ffmpeg / libavcodec / ppc / mpegvideo_altivec.c @ a1947624
History  View  Annotate  Download (24.7 KB)
1 
/*


2 
* Copyright (c) 2002 Dieter Shirley

3 
*

4 
* dct_unquantize_h263_altivec:

5 
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>

6 
*

7 
* This library is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2 of the License, or (at your option) any later version.

11 
*

12 
* This library is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with this library; if not, write to the Free Software

19 
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307 USA

20 
*/

21  
22 
#include <stdlib.h> 
23 
#include <stdio.h> 
24 
#include "../dsputil.h" 
25 
#include "../mpegvideo.h" 
26  
27 
#include "gcc_fixes.h" 
28 

29 
#include "dsputil_altivec.h" 
30  
31 
// Swaps two variables (used for altivec registers)

32 
#define SWAP(a,b) \

33 
do { \

34 
__typeof__(a) swap_temp=a; \ 
35 
a=b; \ 
36 
b=swap_temp; \ 
37 
} while (0) 
38  
39 
// transposes a matrix consisting of four vectors with four elements each

40 
#define TRANSPOSE4(a,b,c,d) \

41 
do { \

42 
__typeof__(a) _trans_ach = vec_mergeh(a, c); \ 
43 
__typeof__(a) _trans_acl = vec_mergel(a, c); \ 
44 
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \ 
45 
__typeof__(a) _trans_bdl = vec_mergel(b, d); \ 
46 
\ 
47 
a = vec_mergeh(_trans_ach, _trans_bdh); \ 
48 
b = vec_mergel(_trans_ach, _trans_bdh); \ 
49 
c = vec_mergeh(_trans_acl, _trans_bdl); \ 
50 
d = vec_mergel(_trans_acl, _trans_bdl); \ 
51 
} while (0) 
52  
53 
#define TRANSPOSE8(a,b,c,d,e,f,g,h) \

54 
do { \

55 
__typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \ 
56 
__typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \ 
57 
\ 
58 
_A1 = vec_mergeh (a, e); \ 
59 
_B1 = vec_mergel (a, e); \ 
60 
_C1 = vec_mergeh (b, f); \ 
61 
_D1 = vec_mergel (b, f); \ 
62 
_E1 = vec_mergeh (c, g); \ 
63 
_F1 = vec_mergel (c, g); \ 
64 
_G1 = vec_mergeh (d, h); \ 
65 
_H1 = vec_mergel (d, h); \ 
66 
\ 
67 
_A2 = vec_mergeh (_A1, _E1); \ 
68 
_B2 = vec_mergel (_A1, _E1); \ 
69 
_C2 = vec_mergeh (_B1, _F1); \ 
70 
_D2 = vec_mergel (_B1, _F1); \ 
71 
_E2 = vec_mergeh (_C1, _G1); \ 
72 
_F2 = vec_mergel (_C1, _G1); \ 
73 
_G2 = vec_mergeh (_D1, _H1); \ 
74 
_H2 = vec_mergel (_D1, _H1); \ 
75 
\ 
76 
a = vec_mergeh (_A2, _E2); \ 
77 
b = vec_mergel (_A2, _E2); \ 
78 
c = vec_mergeh (_B2, _F2); \ 
79 
d = vec_mergel (_B2, _F2); \ 
80 
e = vec_mergeh (_C2, _G2); \ 
81 
f = vec_mergel (_C2, _G2); \ 
82 
g = vec_mergeh (_D2, _H2); \ 
83 
h = vec_mergel (_D2, _H2); \ 
84 
} while (0) 
85  
86  
87 
// Loads a fourbyte value (int or float) from the target address

88 
// into every element in the target vector. Only works if the

89 
// target address is fourbyte aligned (which should be always).

