3343
            abs_frame_num = 0;
3344

    
3345
        if(h->nal_ref_idc==0 && abs_frame_num > 0)
3346
            abs_frame_num--;
3347
            
3348
        expected_delta_per_poc_cycle = 0;
3349
        for(i=0; i < h->sps.poc_cycle_length; i++)
3350
            expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
3351

    
3352
        if(abs_frame_num > 0){
3353
            int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
3354
            int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
3355

    
3356
            expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
3357
            for(i = 0; i <= frame_num_in_poc_cycle; i++)
3358
                expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
3359
        } else
3360
            expectedpoc = 0;
3361

    
3362
        if(h->nal_ref_idc == 0) 
3363
            expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
3364
        
3365
        field_poc[0] = expectedpoc + h->delta_poc[0];
3366
        field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
3367

    
3368
        if(s->picture_structure == PICT_FRAME)
3369
            field_poc[1] += h->delta_poc[1];
3370
    }else{
3371
        int poc;
3372
        if(h->nal_unit_type == NAL_IDR_SLICE){
3373
            poc= 0;
3374
        }else{
3375
            if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
3376
            else               poc= 2*(h->frame_num_offset + h->frame_num) - 1;
3377
        }
3378
        field_poc[0]= poc;
3379
        field_poc[1]= poc;
3380
    }
3381
    
3382
    if(s->picture_structure != PICT_BOTTOM_FIELD)
3383
        s->current_picture_ptr->field_poc[0]= field_poc[0];
3384
    if(s->picture_structure != PICT_TOP_FIELD)
3385
        s->current_picture_ptr->field_poc[1]= field_poc[1];
3386
    if(s->picture_structure == PICT_FRAME) // FIXME field pix?
3387
        s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
3388

    
3389
    return 0;
3390
}
3391

    
3392
/**
3393
 * decodes a slice header.
3394
 * this will allso call MPV_common_init() and frame_start() as needed
3395
 */
3396
static int decode_slice_header(H264Context *h){
3397
    MpegEncContext * const s = &h->s;
3398
    int first_mb_in_slice, pps_id;
3399
    int num_ref_idx_active_override_flag;
3400
    static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
3401

    
3402
    s->current_picture.reference= h->nal_ref_idc != 0;
3403

    
3404
    first_mb_in_slice= get_ue_golomb(&s->gb);
3405

    
3406
    h->slice_type= get_ue_golomb(&s->gb);
3407
    if(h->slice_type > 9){
3408
        av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
3409
        return -1;
3410
    }
3411
    if(h->slice_type > 4){
3412
        h->slice_type -= 5;
3413
        h->slice_type_fixed=1;
3414
    }else
3415
        h->slice_type_fixed=0;
3416
    
3417
    h->slice_type= slice_type_map[ h->slice_type ];
3418
    
3419
    s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
3420
        
3421
    pps_id= get_ue_golomb(&s->gb);
3422
    if(pps_id>255){
3423
        av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
3424
        return -1;
3425
    }
3426
    h->pps= h->pps_buffer[pps_id];
3427
    if(h->pps.slice_group_count == 0){
3428
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
3429
        return -1;
3430
    }
3431

    
3432
    h->sps= h->sps_buffer[ h->pps.sps_id ];
3433
    if(h->sps.log2_max_frame_num == 0){
3434
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
3435
        return -1;
3436
    }
3437
    
3438
    s->mb_width= h->sps.mb_width;
3439
    s->mb_height= h->sps.mb_height;
3440
    
3441
    h->b_stride=  s->mb_width*4 + 1;
3442
    h->b8_stride= s->mb_width*2 + 1;
3443

    
3444
    s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
3445
    s->resync_mb_y = s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
3446
    
3447
    s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
3448
    if(h->sps.frame_mbs_only_flag)
3449
        s->height= 16*s->mb_height - 2*(h->sps.crop_top  + h->sps.crop_bottom);
3450
    else
3451
        s->height= 16*s->mb_height - 4*(h->sps.crop_top  + h->sps.crop_bottom); //FIXME recheck
3452
    
3453
    if (s->context_initialized 
3454
        && (   s->width != s->avctx->width || s->height != s->avctx->height)) {
3455
        free_tables(h);
3456
        MPV_common_end(s);
3457
    }
3458
    if (!s->context_initialized) {
3459
        if (MPV_common_init(s) < 0)
3460
            return -1;
3461

    
3462
        alloc_tables(h);
3463

    
3464
        s->avctx->width = s->width;
3465
        s->avctx->height = s->height;
3466
        s->avctx->sample_aspect_ratio= h->sps.sar;
3467

    
3468
        if(h->sps.timing_info_present_flag && h->sps.fixed_frame_rate_flag){
3469
            s->avctx->frame_rate = h->sps.time_scale;
3470
            s->avctx->frame_rate_base = h->sps.num_units_in_tick;
3471
        }
3472
    }
3473

    
3474
    if(h->slice_num == 0){
3475
        frame_start(h);
3476
    }
3477

    
3478
    s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
3479
    h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
3480

    
3481
    if(h->sps.frame_mbs_only_flag){
3482
        s->picture_structure= PICT_FRAME;
3483
    }else{
3484
        if(get_bits1(&s->gb)) //field_pic_flag
3485
            s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
3486
        else
3487
            s->picture_structure= PICT_FRAME;
3488
    }
3489

    
3490
    if(s->picture_structure==PICT_FRAME){
3491
        h->curr_pic_num=   h->frame_num;
3492
        h->max_pic_num= 1<< h->sps.log2_max_frame_num;
3493
    }else{
3494
        h->curr_pic_num= 2*h->frame_num;
3495
        h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
3496
    }
3497
        
3498
    if(h->nal_unit_type == NAL_IDR_SLICE){
3499
        get_ue_golomb(&s->gb); /* idr_pic_id */
3500
    }
3501
   
3502
    if(h->sps.poc_type==0){
3503
        h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
3504
        
3505
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
3506
            h->delta_poc_bottom= get_se_golomb(&s->gb);
3507
        }
3508
    }
3509
    
3510
    if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
3511
        h->delta_poc[0]= get_se_golomb(&s->gb);
3512
        
3513
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
3514
            h->delta_poc[1]= get_se_golomb(&s->gb);
3515
    }
3516
    
3517
    init_poc(h);
3518
    
3519
    if(h->pps.redundant_pic_cnt_present){
3520
        h->redundant_pic_count= get_ue_golomb(&s->gb);
3521
    }
3522

    
3523
    //set defaults, might be overriden a few line later
3524
    h->ref_count[0]= h->pps.ref_count[0];
3525
    h->ref_count[1]= h->pps.ref_count[1];
3526

    
3527
    if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
3528
        if(h->slice_type == B_TYPE){
3529
            h->direct_spatial_mv_pred= get_bits1(&s->gb);
3530
        }
3531
        num_ref_idx_active_override_flag= get_bits1(&s->gb);
3532
    
3533
        if(num_ref_idx_active_override_flag){
3534
            h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3535
            if(h->slice_type==B_TYPE)
3536
                h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3537

    
3538
            if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
3539
                av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
3540
                return -1;
3541
            }
3542
        }
3543
    }
3544

    
3545
    if(h->slice_num == 0){
3546
        fill_default_ref_list(h);
3547
    }
3548

    
3549
    decode_ref_pic_list_reordering(h);
3550

    
3551
    if(   (h->pps.weighted_pred          && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) 
3552
       || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
3553
        pred_weight_table(h);
3554
    else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
3555
        implicit_weight_table(h);
3556
    else
3557
        h->use_weight = 0;
3558
    
3559
    if(s->current_picture.reference)
3560
        decode_ref_pic_marking(h);
3561

    
3562
    if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac )
3563
        h->cabac_init_idc = get_ue_golomb(&s->gb);
3564

    
3565
    h->last_qscale_diff = 0;
3566
    s->qscale = h->pps.init_qp + get_se_golomb(&s->gb);
3567
    if(s->qscale<0 || s->qscale>51){
3568
        av_log(s->avctx, AV_LOG_ERROR, "QP %d out of range\n", s->qscale);
3569
        return -1;
3570
    }
3571
    h->chroma_qp = get_chroma_qp(h, s->qscale);
3572
    //FIXME qscale / qp ... stuff
3573
    if(h->slice_type == SP_TYPE){
3574
        get_bits1(&s->gb); /* sp_for_switch_flag */
3575
    }
3576
    if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
3577
        get_se_golomb(&s->gb); /* slice_qs_delta */
3578
    }
3579

    
3580
    h->deblocking_filter = 1;
3581
    h->slice_alpha_c0_offset = 0;
3582
    h->slice_beta_offset = 0;
3583
    if( h->pps.deblocking_filter_parameters_present ) {
3584
        h->deblocking_filter= get_ue_golomb(&s->gb);
3585
        if(h->deblocking_filter < 2) 
3586
            h->deblocking_filter^= 1; // 1<->0
3587

    
3588
        if( h->deblocking_filter ) {
3589
            h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
3590
            h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
3591
        }
3592
    }
3593

    
3594
#if 0 //FMO
3595
    if( h->pps.num_slice_groups > 1  && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
3596
        slice_group_change_cycle= get_bits(&s->gb, ?);
3597
#endif
3598

    
3599
    h->slice_num++;
3600

    
3601
    if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3602
        av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d weight:%d%s\n", 
3603
               h->slice_num, first_mb_in_slice, 
3604
               av_get_pict_type_char(h->slice_type),
3605
               pps_id, h->frame_num,
3606
               s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3607
               h->ref_count[0], h->ref_count[1],
3608
               s->qscale,
3609
               h->deblocking_filter,
3610
               h->use_weight,
3611
               h->use_weight==1 && h->use_weight_chroma ? "c" : ""
3612
               );
3613
    }
3614

    
3615
    return 0;
3616
}
3617

    
3618
/**
3619
 *
3620
 */
3621
static inline int get_level_prefix(GetBitContext *gb){
3622
    unsigned int buf;
3623
    int log;
3624
    