90 
#define LOAD4(vec, address) \

91 
{ \ 
92 
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ 
93 
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ 
94 
vec = vec_ld(0, _load_addr); \

95 
vec = vec_perm(vec, vec, _perm_vec); \ 
96 
vec = vec_splat(vec, 0); \

97 
} 
98  
99  
100 
#ifdef CONFIG_DARWIN

101 
#define FOUROF(a) (a)

102 
#else

103 
// slower, for dumb nonapple GCC

104 
#define FOUROF(a) {a,a,a,a}

105 
#endif

106 
int dct_quantize_altivec(MpegEncContext* s,

107 
DCTELEM* data, int n,

108 
int qscale, int* overflow) 
109 
{ 
110 
int lastNonZero;

111 
vector float row0, row1, row2, row3, row4, row5, row6, row7;

112 
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;

113 
const_vector float zero = (const_vector float)FOUROF(0.); 
114 
// used after quantise step

115 
int oldBaseValue = 0; 
116  
117 
// Load the data into the row/alt vectors

118 
{ 
119 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
120  
121 
data0 = vec_ld(0, data);

122 
data1 = vec_ld(16, data);

123 
data2 = vec_ld(32, data);

124 
data3 = vec_ld(48, data);

125 
data4 = vec_ld(64, data);

126 
data5 = vec_ld(80, data);

127 
data6 = vec_ld(96, data);

128 
data7 = vec_ld(112, data);

129  
130 
// Transpose the data before we start

131 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
132  
133 
// load the data into floating point vectors. We load

134 
// the high half of each row into the main row vectors

135 
// and the low half into the alt vectors.

136 
row0 = vec_ctf(vec_unpackh(data0), 0);

137 
alt0 = vec_ctf(vec_unpackl(data0), 0);

138 
row1 = vec_ctf(vec_unpackh(data1), 0);

139 
alt1 = vec_ctf(vec_unpackl(data1), 0);

140 
row2 = vec_ctf(vec_unpackh(data2), 0);

141 
alt2 = vec_ctf(vec_unpackl(data2), 0);

142 
row3 = vec_ctf(vec_unpackh(data3), 0);

143 
alt3 = vec_ctf(vec_unpackl(data3), 0);

144 
row4 = vec_ctf(vec_unpackh(data4), 0);

145 
alt4 = vec_ctf(vec_unpackl(data4), 0);

146 
row5 = vec_ctf(vec_unpackh(data5), 0);

147 
alt5 = vec_ctf(vec_unpackl(data5), 0);

148 
row6 = vec_ctf(vec_unpackh(data6), 0);

149 
alt6 = vec_ctf(vec_unpackl(data6), 0);

150 
row7 = vec_ctf(vec_unpackh(data7), 0);

151 
alt7 = vec_ctf(vec_unpackl(data7), 0);

152 
} 
153  
154 
// The following block could exist as a separate an altivec dct

155 
// function. However, if we put it inline, the DCT data can remain

156 
// in the vector local variables, as floats, which we'll use during the

157 
// quantize step...

158 
{ 
159 
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f); 
160 
const vector float vec_0_390180644 = (vector float)FOUROF(0.390180644f); 
161 
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f); 
162 
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f); 
163 
const vector float vec_0_899976223 = (vector float)FOUROF(0.899976223f); 
164 
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f); 
165 
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f); 
166 
const vector float vec_1_847759065 = (vector float)FOUROF(1.847759065f); 
167 
const vector float vec_1_961570560 = (vector float)FOUROF(1.961570560f); 
168 
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f); 
169 
const vector float vec_2_562915447 = (vector float)FOUROF(2.562915447f); 
170 
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f); 
171  
172  
173 
int whichPass, whichHalf;

174  
175 
for(whichPass = 1; whichPass<=2; whichPass++) 
176 
{ 
177 
for(whichHalf = 1; whichHalf<=2; whichHalf++) 
178 
{ 
179 
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;

180 
vector float tmp10, tmp11, tmp12, tmp13;

181 
vector float z1, z2, z3, z4, z5;

182  
183 
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];

184 
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0]  dataptr[7];

185 
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];

186 
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3]  dataptr[4];

187 
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];

188 
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1]  dataptr[6];

189 
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];

190 
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2]  dataptr[5];

191  
192 
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;

193 
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0  tmp3;

194 
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;

195 
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1  tmp2;

196  
197  
198 
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);

199 
row0 = vec_add(tmp10, tmp11); 
200  
201 
// dataptr[4] = (DCTELEM) ((tmp10  tmp11) << PASS1_BITS);

202 
row4 = vec_sub(tmp10, tmp11); 
203  
204  
205 
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);