3625
    OPEN_READER(re, gb);
3626
    UPDATE_CACHE(re, gb);
3627
    buf=GET_CACHE(re, gb);
3628
    
3629
    log= 32 - av_log2(buf);
3630
#ifdef TRACE
3631
    print_bin(buf>>(32-log), log);
3632
    av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
3633
#endif
3634

    
3635
    LAST_SKIP_BITS(re, gb, log);
3636
    CLOSE_READER(re, gb);
3637

    
3638
    return log-1;
3639
}
3640

    
3641
/**
3642
 * decodes a residual block.
3643
 * @param n block index
3644
 * @param scantable scantable
3645
 * @param max_coeff number of coefficients in the block
3646
 * @return <0 if an error occured
3647
 */
3648
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
3649
    MpegEncContext * const s = &h->s;
3650
    const uint16_t *qmul= dequant_coeff[qp];
3651
    static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
3652
    int level[16], run[16];
3653
    int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
3654

    
3655
    //FIXME put trailing_onex into the context
3656

    
3657
    if(n == CHROMA_DC_BLOCK_INDEX){
3658
        coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
3659
        total_coeff= coeff_token>>2;
3660
    }else{    
3661
        if(n == LUMA_DC_BLOCK_INDEX){
3662
            total_coeff= pred_non_zero_count(h, 0);
3663
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3664
            total_coeff= coeff_token>>2;
3665
        }else{
3666
            total_coeff= pred_non_zero_count(h, n);
3667
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3668
            total_coeff= coeff_token>>2;
3669
            h->non_zero_count_cache[ scan8[n] ]= total_coeff;
3670
        }
3671
    }
3672

    
3673
    //FIXME set last_non_zero?
3674

    
3675
    if(total_coeff==0)
3676
        return 0;
3677
        
3678
    trailing_ones= coeff_token&3;
3679
    tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
3680
    assert(total_coeff<=16);
3681
    
3682
    for(i=0; i<trailing_ones; i++){
3683
        level[i]= 1 - 2*get_bits1(gb);
3684
    }
3685

    
3686
    suffix_length= total_coeff > 10 && trailing_ones < 3;
3687

    
3688
    for(; i<total_coeff; i++){
3689
        const int prefix= get_level_prefix(gb);
3690
        int level_code, mask;
3691

    
3692
        if(prefix<14){ //FIXME try to build a large unified VLC table for all this
3693
            if(suffix_length)
3694
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3695
            else
3696
                level_code= (prefix<<suffix_length); //part
3697
        }else if(prefix==14){
3698
            if(suffix_length)
3699
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3700
            else
3701
                level_code= prefix + get_bits(gb, 4); //part
3702
        }else if(prefix==15){
3703
            level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
3704
            if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
3705
        }else{
3706
            av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
3707
            return -1;
3708
        }
3709

    
3710
        if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
3711

    
3712
        mask= -(level_code&1);
3713
        level[i]= (((2+level_code)>>1) ^ mask) - mask;
3714

    
3715
        if(suffix_length==0) suffix_length=1; //FIXME split first iteration
3716

    
3717
#if 1
3718
        if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3719
#else        
3720
        if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3721
        /* ? == prefix > 2 or sth */
3722
#endif
3723
        tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
3724
    }
3725

    
3726
    if(total_coeff == max_coeff)
3727
        zeros_left=0;
3728
    else{
3729
        if(n == CHROMA_DC_BLOCK_INDEX)
3730
            zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
3731
        else
3732
            zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
3733
    }
3734
    
3735
    for(i=0; i<total_coeff-1; i++){
3736
        if(zeros_left <=0)
3737
            break;
3738
        else if(zeros_left < 7){
3739
            run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
3740
        }else{
3741
            run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
3742
        }
3743
        zeros_left -= run[i];
3744
    }
3745

    
3746
    if(zeros_left<0){
3747
        av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
3748
        return -1;
3749
    }
3750
    
3751
    for(; i<total_coeff-1; i++){
3752
        run[i]= 0;
3753
    }
3754

    
3755
    run[i]= zeros_left;
3756

    
3757
    coeff_num=-1;
3758
    if(n > 24){
3759
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
3760
            int j;
3761

    
3762
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3763
            j= scantable[ coeff_num ];
3764

    
3765
            block[j]= level[i];
3766
        }
3767
    }else{
3768
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into  rundecode?
3769
            int j;
3770

    
3771
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3772
            j= scantable[ coeff_num ];
3773

    
3774
            block[j]= level[i] * qmul[j];
3775
//            printf("%d %d  ", block[j], qmul[j]);
3776
        }
3777
    }
3778
    return 0;
3779
}
3780

    
3781
/**
3782
 * decodes a P_SKIP or B_SKIP macroblock
3783
 */
3784
static void decode_mb_skip(H264Context *h){
3785
    MpegEncContext * const s = &h->s;
3786
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3787
    int mb_type;
3788
    
3789
    memset(h->non_zero_count[mb_xy], 0, 16);
3790
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
3791

    
3792
    if( h->slice_type == B_TYPE )
3793
    {
3794
        // just for fill_caches. pred_direct_motion will set the real mb_type
3795
        mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
3796
        //FIXME mbaff
3797

    
3798
        fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3799
        pred_direct_motion(h, &mb_type);
3800
        if(h->pps.cabac){
3801
            fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
3802
            fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
3803
        }
3804
    }
3805
    else
3806
    {
3807
        int mx, my;
3808
        mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
3809

    
3810
        if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
3811
            h->mb_field_decoding_flag= get_bits1(&s->gb);
3812
        }
3813
        if(h->mb_field_decoding_flag)
3814
            mb_type|= MB_TYPE_INTERLACED;
3815
        
3816
        fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3817
        pred_pskip_motion(h, &mx, &my);
3818
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
3819
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
3820
        if(h->pps.cabac)
3821
            fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
3822
    }
3823

    
3824
    write_back_motion(h, mb_type);
3825
    s->current_picture.mb_type[mb_xy]= mb_type|MB_TYPE_SKIP;
3826
    s->current_picture.qscale_table[mb_xy]= s->qscale;
3827
    h->slice_table[ mb_xy ]= h->slice_num;
3828
    h->prev_mb_skiped= 1;
3829
}
3830

    
3831
/**
3832
 * decodes a macroblock
3833
 * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
3834
 */
3835
static int decode_mb_cavlc(H264Context *h){
3836
    MpegEncContext * const s = &h->s;
3837
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3838
    int mb_type, partition_count, cbp;
3839

    
3840
    s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?    
3841

    
3842
    tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
3843
    cbp = 0; /* avoid warning. FIXME: find a solution without slowing
3844
                down the code */
3845
    if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
3846
        if(s->mb_skip_run==-1)
3847
            s->mb_skip_run= get_ue_golomb(&s->gb);
3848
        
3849
        if (s->mb_skip_run--) {
3850
            decode_mb_skip(h);
3851
            return 0;
3852
        }
3853
    }
3854
    if(h->sps.mb_aff /* && !field pic FIXME needed? */){
3855
        if((s->mb_y&1)==0)
3856
            h->mb_field_decoding_flag = get_bits1(&s->gb);
3857
    }else
3858
        h->mb_field_decoding_flag=0; //FIXME som ed note ?!
3859
    
3860
    h->prev_mb_skiped= 0;
3861
    
3862
    mb_type= get_ue_golomb(&s->gb);
3863
    if(h->slice_type == B_TYPE){
3864
        if(mb_type < 23){
3865
            partition_count= b_mb_type_info[mb_type].partition_count;
3866
            mb_type=         b_mb_type_info[mb_type].type;
3867
        }else{
3868
            mb_type -= 23;
3869
            goto decode_intra_mb;
3870
        }
3871
    }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
3872
        if(mb_type < 5){
3873
            partition_count= p_mb_type_info[mb_type].partition_count;
3874
            mb_type=         p_mb_type_info[mb_type].type;
3875
        }else{
3876
            mb_type -= 5;
3877
            goto decode_intra_mb;
3878
        }
3879
    }else{
3880
       assert(h->slice_type == I_TYPE);
3881
decode_intra_mb:
3882
        if(mb_type > 25){
3883
            av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
3884
            return -1;
3885
        }
3886
        partition_count=0;
3887
        cbp= i_mb_type_info[mb_type].cbp;
3888
        h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
3889
        mb_type= i_mb_type_info[mb_type].type;
3890
    }
3891

    
3892
    if(h->mb_field_decoding_flag)
3893
        mb_type |= MB_TYPE_INTERLACED;
3894

    
3895
    s->current_picture.mb_type[mb_xy]= mb_type;
3896
    h->slice_table[ mb_xy ]= h->slice_num;
3897
    
3898
    if(IS_INTRA_PCM(mb_type)){
3899
        const uint8_t *ptr;
3900
        int x, y;
3901
        
3902
        // we assume these blocks are very rare so we dont optimize it
3903
        align_get_bits(&s->gb);
3904
        
3905
        ptr= s->gb.buffer + get_bits_count(&s->gb);
3906
    
3907
        for(y=0; y<16; y++){
3908
            const int index= 4*(y&3) + 64*(y>>2);
3909
            for(x=0; x<16; x++){
3910
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3911
            }
3912
        }
3913
        for(y=0; y<8; y++){
3914
            const int index= 256 + 4*(y&3) + 32*(y>>2);
3915
            for(x=0; x<8; x++){
3916
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3917
            }
3918
        }
3919
        for(y=0; y<8; y++){
3920
            const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
3921
            for(x=0; x<8; x++){
3922
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3923
            }
3924
        }
3925
    
3926
        skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
3927
        
3928
        //FIXME deblock filter, non_zero_count_cache init ...
3929
        memset(h->non_zero_count[mb_xy], 16, 16);
3930
        s->current_picture.qscale_table[mb_xy]= s->qscale;
3931
        
3932
        return 0;
3933
    }
3934
        
3935
    fill_caches(h, mb_type);
3936

    
3937
    //mb_pred
3938
    if(IS_INTRA(mb_type)){
3939
//            init_top_left_availability(h);
3940
            if(IS_INTRA4x4(mb_type)){
3941
                int i;
3942