206 
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

207  
208 
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

209 
// CONST_BITSPASS1_BITS);

210 
row2 = vec_madd(tmp13, vec_0_765366865, z1); 
211  
212 
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

213 
// CONST_BITSPASS1_BITS);

214 
row6 = vec_madd(tmp12, vec_1_847759065, z1); 
215  
216 
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;

217 
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;

218 
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;

219 
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

220  
221 
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

222 
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

223  
224 
// z3 = MULTIPLY(z3,  FIX_1_961570560); /* sqrt(2) * (c3c5) */

225 
z3 = vec_madd(z3, vec_1_961570560, z5); 
226  
227 
// z4 = MULTIPLY(z4,  FIX_0_390180644); /* sqrt(2) * (c5c3) */

228 
z4 = vec_madd(z4, vec_0_390180644, z5); 
229  
230 
// The following adds are rolled into the multiplies above

231 
// z3 = vec_add(z3, z5); // z3 += z5;

232 
// z4 = vec_add(z4, z5); // z4 += z5;

233  
234 
// z2 = MULTIPLY(z2,  FIX_2_562915447); /* sqrt(2) * (c1c3) */

235 
// Wow! It's actually more effecient to roll this multiply

236 
// into the adds below, even thought the multiply gets done twice!

237 
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

238  
239 
// z1 = MULTIPLY(z1,  FIX_0_899976223); /* sqrt(2) * (c7c3) */

240 
// Same with this one...

241 
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

242  
243 
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (c1+c3+c5c7) */

244 
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITSPASS1_BITS);

245 
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); 
246  
247 
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3c5+c7) */

248 
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITSPASS1_BITS);

249 
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); 
250  
251 
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5c7) */

252 
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITSPASS1_BITS);

253 
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); 
254  
255 
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3c5c7) */

256 
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITSPASS1_BITS);

257 
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); 
258  
259 
// Swap the row values with the alts. If this is the first half,

260 
// this sets up the low values to be acted on in the second half.

261 
// If this is the second half, it puts the high values back in

262 
// the row values where they are expected to be when we're done.

263 
SWAP(row0, alt0); 
264 
SWAP(row1, alt1); 
265 
SWAP(row2, alt2); 
266 
SWAP(row3, alt3); 
267 
SWAP(row4, alt4); 
268 
SWAP(row5, alt5); 
269 
SWAP(row6, alt6); 
270 
SWAP(row7, alt7); 
271 
} 
272  
273 
if (whichPass == 1) 
274 
{ 
275 
// transpose the data for the second pass

276 

277 
// First, block transpose the upper right with lower left.

278 
SWAP(row4, alt0); 
279 
SWAP(row5, alt1); 
280 
SWAP(row6, alt2); 
281 
SWAP(row7, alt3); 
282  
283 
// Now, transpose each block of four

284 
TRANSPOSE4(row0, row1, row2, row3); 
285 
TRANSPOSE4(row4, row5, row6, row7); 
286 
TRANSPOSE4(alt0, alt1, alt2, alt3); 
287 
TRANSPOSE4(alt4, alt5, alt6, alt7); 
288 
} 
289 
} 
290 
} 
291  
292 
// perform the quantise step, using the floating point data

293 
// still in the row/alt registers

294 
{ 
295 
const int* biasAddr; 
296 
const vector signed int* qmat; 
297 
vector float bias, negBias;

298  
299 
if (s>mb_intra)

300 
{ 
301 
vector signed int baseVector; 
302  
303 
// We must cache element 0 in the intra case

304 
// (it needs special handling).

305 
baseVector = vec_cts(vec_splat(row0, 0), 0); 
306 
vec_ste(baseVector, 0, &oldBaseValue);

307  
308 
qmat = (vector signed int*)s>q_intra_matrix[qscale]; 
309 
biasAddr = &(s>intra_quant_bias); 
310 
} 
311 
else

312 
{ 
313 
qmat = (vector signed int*)s>q_inter_matrix[qscale]; 
314 
biasAddr = &(s>inter_quant_bias); 
315 
} 
316  
317 
// Load the bias vector (We add 0.5 to the bias so that we're

318 
// rounding when we convert to int, instead of flooring.)