    
3943
//                fill_intra4x4_pred_table(h);
3944
                for(i=0; i<16; i++){
3945
                    const int mode_coded= !get_bits1(&s->gb);
3946
                    const int predicted_mode=  pred_intra_mode(h, i);
3947
                    int mode;
3948

    
3949
                    if(mode_coded){
3950
                        const int rem_mode= get_bits(&s->gb, 3);
3951
                        if(rem_mode<predicted_mode)
3952
                            mode= rem_mode;
3953
                        else
3954
                            mode= rem_mode + 1;
3955
                    }else{
3956
                        mode= predicted_mode;
3957
                    }
3958
                    
3959
                    h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
3960
                }
3961
                write_back_intra_pred_mode(h);
3962
                if( check_intra4x4_pred_mode(h) < 0)
3963
                    return -1;
3964
            }else{
3965
                h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
3966
                if(h->intra16x16_pred_mode < 0)
3967
                    return -1;
3968
            }
3969
            h->chroma_pred_mode= get_ue_golomb(&s->gb);
3970

    
3971
            h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
3972
            if(h->chroma_pred_mode < 0)
3973
                return -1;
3974
    }else if(partition_count==4){
3975
        int i, j, sub_partition_count[4], list, ref[2][4];
3976
        
3977
        if(h->slice_type == B_TYPE){
3978
            for(i=0; i<4; i++){
3979
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3980
                if(h->sub_mb_type[i] >=13){
3981
                    av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3982
                    return -1;
3983
                }
3984
                sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3985
                h->sub_mb_type[i]=      b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3986
            }
3987
            if(   IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
3988
               || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3]))
3989
                pred_direct_motion(h, &mb_type);
3990
        }else{
3991
            assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
3992
            for(i=0; i<4; i++){
3993
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3994
                if(h->sub_mb_type[i] >=4){
3995
                    av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3996
                    return -1;
3997
                }
3998
                sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3999
                h->sub_mb_type[i]=      p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
4000
            }
4001
        }
4002
        
4003
        for(list=0; list<2; list++){
4004
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
4005
            if(ref_count == 0) continue;
4006
            for(i=0; i<4; i++){
4007
                if(IS_DIRECT(h->sub_mb_type[i])) continue;
4008
                if(IS_DIR(h->sub_mb_type[i], 0, list)){
4009
                    ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
4010
                }else{
4011
                 //FIXME
4012
                    ref[list][i] = -1;
4013
                }
4014
            }
4015
        }
4016
        
4017
        for(list=0; list<2; list++){
4018
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
4019
            if(ref_count == 0) continue;
4020

    
4021
            for(i=0; i<4; i++){
4022
                if(IS_DIRECT(h->sub_mb_type[i])) continue;
4023
                h->ref_cache[list][ scan8[4*i]   ]=h->ref_cache[list][ scan8[4*i]+1 ]=
4024
                h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
4025

    
4026
                if(IS_DIR(h->sub_mb_type[i], 0, list)){
4027
                    const int sub_mb_type= h->sub_mb_type[i];
4028
                    const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
4029
                    for(j=0; j<sub_partition_count[i]; j++){
4030
                        int mx, my;
4031
                        const int index= 4*i + block_width*j;
4032
                        int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
4033
                        pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
4034
                        mx += get_se_golomb(&s->gb);
4035
                        my += get_se_golomb(&s->gb);
4036
                        tprintf("final mv:%d %d\n", mx, my);
4037

    
4038
                        if(IS_SUB_8X8(sub_mb_type)){
4039
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= 
4040
                            mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
4041
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= 
4042
                            mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
4043
                        }else if(IS_SUB_8X4(sub_mb_type)){
4044
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
4045
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
4046
                        }else if(IS_SUB_4X8(sub_mb_type)){
4047
                            mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
4048
                            mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
4049
                        }else{
4050
                            assert(IS_SUB_4X4(sub_mb_type));
4051
                            mv_cache[ 0 ][0]= mx;
4052
                            mv_cache[ 0 ][1]= my;
4053
                        }
4054
                    }
4055
                }else{
4056
                    uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
4057
                    p[0] = p[1]=
4058
                    p[8] = p[9]= 0;
4059
                }
4060
            }
4061
        }
4062
    }else if(IS_DIRECT(mb_type)){
4063
        pred_direct_motion(h, &mb_type);
4064
        s->current_picture.mb_type[mb_xy]= mb_type;
4065
    }else{
4066
        int list, mx, my, i;
4067
         //FIXME we should set ref_idx_l? to 0 if we use that later ...
4068
        if(IS_16X16(mb_type)){
4069
            for(list=0; list<2; list++){
4070
                if(h->ref_count[list]>0){
4071
                    if(IS_DIR(mb_type, 0, list)){
4072
                        const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
4073
                        fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
4074
                    }
4075
                }
4076
            }
4077
            for(list=0; list<2; list++){
4078
                if(IS_DIR(mb_type, 0, list)){
4079
                    pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
4080
                    mx += get_se_golomb(&s->gb);
4081
                    my += get_se_golomb(&s->gb);
4082
                    tprintf("final mv:%d %d\n", mx, my);
4083

    
4084
                    fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
4085
                }
4086
            }
4087
        }
4088
        else if(IS_16X8(mb_type)){
4089
            for(list=0; list<2; list++){
4090
                if(h->ref_count[list]>0){
4091
                    for(i=0; i<2; i++){
4092
                        if(IS_DIR(mb_type, i, list)){
4093
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
4094
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
4095
                        }else // needed only for mixed refs (e.g. B_L0_L1_16x8)
4096
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
4097
                    }
4098
                }
4099
            }
4100
            for(list=0; list<2; list++){
4101
                for(i=0; i<2; i++){
4102
                    if(IS_DIR(mb_type, i, list)){
4103
                        pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
4104
                        mx += get_se_golomb(&s->gb);
4105
                        my += get_se_golomb(&s->gb);
4106
                        tprintf("final mv:%d %d\n", mx, my);
4107

    
4108
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
4109
                    }else
4110
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
4111
                }
4112
            }
4113
        }else{
4114
            assert(IS_8X16(mb_type));
4115
            for(list=0; list<2; list++){
4116
                if(h->ref_count[list]>0){
4117
                    for(i=0; i<2; i++){
4118
                        if(IS_DIR(mb_type, i, list)){ //FIXME optimize
4119
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
4120
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
4121
                        }else // needed only for mixed refs
4122
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
4123
                    }
4124
                }
4125
            }
4126
            for(list=0; list<2; list++){
4127
                for(i=0; i<2; i++){
4128
                    if(IS_DIR(mb_type, i, list)){
4129
                        pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
4130
                        mx += get_se_golomb(&s->gb);
4131
                        my += get_se_golomb(&s->gb);
4132
                        tprintf("final mv:%d %d\n", mx, my);
4133

    
4134
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
4135
                    }else
4136
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
4137
                }
4138
            }
4139
        }
4140
    }
4141
    
4142
    if(IS_INTER(mb_type))
4143
        write_back_motion(h, mb_type);
4144
    
4145
    if(!IS_INTRA16x16(mb_type)){
4146
        cbp= get_ue_golomb(&s->gb);
4147
        if(cbp > 47){
4148
            av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
4149
            return -1;
4150
        }
4151
        
4152
        if(IS_INTRA4x4(mb_type))
4153
            cbp= golomb_to_intra4x4_cbp[cbp];
4154
        else
4155
            cbp= golomb_to_inter_cbp[cbp];
4156
    }
4157

    
4158
    if(cbp || IS_INTRA16x16(mb_type)){
4159
        int i8x8, i4x4, chroma_idx;
4160
        int chroma_qp, dquant;
4161
        GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
4162
        const uint8_t *scan, *dc_scan;
4163
        
4164
//        fill_non_zero_count_cache(h);
4165

    
4166
        if(IS_INTERLACED(mb_type)){
4167
            scan= field_scan;
4168
            dc_scan= luma_dc_field_scan;
4169
        }else{
4170
            scan= zigzag_scan;
4171
            dc_scan= luma_dc_zigzag_scan;
4172
        }
4173

    
4174
        dquant= get_se_golomb(&s->gb);
4175

    
4176
        if( dquant > 25 || dquant < -26 ){
4177
            av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
4178
            return -1;
4179
        }
4180
        
4181
        s->qscale += dquant;
4182
        if(((unsigned)s->qscale) > 51){
4183
            if(s->qscale<0) s->qscale+= 52;
4184
            else            s->qscale-= 52;
4185
        }
4186
        
4187
        h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
4188
        if(IS_INTRA16x16(mb_type)){
4189
            if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
4190
                return -1; //FIXME continue if partotioned and other retirn -1 too
4191
            }
4192

    
4193
            assert((cbp&15) == 0 || (cbp&15) == 15);
4194

    
4195
            if(cbp&15){
4196
                for(i8x8=0; i8x8<4; i8x8++){
4197
                    for(i4x4=0; i4x4<4; i4x4++){
4198
                        const int index= i4x4 + 4*i8x8;
4199
                        if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
4200
                            return -1;
4201
                        }
4202
                    }
4203
                }
4204
            }else{
4205
                fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
4206
            }
4207
        }else{
4208
            for(i8x8=0; i8x8<4; i8x8++){
4209
                if(cbp & (1<<i8x8)){
4210
                    for(i4x4=0; i4x4<4; i4x4++){
4211
                        const int index= i4x4 + 4*i8x8;
4212
                        
4213
                        if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
4214
                            return -1;
4215
                        }
4216
                    }
4217
                }else{
4218
                    uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
4219
                    nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
4220
                }
4221
            }
4222
        }
4223
        
4224
        if(cbp&0x30){
4225
            for(chroma_idx=0; chroma_idx<2; chroma_idx++)
4226
                if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
4227
                    return -1;
4228
                }
4229
        }
4230