319 
{ 
320 
vector signed int biasInt; 
321 
const vector float negOneFloat = (vector float)FOUROF(1.0f); 
322 
LOAD4(biasInt, biasAddr); 
323 
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); 
324 
negBias = vec_madd(bias, negOneFloat, zero); 
325 
} 
326  
327 
{ 
328 
vector float q0, q1, q2, q3, q4, q5, q6, q7;

329  
330 
q0 = vec_ctf(qmat[0], QMAT_SHIFT);

331 
q1 = vec_ctf(qmat[2], QMAT_SHIFT);

332 
q2 = vec_ctf(qmat[4], QMAT_SHIFT);

333 
q3 = vec_ctf(qmat[6], QMAT_SHIFT);

334 
q4 = vec_ctf(qmat[8], QMAT_SHIFT);

335 
q5 = vec_ctf(qmat[10], QMAT_SHIFT);

336 
q6 = vec_ctf(qmat[12], QMAT_SHIFT);

337 
q7 = vec_ctf(qmat[14], QMAT_SHIFT);

338  
339 
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), 
340 
vec_cmpgt(row0, zero)); 
341 
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), 
342 
vec_cmpgt(row1, zero)); 
343 
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), 
344 
vec_cmpgt(row2, zero)); 
345 
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), 
346 
vec_cmpgt(row3, zero)); 
347 
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), 
348 
vec_cmpgt(row4, zero)); 
349 
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), 
350 
vec_cmpgt(row5, zero)); 
351 
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), 
352 
vec_cmpgt(row6, zero)); 
353 
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), 
354 
vec_cmpgt(row7, zero)); 
355  
356 
q0 = vec_ctf(qmat[1], QMAT_SHIFT);

357 
q1 = vec_ctf(qmat[3], QMAT_SHIFT);

358 
q2 = vec_ctf(qmat[5], QMAT_SHIFT);

359 
q3 = vec_ctf(qmat[7], QMAT_SHIFT);

360 
q4 = vec_ctf(qmat[9], QMAT_SHIFT);

361 
q5 = vec_ctf(qmat[11], QMAT_SHIFT);

362 
q6 = vec_ctf(qmat[13], QMAT_SHIFT);

363 
q7 = vec_ctf(qmat[15], QMAT_SHIFT);

364  
365 
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), 
366 
vec_cmpgt(alt0, zero)); 
367 
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), 
368 
vec_cmpgt(alt1, zero)); 
369 
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), 
370 
vec_cmpgt(alt2, zero)); 
371 
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), 
372 
vec_cmpgt(alt3, zero)); 
373 
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), 
374 
vec_cmpgt(alt4, zero)); 
375 
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), 
376 
vec_cmpgt(alt5, zero)); 
377 
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), 
378 
vec_cmpgt(alt6, zero)); 
379 
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), 
380 
vec_cmpgt(alt7, zero)); 
381 
} 
382  
383 

384 
} 
385  
386 
// Store the data back into the original block

387 
{ 
388 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
389  
390 
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); 
391 
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); 
392 
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); 
393 
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); 
394 
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); 
395 
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); 
396 
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); 
397 
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); 
398  
399 
{ 
400 
// Clamp for overflow

401 
vector signed int max_q_int, min_q_int; 
402 
vector signed short max_q, min_q; 
403  
404 
LOAD4(max_q_int, &(s>max_qcoeff)); 
405 
LOAD4(min_q_int, &(s>min_qcoeff)); 
406  
407 
max_q = vec_pack(max_q_int, max_q_int); 
408 
min_q = vec_pack(min_q_int, min_q_int); 
409  
410 
data0 = vec_max(vec_min(data0, max_q), min_q); 
411 
data1 = vec_max(vec_min(data1, max_q), min_q); 
412 
data2 = vec_max(vec_min(data2, max_q), min_q); 
413 
data4 = vec_max(vec_min(data4, max_q), min_q); 
414 
data5 = vec_max(vec_min(data5, max_q), min_q); 
415 
data6 = vec_max(vec_min(data6, max_q), min_q); 
416 
data7 = vec_max(vec_min(data7, max_q), min_q); 
417 
} 
418  
419 
{ 
420 
vector bool char zero_01, zero_23, zero_45, zero_67; 
421 
vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67; 
422 
vector signed char negOne = vec_splat_s8(1); 
423 
vector signed char* scanPtr = 
424 
(vector signed char*)(s>intra_scantable.inverse); 
425 
signed char lastNonZeroChar; 
426  
427 
// Determine the largest nonzero index.