    
4231
        if(cbp&0x20){
4232
            for(chroma_idx=0; chroma_idx<2; chroma_idx++){
4233
                for(i4x4=0; i4x4<4; i4x4++){
4234
                    const int index= 16 + 4*chroma_idx + i4x4;
4235
                    if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
4236
                        return -1;
4237
                    }
4238
                }
4239
            }
4240
        }else{
4241
            uint8_t * const nnz= &h->non_zero_count_cache[0];
4242
            nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
4243
            nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
4244
        }
4245
    }else{
4246
        uint8_t * const nnz= &h->non_zero_count_cache[0];
4247
        fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
4248
        nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
4249
        nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
4250
    }
4251
    s->current_picture.qscale_table[mb_xy]= s->qscale;
4252
    write_back_non_zero_count(h);
4253

    
4254
    return 0;
4255
}
4256

    
4257
static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
4258
    uint8_t *state= &h->cabac_state[ctx_base];
4259
    int mb_type;
4260
    
4261
    if(intra_slice){
4262
        MpegEncContext * const s = &h->s;
4263
        const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4264
        int ctx=0;
4265
        if( s->mb_x > 0 && !IS_INTRA4x4( s->current_picture.mb_type[mb_xy-1] ) )
4266
            ctx++;
4267
        if( s->mb_y > 0 && !IS_INTRA4x4( s->current_picture.mb_type[mb_xy-s->mb_stride] ) )
4268
            ctx++;
4269
        if( get_cabac( &h->cabac, &state[ctx] ) == 0 )
4270
            return 0;   /* I4x4 */
4271
        state += 2;
4272
    }else{
4273
        if( get_cabac( &h->cabac, &state[0] ) == 0 )
4274
            return 0;   /* I4x4 */
4275
    }
4276

    
4277
    if( get_cabac_terminate( &h->cabac ) )
4278
        return 25;  /* PCM */
4279

    
4280
    mb_type = 1; /* I16x16 */
4281
    if( get_cabac( &h->cabac, &state[1] ) )
4282
        mb_type += 12;  /* cbp_luma != 0 */
4283

    
4284
    if( get_cabac( &h->cabac, &state[2] ) ) {
4285
        if( get_cabac( &h->cabac, &state[2+intra_slice] ) )
4286
            mb_type += 4 * 2;   /* cbp_chroma == 2 */
4287
        else
4288
            mb_type += 4 * 1;   /* cbp_chroma == 1 */
4289
    }
4290
    if( get_cabac( &h->cabac, &state[3+intra_slice] ) )
4291
        mb_type += 2;
4292
    if( get_cabac( &h->cabac, &state[3+2*intra_slice] ) )
4293
        mb_type += 1;
4294
    return mb_type;
4295
}
4296

    
4297
static int decode_cabac_mb_type( H264Context *h ) {
4298
    MpegEncContext * const s = &h->s;
4299

    
4300
    if( h->slice_type == I_TYPE ) {
4301
        return decode_cabac_intra_mb_type(h, 3, 1);
4302
    } else if( h->slice_type == P_TYPE ) {
4303
        if( get_cabac( &h->cabac, &h->cabac_state[14] ) == 0 ) {
4304
            /* P-type */
4305
            if( get_cabac( &h->cabac, &h->cabac_state[15] ) == 0 ) {
4306
                if( get_cabac( &h->cabac, &h->cabac_state[16] ) == 0 )
4307
                    return 0; /* P_L0_D16x16; */
4308
                else
4309
                    return 3; /* P_8x8; */
4310
            } else {
4311
                if( get_cabac( &h->cabac, &h->cabac_state[17] ) == 0 )
4312
                    return 2; /* P_L0_D8x16; */
4313
                else
4314
                    return 1; /* P_L0_D16x8; */
4315
            }
4316
        } else {
4317
            return decode_cabac_intra_mb_type(h, 17, 0) + 5;
4318
        }
4319
    } else if( h->slice_type == B_TYPE ) {
4320
        const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4321
        int ctx = 0;
4322
        int bits;
4323

    
4324
        if( s->mb_x > 0 && !IS_SKIP( s->current_picture.mb_type[mb_xy-1] )
4325
                      && !IS_DIRECT( s->current_picture.mb_type[mb_xy-1] ) )
4326
            ctx++;
4327
        if( s->mb_y > 0 && !IS_SKIP( s->current_picture.mb_type[mb_xy-s->mb_stride] )
4328
                      && !IS_DIRECT( s->current_picture.mb_type[mb_xy-s->mb_stride] ) )
4329
            ctx++;
4330

    
4331
        if( !get_cabac( &h->cabac, &h->cabac_state[27+ctx] ) )
4332
            return 0; /* B_Direct_16x16 */
4333

    
4334
        if( !get_cabac( &h->cabac, &h->cabac_state[27+3] ) ) {
4335
            return 1 + get_cabac( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
4336
        }
4337

    
4338
        bits = get_cabac( &h->cabac, &h->cabac_state[27+4] ) << 3;
4339
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 2;
4340
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 1;
4341
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] );
4342
        if( bits < 8 )
4343
            return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
4344
        else if( bits == 13 ) {
4345
            return decode_cabac_intra_mb_type(h, 32, 0) + 23;
4346
        } else if( bits == 14 )
4347
            return 11; /* B_L1_L0_8x16 */
4348
        else if( bits == 15 )
4349
            return 22; /* B_8x8 */
4350