428 
zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero), 
429 
vec_cmpeq(data1, (vector signed short)zero)); 
430 
zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero), 
431 
vec_cmpeq(data3, (vector signed short)zero)); 
432 
zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero), 
433 
vec_cmpeq(data5, (vector signed short)zero)); 
434 
zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero), 
435 
vec_cmpeq(data7, (vector signed short)zero)); 
436  
437 
// 64 biggest values

438 
scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);

439 
scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);

440 
scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);

441 
scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);

442  
443 
// 32 largest values

444 
scanIndices_01 = vec_max(scanIndices_01, scanIndices_23); 
445 
scanIndices_45 = vec_max(scanIndices_45, scanIndices_67); 
446  
447 
// 16 largest values

448 
scanIndices_01 = vec_max(scanIndices_01, scanIndices_45); 
449  
450 
// 8 largest values

451 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
452 
vec_mergel(scanIndices_01, negOne)); 
453  
454 
// 4 largest values

455 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
456 
vec_mergel(scanIndices_01, negOne)); 
457  
458 
// 2 largest values

459 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
460 
vec_mergel(scanIndices_01, negOne)); 
461  
462 
// largest value

463 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
464 
vec_mergel(scanIndices_01, negOne)); 
465  
466 
scanIndices_01 = vec_splat(scanIndices_01, 0);

467  
468  
469 
vec_ste(scanIndices_01, 0, &lastNonZeroChar);

470  
471 
lastNonZero = lastNonZeroChar; 
472 

473 
// While the data is still in vectors we check for the transpose IDCT permute

474 
// and handle it using the vector unit if we can. This is the permute used

475 
// by the altivec idct, so it is common when using the altivec dct.

476  
477 
if ((lastNonZero > 0) && (s>dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) 
478 
{ 
479 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
480 
} 
481  
482 
vec_st(data0, 0, data);

483 
vec_st(data1, 16, data);

484 
vec_st(data2, 32, data);

485 
vec_st(data3, 48, data);

486 
vec_st(data4, 64, data);

487 
vec_st(data5, 80, data);

488 
vec_st(data6, 96, data);

489 
vec_st(data7, 112, data);

490 
} 
491 
} 
492  
493 
// special handling of block[0]

494 
if (s>mb_intra)

495 
{ 
496 
if (!s>h263_aic)

497 
{ 
498 
if (n < 4) 
499 
oldBaseValue /= s>y_dc_scale; 
500 
else

501 
oldBaseValue /= s>c_dc_scale; 
502 
} 
503  
504 
// Divide by 8, rounding the result

505 
data[0] = (oldBaseValue + 4) >> 3; 
506 
} 
507  
508 
// We handled the tranpose permutation above and we don't

509 
// need to permute the "no" permutation case.

510 
if ((lastNonZero > 0) && 
511 
(s>dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && 
512 
(s>dsp.idct_permutation_type != FF_NO_IDCT_PERM)) 
513 
{ 
514 
ff_block_permute(data, s>dsp.idct_permutation, 
515 
s>intra_scantable.scantable, lastNonZero); 
516 
} 
517  
518 
return lastNonZero;

519 
} 
520 
#undef FOUROF

521  
522 
/*

523 
AltiVec version of dct_unquantize_h263

524 
this code assumes `block' is 16 bytesaligned

525 
*/

526 
void dct_unquantize_h263_altivec(MpegEncContext *s,

527 
DCTELEM *block, int n, int qscale) 
528 
{ 
529 
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);

530 
int i, level, qmul, qadd;

531 
int nCoeffs;

532 

533 
assert(s>block_last_index[n]>=0);

534  
535 
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);

536 

537 
qadd = (qscale  1)  1; 
538 
qmul = qscale << 1;

539 

540 
if (s>mb_intra) {

541 
if (!s>h263_aic) {

542 
if (n < 4) 
543 
block[0] = block[0] * s>y_dc_scale; 
544 
else

545 
block[0] = block[0] * s>c_dc_scale; 
546 
}else

547 
qadd = 0;

548 
i = 1;

549 
nCoeffs= 63; //does not allways use zigzag table 
550 
} else {

551 
i = 0;

552 
nCoeffs= s>intra_scantable.raster_end[ s>block_last_index[n] ]; 
553 
} 
554  
555 
#ifdef ALTIVEC_USE_REFERENCE_C_CODE

556 
for(;i<=nCoeffs;i++) {

557 
level = block[i]; 
558 
if (level) {

559 
if (level < 0) { 
560 
level = level * qmul  qadd; 
561 
} else {

562 
level = level * qmul + qadd; 
563 
} 
564 
block[i] = level; 
565 
} 
566 
} 
567 
#else /* ALTIVEC_USE_REFERENCE_C_CODE */ 
568 
{ 
569 
register const_vector signed short vczero = (const_vector signed short)vec_splat_s16(0); 
570 
short __attribute__ ((aligned(16))) qmul8[] = 
571 
{ 
572 
qmul, qmul, qmul, qmul, 
573 
qmul, qmul, qmul, qmul 
574 
}; 
575 
short __attribute__ ((aligned(16))) qadd8[] = 
576 
{ 
577 
qadd, qadd, qadd, qadd, 
578 
qadd, qadd, qadd, qadd 
579 
}; 
580 
short __attribute__ ((aligned(16))) nqadd8[] = 
581 
{ 
582 
qadd, qadd, qadd, qadd, 
583 
qadd, qadd, qadd, qadd 
584 
}; 
585 
register vector signed short blockv, qmulv, qaddv, nqaddv, temp1; 
586 
register vector bool short blockv_null, blockv_neg; 
587 
register short backup_0 = block[0]; 
588 
register int j = 0; 
589 

590 
qmulv = vec_ld(0, qmul8);

591 
qaddv = vec_ld(0, qadd8);

592 
nqaddv = vec_ld(0, nqadd8);

593  
594 
#if 0 // block *is* 16 bytesaligned, it seems.

595 
// first make sure block[j] is 16 bytesaligned

596 
for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {

597 
level = block[j];

598 
if (level) {

599 
if (level < 0) {

600 
level = level * qmul  qadd;

601 
} else {

602 
level = level * qmul + qadd;

603 
}

604 
block[j] = level;

605 
}

606 
}

607 
#endif

608 

609 
// vectorize all the 16 bytesaligned blocks

610 
// of 8 elements

611 
for(; (j + 7) <= nCoeffs ; j+=8) 
612 
{ 
613 
blockv = vec_ld(j << 1, block);

614 
blockv_neg = vec_cmplt(blockv, vczero); 
615 
blockv_null = vec_cmpeq(blockv, vczero); 
616 
// choose between +qadd or qadd as the third operand

617 
temp1 = vec_sel(qaddv, nqaddv, blockv_neg); 
618 
// multiply & add (block{i,i+7} * qmul [+] qadd)

619 
temp1 = vec_mladd(blockv, qmulv, temp1); 
620 
// put 0 where block[{i,i+7} used to have 0

621 
blockv = vec_sel(temp1, blockv, blockv_null); 
622 
vec_st(blockv, j << 1, block);

623 
} 
624  
625 
// if nCoeffs isn't a multiple of 8, finish the job

626 
// using good old scalar units.

627 
// (we could do it using a truncated vector,

628 
// but I'm not sure it's worth the hassle)

629 
for(; j <= nCoeffs ; j++) {

630 
level = block[j]; 
631 
if (level) {

632 
if (level < 0) { 
633 
level = level * qmul  qadd; 
634 
} else {

635 
level = level * qmul + qadd; 
636 
} 
637 
block[j] = level; 
638 
} 
639 
} 
640 

641 
if (i == 1) 
642 
{ // cheat. this avoid specialcasing the first iteration

643 
block[0] = backup_0;

644 
} 
645 
} 
646 
#endif /* ALTIVEC_USE_REFERENCE_C_CODE */ 
647  
648 
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);

649 
} 