    
4351
        bits= ( bits<<1 ) | get_cabac( &h->cabac, &h->cabac_state[27+5] );
4352
        return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
4353
    } else {
4354
        /* TODO SI/SP frames? */
4355
        return -1;
4356
    }
4357
}
4358

    
4359
static int decode_cabac_mb_skip( H264Context *h) {
4360
    MpegEncContext * const s = &h->s;
4361
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4362
    const int mba_xy = mb_xy - 1;
4363
    const int mbb_xy = mb_xy - s->mb_stride;
4364
    int ctx = 0;
4365

    
4366
    if( s->mb_x > 0 && !IS_SKIP( s->current_picture.mb_type[mba_xy] ) )
4367
        ctx++;
4368
    if( s->mb_y > 0 && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ) )
4369
        ctx++;
4370

    
4371
    if( h->slice_type == P_TYPE || h->slice_type == SP_TYPE)
4372
        return get_cabac( &h->cabac, &h->cabac_state[11+ctx] );
4373
    else /* B-frame */
4374
        return get_cabac( &h->cabac, &h->cabac_state[24+ctx] );
4375
}
4376

    
4377
static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
4378
    int mode = 0;
4379

    
4380
    if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
4381
        return pred_mode;
4382

    
4383
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4384
        mode += 1;
4385
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4386
        mode += 2;
4387
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4388
        mode += 4;
4389
    if( mode >= pred_mode )
4390
        return mode + 1;
4391
    else
4392
        return mode;
4393
}
4394

    
4395
static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
4396
    MpegEncContext * const s = &h->s;
4397
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4398
    const int mba_xy = mb_xy - 1;
4399
    const int mbb_xy = mb_xy - s->mb_stride;
4400

    
4401
    int ctx = 0;
4402

    
4403
    /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
4404
    if( s->mb_x > 0 && h->chroma_pred_mode_table[mba_xy] != 0 )
4405
        ctx++;
4406

    
4407
    if( s->mb_y > 0 && h->chroma_pred_mode_table[mbb_xy] != 0 )
4408
        ctx++;
4409

    
4410
    if( get_cabac( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
4411
        return 0;
4412

    
4413
    if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
4414
        return 1;
4415
    if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
4416
        return 2;
4417
    else
4418
        return 3;
4419
}
4420

    
4421
static const uint8_t block_idx_x[16] = {
4422
    0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
4423
};
4424
static const uint8_t block_idx_y[16] = {
4425
    0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
4426
};
4427
static const uint8_t block_idx_xy[4][4] = {
4428
    { 0, 2, 8,  10},
4429
    { 1, 3, 9,  11},
4430
    { 4, 6, 12, 14},
4431
    { 5, 7, 13, 15}
4432
};
4433

    
4434
static int decode_cabac_mb_cbp_luma( H264Context *h) {
4435
    MpegEncContext * const s = &h->s;
4436
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4437

    
4438
    int cbp = 0;
4439
    int i8x8;
4440

    
4441
    h->cbp_table[mb_xy] = 0;  /* FIXME aaahahahah beurk */
4442

    
4443
    for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
4444
        int mba_xy = -1;
4445
        int mbb_xy = -1;
4446
        int x, y;
4447
        int ctx = 0;
4448

    
4449
        x = block_idx_x[4*i8x8];
4450
        y = block_idx_y[4*i8x8];
4451

    
4452
        if( x > 0 )
4453
            mba_xy = mb_xy;
4454
        else if( s->mb_x > 0 )
4455
            mba_xy = mb_xy - 1;
4456

    
4457
        if( y > 0 )
4458
            mbb_xy = mb_xy;
4459
        else if( s->mb_y > 0 )
4460
            mbb_xy = mb_xy - s->mb_stride;
4461

    
4462
        /* No need to test for skip as we put 0 for skip block */
4463
        if( mba_xy >= 0 ) {
4464
            int i8x8a = block_idx_xy[(x-1)&0x03][y]/4;
4465
            if( ((h->cbp_table[mba_xy] >> i8x8a)&0x01) == 0 )
4466
                ctx++;
4467
        }
4468

    
4469
        if( mbb_xy >= 0 ) {
4470
            int i8x8b = block_idx_xy[x][(y-1)&0x03]/4;
4471
            if( ((h->cbp_table[mbb_xy] >> i8x8b)&0x01) == 0 )
4472
                ctx += 2;
4473
        }
4474

    
4475
        if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) {
4476
            cbp |= 1 << i8x8;
4477
            h->cbp_table[mb_xy] = cbp;  /* FIXME aaahahahah beurk */
4478
        }
4479
    }
4480
    return cbp;
4481
}
4482
static int decode_cabac_mb_cbp_chroma( H264Context *h) {
4483
    int ctx;
4484
    int cbp_a, cbp_b;
4485

    
4486
    cbp_a = (h->left_cbp>>4)&0x03;
4487
    cbp_b = (h-> top_cbp>>4)&0x03;
4488

    
4489
    ctx = 0